A new proof of some identities of Bressoud

Robin Chapman
School of Mathematical Sciences
University of Exeter
Exeter, EX4 4QE, UK
rjc@maths.ex.ac.uk
11 October 2001

Abstract

We provide a new proof of two identities due to Bressoud:

\[
\sum_{m=0}^{N} q^{m^2} \left[\frac{N}{m} \right] = \sum_{m=\infty}^{\infty} (-1)^m q^{m(5m+1)/2} \left[\frac{2N}{N + 2m} \right]
\]

and

\[
\sum_{m=0}^{N} q^{m^2+m} \left[\frac{N}{m} \right] = \frac{1}{1-q^{N+1}} \sum_{m=\infty}^{\infty} (-1)^m q^{m(5m+3)/2} \left[\frac{2N + 2}{N + 2m + 2} \right]
\]

which can be considered as finite versions of the Rogers-Ramanujan identities.

MSC2000 classification: 05A19
In [1] Bressoud proves the following theorem, from which the Rogers-Ramanujan identities follow on letting \(N \to \infty \).

Theorem 1 For each integer \(N \geq 0 \),
\[
\sum_{m=0}^{N} q^{m^2} \left[\frac{N}{m} \right] = \sum_{m=-\infty}^{\infty} (-1)^m q^{m(5m+1)/2} \left[\frac{2N}{N + 2m} \right] \tag{1}
\]
and
\[
\sum_{m=0}^{N} q^{m^2+m} \left[\frac{N}{m} \right] = \frac{1}{1-q^{N+1}} \sum_{m=-\infty}^{\infty} (-1)^m q^{m(5m+3)/2} \left[\frac{2N + 2}{N + 2m + 2} \right]. \tag{2}
\]

Here
\[
\left[\frac{N}{m} \right] = \begin{cases} \frac{(q)_N}{(q)_m(q)_{N-m}} & \text{if } 0 \leq m \leq N; \\ 0 & \text{otherwise.} \end{cases}
\]

denotes a Gaussian binomial coefficient, where we adopt the standard \(q \)-series notation:
\[
(q)_n = \prod_{j=1}^{n} (1-q^j).
\]

We give an alternative proof of Theorem 1 by showing that the left and right sides of (1) and (2) satisfy the same recurrence relations.

Define, for integers \(a \) and \(N \geq 0 \),
\[
S_a(N) = \sum_{n=0}^{N} q^{n^2+an} \left[\frac{N}{n} \right].
\]

Lemma 1 For each integer \(N \geq 1 \) and each \(a \) we have
\[
S_a(N) = S_a(N - 1) + q^{N+a} S_{a+1}(N - 1) \tag{3}
\]
and
\[
S_a(N) = S_{a+1}(N - 1) + q^{a+1} S_{a+2}(N - 1). \tag{4}
\]

Proof Using the identity
\[
\left[\frac{N}{n} \right] = q^{N-n} \left[\frac{N-1}{n-1} \right] + \left[\frac{N-1}{n} \right]
\]
gives

\[S_a(N) = q^N \sum_{n=1}^{N} q^{n^2 + (a-1)n} \left[\frac{N-1}{n-1} \right] + \sum_{n=0}^{N-1} q^{n^2 + an} \left[\frac{N-1}{n} \right] \]

\[= q^N \sum_{n=0}^{N-1} q^{(n+1)^2 + (a-1)(n+1)} \left[\frac{N-1}{n} \right] + S_a(N-1) \]

\[= q^{N+a} S_{a+1}(N-1) + S_a(N-1). \]

On the other hand, using the identity

\[\left[\begin{array}{c} N \\ n \end{array} \right] = \left[\begin{array}{c} N-1 \\ n-1 \end{array} \right] + q^n \left[\begin{array}{c} N-1 \\ n \end{array} \right] \]

gives

\[S_a(N) = \sum_{n=1}^{N} q^{n^2 + an} \left[\frac{N-1}{n-1} \right] + \sum_{n=0}^{N-1} q^{n^2 + (a+1)n} \left[\frac{N-1}{n} \right] \]

\[= \sum_{n=0}^{N-1} q^{(n+1)^2 + a(n+1)} \left[\frac{N-1}{n} \right] + S_{a+1}(N-1) \]

\[= q^{a+1} S_{a+2}(N-1) + S_{a+1}(N-1) \]

\[\square \]

