Quadratic reciprocity

Robin Chapman
8 December 2003

Let p be an odd prime number. We consider which numbers $a \neq 0$ are squares modulo p. If $a \equiv b^2$ then $a \equiv (-b)^2$ and as $b \neq -b \pmod{p}$ then $x^2 \equiv a \pmod{p}$ has precisely the two solutions $x \equiv \pm b \pmod{p}$. It follows that there are exactly $\frac{1}{2}(p-1)$ such a up to congruence modulo p, which are $1^2, 2^2, \ldots, \left[\frac{1}{2}(p-1)\right]^2$. These are the quadratic residues modulo p. The $\frac{1}{2}(p-1)$ remaining values modulo p, for which the congruence $x^2 \equiv a \pmod{p}$ is insoluble are the quadratic nonresidues modulo p. We define the Legendre symbol $\left(\frac{a}{p}\right)$ as follows:

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p. \end{cases}$$

The Legendre symbol $\left(\frac{a}{p}\right)$ depends only on a modulo p, that is,

$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right) \quad \text{whenever } a \equiv b \pmod{p}.$$

Theorem 1 (Euler’s criterion) Let p be an odd prime and let $a \in \mathbb{Z}$. Then

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}. \quad (\ast)$$

Proof If $p \mid a$ then both sides of (\ast) are zero modulo p. We may thus suppose that $p \nmid a$. Let g be a primitive root modulo p. Then $g^{(p-1)/2} \not\equiv 1 \pmod{p}$ but $[g^{(p-1)/2}]^2 = g^{p-1} \equiv 1 \pmod{p}$. It follows that $g^{(p-1)/2} \equiv -1 \pmod{p}$. Now $a \equiv g^k \pmod{p}$ for some integer $k \geq 0$ and so

$$a^{(p-1)/2} \equiv g^{k(p-1)/2} \equiv [g^{(p-1)/2}]^k \equiv (-1)^k \equiv \begin{cases} 1 & \text{if } k \text{ is even}, \\ -1 & \text{if } k \text{ is odd.} \end{cases}$$
Let us attempt to solve the congruence $x^2 \equiv a \equiv g^k \pmod{p}$. The solution must have the form $x \equiv g^r \pmod{p}$ and so $g^{2r} \equiv g^k \pmod{p}$. This is equivalent to the congruence $2r \equiv k \pmod{p-1}$. As $2 \mid (p-1)$ this linear congruence is soluble if and only if k is even. Hence if a is a quadratic residue then k is even and $a^{(p-1)/2} \equiv 1 = \left(\frac{a}{p}\right)$, while if a is a quadratic nonresidue then k is odd and $a^{(p-1)/2} \equiv -1 = \left(\frac{a}{p}\right)$. \hfill \Box

Corollary 1 Let p be an odd prime, and let $a, b \in \mathbb{Z}$. Then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

In particular if a and b are both quadratic residues modulo p or both quadratic nonresidues modulo p, then ab is a quadratic residue modulo p, while if one of a and b is a quadratic residue modulo p and the other is a quadratic nonresidue modulo p, then ab is a quadratic nonresidue modulo p.

Proof By Euler’s criterion

$$\left(\frac{ab}{p}\right) \equiv (ab)^{(p-1)/2} \equiv a^{(p-1)/2}b^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \pmod{p}.$$

Both sides of this congruence lie in the set $\{-1, 0, 1\}$ and as $p \geq 3$ no two distinct elements of this set are congruent modulo p. Hence we have equality, not just congruence:

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

\hfill \Box

Corollary 2 Let p be an odd prime. Then

$$\left(\frac{-1}{p}\right) = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4}, \\
-1 & \text{if } p \equiv 3 \pmod{4}.
\end{cases}$$

Proof By Euler’s criterion

$$\left(\frac{-1}{p}\right) \equiv (-1)^{(p-1)/2} \pmod{p}.$$

If $p \equiv 1 \pmod{4}$ then $(p-1)/2$ is even, and so $\left(\frac{-1}{p}\right) \equiv 1 \pmod{p}$; consequently $\left(\frac{-1}{p}\right) = 1$. If $p \equiv 3 \pmod{4}$ then $(p-1)/2$ is odd, and so $\left(\frac{-1}{p}\right) \equiv -1 \pmod{p}$; consequently $\left(\frac{-1}{p}\right) = -1$. \hfill \Box

We now prove Gauss’s lemma, which gives a useful if opaque characterization of the Legendre symbol.
Theorem 2 (Gauss’s lemma) Let p be an odd prime and let a be an integer coprime to p. Let $R = \{ j \in \mathbb{N} : 0 < j < p/2 \}$ and $S = \{ j \in \mathbb{N} : p/2 < j < p \}$. Then $\left(\frac{a}{p} \right) = (-1)^\mu$ where μ is the number of $j \in R$ for which the least nonnegative residue of aj modulo p lies in S.

