Combinatorics exam 2012: outline solutions

1(a) Multinomial coefficient:

$$
\frac{9!}{2!2!3!}=15120
$$

1(b)

$$
\begin{aligned}
A(t)=\frac{t^{2}}{1-3 t^{2}+2 t^{3}} & =\frac{1}{3(1-t)^{2}}+\frac{1}{9(1+2 t)}-\frac{4}{9(1-t)}, \\
a_{n} & =\frac{3 n-1+(-2)^{n}}{9} .
\end{aligned}
$$

1(c)

$$
D_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

Bookwork - see lecture notes.
There are $\binom{2 n}{n}$ choices for the n fixed points. The remaining n points are "deranged" in D_{n} possible ways. Answer:

$$
\binom{2 n}{n} D_{n}=\frac{(2 n)!}{n!} \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
$$

1(d)

$$
1+6 x+10 x^{2}+4 x^{3}
$$

1(e) Odd parts: 91, $73,71^{3}, 5^{2}, 531^{2}, 51^{5}, 3^{3} 1,3^{2} 1^{4}, 31^{7}, 1^{10}$. Disticnt parts: $10,91,82,73,721,64,631,541,532,4321$.

2(a) Bookwork - see lecture notes.
2(b) We count the permutations of $[2 m]$ having two cycles of length m. These split $2 m$ into two sets of size m; there are $\binom{2 m}{m}$ sets of size m and each appears once with its complement. There are $\frac{1}{2}\binom{2 m}{m}$ ways to pick these two sets. Each set can be made into a cycle in $(m-1)$! ways. So there are

$$
\frac{1}{2}\binom{2 m}{m}(m-1)!^{2}
$$

permutations of $[2 m]$ with two cycles of length m, and so this number is \leq the total number of two-cycle permutations which is $s(2 m, m)$.

2(c) The usual manipulation gives

$$
S(X)=1+X S(X)+X S(X)^{2}
$$

Solving this quadratic gives

$$
S(X)=\frac{1-X-\sqrt{1-6 X+X^{2}}}{2 X}
$$

(a "positive" square root would lead to an absurdity).
3(a) Bookwork (part of proof of Fisher's inequality) - see lecture notes. In fact $M^{t} M=(k-1) I+J$.

3(b) Set $B_{0}=\left\{P_{1}, P_{2}, P_{3}\right\}$. Through each P_{i} there are four blocks - three apart from B_{0} itself, but none of those three contains any other P_{j}. There are thus nine blocks meeting B_{0} in one point. There are 12 blocks overall, so that there are $12-1-9=2$ disjoint from B_{0}.

3(c) Set $B_{1}=P_{1}, P_{2}, P_{3}, P_{4}$. Adapting the proof that each point is an element of $\lambda\binom{v-1}{t-1} /\binom{k-1}{t-1}$ blocks, each pair of points is in $\lambda\binom{v-2}{t-2} /\binom{k-2}{t-2}$ blocks (if $t \geq 2$), and so here each pair is in four blocks. Each pair of points in B_{1} is in three other blocks, so that $3\binom{4}{2}=18$ blocks meet B_{1} in two points. Each point P_{i} is in twelve blocks: B_{1}, three further blocks also through each $P_{j}(j \neq i)$ (nine in all) and so $12-9-1=2$ blocks meeting B_{1} just in P_{j}. So 8 blocks meet B_{1} is just one point. Overall there are 30 blocks, and so $30-18-8-1=3$ blocks are disjoint from B_{1}.

4(a) One gets the recurrence

$$
A_{n}=2 A_{n-1}+A_{n-2}
$$

for $n \geq 2$ leading to

$$
A(t)=\frac{1}{1-2 t-t^{2}}=\frac{\alpha}{(\alpha-\beta)(1-\alpha t)}+\frac{\beta}{(\beta-\alpha)(1-\beta) t}
$$

where $(\alpha, \beta)=(1+\sqrt{2}, 1-\sqrt{2})$. Therefore

$$
A_{n}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}=\frac{(1+\sqrt{2})^{n+1}-(1-\sqrt{2})^{n+1}}{2 \sqrt{2}}
$$

4(b) (i) just take $x=z^{7 / 2}, y=-z^{3 / 2}$.
(ii) take $y=-z^{1 / 2} t$ and $x=z^{1 / 2}$. This gives

$$
\prod_{n=1}^{\infty}\left(1-t z^{n}\right)\left(1-t^{-1} z^{n-1}\right)\left(1-z^{n}\right)=\sum_{m=-\infty}^{\infty}(-1)^{m} t^{m} z^{m(m+1) / 2}
$$

and so

$$
\prod_{n=1}^{\infty}\left(1-t z^{n}\right)\left(1-t^{-1} z^{n}\right)\left(1-z^{n}\right)=\frac{1}{1-t^{-1}} \sum_{m=-\infty}^{\infty}(-1)^{m} t^{m} z^{m(m+1) / 2}
$$

Now $(-1)^{-1-m} t^{-1-m} z^{(-1-m)((-1-m)+1) / 2}=-(-1)^{m} t^{-1-m} z^{m(m+1) / 2}$ so that

$$
\begin{aligned}
\sum_{-\infty}^{-1}(-1)^{m} t^{m} z^{m(m+1) / 2} & =\sum_{0}^{\infty}(-1)^{-1-m} t^{-1-m} z^{(-1-m)((-1-m)+1) / 2} \\
& =-\sum_{0}^{\infty}(-1)^{m} t^{-1-m} z^{m(m+1) / 2}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\prod_{n=1}^{\infty}\left(1-t z^{n}\right)\left(1-t^{-1} z^{n}\right)\left(1-z^{n}\right) & =\sum_{m=0}^{\infty}(-1)^{m} z^{m(m+1) / 2} \frac{t^{m}-t^{-1-m}}{1-t^{-1}} \\
& =\sum_{m=0}^{\infty}(-1)^{m} z^{m(m+1) / 2} \sum_{k=-m}^{m} t^{k} .
\end{aligned}
$$

