Sums of k-th powers

Robin Chapman

19 November 2015

In the first year you meet formulae like

$$
\begin{gathered}
\sum_{m=1}^{n} m=\frac{n^{2}}{2}+\frac{n}{2}, \\
\sum_{m=1}^{n} m^{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}
\end{gathered}
$$

and

$$
\sum_{m=1}^{n} m^{3}=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n^{4}}{4}
$$

The aim of presenting these appears to be an attempt to put you off proof by induction for life. I give here a systemtic way of finding such formulae. This is fairly tangential to combinatorics proper, but does give a nice illustration of the use of exponential generating functions.

I'll write

$$
S_{k}(n)=1^{k}+2^{k}+\cdots+n^{k}=\sum_{m=1}^{n} m^{k} .
$$

For each fixed natural number n I'll consider the exponential generating function defined by

$$
F_{n}(t)=\sum_{k=0}^{\infty} S_{k}(n) \frac{t^{k}}{k!}
$$

We calculate

$$
F_{n}(t)=\sum_{k=0}^{\infty} \sum_{m=1}^{n} m^{k} \frac{t^{k}}{k!}=\sum_{m=1}^{n} \sum_{k=0}^{\infty} \frac{(m t)^{k}}{k!}=\sum_{m=1}^{n} e^{m t} .
$$

This last sum is a geometric progression with n term, initial term e^{t} and common ratio e^{t}. By the formula for sums of finite geometric progressions

$$
F_{n}(t)=e^{t} \frac{\left(e^{t}\right)^{n}-1}{e^{t}-1}=\frac{e^{n t}-1}{1-e^{-t}} .
$$

I'll rewrite this, apparently perversely, as

$$
F_{n}(t)=\frac{e^{n t}-1}{t} \frac{t}{1-e^{-t}}=\frac{e^{n t}-1}{t}\left(\frac{1-e^{-t}}{t}\right)^{-1}
$$

The point is that

$$
\frac{1-e^{-t}}{t}=\sum_{r=1}^{\infty}(-1)^{r-1} \frac{t^{r-1}}{r!}=\sum_{r=0}^{\infty}(-1)^{r} \frac{t^{r}}{(r+1)!}
$$

is a power series with constant term 1, and is independent of n. Therefore so is its reciprocal

$$
\frac{t}{1-e^{-t}}=\sum_{r=0}^{\infty} c_{r} t^{r}
$$

We don't know what the c_{r} are, but $c_{0}=1$ and comparing coefficients of x^{s} in the product

$$
1=\left(\sum_{r=0}^{\infty}(-1)^{r} \frac{t^{r}}{(r+1)!}\right)\left(\sum_{r=0}^{\infty} c_{r} r^{r}\right)
$$

gives

$$
0=\sum_{r=0}^{s}(-1)^{r} \frac{c_{s-r}}{(r+1)!}
$$

for $s \geq 1$. Equivalently,

$$
c_{s}=\sum_{r=1}^{s}(-1)^{r-1} \frac{c_{s-r}}{(r+1)!} .
$$

This gives

$$
\begin{gathered}
c_{1}=\frac{c_{0}}{2}=\frac{1}{2} \\
c_{2}=\frac{c_{1}}{2}-\frac{c_{0}}{6}=\frac{1}{4}-\frac{1}{6}=\frac{1}{12}, \\
c_{3}=\frac{c_{2}}{2}-\frac{c_{1}}{6}+\frac{c_{0}}{24}=\frac{1}{24}-\frac{1}{12}+\frac{1}{24}=0
\end{gathered}
$$

and

$$
c_{4}=\frac{c_{3}}{2}-\frac{c_{2}}{6}+\frac{c_{1}}{24}-\frac{c_{0}}{120}=-\frac{1}{72}+\frac{1}{48}-\frac{1}{120}=-\frac{1}{720}
$$

etc.
Also

$$
\frac{e^{n t}-1}{t}=\sum_{j=1}^{\infty} n^{j} \frac{t^{j-1}}{j!}=\sum_{j=0}^{\infty} n^{j+1} \frac{t^{j}}{(j+1)!}
$$

Then $S_{k}(n)$ is $k!$ times the t^{k}-coefficient of

$$
\left(\sum_{r=0}^{\infty} c_{r} t^{t}\right)\left(\sum_{k=0}^{\infty} n^{j+1} \frac{t^{j}}{(j+1)!}\right) .
$$

Therefore

$$
S_{k}(n)=k!\sum_{r=0}^{k} c_{r} \frac{n^{k-r+1}}{(k-r+1)!}
$$

This formula is usually attributed to Johann Faulhaber (1580-1635). As an example,

$$
\begin{aligned}
S_{4}(n) & =4!\left(c_{0} \frac{n^{5}}{5!}+c_{1} \frac{n^{4}}{4!}+c_{2} \frac{n^{3}}{3!}+c_{3} \frac{n^{2}}{2!}+c_{4} \frac{n}{1!}\right) \\
& =c_{0} \frac{n^{5}}{5}+c_{1} n^{4}+4 c_{2} n^{2}+12 c_{3} n^{2}+24 c_{4} n \\
& =\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30} .
\end{aligned}
$$

So, what are the numbers c_{r} ? It's a nice exercise to prove that $c_{r}=0$ whenever r is odd, except when $r=1$. In general the c_{r} are related to the so-called Bernoulli numbers which you might like to look up.