Lemma 2 For integers \(N \geq 0 \) and each \(a \) we have

\[S_a(N) + (q^{N+a+1} - 1)S_{a+1}(N) - q^{a+1}S_{a+2}(N) = 0. \]

Proof Equating (3) and (4) gives

\[S_a(N-1) + (q^{N+a} - 1)S_{a+1}(N-1) - q^{a+1}S_{a+2}(N-1) = 0 \]

for \(N \geq 1 \). Replacing \(N \) by \(N+1 \) gives

\[S_a(N) + (q^{N+a+1} - 1)S_{a+1}(N) - q^{a+1}S_{a+2}(N) = 0. \]

\[\square \]

We shall use the \(a = 0 \) case of Lemma 2 which is

\[S_0(N) + (q^{N+1} - 1)S_1(N) - qS_2(N) = 0. \] (5)

Clearly \(S_a(0) = 1 \) for all \(a \). Also for \(N > 0 \), (3) gives

\[S_a(N) = S_0(N-1) + q^N S_1(N-1) \] (6)
and together with (5) gives
\[S_1(N) = S_1(N-1) + q^{N+1}S_2(N-1) \]
\[= S_1(N-1) + q^N [S_0(N-1) + (q^N - 1)S_1(N-1)] \]
\[= q^N S_0(N-1) + (q^{2N} - q^N + 1)S_1(N-1). \] (7)

Together with the initial conditions \(S_0(0) = S_1(0) = 1 \), (6) and (7) completely define \(S_0(N) \) and \(S_1(N) \) for \(N \geq 0 \).

We now gather some consequences of these recurrences which will be used later.

Lemma 3 For \(N \geq 2 \) we have
\[S_0(N) = (1 + q^{2N-1})S_0(N-1) + q^N(1 - q^N)S_1(N-2). \] (8)

and for \(N \geq 1 \) we have
\[S_1(N) = q^NS_0(N) + (1 - q^N)S_1(N-1). \] (9)

Proof First of all from (6) and (7) we have
\[S_1(N) - q^NS_0(N) = (1 - q^N)S_1(N-1) \]
and so for \(N \geq 2 \),
\[S_1(N-1) - q^{N-1}S_0(N-1) = (1 - q^{N-1})S_1(N-1) \]
Hence by (6) again,
\[S_0(N) = S_0(N-1) + q^NS_1(N-1) \]
\[= S_0(N-1) + q^N [q^{N-1}S_0(N-1) + (1 - q^N)S_1(N-2)] \]
\[= (1 + q^{2N-1})S_0(N-1) + q^N(1 - q^N)S_1(N-2) \]
and by also using (7),
\[S_1(N) = q^NS_0(N-1) + (1 - q^N + q^{2N})S_1(N-1) \]
\[= q^N [S_0(N) - q^NS_1(N-1)] + (1 - q^N + q^{2N})S_1(N-1) \]
\[= q^NS_0(N) + (1 - q^N)S_1(N-1). \]

The recurrences (8) and (9) with the initial conditions \(S_0(0) = S_1(0) = 1 \), \(S_0(1) = 1 + q \) define \(S_0(N) \) and \(S_1(N) \) uniquely for \(N \geq 0 \).
Let
\[B_0(N) = \sum_m (-1)^m q^{m(5m+1)/2} \left[\frac{2N}{N+2m} \right] \]
and
\[B_1(N) = \sum_m (-1)^m q^{m(5m+3)/2} \left[\frac{2N+2}{N+2m+2} \right] \]
denote the sums appearing on the right sides of the identities in Theorem 1.

Setting \(r = N + 2m \) in the definition of \(B_0(N) \) gives
\[B_0(N) = \sum_{r \equiv N (4)} q^{\frac{5}{8}(r-N)^2 + \frac{1}{8}(r-N)} \left[\frac{2N}{r} \right] - \sum_{r \equiv N+2 (4)} q^{\frac{5}{8}(r-N)^2 + \frac{1}{8}(r-N)} \left[\frac{2N}{r} \right]. \]

This suggests the notation
\[A(M, k, b) = \sum_{2r \equiv M+k (8)} q^{\frac{5}{8}(r-M/2+b)^2} \left[\frac{M}{r} \right] \]
so that
\[q^{1/40} B_0(N) = A(2N, 0, 1/5) - A(2N, 4, 1/5). \]

Of course, \(A(M, k, b) = 0 \) if \(M + k \) is odd and \(A(M, k, b) \) depends only on \(M, b \) and the congruence class of \(k \) modulo 8. A similar computation yields
\[q^{9/40} B_1(N) = A(2N + 2, 2, -2/5) - A(2N + 2, -2, -2/5). \]

We aim to show that \(B_0(N) \) and \((1 - q^{N+1}) B_1(N) \) satisfy the same system of recurrences as \(S_0(N) \) and \(S_1(N) \).

