ECM3721

UNIVERSITY OF EXETER

COLLEGE OF ENGINEERING, MATHEMATICS AND PHYSICAL SCIENCES

MATHEMATICS

May 2013

Combinatorics

Module Leader: Robin Chapman

Duration: 2 HOURS.

The mark for this module is calculated from 80% of the percentage mark for this paper plus 20% of the percentage mark for associated coursework.

Answer Section A (50\%) and any TWO of the three questions in Section B (25\% for each).

Marks shown in questions are merely a guideline. Candidates are permitted to use approved portable electronic calculators in this examination.

This is a CLOSED BOOK examination.

SECTION A

1. (a) How many anagrams has the word SYLLOGISMS?
(b) A tromino is a 3-by-1 rectangle. Let A_{n} denote the number of ways of covering a 3 -by- n rectangle with n trominoes (which may be placed vertically or horizontally). Taking $A_{0}=1$, find a linear recurrence for A_{n} of the form

$$
A_{n}=b_{1} A_{n-1}+b_{2} A_{n-2}+b_{3} A_{n-3} \quad(n \geq 3)
$$

and use it to find an explicit formula for the generating function

$$
\begin{equation*}
A(t)=\sum_{n=0}^{\infty} A_{n} t^{n} \tag{12}
\end{equation*}
$$

(c) The Stirling numbers of the second kind $S(n, k)$ satisfy the initial conditions

$$
S(n, 1)=S(n, n)=1 \quad(n \geq 1)
$$

and the recurrence

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1) \quad(n>k>1) .
$$

Compute all the $S(n, k)$ for $1 \leq k \leq n \leq 5$. Prove that

$$
\begin{equation*}
\sum_{n=3}^{\infty} S(n, 3) t^{n}=\frac{t^{3}}{(1-t)(1-2 t)(1-3 t)} \tag{14}
\end{equation*}
$$

(d) Find the rook polynomial of (the blank squares) of the following board:

(e) Find all self-conjugate partitions of 19 .

SECTION B

2. (a) The Catalan numbers satisfy the recurrence

$$
C_{n+1}=\sum_{k=0}^{n} C_{k} C_{n-k} \quad(n \geq 0)
$$

with the initial condition $C_{0}=1$. Prove that $C_{2 n+1}-C_{n}$ is always an even number. Find five different n such that C_{n} is odd, and prove that there are infinitely many n with C_{n} odd.
(b) Call a path from $(0,0)$ to $(n, 0)$ admissible if it lies entirely on or above the x-axis, and each of its steps are of the following forms

- $(x, y) \rightarrow(x+1, y+1)$,
- $(x, y) \rightarrow(x+1, y-1)$,
- $(x, y) \rightarrow(x+3, y)$.

Let U_{n} denote the number of admissible paths from $(0,0)$ to $(n, 0)$ taking $U_{0}=1$. Show that $U_{1}=0$ and $U_{2}=1$, and find a recurrence for U_{n} valid for $n \geq 3$. Use this recurrence to find an explicit formula for the generating function

$$
\begin{equation*}
U(t)=\sum_{n=0}^{\infty} U_{n} t^{n} . \tag{14}
\end{equation*}
$$

3. (a) Let (X, \mathcal{B}) be a $t-(v, k, 1)$ design. Prove that it has $\binom{v}{t} /\binom{k}{t}$ blocks and that any given point is an element of $\binom{v-1}{t-1} /\binom{k-1}{t-1}$ blocks.
(b) Let B_{0} be a fixed block in a $2-(21,5,1)$ design. Prove that every other block B in the design satisfies $\left|B \cap B_{0}\right|=1$.
(c) Let B_{1} be a fixed block in a $3-(22,6,1)$ design. Prove that there are 60 blocks B with $\left|B \cap B_{1}\right|=2$. How many blocks B have $\left|B \cap B_{1}\right|=1$? How many blocks B have $B \cap B_{1}=\emptyset$?
4. (a) Prove that the number of partitions of n into k parts equals the number of partitions of n with largest part k.
(b) Let \mathcal{A}_{k} denote the set of all partitions which have both (i) exactly k parts and (ii) largest part k. Write down all elements of \mathcal{A}_{3} and their Ferrers diagrams. State and prove a formula for the number of elements of \mathcal{A}_{k}.
(c) Let $p_{k}(n)$ denote the number of partitions of n which have exactly k parts, and all of which are distinct. Prove that

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{k}(n) t^{k}=\frac{f_{k}(t)}{\prod_{j=1}^{k}\left(1-t^{j}\right)} \tag{10}
\end{equation*}
$$

where $f_{k}(t)$ is a polynomial that you should determine.

