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These notes give a very brief resumé of my number theory course. Proofs
and examples are omitted. Any suggestions for improvements will be grate-
fully received. I am grateful to Jasmine Arscott for pointing out some errors
in an earlier version.

1 Basic notions

In number theory we deal with the set of natural numbers

N = {1, 2, 3, . . .},

and the set of integers

Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}.

Probably the most fundamental notion of number theory is that of divisibility.
We say that an integer m divides an integer n, or that n is divisible by m, or
that m is a factor or divisor of n, if there exists an integer r with n = rm.
If m 6= 0 this means that n/m ∈ Z. We write m | n if m divides n and m - n
if m doesn’t divide n.
Proposition

(i) If m | n and m | r, then m | n + r and m | n− r,
(ii) if m | n and r ∈ Z, then m | rn,
(iii) n | 0 for all n ∈ Z but 0 | n only if n = 0,
(iv) n | 1 if and only if n = ±1,
(v) if m | n and m, n ∈ N, then m ≤ n,
(vi) m | n if and only if m | −n if and only if −m | n,
(vii) if r, m, n ∈ Z and r 6= 0 then m | n if and only if rm | rn,
(viii) if m | n and n | r then m | r. 2

Once we have the concept of divisibility we can define the notion of pri-
mality. We say a natural number p is prime if p > 1, and the only natural
numbers dividing p are 1 and p. If n > 1 and n isn’t prime then we say n is
composite.
Proposition If n > 1 is a natural number, then n = p1p2 · · · pr where p1,
p2, . . . , pr are primes. 2

Theorem (Euclid) The set of primes is infinite. 2
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2 Congruences

2.1 Definitions

The most important tool in number theory is the notion of congruence. If a,
b and m are integers, we say that a is congruent to b modulo m or write

a ≡ b (mod m)

if m | (b− a). (If we are lazy we sometimes write a ≡ b (m).)
For a fixed number m the relation of congruence is an equivalence relation.

Proposition
(i) a ≡ a (mod m) for all a.
(ii) If a ≡ b (mod m) then b ≡ a (mod m).
(iii) If a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m). 2

Also congruence respects addition, subtraction and multiplication.
Proposition If a ≡ a′ (mod m) and b ≡ b′ (mod m) then

(i) a + b ≡ a′ + b′ (mod m),
(ii) a− b ≡ a′ − b′ (mod m), and
(iii) ab ≡ a′b′ (mod m). 2

Division in general not respected. We do, however, have this useful result
about going between congruences to different moduli.
Proposition

(i) If a ≡ b (mod m) and d | m then a ≡ b (mod d).
(ii) Suppose s 6= 0. Then a ≡ b (mod m) if and only if as ≡ bs (mod ms).

2

If m is fixed then an equivalence class for the relation of congruence
modulo m is called a residue class modulo m. We sometimes denote the
residue class containing a by a so that

a = {a + rm : r ∈ Z} = {. . . , a−m, a, a + m, a + 2m, . . .}.

If m > 0 then there are exactly m residue classes modulo m. If S is a set
containing exactly one element of each residue class modulo m, we say that
S is a complete system of residues modulo m. In particular if m > 0 then
the set S = {0, 1, . . . ,m − 1} is a complete system of residues modulo m.
Another important example when m > 0 is

S ′ = {a : −m/2 < a ≤ m/2}.

If m = 2n + 1 is odd then S ′ = {−n,−n + 1, . . . , n− 1, n} and if m = 2n is
even then S ′ = {−n + 1,−n + 2, . . . , n− 1, n}.

If we have a congruence modulo m involving an indeterminate x we can
ask if this congruence is soluble, and if so what the solutions are. It clearly
suffices to substitute each element of a complete system of residues modulo m
for x, and see for which values the congruence is satisfied. This approach is
only efficient when m is small, and we shall seek better methods which are
practical for large m.
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2.2 Linear congruences

The most basic class of congruences are linear congruences, viz., congruences
of the form

ax ≡ b (mod m) (1)

to be solved for x. By definition (1) is soluble if and only if m|(b − ax) for
some x, and this is true if and only if b− ax = my for some x and y. Hence
(1) is soluble if and only if

ax + my = b (2)

for some x, y ∈ Z. To investigate the solubility of linear congruences we must
answer the question: given integers a and m, which integers can be written
in the form ax + my with x, y ∈ Z? To solve this problem we need to recall
the notion of the gcd.
Theorem (a) If a, b ∈ Z there exists a unique non-negative integer g such
that

(i) g | a and g | b, and
(ii) if h | a and h | b then h | g.

