Combinatorics: Problem sheet 5

This is not for assessment, but I'll be happy to mark and comment on any attempts you hand directly to me

1. Recall the construction of a Steiner Triple System of order 3m (where m is odd) in the lectures. Its points are $A_0, \ldots, A_{m-1}, B_0, \ldots, B_{m-1}, C_0, \ldots, C_{m-1}$, and its blocks are $\{A_i, B_i, C_i\}$ and for $i \neq j$, $\{A_i, A_j, B_k\}$, $\{B_i, B_j, C_k\}$ and $\{C_i, C_j, A_k\}$ where $i + j \equiv 2k \pmod{m}$.

Take m = 9 and complete the following 2-sets to blocks: (i) $\{A_2, A_5\}$, (ii) $\{A_3, B_6\}$, (iii) $\{B_7, C_7\}$, (iv) $\{B_0, B_7\}$, (v) $\{A_1, C_8\}$.

2. Let (X, \mathcal{B}) be a t- (v, k, λ) design, that is X is a set of v elements and \mathcal{B} is a set of k-element subsets of X obeying the conditions for the blocks of t- (v, k, λ) design. In this question suppose also that $t \geq 2$.

Let $1 \leq t' < t$. Prove that (X, \mathcal{B}) is also a t'- (v, k, λ') design for some integer λ' . Express λ' in terms of t, t', v, k and λ .

- For the following systems of parameters t-(v, k, λ), determine whether or not a design with those parameters exists (either construct such a design or prove its nonexistence): (i) 2-(11, 3, 1), (ii) 3-(12, 4, 1), (iii) 2-(57, 8, 1).
- 4. One way of creating designs is to exploit difference sets. We let $X = \mathbf{Z}_n = \{0, 1, 2, \dots, n-1\}$ for some integer n. To illustrate the method, take n = 7 and consider the seven sets of the form $\{a, a + 1, a + 3\}$ (with addition modulo 7). In other words we take the set $\{0, 1, 3\}$ and all sets formed by adding the same number to all its elements. These form the blocks of a 2-(7, 3, 1) design. Why is this? Take distinct a, $b \in \mathbf{Z}_7$. If $b a \equiv 1 \pmod{7}$ they lie in the block $\{a, a + 1, a + 3\}$. If $b a \equiv 2 \pmod{7}$ they lie in the block $\{a, a + 1, a + 3\}$. If $b a \equiv 3 \pmod{7}$ they lie in the block $\{a, a + 1, a + 3\}$. If $b a \equiv 3 \pmod{7}$ they lie in the block $\{a, a + 1, a + 3\}$. If $b a \equiv 4$, 5 or 6 (mod 7) then $a b \equiv 3$, 2 or 1 (mod 7) and so we have already done these cases.

In general we take one or several basic blocks (in the above example $\{0, 1, 3\}$) and add each $a \in \mathbb{Z}_n$ to each element of the basic block. Hopefully (maybe after some trial and error) we get a design. The argument above generalizes: if we have a collection of basic blocks, then for nonzero $r \in \mathbb{Z}_n$ each pair $\{a, a + r\}$ lies in λ_r blocks where λ_r depends on r but not a. If we can arrange it so that all the $\lambda_r = \lambda$ are the same, then we get a 2- (n, k, λ) design.

- (a) Let n = 13. We aim to construct a 2-(13, 3, 1) design. This must have 26 blocks, so we need two basic blocks. Take one of the basic blocks to be $\{0, 1, 4\}$ (so that 13 of the blocks have the form $\{k, k + 1, k + 4\}$). Find another basic block and so construct a 2-(13, 3, 1) design.
- (b) Again let n = 13. We aim to construct a 2-(13, 4, 1) design. This must have 13 blocks, so we need one basic block. Find one.
- (c) Construct a 2-(19, 3, 1) design via this method.
- (d) (a bit harder) Let n = 11. Find a basic block which generates a 2-(11, 5, 2) design.
- 5. Consider the affine plane $\mathbf{A}^2(\mathbf{Z}_7)$. For each pair of points in $\mathbf{A}^2(\mathbf{Z}_7)$, find the equation of the line joining them, and list all the points on that line: (i) $\{(3, 1), (1, 5)\}$, (ii) $\{(4, 1), (4, 6)\}$.
- Consider the projective plane P²(Z₇). For each pair of points in P²(Z₇), find the equation of the line joining them, and list all the points on that line: (i) {[3,1,1], [1,5,1]}, (ii) {[4,1,1], [4,6,1]}, (iii) {[3,1,0], [6,0,1]}, (iv) {[3,2,3], [1,2,1]} (v) {[1,0,0], [2,3,4]}.
- 7. Let (X, \mathcal{B}) be a $2 (n^2, n, 1)$ design. Let's say blocks B and B' are *parallel* if $B \cap B' = \emptyset$.

Let $B \in \mathcal{B}$ and $x \in X$ satisfy $x \notin B$. Prove that x lies in a unique block which is parallel to B.

Deduce that for each block $B \in \mathcal{B}$ there are (n-1) blocks B' parallel to B.

Also prove that if B' and B'' are blocks parallel to B then B' = B'' or B' and B'' are parallel.

8. Recall that a symmetric design is a 2- (v, k, λ) design (where v > k > 2) in which the number of blocks b equals v, the number of points.

Prove that in a symmetric 2- (v, k, λ) design, each point is contained in exactly k blocks. Also, (harder) prove that any two distinct blocks contain exactly λ common points. (If this is too hard, try the special case with $\lambda = 1$.)

9. Let (X, \mathcal{B}) be a Steiner triple system of order n, that is a 2-(n, 3, 1) design. We define a binary operation * on X as follows: x * x = x and if $x \neq y$ then x * y = z where $\{x, y, z\}$ is the block containing x and y.

Prove that (i) x * x = x, (ii) x * y = y * x and (iii) x * (x * y) = y for all $x, y \in X$. Conversely prove that if one has a finite set X and an operation * on X satisfying (i), (ii) and (iii) then * arises from a Steiner triple system.

Deduce that if there are Steiner triple systems of orders m and n there is also a Steiner triple system of order mn.

RJC 3/12/2015