ECM3721

UNIVERSITY OF EXETER

SCHOOL OF ENGINEERING, COMPUTING AND MATHEMATICS

MATHEMATICAL SCIENCES

May/June 2009
COMBINATORICS
Module Leader: Robin Chapman
Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) How many anagrams has the word HOMOMORPHISMS?
(b) A sequence $\left(a_{n}\right)$ is recursively defined by

$$
a_{0}=1, \quad a_{1}=2, \quad a_{2}=-1, \quad a_{n}=3 a_{n-2}+2 a_{n-3} \quad(n \geq 3)
$$

Find an explicit expression for the generating function

$$
\begin{equation*}
A(X)=\sum_{n=0}^{\infty} a_{n} X^{n} \tag{15}
\end{equation*}
$$

and hence, or otherwise, find a general formula for a_{n}.
(c) Find the rook polynomial of the (blank squares of the) following board:

(d) How many numbers between 1001 and 2000 inclusive are divisible by none of the three numbers 7,11 and 13 ?
(e) Find all partitions of 16 which are self-conjugate. (A partition is self-conjugate if it is equal to its own conjugate.)

SECTION B

2. (a) The Stirling number $S(n, k)$ is defined as the number of partitions of an n-element set into k non-empty subsets. Prove that $S(n, n)=S(n, 1)=1$ and that

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

whenever $1<k<n$. Also prove that

$$
\begin{equation*}
\sum_{n=k}^{\infty} S(n, k) X^{n}=\prod_{j=1}^{k} \frac{X}{1-j X} \tag{12}
\end{equation*}
$$

for all positive integers k.
(b) The Motzkin numbers M_{n} are defined as follows. A Motzkin path consists of steps of the forms $(x, y) \mapsto(x+1, y+1)$, $(x, y) \mapsto(x+1, y)$ or $(x, y) \mapsto(x+1, y-1)$ and lies above or on the x-axis. Then M_{n} is the number of Motzkin paths from $(0,0)$ to $(n, 0)$ (as a special case $M_{0}=1$). Prove that

$$
M_{n}=M_{n-1}+\sum_{k=2}^{n} M_{k-2} M_{n-k}
$$

for $n \geq 2$. Hence, or otherwise, calculate M_{7}. Also find an explicit expression for the generating function

$$
\begin{equation*}
M(X)=\sum_{n=0}^{\infty} M_{n} X^{n} . \tag{13}
\end{equation*}
$$

3. (a) Let d_{n} and o_{n} denote, respectively, the number of partitions of n into distinct parts and into odd parts. Prove that

$$
\sum_{n=0}^{\infty} d_{n} t^{n}=\prod_{k=1}^{\infty}\left(1+t^{k}\right)
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} o_{n} t^{n}=\prod_{k=1}^{\infty} \frac{1}{1-t^{2 k-1}} . \tag{10}
\end{equation*}
$$

Hence, or otherwise, prove that $d_{n}=o_{n}$ for all n.
(b) The Jacobi triple product formula states that

$$
\prod_{n=1}^{\infty}\left(1+y x^{2 n-1}\right)\left(1+y^{-1} x^{2 n-1}\right)\left(1-x^{2 n}\right)=\sum_{m=-\infty}^{\infty} y^{m} x^{m^{2}}
$$

Assuming the Jacobi triple product formula express

$$
\sum_{m=0}^{\infty} t^{m(m+1) / 2}
$$

as an infinite product.
(c) Let $P(t)=\sum_{n=0}^{\infty} p_{n} t^{n}=\prod_{m=1}^{\infty}\left(1-t^{m}\right)^{-1}$. Prove that

$$
\begin{equation*}
\frac{P^{\prime}(t)}{P(t)}=\frac{d}{d t} \log P(t)=\sum_{n=1}^{\infty} \sigma(n) t^{n-1} \tag{6}
\end{equation*}
$$

where $\sigma(n)$ is the sum of the positive integer divisors of n.
4. (a) Prove that a $t-(v, k, \lambda)$ design has

$$
\lambda \frac{\binom{v}{t}}{\binom{k}{t}}
$$

blocks and find a formula for the number of blocks containing a given point in such a design.
(b) A Steiner triple system is a $2-(n, 3,1)$ design. Prove that if a Steiner triple system exists with n points then $n \equiv 1$ or $3(\bmod 6)$.
(c) Let B_{0} be a block in a Steiner triple system on n points. How many blocks B in the system have the property that $B \cap B_{0}=\emptyset$?