Proof It is convenient to introduce some notation. If m is an integer, it is congruent modulo p to exactly one integer between $-p/2$ and $p/2$. Let $\langle m \rangle$ denote this integer: that is, $\langle m \rangle \equiv m \pmod{p}$ and $|\langle m \rangle| < p/2$. Then m is congruent modulo p to an element of S if and only if $\langle m \rangle < 0$.

We consider the numbers $\langle aj \rangle$ for $j \in R$. Then μ is the number of $j \in R$ for which $\langle aj \rangle < 0$. Let us write $\langle aj \rangle = \varepsilon_j b_j$ where $\varepsilon_j = \pm 1$ and $b_j = \langle \langle aj \rangle \rangle$. Then $(-1)^\mu = \prod_{j=1}^{(p-1)/2} \varepsilon_j$. I claim that the numbers $b_1, \ldots, b_{(p-1)/2}$ are the same as the numbers in R in some order. Certainly $b_j \neq 0$ for if $b_j = 0$ then $p \mid aj$ contrary to Euclid’s lemma ($p \nmid a$ and $p \nmid j$). Suppose there were integers j and k with $0 < j < k < p/2$ and $b_j = b_k$. Then $ak \equiv \varepsilon_k b_k = \varepsilon_j b_j \equiv \varepsilon_j \varepsilon_k a_j \pmod{p}$. So $p \mid a(k \pm j)$ and as $p \nmid a$ then $p \mid (k \pm j)$. But $0 < k + j < p$ and $0 < k - j < p/2$. Neither $k + j$ nor $k - j$ is a multiple of p. This contradiction shows that all the b_j are distinct, and so the b_j are the elements of R in some order.

It follows that $\prod_{j=1}^{(p-1)/2} b_j = \left(\frac{1}{2} (p - 1) \right)!$ and so

$$a^{(p-1)/2} \left(\frac{p - 1}{2} \right)! = \prod_{j=1}^{(p-1)/2} (aj) \equiv \prod_{j=1}^{(p-1)/2} (\varepsilon_j b_j) = (-1)^\mu \left(\frac{p - 1}{2} \right)! \pmod{p}. $$

As $\left(\frac{1}{2} (p - 1) \right)!$ is coprime to p, we may cancel it and get $a^{(p-1)/2} \equiv (-1)^\mu \pmod{p}$. Applying Euler’s criterion gives $\left(\frac{a}{p} \right) = (-1)^\mu$. \square

In the proof of the following theorem, we adopt the following notation. If $x < y$ then $N(x, y)$ denotes the number of integers n with $x < n < y$. It is useful to note several simple properties of $N(x, y)$.

- $N(x, y) = N(-y, -x)$;
- if a is an integer, then $N(x + a, y + a) = N(x, y)$;
- if a is a positive integer, then $N(x, y + a) = N(x, y) + a$;
- if a is a positive integer, and x is not an integer, then $N(x, x + a) = a$;
- if $x < y < z$ and y is not an integer, then $N(x, z) = N(x, y) + N(y, z)$.

The proofs of all of these are straightforward, and left as exercises.
Theorem 3 Let $a \in \mathbb{N}$, and let p and q be distinct odd primes, each coprime to a. If $q \equiv \pm p \pmod{4a}$ then \(\left(\frac{a}{q} \right) = \left(\frac{a}{p} \right) \).