(b) If g is the integer from part (a) then g = ar + bs for some r, s ∈ Z. 2

We call g the greatest common divisor or gcd of a and b and write g =
gcd(a, b). It also follows that a number m has the form ax + by if and only
if g | m.

To calculate g, r and s we use the Euclidean algorithm. We may suppose
that a and b are both positive. Let a1 = a, a2 = b, r1 = s2 = 1 and
r2 = s1 = 0. We repeat the following procedure until we get ak+1 = 0. If we
know at choose q such that 0 ≤ at+1 = at−1−qat < at and put rt+1 = rt−1−qrt

and st+1 = st−1 − qst. When ak+1 = 0 then put g = ak, r = rk and s = sk.
As we can easily prove at = art + bst for each t we have g = ar + bs.

Returning to congruence (1), or equivalently equation (2), we see that it
is insoluble if g = gcd(a, m) - b. Otherwise if g | b write a = ga′, b = gb′ and
m = gm′ and note that (1) is equivalent to

a′x ≡ b′ (mod m′). (3)

Now if g = ar + ms then 1 = a′r + m′s ≡ a′r (mod m). Multiplying (3) by
r gives

x ≡ b′r (mod m′)

as the general solution of (1). Note that in general we get a solution mod-
ulo m′, and this is equivalent to g different solutions modulo m.

We note that if g = gcd(a, m) = 1 then the congruence (1) has a unique
solution modulo m. As this is quite a desirable state of affairs then we
introduce a piece of terminology; integers a and b are said to be coprime, or
a is coprime to b, if gcd(a, b) = 1. The condition of a and b being coprime is
equivalent to the solubility of the congruence ax ≡ 1 (mod b) for x. It easily
follows that if a is coprime to b and a ≡ a′ (mod b) then a′ is coprime to b.
Also if a is coprime to c and b is coprime to c, then ab is coprime to c.

A useful property of coprime numbers is that their “least common mul-
tiple” is their product.
Proposition If m and n are coprime, and if m | a and n | a then mn | a. 2
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Corollary Suppose that m and n are coprime. If a ≡ b (mod m) and a ≡ b
(mod n) then a ≡ b (mod mn). 2

If p is a prime number then “most” numbers will be coprime to p.
Proposition If p is a prime and a ∈ Z then either p | a or a is coprime to p.
2

Corollary Let p be a prime. If p | ab then either p | a or p | b. 2

We can extend this by induction to products of more than two numbers.
Corollary Let p be a prime. If p | a1a2 · · · ak then p | ak for some j. 2

This result is used in a crucial manner in the proof of the unique factor-
ization property of integers.
Theorem (The Fundamental Theorem of Arithmetic) If n > 1 is a natural
number and

n = p1p2 · · · pr = q1q2 · · · qs

where the pis and qjs are all prime, then r = s and we can re-order the qjs
such that pi = qi for all i. 2

Hence every integer n > 1 can be factored into primes in a unique manner.
If we collect together occurrences of the same prime we can write

n = pr1
1 pr2

2 · · · prk
k =

k∏
j=1

p
rj

j (4)

where the pjs are distinct primes and each rj ≥ 1. From now on if we write
an expression such as (4) we assume these conditions hold.

2.3 Simultaneous congruences and the Chinese remain-
der theorem

We now investigate pairs of simultaneous congruences such as

x ≡ a (mod m)
x ≡ b (mod n).

}
(5)

The first congruence is equivalent to x = a+my so substituting in the second
gives

my ≡ b− a (mod n).

