ECM3721

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May/June 2012

Combinatorics

Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) How many anagrams has the word DISMISSED?
(b) Let the sequence $\left(a_{n}\right)$ be defined by the recurrence: $a_{0}=0, a_{1}=0$, $a_{2}=1$ and $a_{n}=3 a_{n-2}-2 a_{n-3}$ for $n \geq 3$. Find an explicit expression for the generating function

$$
\begin{equation*}
A(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \tag{15}
\end{equation*}
$$

of the sequence $\left(a_{n}\right)$ and hence find a formula for a_{n}.
(c) A permutation of the set $[n]=\{1,2, \ldots, n\}$ is a bijection π : $[n] \rightarrow[n]$. It is a derangement if $\pi(j) \neq j$ for all $j \in[n]$. Use the inclusion-exclusion principle to prove a formula for the number D_{n} of derangements of $[n]$.
How many permutations π of [2n] have the property that $\pi(j)=j$ for exactly n values of j ?
(d) Find the rook polynomial of (the blank squares of) the following board:

(e) Find all partitions of 10 (i) into odd parts, (ii) into distinct parts.

SECTION B

2. (a) The Stirling number of the first kind $s(n, k)$ is defined as the number of permutations of $[n]=\{1,2, \ldots, n\}$ having k cycles.
Prove that $s(n, 1)=(n-1)!, s(n, n)=1$ and

$$
\begin{equation*}
s(n, k)=s(n-1, k-1)+(n-1) s(n-1, k) \tag{11}
\end{equation*}
$$

whenever $1<k<n$.
(b) Prove that

$$
\begin{equation*}
s(2 m, 2) \geq \frac{1}{2}\binom{2 m}{m}(m-1)!^{2} \tag{6}
\end{equation*}
$$

for all positive integers m.
(c) The Schröder numbers S_{n} satisfy $S_{0}=1$ and

$$
S_{n}=2 S_{n-1}+\sum_{k=1}^{n-1} S_{k} S_{n-k-1}
$$

for $n \geq 1$. Find a quadratic equation satisfied by the generating function

$$
\begin{equation*}
S(X)=\sum_{n=0}^{\infty} S_{n} X^{n} \tag{8}
\end{equation*}
$$

and solve it to obtain an explicit formula for $S(X)$.
3. Recall that a $t-(v, k, \lambda)$ design has $\lambda\binom{v}{t} /\binom{k}{t}$ blocks and that any given point is an element of $\lambda\binom{v-1}{t-1} /\binom{k-1}{t-1}$ blocks.
(a) Let (X, \mathcal{B}) be a $2-(v, k, 1)$ design. Let its set of points be $X=\left\{P_{1} \ldots, P_{v}\right\}$ and its set of blocks be $\mathcal{B}=\left\{B_{1} \ldots, B_{b}\right\}$. Then its incidence matrix is the b-by- v matrix M whose (i, j)-entry is

$$
m_{i, j}= \begin{cases}1 & \text { if } P_{j} \in B_{i}, \\ 0 & \text { if } P_{j} \notin B_{i} .\end{cases}
$$

Prove that $M^{t} M=\alpha I+J$ where I is the v-by- v identity matrix, J is the v-by- v all-one matrix and α is some number.
(b) Let B_{0} be a fixed block in a $2-(9,3,1)$ design. Prove that there are two blocks B with $B \cap B_{0}=\emptyset$.
(c) Let B_{1} be a fixed block in a 3-(10, 4, 1) design. Prove that there are 18 blocks B with $\left|B \cap B_{1}\right|=2$. How many blocks B have $\left|B \cap B_{1}\right|=1$? How many blocks B have $B \cap B_{1}=\emptyset$?
4. (a) You are given a supply of 2×1 dominoes, and are asked to tile a $2 \times n$ rectangle. The dominoes come in two colours: red and blue, but while dominoes placed in a vertical position are allowed to be red or blue, those placed in a horizontal position must be blue. For instance,

is allowed, but

is not. Determine a formula for A_{n}, the number of allowable domino tilings for the $2 \times n$ rectangle. (You may take $A_{0}=1$.)
(b) The Jacobi triple product states that

$$
\prod_{n=1}^{\infty}\left(1+y x^{2 n-1}\right)\left(1+y^{-1} x^{2 n-1}\right)\left(1-x^{2 n}\right)=\sum_{m=-\infty}^{\infty} y^{m} x^{m^{2}}
$$

Use the Jacobi triple product to prove that
(i)

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-z^{7 n-5}\right)\left(1-z^{7 n-2}\right)\left(1-z^{7 n}\right)=\sum_{m=-\infty}^{\infty}(-1)^{m} z^{m(7 m+3) / 2} \tag{3}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-z^{n}\right)\left(1-z^{n} t\right)\left(1-z^{n} t^{-1}\right)=\sum_{m=0}^{\infty}(-1)^{m} z^{m(m+1) / 2} \sum_{r=-m}^{m} t^{r} . \tag{10}
\end{equation*}
$$

