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SECTION A

1. (a) How many anagrams has the word LOLLIPOPS? (6)

(b) Let the sequence (an) be defined by the recurrence: a0 = 1, a1 = 0,
a2 = 0 and an = 3an−1 − 4an−3 for n ≥ 3. Find an explicit
expression for the generating function

A(t) =
∞∑
n=0

ant
n

of the sequence (an) and hence find a formula for an. (16)

(c) We consider paths from the point (0, 0) to the point (n, n) where
we are permitted

• Right steps: from (a, b) to (a + 1, b),

• Up steps: from (a, b) to (a, b + 1),

• Diagonal steps: from (a, b) to (a + 1, b + 1).

For each integer 0 ≤ k ≤ n determine how many paths from (0, 0)
to (n, n) there are containing exactly k Diagonal steps.

Determine the total number of admissible paths from (0, 0) to
(4, 4). (10)

(d) Determine how many numbers between 1001 and 2000 inclusive
are divisible by neither 5 nor 7 nor 11. (10)

(e) Find all partitions of 12 into (i) distinct parts, (ii) odd parts, (iii)
distinct odd parts. (8)

[50]
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SECTION B

2. (a) The Stirling numbers of the second kind satisfy the initial
conditions S(n, 1) = S(n, n) = 1 and the recurrence

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k)

for 1 < k < n. Define polynomials Tn(x) by

Tn(x) =
n∑

k=1

S(n, k)xk.

Prove that
Tn+1(x) = x(Tn(x) + T ′n(x))

for n ≥ 1. Deduce that if Un(x) = exTn(x) then

Un+1(x) = xU ′n(x).

(10)

(b) Let Bn denote the “staircase board” consisting of rows of squares
of lengths 1, 2, . . . , n aligned at their left ends. For example B5 is
illustrated below.

Let A(n, k) denote the number of arrangements of k non-attacking
rooks on Bn. (By convention we take A(0, 0) = 1 and A(n, k) = 0
whenever k > n.) Clearly A(n, 0) = 1. By separating out the
positions with a rook on the final row from those without a rook
in the final row prove that for n > 0 and k > 0

A(n, k) = (n− k + 1)A(n− 1, k − 1) + A(n− 1, k).

Deduce that for 0 ≤ k ≤ n,

A(n, k) = S(n + 1, n + 1− k).

(15)
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3. (a) You have a supply of cards, each coloured red, blue or green. You
arrange n of these cards in a row. Such an arrangement is called
admissible if

• no two blue cards are adjacent, and

• no green card has a red or blue card to its right.

For example RBRRBGGG is an admissible arrangement, but
RBBRBGGG and RBRRBGBG are not.

Let rn denote the number of admissible n-card arrangements
having a red card as the right-most card. Similarly let bn
and gn respectively denote the numbers of admissible n-card
arrangements having a blue or green card respectively as the right-
most card. Define

R(t) =
∞∑
n=1

rnt
n, B(t) =

∞∑
n=1

bnt
n and G(t) =

∞∑
n=1

gnt
n.

Prove that
R(t) = t + tR(t) + tB(t)

and give similar formulas for B(t) and G(t). Hence find an explicit
formula for G(t) and use that to find an explicit formula for gn. (20)

(b) A certain combinatorial sequence (an) satisfies a0 = a1 = 1 and

an = an−1 +
n−2∑
k=0

akan−2−k.

Find an explicit formula for the generating function

A(t) =
∞∑
n=0

ant
n.

(5)

[25]
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4. (a) Let X be the set of points, and B be the set of points in a t-(v, k, 1)
design. Let A be a subset of X with |A| = r ≤ t. Prove that there
are exactly (

v−r
t−r

)
(
k−r
t−r

)
blocks B ∈ B with A ⊆ B. (6)

(b) Using the inclusion-exclusion principle or otherwise, prove that if
B0 is a block in a t− (v, k, 1) design then there are

t∑
r=0

(−1)r
(
k

r

)(v−r
t−r

)
(
k−r
t−r

) +
k∑

r=t+1

(−1)r
(
k

r

)

blocks B with B ∩B0 = ∅. (10)

(c) A Steiner quaduple system of order n is a 3-(n, 4, 1) design. Prove
that if there is a Steiner quadruple system of order n then either
n ≡ 2 or n ≡ 4 (mod 6). Prove that in a Steiner quadruple system
of order 8, the complement of each block is also a block. (9)

[25]
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