By the theory of linear congruences this is soluble if and only if g | (b − a)
where g = gcd(m, n). If g | (b−a) then this congruence has a unique solution
for y modulo n/g which translates into a unique solution for x modulo mn/g.
In other words we have the theorem.
Theorem The pair of congruences (5) have a simultaneous solution for x
if and only if g | (b − a) where g = gcd(m, n). In this case the solution is
unique modulo mn/g. 2

Corollary (The Chinese Remainder Theorem) If m and n are coprime then
the pair of congruences (5) has a unique solution modulo mn for any integers
a and b. 2

We can use the Chinese remainder theorem in the solution of congruences.
If f(x) ≡ 0 (mod mn) is a congruence with m and n coprime we can solve the
same congruence modulo m and modulo n and then put the results together
to get the solution modulo mn.
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2.4 Euler’s ϕ-function

When p is prime then all numbers not divisible by p are coprime to p. If
we look at a non-prime number n ∈ N we can ask “how many” numbers are
coprime to n. We thus define ϕ(n) to be the number of a with 1 ≤ a ≤ n
which are coprime to n. In symbols

ϕ(n) = |{a ∈ N : 1 ≤ a ≤ n, gcd(a, n) = 1}|.

The function ϕ is called Euler’s phi-function. It’s clear that ϕ(1) = 1 and
ϕ(p) = p− 1 when p is prime. In fact we can easily generalize this result.
Lemma Let p be prime and let r ≥ 1. A number a is coprime to pr if and
only if a is coprime to p. 2

Corollary Let p be prime and let r ≥ 1. Then ϕ(pr) = pr−1(p− 1). 2

Hence the value of ϕ(n) is easily computed whenever n is a power of a
prime. To find the value in general we need to know how ϕ(mn) depends on
ϕ(m) and ϕ(n) whenever m and n are coprime. We need this preliminary
result.
Proposition Let m and n be coprime natural numbers. Then a is coprime
to mn if and only if a is coprime to m and a is coprime to n. 2

Using this result and the Chinese Remainder Theorem we can now prove
the following theorem.
Theorem Let m and n be coprime natural numbers. Then ϕ(mn) =
ϕ(m)ϕ(n). 2

Corollary If n = pr1
1 pr2

2 · · · prk
k then

ϕ(n) = ϕ(pr1
1 )ϕ(pr2

2 ) · · ·ϕ(prk
k )

= pr1−1
1 (p1 − 1)pr2−1

2 (p2 − 1) · · · prk−1
k (pk − 1)

= n
k∏

j=1

(
1− 1

pj

)
.

2

The main application of the phi-function is to the following result.
Theorem (Fermat-Euler) Let n be a natural number and suppose that a is
coprime to n. Then

aϕ(n) ≡ 1 (mod n).

2

Corollary (Fermat’s Theorem) (a) If p is prime and p - a then

ap−1 ≡ 1 (mod p).

(b) If p is prime and a ∈ Z then

ap ≡ a (mod b).

2

The Fermat-Euler theorem says that if we take a coprime to n, and con-
sider the sequence of powers a, a2, a3, . . . then eventually we reach one, viz.,
aϕ(n) which is congruent to 1 modulo n. However we may find that we reach
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a power ah with ah ≡ 1 (mod n) earlier. If h is the smallest natural number
such that ah ≡ 1 (mod n) we call h the order of a modulo n. It is clear that
h ≤ ϕ(n), but in fact more is true.
Lemma Suppose that a has order h modulo n. Then ar ≡ as (mod n) if
and only if r ≡ s (mod h). 2

Corollary Suppose that a has order h modulo n. Then h | ϕ(n). 2

If a has order ϕ(n) modulo n then we call a a primitive root modulo n.
This is equivalent to saying that every b which is coprime to n is congruent
to a power of a modulo n. Not all numbers have primitive roots, but we shall
later see that all primes have.

2.5 Primality testing

Fermat’s theorem has an important application to primality testing. This is
the problem of determining whether a specified number n is prime. As it’s
easy to see that every composite number n is divisible by a prime p ≤

√
n

then a small number n can be tested by primality by dividing by all such
primes. However as n gets bigger this method becomes impractical. For an n
with 20 digits one would need over 108 trial divisions so we need more subtle
methods.