Proof By Gauss’s lemma, \(\left(\frac{a}{p} \right) = (-1)^{\mu} \) where μ is the number of integers $j \in (0, p/2)$ and with aj having least positive residue modulo p in the interval $(p/2, p)$. If $0 < j < p/2$ then $0 < aj < ap/2$ and so μ is the number of integers j with

$$aj \in \bigcup_{k=1}^{b} \left(\left(k - \frac{1}{2} \right) p, kp \right)$$

where $b = a/2$ or $b = (a - 1)/2$ according to whether b is even or b is odd. Hence μ is the number of integers in the set

$$\bigcup_{k=1}^{b} \left(\frac{(2k-1)p}{2a}, \frac{kp}{a} \right),$$

that is

$$\mu = \sum_{k=1}^{b} N \left(\frac{(2k-1)p}{2a}, \frac{kp}{a} \right).$$

Similarly \(\left(\frac{a}{q} \right) = (-1)^{\nu} \) where

$$\nu = \sum_{k=1}^{b} N \left(\frac{(2k-1)q}{2a}, \frac{kq}{a} \right).$$

Suppose first that $q \equiv p \pmod{4a}$. Without loss of generality, $q > p$, and we may write $q = p + 4ar$ with $r \in \mathbb{N}$. Then

$$\nu = \sum_{k=1}^{b} N \left(\frac{(2k-1)p}{2a} + (4k-2)r, \frac{kp}{a} + 4kr \right)$$

$$= \sum_{k=1}^{b} N \left(\frac{(2k-1)p}{2a} + 2r, \frac{kp}{a} + 2r \right)$$

$$= \sum_{k=1}^{b} \left[N \left(\frac{(2k-1)p}{2a}, \frac{kp}{a} \right) + 2r \right]$$

$$= \mu + 2rb.$$ Consequently

$$\left(\frac{a}{q} \right) = (-1)^{\nu} = (-1)^{\mu + 2rb} = (-1)^{\mu} = \left(\frac{a}{p} \right).$$
Now suppose that \(q \equiv -p \pmod{4} \). Then \(p + q = 4as \) with \(s \) an integer. Thus

\[
\nu = \sum_{k=1}^{b} N\left(\frac{(4k-2)s - \frac{(2k-1)p}{2a}, 4ks - \frac{kp}{a}}{2a}\right)
\]

\[
= \sum_{k=1}^{b} N\left(\frac{kp}{a} - 4ks, \frac{(2k-1)p}{2a} - (4k-2)s\right)
\]

\[
= \sum_{k=1}^{b} N\left(\frac{kp}{a}, \frac{(2k-1)p}{2a} + 2s\right).
\]

Hence

\[
\mu + \nu = \sum_{k=1}^{b} \left[N\left(\frac{(2k-1)p}{2a}, \frac{kp}{a}\right) + N\left(\frac{kp}{a}, \frac{(2k-1)p}{2a} + 2s\right)\right]
\]

\[
= \sum_{k=1}^{b} N\left(\frac{(2k-1)p}{2a}, \frac{(2k-1)p}{2a} + 2s\right)
\]

\[
= 2sb.
\]

Consequently

\[
\left(\frac{a}{q}\right) = (-1)^\nu = (-1)^{-\mu + 2sk} = (-1)^\mu = \left(\frac{a}{p}\right).
\]

We can now prove the law of quadratic reciprocity

Theorem 4 (Quadratic reciprocity) Let \(p \) and \(q \) be distinct odd primes. Then

\[
\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)
\]

unless \(p \equiv q \equiv 3 \pmod{4} \) in which case

\[
\left(\frac{q}{p}\right) = -\left(\frac{p}{q}\right).
\]

Proof Suppose first that \(p \equiv q \pmod{4} \). Without loss of generality, \(q > p \) so that \(q = p + 4a \) with \(a \in \mathbb{N} \). Then

\[
\left(\frac{q}{p}\right) = \left(\frac{p + 4a}{p}\right) = \left(\frac{4a}{p}\right) = \left(\frac{a}{p}\right)
\]

\[
\left(\frac{a}{p}\right)
\]
and
\[
\left(\frac{p}{q} \right) = \left(\frac{q - 4a}{q} \right) = \left(\frac{-4a}{q} \right) = \left(\frac{-1}{q} \right) \left(\frac{a}{q} \right).
\]

By Theorem 3
\[
\left(\frac{a}{p} \right) = \left(\frac{a}{q} \right)
\]
and then
\[
\left(\frac{q}{p} \right) = \left(\frac{-1}{q} \right) \left(\frac{a}{q} \right).
\]

