Combinatorics: Problem sheet 5

This is not for assessment, but I'll be happy to mark and comment on any attempts you hand directly to me

1. Recall the construction of a Steiner Triple System of order $3 m$ (where m is odd) in the lectures. Its points are $A_{0}, \ldots, A_{m-1}, B_{0}, \ldots, B_{m-1}$, C_{0}, \ldots, C_{m-1}, and its blocks are $\left\{A_{i}, B_{i}, C_{i}\right\}$ and for $i \neq j,\left\{A_{i}, A_{j}, B_{k}\right\}$, $\left\{B_{i}, B_{j}, C_{k}\right\}$ and $\left\{C_{i}, C_{j}, A_{k}\right\}$ where $i+j \equiv 2 k(\bmod m)$.
Take $m=9$ and complete the following 2-sets to blocks: (i) $\left\{A_{2}, A_{5}\right\}$, (ii) $\left\{A_{3}, B_{6}\right\}$, (iii) $\left\{B_{7}, C_{7}\right\}$, (iv) $\left\{B_{0}, B_{7}\right\}$, (v) $\left\{A_{1}, C_{8}\right\}$.
2. Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design, that is X is a set of v elements and \mathcal{B} is a set of k-element subsets of X obeying the conditions for the blocks of $t-(v, k, \lambda)$ design. In this question suppose also that $t \geq 2$.

Let $1 \leq t^{\prime}<t$. Prove that (X, \mathcal{B}) is also a $t^{\prime}-\left(v, k, \lambda^{\prime}\right)$ design for some integer λ^{\prime}. Express λ^{\prime} in terms of t, t^{\prime}, v, k and λ.
3. For the following systems of parameters $t-(v, k, \lambda)$, determine whether or not a design with those parameters exists (either construct such a design or prove its nonexistence): (i) 2-(11, 3, 1), (ii) $3-(12,4,1)$, (iii) $2-(57,8,1)$.
4. One way of creating designs is to exploit difference sets. We let $X=$ $\mathbf{Z}_{n}=\{0,1,2, \ldots, n-1\}$ for some integer n. To illustrate the method, take $n=7$ and consider the seven sets of the form $\{a, a+1, a+3\}$ (with addition modulo 7). In other words we take the set $\{0,1,3\}$ and all sets formed by adding the same number to all its elements. These form the blocks of a $2-(7,3,1)$ design. Why is this? Take distinct a, $b \in \mathbf{Z}_{7}$. If $b-a \equiv 1(\bmod 7)$ they lie in the block $\{a, a+1, a+3\}$. If $b-a \equiv 2(\bmod 7)$ they lie in the block $\{a-1, a, a+2\}$. If $b-a \equiv 3$ $(\bmod 7)$ they lie in the block $\{a, a+1, a+3\}$. If $b-a \equiv 4,5$ or 6 $(\bmod 7)$ then $a-b \equiv 3,2$ or $1(\bmod 7)$ and so we have already done these cases.

In general we take one or several basic blocks (in the above example $\{0,1,3\})$ and add each $a \in \mathbf{Z}_{n}$ to each element of the basic block. Hopefully (maybe after some trial and error) we get a design. The argument above generalizes: if we have a collection of basic blocks, then for nonzero $r \in \mathbf{Z}_{n}$ each pair $\{a, a+r\}$ lies in λ_{r} blocks where λ_{r} depends on r but not a. If we can arrange it so that all the $\lambda_{r}=\lambda$ are the same, then we get a $2-(n, k, \lambda)$ design.
(a) Let $n=13$. We aim to construct a $2-(13,3,1)$ design. This must have 26 blocks, so we need two basic blocks. Take one of the basic blocks to be $\{0,1,4\}$ (so that 13 of the blocks have the form $\{k, k+1, k+4\})$. Find another basic block and so construct a 2-(13, 3, 1) design.
(b) Again let $n=13$. We aim to construct a $2-(13,4,1)$ design. This must have 13 blocks, so we need one basic block. Find one.
(c) Construct a 2-(19, 3, 1) design via this method.
(d) (a bit harder) Let $n=11$. Find a basic block which generates a $2-(11,5,2)$ design.
5. Consider the affine plane $\mathbf{A}^{2}\left(\mathbf{Z}_{7}\right)$. For each pair of points in $\mathbf{A}^{2}\left(\mathbf{Z}_{7}\right)$, find the equation of the line joining them, and list all the points on that line: (i) $\{(3,1),(1,5)\}$, (ii) $\{(4,1),(4,6)\}$.
6. Consider the projective plane $\mathbf{P}^{2}\left(\mathbf{Z}_{7}\right)$. For each pair of points in $\mathbf{P}^{2}\left(\mathbf{Z}_{7}\right)$, find the equation of the line joining them, and list all the points on that line: (i) $\{[3,1,1],[1,5,1]\}$, (ii) $\{[4,1,1],[4,6,1]\}$, (iii) $\{[3,1,0],[6,0,1]\}$, (iv) $\{[3,2,3],[1,2,1]\}$ (v) $\{[1,0,0],[2,3,4]\}$.
7. Let (X, \mathcal{B}) be a $2-\left(n^{2}, n, 1\right)$ design. Let's say blocks B and B^{\prime} are parallel if $B \cap B^{\prime}=\emptyset$.
Let $B \in \mathcal{B}$ and $x \in X$ satisfy $x \notin B$. Prove that x lies in a unique block which is parallel to B.

Deduce that for each block $B \in \mathcal{B}$ there are $(n-1)$ blocks B^{\prime} parallel to B.

Also prove that if B^{\prime} and $B^{\prime \prime}$ are blocks parallel to B then $B^{\prime}=B^{\prime \prime}$ or B^{\prime} and $B^{\prime \prime}$ are parallel.
8. Recall that a symmetric design is a $2-(v, k, \lambda)$ design (where $v>k>2)$ in which the number of blocks b equals v, the number of points.

Prove that in a symmetric $2-(v, k, \lambda)$ design, each point is contained in exactly k blocks. Also, (harder) prove that any two distinct blocks contain exactly λ common points. (If this is too hard, try the special case with $\lambda=1$.)
9. Let (X, \mathcal{B}) be a Steiner triple system of order n, that is a $2-(n, 3,1)$ design. We define a binary operation $*$ on X as follows: $x * x=x$ and if $x \neq y$ then $x * y=z$ where $\{x, y, z\}$ is the block containing x and y.

Prove that (i) $x * x=x$, (ii) $x * y=y * x$ and (iii) $x *(x * y)=y$ for all $x, y \in X$. Conversely prove that if one has a finite set X and an operation $*$ on X satisfying (i), (ii) and (iii) then $*$ arises from a Steiner triple system.
Deduce that if there are Steiner triple systems of orders m and n there is also a Steiner triple system of order $m n$.

RJC 3/12/2015

