
Vectors and matrices: matrices (Version 2)

This is a very brief summary of my lecture notes.

Matrices and linear equations

A matrix is an m-by-n array of numbers

A =



a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn

 .

A system of linear equations

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1

a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2

a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3
...

...
...

. . .
...

...
am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

(∗)

gives rise to a coefficient matrix

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn


and an augmented matrix

a11 a12 a13 · · · a1n b1

a21 a22 a23 · · · a2n b2

a31 a32 a33 · · · a3n b3
...

...
...

. . .
...

...
am1 am2 am3 · · · amn bm

 .

An elementary row operation (ERO) on a matrix is one of the following
operations:

• multiply a row by a nonzero scalar,



• swap two rows,

• add a scalar multiple of one row to another (different) row.

The effects of an ERO can be reversed by applying an ERO.
Applying an ERO to the augmented matrix of a system (∗) of equations

gives rise to the augmented row of an equivalent system (∗′) of equations.
(The fact that EROs are reversible is crucial for this.) Hence we can solve
(∗) by performing EROs on its augmented matrix, transforming it into a
convenient form.

Each matrix can be transformed into echelon form. This is a matrix of
the form

0 · · · 0 † ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 0 0 · · · 0 † ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 † ∗ · · · ∗ ∗ ∗ · · · ∗

. . . . . . . . . . . . . . .

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 † ∗ · · · ∗
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0

. . . . . . . . . . . . . . .

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0


.

Here the entries † are nonzero and are called the pivots. The entries ∗ can
be any numbers. The pivots are all in distinct columns. All the rows below
the last pivot (if there are any) are zero. A matrix is in reduced echelon form
if it is in echelon form, all its pivots are equal to 1 and all the entries in
the column above each pivot are 0. While a matrix can be transformed into
many different echelon form matrices, it may be transformed into precisely
one reduced echelon form matrix.

If we have a system of equations (∗) whose augmented matrix is in echelon
form we can easily find its set of solutions. First of all, if the final pivot is in
the last column, the relevant row corresponds to the equation

0x1 + 0x2 + · · ·+ 0xn = br

where br 6= 0. But as this equation asserts that 0 = br the system has no
solutions.

If the final pivot is not in the last column, the system is soluble. The
matrix will have r nonzero rows, each with one pivot. These pivots are in
r columns corresponding to r variables, which we call basic variables. The
other n− r variables are the free variables. By working from the bottom up,
we can express each basic variable in terms of the free variables. We thus get



an (n− r)-parameter system of solutions—the general solution. Substituting
values for the free variables gives a particular solution. The case where
n = r is of special interest. Here all variables are basic, and there is a unique
solution to the system.

Matrix arithmetic

An matrix with one column is a column vector and a matrix with one
row is a row vector. By tradition we use mainly column vectors. If

A =


a11 · · · a1n
...

. . .
...

am1 · · · amn


is an m-by-n matrix and

v =


x1
...

xn


is a column vector with n entries, we define

Av =


a11x1 + · · ·+ a1nxn

a21x2 + · · ·+ a2nxn
...

am1x1 + · · ·+ amnxn

 .

This is an column vector with m entries. Thus we can multiply an m-by-n
matrix by an n-entry column vector to yield an m-entry column vector.

We define matrix addition, subtraction and multiplication in order to
make the identities

(A + B)v = Av + Bv, (A−B)v = Av −Bv, (AB)v = A(Bv)

hold as widely as possible. For addition and subtraction, the matrices A and
B must have the same size, m-by-n, and then A + B and A − B are also
m-by-n. They are easy to calculate: the (i, j)-entry of A+B is aij +bij where
aij and bij are the (i, j)-entries of A and B respectively. Similarly A−B has
(i, j)-entry aij − bij. We can also define multiplication by a scalar: cA has
(i, j)-entry caij.

Multiplication is a lot trickier! A product AB exists only if the number
of columns of A equals the number of rows of B, that is, if A is m-by-n and



B is n-by-p for some m, n and p. In this case, AB is an m-by-p matrix whose
(i, j)-entry is

n∑
k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj.

It may help to remember that this is the entry in row i and column j of AB
and it depends on row i of A and column j of B; indeed it is the product of
this row and column, considered as vectors.

The following identities involving matrix multiplication hold:

(A + B)C = AC + BC, A(B + C) = AB + AC, A(BC) = (AB)C.

But it is false that AB = BA in general. Matrix multiplication is noncom-
mutative. All of the following cases occur:

• AB exists but BA doesn’t,

• AB and BA both exist but they have different sizes,

• AB and BA both exist and have the same size, but AB 6= BA.

For each n there is an n-by-n identity matrix In. This satisfies InA = A
for all n-row matrices A and BIn = B for all n-column matrices B. Then

In =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

In detail, the entries on the main diagonal equal 1 and all others equal 0.
Usually we write I for any In.

A matrix B is the inverse of a matrix A if AB = I and BA = I. A
matrix is invertible or nonsingular if it has an inverse. Only square (n-by-n)
matrices can be invertible, and an invertible matrix has precisely one inverse.
For if B and C are inverses of A then

B = BI = B(AC) = (BA)C = IC = C.