Fermat’s theorem implies that if n - a and an−1 6≡ 1 (mod n) then n
cannot be prime. Hence if for a given n we can find such an a then we know
n isn’t prime. So as a basic primality test we pick a number a (usually a = 2
will work) and compute an−1 modulo n. If an−1 6≡ 1 (mod n) then n is not
prime, but if an−1 ≡ 1 (mod n) then the test is alas inconclusive.

This test avoids a vast amount of trial division but instead seems to
rely on the computation of an−1 which may be a really vast number! This
difficulty is more apparent than real, as we only need to find the value of
this modulo n. Again this seems intractable as the obvious method relies on
multiplying a by itself n−1 times and at each stage reducing modulo n. This
requires about n operations which is worse than trial division. But again this
can be circumvented by means of the “binary trick”.

The “binary trick” is an efficient algorithm for finding the value of ar

modulo n. We observe that if r were a power of 2 this would be straightfor-
ward as we could compute the values of a, a2, a4 = (a2)2, a8 = (a4)2 and so
on, modulo n, until we reach ar. Alas nature is not usually kind enough to
provide such an r but we can easily get around this. We write r in binary
notation and let rj be the number whose binary representation is given by
the first j binary digits of r. Then r1 = 1 and rk = r, if r has k binary digits,
and for each j either rj+1 = 2rj or rj+1 = 2rj +1. We compute arj modulo n
for j = 1, 2, . . . , k successively as follows; ar1 = a, and if arj ≡ b (mod n)
then we compute arj+1 ≡ b2 or b2a (mod n) according to whether rj+1 = 2rj

or 2rj + 1.
Again we come to the question of whether our test always works; if an−1 ≡

1 (mod n), does it follow that n is prime? The answer alas is no, we have
2340 ≡ 1 (mod 341) but 341 is not prime. If n is composite and an−1 ≡ 1
(mod n) we say that n is a pseudoprime to the base a. It can be shown that
there are infinitely many pseudoprimes to each base. We now ask a more
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modest question; given a composite number n, is there a base to which it is
not a pseudoprime? The following lemma says the answer is affirmative.
Lemma If gcd(a, n) > 1, then n is not a pseudoprime to base a. 2

Alas on further reflection we see that this result is very weak. If n = pq
is a product of two large primes, then the probability of picking a which is
not coprime to n is less than 1/p + 1/q, which is negligible. We thus ask if n
is composite is there an a coprime to n such that n is not a pseudoprime to
the base a? The answer is no, for if n = 561 we find that a560 ≡ 1 (mod 561)
for all a coprime to 561. Numbers n such as 561 which are pseudoprimes to
all bases a coprime to n, are called Carmichael numbers. There has recently
been a major breakthrough in the theory of Carmichael numbers.
Theorem (Alford, Granville, Pomerance, 1992) There are infinitely many
Carmichael numbers. 2

This result is unfortunate for our primality test, as repeatedly testing a
Carmichael number for primality is practically certain to fail.

2.6 General congruences and primitive roots

We now return to the general theory of congruences. Consider a polynomial
expression

f(x) = arx
r + ar−1x

r−1 + · · ·+ a1x + a0

with the aj ∈ Z, and consider the congruence f(x) ≡ 0 (mod m). If m
divides all the aj then the congruence reduces to 0 ≡ 0 (mod m) and we
call the congruence trivial. Otherwise there exists d such that m - ad but
m | aj if j > d. In this case we can ignore terms of higher degree than
xd and we say that the congruence has degree d modulo m. Note that the
degree of a congruence depends on the modulus. We know that an equation
of degree d over the real or complex numbers has at most d solutions. Alas
there are examples of congruences of degree d modulo m which have more
than d solutions modulo m. Fortunately this does not happen when m is
prime.
Proposition Let p be a prime number, and consider a congruence f(x) ≡ 0
(mod p) of degree d modulo p. This congruence cannot have more than d
distinct solutions modulo p. 2

Corollary If p is an odd prime and a2 ≡ 1 (mod p) then a ≡ ±1 (mod p).
2

As with equations over the real numbers a congruence modulo p may have
fewer than d solutions. But there is an important special case where we get
a full complement of roots.
Proposition Let p be a prime. If xp − x = f(x)g(x) where the polynomial
f has degree d, then the congruence f(x) ≡ 0 (mod p) has exactly d distinct
solutions modulo p. 2