Lemma 4 We have
\[A(M, k, b) = A(M, -k, -b) \]
for each \(M, k \) and \(b \).

Proof Replacing \(r \) by \(M - r \) in the sum for \(A(M, k, b) \) yields
\[A(M, k, b) = \sum_{2r \equiv M+k (8)} q^{\frac{5}{8}(r-M/2+b)^2} \left[\frac{M}{r} \right] \]
\[= \sum_{2r \equiv M-k (8)} q^{\frac{5}{8}(r-M/2-b)^2} \left[\frac{M}{r} \right] \]
\[= A(M, -k, -b). \]

We now wish to produce recurrences for the \(A(M, k, b) \).
Lemma 5 We have

\[A(M + 1, k, b) = A(M, k - 1, b + 1/2) + q^{M/2 + 1/10 - b} A(M, k + 1, b + 3/10) \]

and

\[A(M + 1, k, b) = A(M, k + 1, b - 1/2) + q^{M/2 + 1/10 + b} A(M, k - 1, b - 3/10) \]

for each \(M, k \) and \(b \).

Proof Using the formula

\[\left[\begin{array}{c} M + 1 \\ r \end{array} \right] = \left[\begin{array}{c} M \\ r - 1 \end{array} \right] + q^r \left[\begin{array}{c} M \\ r \end{array} \right] \]

in the definition of \(A(M + 1, k, b) \) gives \(A(M + 1, k, b) = S_1 + S_2 \) where

\[
S_1 = \sum_{2r \equiv M + k + 1 \mod 2} q^\frac{r}{8}(r - M/2 - \frac{1}{2} + b)^2 \left[\begin{array}{c} M \\ r - 1 \end{array} \right]
\]

\[
= \sum_{2s \equiv M + k - 1 \mod 2} q^\frac{s}{8}(s - M/2 + \frac{1}{2} + b)^2 \left[\begin{array}{c} M \\ s \end{array} \right]
\]

\[
= A(M, k - 1, b + 1/2)
\]

and

\[
S_2 = \sum_{2r \equiv M + k + 1 \mod 2} q^{r + \frac{r}{8}(r - M/2 - \frac{1}{2} + b)^2} \left[\begin{array}{c} M \\ r \end{array} \right].
\]

But

\[
r + \frac{5(r - M/2 - \frac{1}{2} + b)^2}{8} = \frac{5(r - M/2 + 3/10 + b)^2}{8} + \frac{M}{2} + \frac{1}{10} - b.
\]

Hence

\[A(M + 1, k, b) = A(M, k - 1, b + 1/2) + q^{M/2 + 1/10 - b} A(M, k + 1, b + 3/10). \]

Consequently, by Lemma 4 also

\[
A(M + 1, k, b) = A(M + 1, -k, -b)
\]

\[
= A(M, -k - 1, -b + 1/2) + q^{M/2 + 1/10 + b} A(M, -k + 1, -b + 3/10)
\]

\[
= A(M, k + 1, b - 1/2) + q^{M/2 + 1/10 + b} A(M, k - 1, b - 3/10).
\]

\[\square \]
It is convenient to note that replacing M by $M - 1$ in these identities gives

$$A(M, k, b) = A(M - 1, k - 1, b + 1/2) + q^{M/2-2-5} A(M - 1, k + 1, b + 3/10)$$

$= A(M - 1, k + 1, b - 1/2) + q^{M/2-2+5} A(M - 1, k - 1, b - 3/10)$.

Lemma 6 The sums $B_0(N)$ and $B_1(N)$ obey the recurrences

$$B_0(N) = (1 + q^{2N-1})B_0(N - 1) + q^N B_1(N - 2)$$

for $N \geq 2$ and

$$B_1(N) = (1 - q^{N+1})B_1(N - 1) + q^N (1 - q^{N+1})B_0(N)$$

for $N \geq 1$.

