Vectors and matrices: Problem sheet 4

Please answer all questions, and check your answers whenever possible Solutions should be submitted before or on Thursday 2 December 2004

1. Give examples of matrices A and B where
(a) $A B$ exists but $B A$ does not.
(b) $A B$ and $B A$ both exist but have different sizes.
2. Find, whenever possible, the inverses of the following matrices:

$$
\begin{aligned}
& \left(\begin{array}{rr}
3 & -1 \\
2 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & i \\
i & 1
\end{array}\right),\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
4 & 3 & 5 \\
2 & 1 & 3
\end{array}\right), \\
& \left(\begin{array}{rrr}
3 & 1 & 1 \\
3 & 1 & 2 \\
1 & 0 & -3
\end{array}\right),\left(\begin{array}{rrr}
1 & 1 & 2 \\
3 & -5 & -1 \\
-1 & 2 & 1
\end{array}\right),\left(\begin{array}{rrrr}
1 & -2 & -1 & 0 \\
1 & 2 & 1 & 1 \\
3 & 2 & 2 & 1 \\
1 & 5 & 2 & 2
\end{array}\right)
\end{aligned}
$$

(In the second example, $i^{2}=-1$.)
3. Let

$$
A=\left(\begin{array}{rr}
3 & 2 \\
-1 & 1
\end{array}\right)
$$

Find all matrices

$$
X=\left(\begin{array}{ll}
x & y \\
z & t
\end{array}\right)
$$

which satisfy $A X=X A$.
4. For each of the following matrices A, calculate A^{2}, A^{3} and A^{4}. Guess (and if possible prove) a general formula for A^{n} :

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right),\left(\begin{array}{ll}
x & 1 \\
0 & x
\end{array}\right),\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) .
$$

5. Let L be the line $y=x \tan \theta$ in the plane (so that L makes an angle of θ with the x-axis). Find the matrix which represents reflection through the line L. (Hint: where do the points $(1,0)$ and $(0,1)$ get reflected to?)
6. Find the equation of the image of the unit circle $x^{2}+y^{2}=1$ under the transformation with matrix

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)
$$

7. Which of the following matrices are elementary? For each elementary matrix among them, write down its inverse.

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

8. True or false? Justify your answers.
(a) If A and B are invertible matrices of the same size then $A B$ has inverse $A^{-1} B^{-1}$.
(b) If A is a square matrix then $(I-A)^{2}=I^{2}-2 A+A^{2}$.
(c) If A and B are square matrices of the same size then $A^{2}-B^{2}=$ $(A+B)(A-B)$.
(d) If A and B are square matrices of the same size then $(A B)^{2}=$ $A^{2} B^{2}$.
(e) If A and B are symmetric matrices of the same size then $A+B$ is symmetric.
(f) If A and B are symmetric matrices of the same size then $A B$ is symmetric.
9. An orthogonal matrix A is a square matrix which satisfies $A A^{t}=I$ (where A^{t} denotes the transpose of A). Prove that if A and B are orthogonal matrices of the same size then $A B$ is also orthogonal.

Verify that the 2 -by- 2 rotation matrices and reflection matrices (as in question 5) are orthogonal. Can you find any other orthogonal 2-by-2 matrices?