We draw two corollaries from this which we will use in the quest for a
primitive root modulo p.
Corollary Let p be a prime and suppose that m | (p − 1). Then there are
exactly m distinct solutions of xm ≡ 1 (mod p) modulo p. 2

Corollary Let p and q be primes and suppose that qr | (p−1) for some r ≥ 1.
Then there are exactly qr−1(q−1) distinct numbers of order qr modulo p. 2
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Putting this result together with the next lemma establishes the existence
of primitive roots modulo p.
Lemma If a and b have orders h and k respectively modulo m, and h and k
are coprime, then ab has order hk modulo m. 2

Theorem If p is a prime then there exists a primitive root g modulo p, i.e.,
g has order p− 1 modulo p. 2

We can use the existence of a primitive root g modulo a prime p to simplify
many arguments. Note that if p - a then a ≡ gr (mod p) for some r. There is
also a nice procedure for recognizing primitive roots. If p−1 has the distinct
prime factors q1, q2, . . . , qr, then g is a primitive root modulo p if and only if
q(p−1)/qj 6≡ 1 (mod p) for each j.

As all numbers not congruent to zero modulo the prime p are congruent
to powers of a given primitive root g of p, then we can introduce an analogue
of the logarithm. If g is a primitive root of the prime p and a ≡ gr (mod p)
then we call r the discrete logarithm of a to the base g modulo p, and denote
r = logp,g(a). As gr ≡ gs if and only if r ≡ s (mod p − 1) then the discrete
logarithm is only defined modulo p− 1. We have the important formula

logp,g(ab) ≡ logp,g(a) + logp,g(b) (mod p− 1).

2.7 The Miller-Rabin test

We have observed that if p is prime then the only solutions to x2 ≡ 1 (mod p)
are x ≡ ±1 (mod p). Hence if x 6≡ ±1 (mod n) but x2 ≡ 1 (mod n), then
n cannot be prime. We can apply this result to primality testing. If n is an
odd number (there’s no point in testing even numbers for primality!) write
n−1 = 2rs where s is odd. If the basic primality test fails on n for some base
a, i.e., an−1 ≡ 1 (mod n) we consider the values of as, a2s, a4s, . . . , a2rs = an−1

modulo n (note that computing an−1 (mod n) by the binary trick will give
all these values on the way) and check to see whether for some j we have
a2js 6≡ ±1 (mod m) but a2j+1s ≡ 1 (mod m). If this happens we conclude
that n is composite.

This test is called the Miller-Rabin test and is a crucial improvement over
the basic primality test. One can show (but we won’t) the following result.
Theorem If n is an odd composite number, then the proportion of numbers
a with 1 < a < n, such that the Miller-Rabin test applied to n and a shows
that n is composite, is at least 3/4. 2

This result shows that there is no analogue for the Miller-Rabin test
of Carmichael numbers. Given an odd composite number n and taking a
random number a in the range 1 < a < n the probability is at most 1/4 that
the Miller-Rabin test is inconclusive. Repeating this k times one has at most
a 1/4k chance of failure. Hence one can be as confident as one likes that a
given large number is prime (but never quite certain).

2.8 Applications to cryptography

The difficulty of factorizing large integers has resulted in an important appli-
cation to cryptography. The RSA cryptosystem (Rivest, Shamir, Adleman,
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1978) is the most famous example. This is a so-called public key system,
where one publishes the encoding algorithm, so anyone can send you coded
messages, but one keeps the decoding algorithm secret. One takes large
primes p and q (usually large, 100+ digits) and selects a number r coprime
to ϕ(pq) = (p − 1)(q − 1). One then finds s such that rs ≡ 1 (mod ϕ(n)).
One publishes n = pq and r, but keeps p, q and s secret. To code a message
one represents it as a number m with 0 < m < n and the coded message
is the number m′ in the same range satisfying m′ ≡ mr (mod n). Now it’s
easy to show that m′s ≡ mrs ≡ m (mod n), so that possession of the key s
enables one to decode the message. But the only known way to find s given
n = pq and r is to factorize n into its prime factors, and then solve rs ≡ 1
(mod ϕ(n)). As factorizing large numbers into primes is still an intractable
problem (but one on which progress is being made) the RSA system is secure.

