ECM3721

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May/June 2011

Combinatorics

Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) How many anagrams has the word PSEUDOSPHERE?
(b) Let the sequence $\left(a_{n}\right)$ be defined by the recurrence: $a_{0}=1, a_{1}=2$, and $a_{n+2}=4 a_{n+1}-13 a_{n}$ for $n \geq 0$. Find an explicit expression for the generating function

$$
\begin{equation*}
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \tag{15}
\end{equation*}
$$

of the sequence $\left(a_{n}\right)$ and hence find a formula for a_{n}.
(c) A permutation of the set $[n]=\{1,2, \ldots, n\}$ is a list $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of the elements of [n] with each element occurring once. It is a derangement if $b_{j} \neq j$ for all $j \in[n]$. Use the inclusion-exclusion principle to determine how many derangements of [6] there are. How many permutations of [6] have the property that $b_{j}=j$ for exactly three different values of j ?
(d) Find the rook polynomial of (the blank squares) of the following board:

(e) Find the conjugate of the partition $96^{2} 432$.

SECTION B

2. (a) The Stirling numbers of the first kind $s(n, k)$ are defined for integers $n \geq k \geq 0$ and satisfy

- $s(n, n)=1$ for all $n \geq 0$,
- $s(n, 0)=0$ for all $n \geq 1$ and
- $s(n, k)=s(n-1, k-1)+(n-1) s(n-1, k)$ if $0<k<n$

Compute $s(5, k)$ for all k with $0 \leq k \leq 5$.
Prove that

$$
\begin{equation*}
s(n, 2)=(n-1)!\sum_{j=1}^{n-1} \frac{1}{j} \tag{10}
\end{equation*}
$$

for $n \geq 2$.
(b) The Schröder numbers S_{n} are defined as follows. A Schröder path starts at $(0,0)$ with allowable steps

- $(x, y) \mapsto(x+1, y+1)$,
- $(x, y) \mapsto(x+1, y-1)$,
- $(x, y) \mapsto(x+2, y)$
and lies completely on or above the x-axis. Then S_{n} is the number of Schröder paths finishing at $(2 n, 0)$ (also $\left.S_{0}=1\right)$. Prove that

$$
S_{n}=S_{n-1}+\sum_{k=1}^{n} S_{k-1} S_{n-k}
$$

for $n>0$.
Find an explicit expression for the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n} X^{n} \tag{15}
\end{equation*}
$$

3. (a) Prove that a $t-(v, k, 1)$ design has

$$
\frac{\binom{v}{t}}{\binom{k}{t}}
$$

blocks and determine a formula for the number of blocks which contain a given point.
Prove that if a $2-(v, 4,1)$ design exists then $v \equiv 1$ or $4(\bmod 12)$.
(b) Let B_{0} be a fixed block in a $2-(v, 4,1)$ design. Prove that there are

$$
\begin{equation*}
\frac{v(v-1)}{12}-\frac{4(v-4)}{3}-1 \tag{8}
\end{equation*}
$$

blocks B with $B \cap B_{0}=\emptyset$.
4. (a) Prove that the number of self-conjugate partitions of a number n (that is partitions which are their own conjugates) is equal to the number of partitions of n into distinct odd parts.
(b) The rank of a partition is the largest part minus the number of parts. For instance, the partition $53^{2} 2^{2} 1$ has rank $5-6=-1$. Prove that the number of partitions of n with rank k equals the number of partitions of n with rank $-k$.
(c) Let $P(t)=\sum_{n=0}^{\infty} p_{n} t^{n}=\prod_{m=1}^{\infty}\left(1-t^{m}\right)^{-1}$ be the generating function for the partition numbers. Prove that

$$
\begin{equation*}
\frac{P^{\prime}(t)}{P(t)}=\frac{d}{d t} \log P(t)=\sum_{n=1}^{\infty} \sigma(n) t^{n-1} \tag{10}
\end{equation*}
$$

where $\sigma(n)$ is the sum of the positive integer divisors of n.

