UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS

MATHEMATICAL SCIENCES

May/June 2007
COMBINATORICS
Module Leader: Dr M. J. Craven
Duration: 2 HOURS.
The mark for this module is calculated from 75% of the percentage mark for this paper plus 25% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) Consider the sequence $\left(a_{n}\right)$ defined by the recurrence

$$
a_{0}=1, a_{1}=0, a_{n}=7 a_{n-1}-10 a_{n-2} \text { for } n \geq 2
$$

Find an explicit expression for the generating function

$$
\begin{equation*}
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \tag{12}
\end{equation*}
$$

of the sequence (a_{n}) and hence find a formula for a_{n}.
(b) How many anagrams has the word DODECAHEDRON?
(c) Give the definition of the rook polynomial of a board B. Calculate the rook polynomials of (the white squares of) each of the following boards:
(i)

(ii)

(d) What is a $t-(v, k, \lambda)$ design? Prove that a $t-(v, k, \lambda)$ design has

$$
\begin{equation*}
b=\lambda \frac{\binom{v}{t}}{\binom{k}{t}} \text { blocks. } \tag{11}
\end{equation*}
$$

(e) (i) List the partitions of $n=15$ into distinct parts.
(ii) Find the conjugate of the partition $107^{2} 4^{2} 31$.

SECTION B

2. (a) Let $D(k, n)$ denote the number of permutations π of $[n]=$ $\{1,2, \ldots, n\}$ where $\pi(j)=j$ for exactly k distinct values of j. Calculate the number $D(3,5)$. Using the formula (without proof)

$$
\begin{equation*}
D(0, n)=n!\sum_{m=0}^{n} \frac{(-1)^{m}}{m!} \tag{6}
\end{equation*}
$$

find a similar formula for $D(k, n)$.
(b) For integers $n \geq k \geq 1$ the Stirling number (of the second kind) $S(n, k)$ is defined to be the number of partitions of $[n]$ into k disjoint non-empty subsets. Prove that $S(n, 1)=S(n, n)$ for all n and $S(n, k)=S(n-1, k-1)+k S(n-1, k)$ for $n>k>1$.
The Stirling triangle is a table where the entry on row n and column k is the Stirling number $S(n, k)$. Compute the Stirling triangle up to the fifth row ($n=5$).
(c) Define the nth Bell number to be the sum of the nth row of the Stirling triangle:

$$
B_{n}=\sum_{k=1}^{n} S(n, k)
$$

(You may assume $B_{0}=1$.)
Calculate the Bell numbers B_{1}, \ldots, B_{5}. From Dobinski's formula

$$
B_{n}=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}
$$

deduce the exponential generating function

$$
\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=e^{\mathrm{e}^{t}-1}
$$

3. (a) Prove that the number of self-conjugate partitions of a number n equals the number of partitions of n into distinct odd parts.
(b) Let d_{n} be the number of partitions of n into distinct parts. Show that

$$
\sum_{n=0}^{\infty} d_{n} t^{n}=\prod_{m=1}^{\infty}\left(1+t^{m}\right)
$$

Let a_{n} be the number of partitions of n into odd parts. Write down an infinite product formula for the generating function, $\sum_{n=0}^{\infty} a_{n} t^{n}$. Hence, or otherwise, prove that $d_{n}=a_{n}$ for all n.
(c) The Jacobi triple product formula states that

$$
\sum_{m=-\infty}^{\infty} y^{m} x^{m^{2}}=\prod_{n=1}^{\infty}\left(1+y x^{2 n-1}\right)\left(1+y^{-1} x^{2 n-1}\right)\left(1-x^{2 n}\right)
$$

Assuming this formula, find a formula which expresses

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} t^{m(m+1) / 2} \tag{8}
\end{equation*}
$$

as an infinite product.
4. (a) Prove a formula for the number of blocks in a $t-(v, k, \lambda)$ design that contain a given point.
From the above formula and from part (d) of question 1 , show that for a $2-(n, 3,1)$ design either $n \equiv 1(\bmod 6)$ or $n \equiv 3$ $(\bmod 6)$.
(b) In each of the following cases determine whether a design with the given parameters occurs, either by constructing one, or by proving impossibility:
(i) $2-(7,3,1)$;
(ii) $2-(11,3,1)$;
(iii) $3-(15,12,1)$.
(c) Find the line through $(2,5)$ and $(9,2)$ in the Affine plane $A^{2}\left(\mathbb{Z}_{11}\right)$, and list all points on that line.

