SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS

MATHEMATICAL SCIENCES

June 2005
COMBINATORICS
Module Leader: Robin Chapman
Duration: 2 HOURS.

The mark for this module is calculated from 75% of the percentage mark for this paper plus 25% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) How many anagrams has the word HOMOLOGICAL?
(b) Let the sequence $\left(a_{n}\right)$ be defined by the recurrence: $a_{0}=1$, $a_{1}=0, a_{n+2}=2 a_{n+1}-2 a_{n}$. Find an explicit expression for the generating function

$$
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

of the sequence $\left(a_{n}\right)$ and hence find a formula for a_{n}.
(c) Calculate the rook polynomial of (the blank squares of) the following board.

(d) Find the conjugate of the partition $86^{2} 541$.
(e) Prove that if each 2 -subset of a 10 -element set X is coloured red or blue then either there is a 3 -subset of X with all its 2 -subsets coloured red or a 4 -subset of X with all its 2-subsets coloured blue.
(You may assume that if each 2 -subset of a 6 -element set Y is coloured red or blue then there is a 3 -subset of Y with all its 2 -subsets having the same colour.)

SECTION B

2. (a) The Catalan numbers C_{n} are defined as follows. A Dyck path consists of steps of the forms $(x, y) \mapsto(x+1, y+1)$ or $(x, y) \mapsto$ $(x+1, y-1)$ and lies above or on the x-axis. Then C_{n} is the number of Dyck paths from $(0,0)$ to $(2 n, 0)$. Prove that

$$
C_{n}=\sum_{k=1}^{n} C_{k-1} C_{n-k}
$$

for $n>0$. Deduce that

$$
\begin{equation*}
\sum_{n=0}^{\infty} C_{n} t^{n}=\frac{1-\sqrt{1-4 t}}{2 t} \tag{10}
\end{equation*}
$$

(b) The Motzkin numbers M_{n} are defined as follows. A Motzkin path consists of steps of the forms $(x, y) \mapsto(x+1, y+1),(x, y) \mapsto$ $(x+1, y)$ or $(x, y) \mapsto(x+1, y-1)$ and lies above or on the x-axis. Then M_{n} is the number of Motzkin paths from $(0,0)$ to $(n, 0)$. Prove that

$$
M_{n}=M_{n-1}+\sum_{k=2}^{n} M_{k-2} M_{n-k}
$$

for $n \geq 2$. Hence calculate M_{6}. Also find an explicit expression for the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} M_{n} t^{n} \tag{15}
\end{equation*}
$$

3. (a) What is a $t-(v, k, \lambda)$ design? Prove that a $t-(v, k, \lambda)$ design has

$$
\lambda \frac{\binom{v}{t}}{\binom{k}{t}}
$$

blocks. Also prove a formula for the number of blocks through each point in a $t-(v, k, \lambda)$ design.
Deduce that in a $2-(n, 3,1)$ design, either $n \equiv 1(\bmod 6)$ or $n \equiv 3$ $(\bmod 6)$.
(b) Let B_{0} be a block in a $2-(n, k, 1)$ design (X, \mathcal{B}). Prove that there are

$$
\begin{equation*}
\frac{n(n-1)}{k(k-1)}-\frac{k(n-k)}{k-1}-1 \tag{6}
\end{equation*}
$$

blocks $B \in \mathcal{B}$ with $B \cap B_{0}=\emptyset$.
(Hint: for each $a \in B_{0}$ count the number of blocks B^{\prime} with $B^{\prime} \cap$ $\left.B_{0}=\{a\}.\right)$
(c) Find all points on the line through $(3,6)$ and $(5,3)$ in the affine plane $\mathbf{A}^{2}\left(Z_{7}\right)$.
4. (a) Prove that the number of self-conjugate partitions of a number n (that is partitions which are their own conjugates) is equal to the number of partitions of n into distinct odd parts.
Hence find an infinite product expansion of the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n} t^{n} \tag{12}
\end{equation*}
$$

where S_{n} denotes the number of self-conjugate partitions of n.
(b) Let d_{n} and o_{n} denote, respectively, the number of partitions of n into distinct parts and into odd parts. Prove that $d_{n}=o_{n}$ for all n.
(c) The Jacobi triple product formula states that

$$
\prod_{n=1}^{\infty}\left(1+y x^{2 n-1}\right)\left(1+y^{-1} x^{2 n-1}\right)\left(1-x^{2 n}\right)=\sum_{m=-\infty}^{\infty} y^{m} x^{m^{2}}
$$

Assuming the Jacobi triple product formula, prove that

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1-t^{k}\right)=\sum_{m=-\infty}^{\infty}(-1)^{m} t^{m(3 m+1) / 2} \tag{7}
\end{equation*}
$$

