MAS3042

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTING AND MATHEMATICS

MATHEMATICAL SCIENCES

June 2003
COMBINATORICS

Module Leader: 9:30 a.m. - 12:30 p.m.

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

> Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).
> Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

Robin Chapman

SECTION A

1. (a) How many anagrams has the word ASSESSMENT?
(b) Let the sequence $\left(a_{n}\right)$ be defined by the recurrence: $a_{0}=1$, $a_{1}=2, a_{n+2}=4 a_{n+1}-a_{n}$. Find an explicit expression for the generating function

$$
\begin{equation*}
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \tag{10}
\end{equation*}
$$

of the sequence $\left(a_{n}\right)$ and hence find a formula for a_{n}.
(c) How many numbers between 1 and 1000 inclusive are not divisible by any of the numbers 7,11 and 13 .
(d) Calculate the rook polynomial of (the blank squares of) the following board.

(e) Define the Ramsey number $R(r, k, l)$ and prove that $R(2,2,3) \leq$ 6.

SECTION B

2. (a) For integers $n \geq k \geq 1$ the Stirling number $S(n, k)$ is defined as the number of partitions of the set $\{1,2, \ldots, n\}$ into k disjoint nonempty subsets. Prove that $S(n, 1)=S(n, n)$ for each n, and that

$$
\begin{equation*}
S(n, k)=S(n-1, k-1)+k S(n-1, k) \tag{5}
\end{equation*}
$$

for $n>k>1$.
(b) Prove that

$$
\begin{equation*}
\sum_{n=k}^{\infty} S(n, k) t^{n}=\prod_{r=1}^{k} \frac{t}{1-r t} \tag{6}
\end{equation*}
$$

for each $k \geq 1$.
(c) Define

$$
F_{r}(t)=\sum_{n=1}^{\infty} S(n+r, n) t^{n}
$$

for each integer $r \geq 0$. Prove that

$$
\begin{equation*}
F_{r}(t)=\frac{t}{1-t} F_{r-1}^{\prime}(t) \tag{9}
\end{equation*}
$$

for $r \geq 1$. Hence, or otherwise, calculate $F_{1}(t)$.
3. (a) The Catalan numbers C_{n} are defined as follows. A Catalan path consists of steps of the forms $(x, y) \mapsto(x+1, y)$ or $(x, y) \mapsto$ $(x, y+1)$ and lies above or on the line $y=x$. Then C_{n} is the number of Catalan paths from $(0,0)$ to (n, n). Prove that

$$
C_{n}=\sum_{k=1}^{n} C_{k-1} C_{n-k}
$$

for $n>0$. Deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} C_{n} t^{n}=\frac{1-\sqrt{1-4 t}}{2 t} \tag{10}
\end{equation*}
$$

(b) The Schröder numbers S_{n} are defined as follows. A Schröder path consists of steps of the forms $(x, y) \mapsto(x+1, y),(x, y) \mapsto(x, y+1)$ or $(x, y) \mapsto(x+1, y+1)$ and lies above or on the line $y=x$. Then S_{n} is the number of Schröder paths from $(0,0)$ to (n, n). Prove that

$$
S_{n}=S_{n-1}+\sum_{k=1}^{n} S_{k-1} S_{n-k}
$$

for $n>0$. Find an explicit expression for

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n} t^{n} . \tag{10}
\end{equation*}
$$

4. (a) Define a $t-(v, k, \lambda)$ design. Prove a formula for the number of blocks in a $t-(v, k, \lambda)$ design.
(b) In each case determine whether a design with the given parameters occurs, either by constructing one, or by proving impossibility.
(i) 2-(6, 3, 2);
(ii) $2-(17,3,1)$;
(iii) $2-(25,5,1)$.
(c) Prove Fisher's inequality. This states that, in a $2-(v, k, \lambda)$ design with $v>k$, the number of blocks b satisfies $b \geq v$.
5. (a) Prove that the number of partitions of n into exactly k parts equals the number of partitions of n having largest part k.
(b) Let d_{n} and o_{n} denote, respectively, the number of partitions of n into distinct parts and into odd parts. Show that

$$
\sum_{n=0}^{\infty} d_{n} t^{n}=\prod_{k=1}^{\infty}\left(1+t^{k}\right)
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} o_{n} t^{n}=\prod_{k=1}^{\infty} \frac{1}{1-t^{2 k-1}} \tag{9}
\end{equation*}
$$

Hence, or otherwise, prove that $d_{n}=o_{n}$ for all n.
(c) The Jacobi triple product formula states that

$$
\prod_{n=1}^{\infty}\left(1+y x^{2 n-1}\right)\left(1+y^{-1} x^{2 n-1}\right)\left(1-x^{2 n}\right)=\sum_{m=-\infty}^{\infty} y^{m} x^{m^{2}}
$$

Assuming the Jacobi triple product formula, prove Euler's pentagonal number theorem, namely that

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1-t^{k}\right)=\sum_{m=-\infty}^{\infty}(-1)^{m} t^{m(3 m+1) / 2} \tag{7}
\end{equation*}
$$

