Steiner triple systems

Robin Chapman

28 November 2013

In the lectures I gave a construction of a Steiner triple system (STS) of order n whenever $n \equiv 3(\bmod 6)$. I stated that there was a construction when $n \equiv 1(\bmod 6)$. I outline a construction here, but leave proving that it works as an exercise. This construction is taken from A Course in Combinatorics by van Lint and Wilson (CUP, 1992).

We write $n=6 m+1$ with m a positive integer. The construction works modulo $2 m$, that is in the ring $\mathbf{Z}_{2 m}=\{0,1, \ldots, 2 m-1\}$ where addition, subtraction and multiplication are defined modulo $2 m$. The $6 m+1$ points are denoted a_{j}, b_{j}, c_{j} (for $j \in \mathbf{Z}_{2 m}$) and d. The blocks are

- $\left\{a_{k}, b_{k}, c_{k}\right\}$, for $k=0, \ldots, m-1$;
- $\left\{a_{k}, b_{m+k}, d\right\},\left\{b_{k}, c_{m+k}, d\right\},\left\{c_{k}, a_{m+k}, d\right\}$, for $k=0, \ldots, m-1$;
- $\left\{a_{k}, b_{j+k}, b_{-j+k}\right\},\left\{b_{k}, c_{j+k}, c_{-j+k}\right\},\left\{c_{k}, a_{j+k}, a_{-j+k}\right\}$, for $j=1, \ldots, m-1$ and $k=0, \ldots, m-1$;
- $\left\{a_{m+k}, b_{j+k}, b_{1-j+k}\right\},\left\{b_{m+k}, c_{j+k}, c_{1-j+k}\right\},\left\{c_{m+k}, a_{j+k}, a_{1-j+k}\right\}$, for $j=$ $1, \ldots, m$ and $k=0, \ldots, m-1$.

The verification that any two points lie in a unique block is straightforward but rather tedious.