It’s a theorem that if A is square and AB = I then BA = I also. But one
can have nonsquare matrices A and B such that AB is an identity matrix;
however then BA won’t be an identity. If B is the inverse of A, then we
write B = A−1.



The product AB of two nonsingular matrices A and B is nonsingular.
For

(AB)(B−1A−1) = ABB−1A−1 = AIA−1 = AA−1 = I

and
(B−1A−1)(AB) = B−1A−1AB = B−1IB = B−1B = I

so that AB has the inverse B−1A−1.
To compute an inverse of an n-by-n matrix A, make a new n-by-2n matrix

M = (A I) by putting M next to the identity, then convert M into reduced
echelon form N by elementary row operations. If N = (I B) then B = A−1;
otherwise A is not invertible.

The transpose of an m-by-n matrix A is the n-by-m matrix At obtained
from A by interchanging rows with columns. That is

if A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 then At =


a11 a21 · · · am1

a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 .

Transposition preserves addition and subtraction: (A + B)t = At + Bt and
(A− B)t = At − Bt, but reverses order of multiplication: (AB)t = BtAt. A
symmetric matrix is a (square) matrix A satisfying At = A; a skew-symmetric
matrix is a (square) matrix B satisfying Bt = −B.

An elementary matrix is a matrix E obtained by applying an elementary
row operation to an identity matrix. Each elementary matrix is invertible
and its inverse is also an elementary matrix. If A is an m-by-n matrix, then
applying an elementary row operation to A yields the matrix EA where E
is the elementary matrix obtained by performing the same elementary row
operation on Im. As a consequence, there is a sequence E1, . . . , Ek of elemen-
tary matrices with EkEk−1 · · ·E2E1A = B in (reduced) echelon form. If A is
invertible, then we can take B = I and get that A = E−1

1 E−1
2 · · ·E−1

k−1E
−1
k is

a product of elementary matrices.

Geometry of matrix transformations

For simplicity we work in the plane. If A is a 2-by-2 matrix and P = (x, y)
is a point in the plane define P ′ = (x′, y′) where(

x′

y′

)
= A

(
x
y

)
.

The mapping P 7→ P ′ is a transformation of the plane to itself which pre-
serves the origin, and if A is nonsingular, takes lines to lines and parallelo-
grams to parallelograms. Some examples:



•
(

a 0
0 a

)
for a > 0 is a magnification with factor a,

•
(

a 0
0 1

)
for a > 0 is a stretch with factor a in the x-direction,

•
(

1 0
0 −1

)
is reflection in the x-axis,

•
(

0 1
1 0

)
is reflection in the line y = x,

•
(

cos θ − sin θ
sin θ cos θ

)
is rotation through angle θ anticlockwise about the

origin.

Determinants

Each square matrix has A a determinant. This is a number associated
to A in a certain way and is denoted by |A| or det(A). There are several
ways of defining determinants. In this course we give a recursive method,
defining n-by-n determinants in terms of (n− 1)-by-(n− 1) determinants.

The formula for a 1-by-1 determinant is trivial:

|a| = a.

The formula for a 2-by-2 determinant is well-worth remembering:∣∣∣∣∣ a b
c d

∣∣∣∣∣ = ad− bc.

It’s sometimes handy, but not essential to remember the formula for a 3-by-3
determinant: ∣∣∣∣∣∣∣

a b c
d e f
g h j

∣∣∣∣∣∣∣ = aej + bfg + cdh− afh− bdj − ceg.

The formula for an n-by-n determinant has n! terms; attempting to memorize
larger determinant formulae is completely bonkers!

To define the determinant in general let

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann





be a typical n-by-n matrix. For numbers j and k between 1 and n define Ajk

to be the matrix obtained from A by deleting row j and column k. Then Ajk

is an (n− 1)-by-(n− 1) matrix. For instance, when n = 4 then

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 and A31 =

 a12 a13 a14

a22 a23 a24

a42 a43 a44

 .

Now we define

|A| = a11|A11| − a12|A12|+ a13|A13| − · · · ± a1n|A1n| =
n∑

k=1

(−1)k+1a1k|A1k|.

We check that this definition yields the formulae given above for small ma-
trices.

A consequence of this definition is that the determinant of an upper tri-
angular matrix is the product of its diagonal elements. An upper triangular
matrix is a square matrix with all entries below the main diagonal equal to
zero. Thus

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
= a11a22a33 · · · ann.

For large matrices this definition is inefficient for calculation. Elementary row
operations have predictable effects on determinants. Suppose that matrix A
is transformed to matrix B via an elementary row operation:

• if B arises by multiplying a row of A by a scalar t then |B| = t|A|,
equivalently, |A| = t−1|B|;

• if B arises by swapping two rows of A then |B| = −|A|;

• if B arises by adding a scalar multiple of a row of A to another row of
A then |B| = |A|.

A square matrix in echelon form is upper triangular. Hence one may calculate
determinants by reducing a matrix to echelon form using row operations.