2.9 Mersenne numbers

There are certain classes of numbers which can be tested for primality by
special methods. The most famous of these are the Mersenne numbers Mn =
2n − 1. One easily shows that if n is composite then Mn is also, so for Mn to
be prime it is necessary that n be prime. However the converse is false, for
M11 = 2047 = 23× 89. Nevertheless there is a test for primality of Mersenne
numbers which has given a series of numbers each of which has been the
highest known prime. The current record holder is M756839 which was found
on a CRAY computer at the Atomic Energy Research Authority at Harwell
in 1992.

Most Mersenne numbers of the form Mp with p prime are alas composite.
the following result gives us some information about their prime factors.
Proposition If q is a prime factor of Mp = 2p − 1 where p is prime, then
q ≡ 1 (mod p). 2

3 Quadratic residues

We wish to study the theory of quadratic congruences in detail. We confine
ourselves to a prime modulus p, which we shall assume is odd. By the familiar
technique of completing the square one can reduce any such congruence to
the form

x2 ≡ a (mod p). (†)

If p | a then (†) is equivalent to x ≡ 0 (mod p). Otherwise if p - a and (†) has
a solution x ≡ b (mod p) then p - b and x ≡ −b (mod p) is another, different
solution. As (†) cannot have more than two distinct solutions modulo p then
these are the only solutions. Such an a where p - a and (†) is soluble is called
a quadratic residue modulo p. If the congruence (†) is insoluble then a is
called a quadratic non-residue modulo p.

For convenience we introduce some notation. If p is an odd prime and
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a ∈ Z we define the Legendre symbol

(
a

p

)
=


0 if p | a,

+1 if a is a quadratic residue modulo p,
−1 if a is a quadratic non-residue modulo p.

Note that
(

a
p

)
is only defined if p is an odd prime. By our previous remarks we

see that the congruence (†) has precisely 1+
(

a
p

)
distinct solutions modulo p.

We now ask how may quadratic residues are there modulo p. If g is a
primitive root modulo p then it’s easy to see that gs is a quadratic residue
modulo p if and only if s is even. As every non-zero residue is congruent
to a power of g modulo p we see that exactly half of the non-zero residues
modulo p are quadratic residues. Hence there are (p−1)/2 distinct quadratic
residues and (p− 1)/2 distinct quadratic non-residues modulo p. By writing
a ≡ gs (mod p) one easily gets the following result.
Proposition (Euler’s Criterion) If p is an odd prime and a ∈ Z then(

a

p

)
≡ a(p−1)/2 (mod p).

2

Corollary Let p be an odd prime and let a, b ∈ Z. Then(
ab

p

)
=

(
a

p

)(
b

p

)
.

2

Corollary If p is an odd prime then(
−1

p

)
=

{
+1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

2

To calculate further values of the Legendre symbol we use the following
result which is derived from Euler’s criterion.
Proposition (Gauss’s Lemma) Let p be an odd prime and suppose p - a.
Put p′ = (p−1)/2 and define c1, c2, . . . , cp′ by cj ≡ aj (mod p) and |cj| < p/2.
Let µ be the number of negative cjs. Then(

a

p

)
= (−1)µ.

2

By turning the handle we get the following important corollary.
Corollary Let p be an odd prime. Then(

2

p

)
=

{
+1 if p ≡ 1 or 7 (mod 8),
−1 if p ≡ 3 or 5 (mod 8),

and (
−2

p

)
=

{
+1 if p ≡ 1 or 3 (mod 8),
−1 if p ≡ 5 or 7 (mod 8).
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2

With a little more effort one can get similar results giving the value of(
±3
p

)
, then

(
±5
p

)
and so on. Alas the work involved steadily increases. There

is however a general result which subsumes all these cases. This result,
conjectured by Legendre, and proved by Gauss is the celebrated Law of
Quadratic Reciprocity. It can be proved by an ingenious argument using
Gauss’s Lemma.
Theorem (Law of Quadratic Reciprocity) Let p and q be distinct odd primes.
Then (

p

q

)
=

(
q

p

)
unless p ≡ q ≡ 3 (mod 4) when(

p

q

)
= −

(
q

p

)
.