Proof We compute

$$A(2N, k, 1/5) = A(2N - 1, k + 1, -3/10) + q^{N-1/5} A(2N - 1, k + 1, -1/10)$$

$= A(2N - 2, k, 1/5) + q^{N-3/5} A(2N - 2, k + 2, 0) + q^{N-1} A(2N - 2, k - 2, 2/5) + q^{2N-1} A(2N - 2, k, 1/5)$

$= (1 + q^{2N-1})A(2N - 2, k, 1/5) + q^{N-3/5} A(2N - 2, k + 2, 0) + q^{N-1} A(2N - 2, k - 2, 2/5)$.

In particular

$$A(2N, 0, 1/5) = (1 + q^{2N-1})A(2N - 2, 0, 1/5) + q^{3/5} A(2N - 2, 2, 0) + q^{1/5} A(2N - 2, -2, 2/5).$$

and

$$A(2N, 4, 1/5) = (1 + q^{2N-1})A(2N - 2, 4, 1/5) + q^{3/5} A(2N - 2, 6, 0) + q^{1/5} A(2N - 2, 2, 2/5) + q^{3/5} A(2N - 2, -2, 0) + q^{1/5} A(2N - 2, 2, 2/5).$$

Noting that

$$A(2N - 2, 2, 0) = A(2N - 2, -2, 0)$$

and

$$A(2N - 2, 2, 2/5) = A(2N - 2, -2, -2/5)$$
substituting gives

\[q^{1/40} B_0(N) = A(2N, 0, 1/5) - A(2N, 4, 1/5) \]
\[= (1 + q^{2N-1})[A(2N - 2, 0, 1/5) - A(2N - 2, 4, 1/5)] \]
\[+ q^{N-1/5}[A(2N - 2, 2, -2/5) - A(2N - 2, -2, -2/5)] \]
\[= (1 + q^{2N-1})q^{1/40} B_0(N - 1) + q^{N-1/5} q^{9/40} B_1(N - 2) \]

and so

\[B_0(N) = (1 + q^{2N-1}) B_0(N - 1) + q^N B_1(N - 2). \]

Also

\[A(2N + 2, k, -2/5) \]
\[= A(2N + 1, k - 1, 1/10) + q^{N+1} A(2N + 1, k + 1, -1/10) \]
\[= A(2N, k, -2/5) + q^{N+1/5} A(2N, k - 2, -1/5) \]
\[+ q^{N+1} A(2N, k, 2/5) + q^{2N+6/5} A(2N, k + 2, 1/5) \]
\[= A(2N, k, -2/5) + q^{N+1} A(2N, -k, -2/5) \]
\[+ q^{N+1/5} A(2N, 2 - k, 1/5) + q^{2N+6/5} A(2N, k + 2, 1/5). \]

Consequently

\[q^{9/40} B_1(N) = A(2N + 2, 2, -2/5) - (2N + 2, -2, -2/5) \]
\[= A(2N, 2, -2/5) + q^{N+1} A(2N, -2 - 2/5) \]
\[- A(2N, -2, -2/5) - q^{N+1} A(2N, 2, -2/5) \]
\[+ q^{N+1/5}[A(2N, 0, 1/5) - A(2N, 4, 1/5)] \]
\[+ q^{2N+6/5}[A(2N, 4, 1/5) - A(2N, 0, 1/5)] \]
\[= (1 - q^{N+1})[q^{9/40} B_1(N - 1) + q^{N+1/5} q^{1/40} B_0(N)] \]

and so

\[B_1(N) = (1 - q^{N+1}) B_1(N - 1) + q^N (1 - q^{N+1}) B_0(N). \]

By Lemma 3 \(S_0(N) \) and \((1 - q^{N+1}) S_1(N) \) satisfy the same recurrences as \(B_0(N) \) and \(B_1(N) \). Also \(S_0(0) = 1 = B_0(0), \ S_0(1) = 1 + q = B_0(1) \) and \((1 - q) S_1(0) = 1 - q = B_1(0) \). Consequently we deduce Theorem 1: \(S_0(N) = B_0(N) \) and \((1 - q^{N+1}) S_1(N) = B_1(N) \).

References