Thus if \(p \equiv q \equiv 1 \) (mod 4) then
\[
\left(\frac{q}{p} \right) = \left(\frac{-1}{q} \right) \left(\frac{p}{q} \right) = \left(\frac{p}{q} \right)
\]
while if \(p \equiv q \equiv 3 \) (mod 4) then
\[
\left(\frac{q}{p} \right) = \left(\frac{-1}{q} \right) \left(\frac{p}{q} \right) = - \left(\frac{p}{q} \right).
\]

Now suppose that \(p \equiv -q \) (mod 4). Then \(p + q = 4a \) with \(a \in \mathbb{N} \). Then
\[
\left(\frac{q}{p} \right) = \left(\frac{4a - p}{p} \right) = \left(\frac{4a}{p} \right) = \left(\frac{a}{p} \right)
\]
and
\[
\left(\frac{p}{q} \right) = \left(\frac{4a - q}{q} \right) = \left(\frac{4a}{q} \right) = \left(\frac{a}{q} \right).
\]

By Theorem 3
\[
\left(\frac{a}{p} \right) = \left(\frac{a}{q} \right)
\]
and then
\[
\left(\frac{q}{p} \right) = \left(\frac{p}{q} \right).
\]

When applying quadratic reciprocity, it is useful to have a version involving the Jacobi symbol. This is denoted by \((\frac{a}{n}) \), like the Legendre symbol, but in the Legendre symbol the number \(n \) must be an odd prime, in the Jacobi symbol \(n \) can be any positive odd integer and \(a \) any integer at all. We define the Jacobi symbol as follows: if \(n \) is a positive odd integer, write \(n = p_1 \ldots p_k \) with the \(p_j \) prime. Then set
\[
(\frac{a}{n}) = \prod_{j=1}^{k} (\frac{a}{p_j}).
\]
It is immediate that the Jacobi symbol shares some of the formal properties of the Legendre symbol:

- \((\frac{a}{n}) = \pm 1\) if \(a\) and \(n\) are coprime and \((\frac{a}{n}) = 0\) otherwise,
- \((\frac{a}{n}) = (\frac{b}{n})\) whenever \(a \equiv b \pmod{n}\),
- \((\frac{ab}{n}) = (\frac{a}{n})(\frac{b}{n})\) and \((\frac{a}{mn}) = (\frac{a}{m})(\frac{a}{n})\).

The most convenient property is that quadratic reciprocity is true for the Jacobi symbol too. Let \(m\) and \(n\) be coprime odd positive integers. Write \(m = p_1 \cdots p_r\) and \(n = q_1 \cdots q_s\) where the \(p_j\) and \(q_k\) are primes. By quadratic reciprocity,

\[
(\frac{m}{n}) = \prod_{j=1}^{r} \prod_{k=1}^{s} (\frac{p_j}{q_k}) = \prod_{j=1}^{r} \prod_{k=1}^{s} \varepsilon_{j,k} (\frac{q_k}{p_j}) = (-1)^\mu (\frac{n}{m})
\]

where \(\varepsilon_{j,k} = 1\) unless \(p_j \equiv q_j \equiv 3 \pmod{4}\) in which case \(\varepsilon_{j,k} = -1\) and \(\mu\) is the number of pairs \((j, k)\) with \(\varepsilon_{j,k} = -1\). But \(\mu = ab\) where \(a\) is the number of \(p_j\) which are 3 modulo 4 and \(b\) is the number of \(q_k\) which are 3 modulo 4. Then \(m \equiv 3^a \equiv (-1)^a \pmod{4}\) and \(n \equiv 3^b \equiv (-1)^b \pmod{4}\). Then \((-1)^{ab} = 1\) unless both \(a\) and \(b\) are odd when \((-1)^\mu = -1\). Thus \((-1)^\mu = -1\) if and only if \(m \equiv n \equiv 3 \pmod{4}\):

\[
(\frac{m}{n}) = (\frac{n}{m})
\]

unless \(m \equiv n \equiv 3 \pmod{4}\) in which case

\[
(\frac{m}{n}) = - (\frac{n}{m}).
\]

(This even holds when \(m\) and \(n\) are non-coprime positive odd integers, for then both sides are zero.)