2

Using this result the practical computation of Legendre symbols is now
straightforward.

4 Diophantine equations

4.1 Sums of squares

We now turn to the subject of sums of squares. The basic problem is how
to express a given number n ∈ N as the sum of integer squares using as few
squares as possible. Note that we admit 0 = 02 as a square. Putting the
question another way we ask which numbers are sums of two squares, sums
of three squares and so on. If we consider the numbers from 1 to 100 we
find 10 of them are squares, 43 are sums of two squares, 86 are sums of three
squares, and all are sums of four squares. We may surmise that all natural
numbers are sums of four squares, and this turns out to be true.

It is easy to see that if n ≡ 3 (mod 4) then n is not the sum of two
squares, and if n ≡ 7 (mod 8) then n is not the sum of three squares. Hence
there are infinitely many numbers which are not sums of three squares. The
following result gives a further restriction on which numbers are sums of two
squares.
Lemma If p is a prime number with p ≡ 3 (mod 4) and p | x2 + y2 where x,
y ∈ Z, then p | x and p | y, and so p2 | x2 + y2. 2

Corollary If n = x2 + y2 then n = r2m where m is a sum of two squares
which is divisible by no prime p satisfying p ≡ 3 (mod 4). 2

This corollary says that if n is the sum of two squares and

n =
∏
j

p
rj

j

is the prime factorization of n, then rj is even whenever pj ≡ 3 (mod 4). If
we consider the numbers n up to 100 we find that if n satisfies this condition,
then n is the sum of two squares. We now ask for any n whether this condition
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does imply that n is the sum of two squares. In order to show that the answer
is yes we need the following useful lemma.
Lemma If m and n are sums of two squares, then so is mn. 2

It now suffices to show that any prime p which is not congruent to 3
modulo 4 is a sum of two squares. This is trivial for p = 2 = 12 + 12 so
consider a prime p ≡ 1 (mod 4).
Theorem If p is a prime number with p ≡ 1 (mod 4), then p is a sum of two
squares. 2

This result finally gives the characterization of sums of two squares.
Theorem Let n ∈ N have the prime factorization

n =
∏
j

p
rj

j .

Then n is the sum of two squares if and only if rj is even whenever pj ≡ 3
(mod 4). 2

Another nice result is that a prime p ≡ 1 (mod 4) can be expressed as
the sum of two squares in a unique fashion.
Proposition If p is a prime number and p = x2 + y2 = u2 + v2, where x, y,
u, v ∈ N and x > y, u > v, then x = u and y = v. 2

In general one can work out a formula giving the number of represen-
tations of a number n as the sum of two squares, but we shall not go into
this.

When we turn to sums of three squares things become very difficult. It is
possible for numbers m and n to be sums of three squares, yet for mn not to
be. This makes the approach used for sums of two squares, where we build
up from the case where n is prime, fail. We just state the main result.
Theorem (Gauss) A number n ∈ N is the sum of three squares if and only
if one cannot write n = 4am where m ≡ 7 (mod 8). 2

The proof of one half of the theorem is easy, namely that a number
n = 4am with m ≡ 7 (mod 8) is not the sum of three squares. The converse
is a very deep theorem indeed.

When we come to sums of four squares life becomes easier again. Every
natural number is the sum of four squares. Again we have a product rule.
Lemma If m and n are sums of four squares then so is mn. 2

This enables us to reduce the proof of the following theorem to the case
where n is prime.
Theorem (Legendre) If n ∈ N then n is the sum of four squares. 2

4.2 Pell’s equation and continued fractions

Given a number n ∈ N, Pell’s equation is

x2 − ny2 = 1.