We now list some facts about determinants:

• a matrix with an all-zero row or all-zero column has zero determinant;



• determinants are invariant under transposition: |A| = |At|;

• the determinant is multiplicative: |AB| = |A||B|;

• as |I| = 1 it follows that when |A| is nonsingular, |A| 6= 0 and |A−1| =
|A|−1 (since |A||A−1| = |AA−1| = |I| = 1);

• by contrast, if A is singular, |A| = 0, so |A| = 0 is a necessary and
sufficient for A to be singular.

The formula defining |A| in terms of a11, . . . , a1n and |A11|, . . . , |A1n| is
known as expansion of the determinant along the first row. We can expand
the determinant along other rows, for instance the second row:

|A| = −a21|A21|+ a22|A22| − a23|A23|+ · · · ± a2n|A2n| =
n∑

k=1

(−1)k+2a2k|A2k|

etc. The formula for expansion along row j is

|A| =
n∑

k=1

(−1)j+kajk|Ajk|.

Similarly we can expand along columns; expanding down column i gives

|A| =
n∑

k=1

(−1)i+kaki|Aki|.

A consequence
A adj A = |A|I

where adj A is the matrix whose entry in row i and column j is (−1)i+j|Aji|.
Note that |Aji| is the determinant of the matrix obtained by deleting column
i and row j from A. Also the signs (−1)i+j form a chessboard pattern. Hence
if A is non-singular, then

A−1 =
1

|A|
adj A.

This formula for the inverse of a matrix is practical for 2-by-2 and sometimes
3-by-3 matrices but rarely for larges matrices.

Eigenvectors and eigenvalues

Let A be a square matrix. A vector v is an eigenvector of A if v 6= 0 and
Av = tv for some scalar t. The number t is called the eigenvalue associated
to the eigenvector v. We can rewrite the equation Av = tv as

(tI − A)v = 0. (∗)



For t to be an eigenvalue of A, (∗) must have a non-zero vector v as a
solution. This happens if and only if the matrix tI − A is singular, that is,
it has determinant zero. Hence t is an eigenvalue of A if and only if

|tI − A| = 0. (†)

If A is n-by-n, (†) is a degree n algebraic equation. It is called the charac-
teristic equation of A. To find the eigenvalues and eigenvectors of A we first
solve the characteristic equation (†) to find the eigenvalues t; then for each
eigenvalue we solve (∗) to find its associated eigenvectors. In each case we
will get a family of solutions depending on one or more parameters.

If the characteristic equation of A has n distinct roots t1, . . . , tn we can
build an n by n matrix V with columns v1, . . . ,vn. Then AV has columns
t1v1, . . . , tnvn. Hence

AV = V D where D =



t1 0 0 · · · 0
0 t2 0 · · · 0
0 0 t3 · · · 0
...

...
...

. . .
...

0 0 0 · · · tn


is a diagonal matrix (a matrix whose nonzero entries are all on the main
diagonal). It is a fact that when the characteristic equation has distinct
roots then this matrix V is nonsingular, and so

D = V −1AV.

We say that A is diagonalizable if there is a non-singular matrix V with
V −1AV diagonal. All n-by-n matrices with n distinct eigenvalues are diago-
nalizable; matrices with repeated eigenvalues may or may not be diagonaliz-
able.

If we can diagonalize A it is easy to compute Ak for all k. If

D =



t1 0 0 · · · 0
0 t2 0 · · · 0
0 0 t3 · · · 0
...

...
...

. . .
...

0 0 0 · · · tn

 then Dk =



tk1 0 0 · · · 0
0 tk2 0 · · · 0
0 0 tk3 · · · 0
...

...
...

. . .
...

0 0 0 · · · tkn


and if D = V −1AV then A = V DV −1 and

Ak = V DV −1V DV −1 · · ·V DV −1 = V DIDI · · · IDV −1 = V DkV −1.



Matrices A which have repeated eigenvalues may not be diagonalizable.
If t is an eigenvalue of A its algebraic multiplicity µa(t) is its multiplicity as a
root of the characteristic equation of A. Its geometric multiplicity µg(t) is the
number of parameters needed to express all eigenvectors with eigenvalue t,
equivalently, the number of nonzero rows in the echelon form for tI − A. It
is a fact that 1 ≤ µg(t) ≤ µa(t) for all eigenvalues t. Also A is diagonalizable
if and only if µg(t) = µa(t) for all eigenvalues t. A simple example is the
matrix

A =

(
1 1
0 1

)
.

This has the sole eigenvalue 1 with µa(1) = 2 but µg(1) = 1; A is not
diagonalizable.

If A is diagonalizable, with repeated eigenvalues, we can construct the
matrix V diagonalizing A as follows. For each eigenvalue t let µ = µa(t) =
µg(t). Then the equation (tI − A)v = 0 has general solution v = x1v1 +
x2v2 + · · ·+ xµvµ. Insert columns v1 . . . ,vµ into the matrix V , and do this
for all eigenvalues t.
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