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In the first year you meet formulae like
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The aim of presenting these appears to be an attempt to put you off proof by
induction for life. I give here a systemtic way of finding such formulae. This
is fairly tangential to combinatorics proper, but does give a nice illustration
of the use of exponential generating functions.

I'll write
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For each fixed natural number n I'll consider the exponential generating

function defined by
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This last sum is a geometric progression with n term, initial term e’ and
common ratio e’. By the formula for sums of finite geometric progressions
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I'll rewrite this, apparently perversely, as
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The point is that
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is a power series with constant term 1, and is independent of n. Therefore
so is its reciprocal
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We don’t know what the ¢, are, but ¢y = 1 and comparing coefficients of z*

in the product
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for s > 1. Equivalently,
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Then Si(n) is k! times the tF-coefficient of
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This formula is usually attributed to Johann Faulhaber (1580-1635). As an
example,
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So, what are the numbers ¢,.? It’s a nice exercise to prove that ¢, = 0

whenever r is odd, except when r = 1. In general the ¢, are related to the
so-called Bernoulli numbers which you might like to look up.