We wish to find integer solutions to this equation. As (±x,±y) are solutions
if (x, y) is then we need only consider x, y ≥ 0. We have the obvious solution
(x, y) = (1, 0) so it suffices to consider the case where x, y ∈ N, and such
solutions are called non-trivial. We can easily rule out solutions for a certain
class of n.
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Lemma If n is a square then Pell’s equation x2−ny2 = 1 has no non-trivial
solution. 2

Numerical investigation for non-square values of n indicate that solutions
of Pell’s equation do exist, but that they vary unpredictably as n varies.
Before showing how to find a solution, we show that given one solution we
can find infinitely many others.
Lemma If x2

j − ny2
j = 1 for j = 1 and 2, then x2

3 − ny2
3 = 1 where x3 =

x1x2 + ny1y2 and y3 = x1y2 + y1x2. 2

Corollary If x2 − ny2 = 1 has a non-trivial solution, then it has infinitely
many solutions. 2

To solve Pell’s equation we notice that it can be written as (x/y)2 − n =
1/y2. This shows that (x/y)2 is close to n and so the rational number x/y is
close to the irrational number

√
n. More precisely it’s clear that x/y >

√
n

and so as

x

y
−
√

n =
(x/y)2 − n

x/y +
√

n

=
1

y2

(
x

y
+
√

n

)−1

then 0 < x/y −
√

n < 1/(2y2
√

n). It follows that to solve Pell’s equation
one must find very good rational approximations to

√
n. We shall describe

a method for obtaining such approximations to any irrational number, and
use them to solve Pell’s equation.

To approximate a real number ξ by rationals we use the technique of
continued fractions. A (finite) continued fraction is an expression of the
form

a0 +
1

a1 +
1

a2 +
1

a3 + .. . 1

ar−1 +
1

ar

where a0 ∈ Z and aj ∈ N for each j > 0. For convenience we abbreviate
this expression by 〈a0, a1, . . . , ar〉. We can represent any rational number by
a continued fraction, and approximate any irrational number by continued
fractions by the following procedure.

Let ξ be any positive real number. Let [ ξ ] denote the integer part of ξ,
i.e., the integer a such that a ≤ ξ < a + 1. Put a0 = [ ξ ], and η0 = ξ − a0.
If η0 = 0 then ξ = a0 = 〈a0〉 ∈ Q and we stop, otherwise we put ξ1 = 1/η0,
a1 = [ ξ1 ] and η1 = ξ1 − a1. If η1 = 0 then ξ = 〈a0, a1〉 ∈ Q and we stop,
otherwise we put ξ2 = 1/η1, a2 = [ ξ2 ] and η2 = ξ2 − a2, and we keep going.
If ξ ∈ Q we eventually get ηr = 0 and so ξ = 〈a0, a1, . . . , ar〉 (this process
is essentially equivalent to the Euclidean algorithm), but if ξ /∈ Q we go on
forever getting an infinite continued fraction ξ = 〈a0, a1, . . . , ar, . . .〉.

The convergents of a (finite or infinite) continued fraction 〈a0, a1, a2, . . . , 〉.
are the numbers c0, c1, c2, . . . where cj = 〈a0, a1, . . . , aj〉. The convergents
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of the continued fraction of a number ξ, form a sequence of excellent ap-
proximations to ξ. We can obtain the convergents easily by a recurrence
relation.
Proposition Let c0, c1, c2 . . . be the convergents to the continued fraction
〈a0, a1, a2, . . .〉. If we write cj = hj/kj in lowest terms, then hr+1 = ar+1hr +
hr−1 and kr+1 = ar+1kr + kr−1. 2

If we apply the continued fraction technique to
√

n we see that we get a
recurring continued fraction. In fact more is true.
Theorem Let n ∈ N be a non-square. Then there exists a number m such
that √

n = 〈a0, a1, a2, . . . , am−1, 2a0, a1, a2 . . .〉,

i.e., am = 2a0 and ar+m = ar for all r ≥ 0.
Also if the cj are the convergents of this continued fraction and cj = hj/kj

in lowest terms, then

h2
sm−1 − nk2

sm−1 = (−1)sm

for all s ∈ N. 2

It follows that we can read off infinitely many solutions of Pell’s equation
from the continued fraction of

√
n. However if m is odd then we get a solution

of the negative Pell equation x2 − ny2 = −1 before we get a solution of Pell.
We can then exploit the following shortcut to get a solution of Pell.
Lemma If x2 − ny2 = −1 then x′2 − ny′2 = 1 where x′ = x2 + ny2 and
y′ = 2xy. 2
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