ECM3721

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May/June 2012

Combinatorics

Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a **CLOSED BOOK** examination.

SECTION A

- 1. (a) How many anagrams has the word DISMISSED?
 - (b) Let the sequence (a_n) be defined by the recurrence: $a_0 = 0, a_1 = 0, a_2 = 1$ and $a_n = 3a_{n-2} 2a_{n-3}$ for $n \ge 3$. Find an explicit expression for the generating function

$$A(t) = \sum_{n=0}^{\infty} a_n t^n$$

of the sequence (a_n) and hence find a formula for a_n .

(c) A permutation of the set $[n] = \{1, 2, ..., n\}$ is a bijection π : $[n] \rightarrow [n]$. It is a derangement if $\pi(j) \neq j$ for all $j \in [n]$. Use the inclusion-exclusion principle to prove a formula for the number D_n of derangements of [n].

How many permutations π of [2n] have the property that $\pi(j) = j$ for exactly *n* values of *j*? (15)

(d) Find the rook polynomial of (the blank squares of) the following board:

(9)

(e) Find all partitions of 10 (i) into odd parts, (ii) into distinct parts.

(6)

[50]

(5)

(15)

SECTION B

2. (a) The Stirling number of the first kind s(n,k) is defined as the number of permutations of $[n] = \{1, 2, ..., n\}$ having k cycles. Prove that s(n, 1) = (n - 1)!, s(n, n) = 1 and

$$s(n,k) = s(n-1,k-1) + (n-1)s(n-1,k)$$

$$1 < k < n.$$
(11)

(b) Prove that

whenever

$$s(2m,2) \ge \frac{1}{2} \binom{2m}{m} (m-1)!^2$$

for all positive integers m.

(c) The Schröder numbers S_n satisfy $S_0 = 1$ and

$$S_n = 2S_{n-1} + \sum_{k=1}^{n-1} S_k S_{n-k-1}$$

for $n \ge 1$. Find a quadratic equation satisfied by the generating function

$$S(X) = \sum_{n=0}^{\infty} S_n X^n$$

and solve it to obtain an explicit formula for S(X).

(8) [**25**]

(6)

- 3. Recall that a t- (v, k, λ) design has $\lambda {\binom{v}{t}} / {\binom{k}{t}}$ blocks and that any given point is an element of $\lambda {\binom{v-1}{t-1}} / {\binom{k-1}{t-1}}$ blocks.
 - (a) Let (X, \mathcal{B}) be a 2-(v, k, 1) design. Let its set of points be $X = \{P_1 \dots, P_v\}$ and its set of blocks be $\mathcal{B} = \{B_1 \dots, B_b\}$. Then its incidence matrix is the *b*-by-*v* matrix *M* whose (i, j)-entry is

$$m_{i,j} = \begin{cases} 1 & \text{if } P_j \in B_i, \\ 0 & \text{if } P_j \notin B_i. \end{cases}$$

Prove that $M^t M = \alpha I + J$ where I is the *v*-by-*v* identity matrix, J is the *v*-by-*v* all-one matrix and α is some number. (7)

- (b) Let B_0 be a fixed block in a 2-(9,3,1) design. Prove that there are two blocks B with $B \cap B_0 = \emptyset$. (6)
- (c) Let B_1 be a fixed block in a 3-(10, 4, 1) design. Prove that there are 18 blocks B with $|B \cap B_1| = 2$. How many blocks B have $|B \cap B_1| = 1$? How many blocks B have $B \cap B_1 = \emptyset$? (12)

[25]

Page 3 of 4 ECM3721/continued ...

4. (a) You are given a supply of 2 × 1 dominoes, and are asked to tile a 2 × n rectangle. The dominoes come in two colours: red and blue, but while dominoes placed in a vertical position are allowed to be red or blue, those placed in a horizontal position must be blue. For instance,

R	В	В	R
	В		

is allowed, but

R	R	В	R
	В		

is not. Determine a formula for A_n , the number of allowable domino tilings for the $2 \times n$ rectangle. (You may take $A_0 = 1$.) (12)

(b) The Jacobi triple product states that

$$\prod_{n=1}^{\infty} (1+yx^{2n-1})(1+y^{-1}x^{2n-1})(1-x^{2n}) = \sum_{m=-\infty}^{\infty} y^m x^{m^2}.$$

Use the Jacobi triple product to prove that

(i)

$$\prod_{n=1}^{\infty} (1 - z^{7n-5})(1 - z^{7n-2})(1 - z^{7n}) = \sum_{m=-\infty}^{\infty} (-1)^m z^{m(7m+3)/2},$$
(ii)
(ii)

$$\prod_{n=1}^{\infty} (1-z^n)(1-z^n t)(1-z^n t^{-1}) = \sum_{m=0}^{\infty} (-1)^m z^{m(m+1)/2} \sum_{r=-m}^m t^r.$$
(10)
[25]

Page 4 of 4 ECM3721/END OF PAPER