ECM3721

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May 2013

Combinatorics

Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50%) and any TWO of the three questions in Section B (25% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a **CLOSED BOOK** examination.

SECTION A

- 1. (a) How many anagrams has the word SYLLOGISMS?
 - (b) A tromino is a 3-by-1 rectangle. Let A_n denote the number of ways of covering a 3-by-*n* rectangle with *n* trominoes (which may be placed vertically or horizontally). Taking $A_0 = 1$, find a linear recurrence for A_n of the form

$$A_n = b_1 A_{n-1} + b_2 A_{n-2} + b_3 A_{n-3} \qquad (n \ge 3)$$

and use it to find an explicit formula for the generating function

$$A(t) = \sum_{n=0}^{\infty} A_n t^n.$$
(12)

(c) The Stirling numbers of the second kind S(n,k) satisfy the initial conditions

$$S(n,1) = S(n,n) = 1$$
 $(n \ge 1)$

and the recurrence

$$S(n,k) = kS(n-1,k) + S(n-1,k-1) \qquad (n > k > 1).$$

Compute all the S(n,k) for $1 \le k \le n \le 5$. Prove that

$$\sum_{n=3}^{\infty} S(n,3)t^n = \frac{t^3}{(1-t)(1-2t)(1-3t)}.$$
(14)

(d) Find the rook polynomial of (the blank squares) of the following board:

							Γ
 _							
 _					_	_	_
_							
_							

(10)

(e) Find all self-conjugate partitions of 19.

(9) [**50**]

Page 2 of 4 ECM3721/continued ...

(5)

SECTION B

2. (a) The Catalan numbers satisfy the recurrence

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k} \qquad (n \ge 0)$$

with the initial condition $C_0 = 1$. Prove that $C_{2n+1} - C_n$ is always an even number. Find five different n such that C_n is odd, and prove that there are infinitely many n with C_n odd. (11)

- (b) Call a path from (0,0) to (n,0) admissible if it lies entirely on or above the x-axis, and each of its steps are of the following forms
 - $(x, y) \to (x+1, y+1),$
 - $(x, y) \to (x+1, y-1),$
 - $(x,y) \rightarrow (x+3,y)$.

Let U_n denote the number of admissible paths from (0,0) to (n,0) taking $U_0 = 1$. Show that $U_1 = 0$ and $U_2 = 1$, and find a recurrence for U_n valid for $n \ge 3$. Use this recurrence to find an explicit formula for the generating function

$$U(t) = \sum_{n=0}^{\infty} U_n t^n.$$
(14)

- 3. (a) Let (X, \mathcal{B}) be a t-(v, k, 1) design. Prove that it has $\binom{v}{t} / \binom{k}{t}$ blocks and that any given point is an element of $\binom{v-1}{t-1} / \binom{k-1}{t-1}$ blocks. (8)
 - (b) Let B_0 be a fixed block in a 2-(21, 5, 1) design. Prove that every other block B in the design satisfies $|B \cap B_0| = 1$. (7)
 - (c) Let B_1 be a fixed block in a 3-(22, 6, 1) design. Prove that there are 60 blocks B with $|B \cap B_1| = 2$. How many blocks B have $|B \cap B_1| = 1$? How many blocks B have $B \cap B_1 = \emptyset$? (10)

[25]

Page 3 of 4 ECM3721/continued ...

- 4. (a) Prove that the number of partitions of n into k parts equals the number of partitions of n with largest part k.
 - (b) Let \mathcal{A}_k denote the set of all partitions which have both (i) exactly k parts and (ii) largest part k. Write down all elements of \mathcal{A}_3 and their Ferrers diagrams. State and prove a formula for the number of elements of \mathcal{A}_k . (10)
 - (c) Let $p_k(n)$ denote the number of partitions of n which have exactly k parts, and all of which are distinct. Prove that

$$\sum_{n=0}^{\infty} p_k(n) t^k = \frac{f_k(t)}{\prod_{j=1}^k (1-t^j)}$$

where $f_k(t)$ is a polynomial that you should determine. (10)

[25]

(5)