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Abstract 

We are concerned with the dynamics and bifurcations of a single-mode semiconductor laser with optical injection, 
modeled by three-dimensional rate equations. Key bifurcations, namely saddle-node, Hopf, period-doubling, saddle-node of 
limit cycle and toms bifurcations, are followed over a wide range of injection strengths and detunings for different fixed 
values of the linewidth enhancement factor o~. In this way we present, to our best knowledge, the most far-reaching 
overview yet of the dynamics of injected semiconductor lasers. Our results compare very well with experimental studies and 
tie together information in the literature on different aspects of the behavior of optically injected lasers. © 1999 Elsevier 
Science B.V. All rights reserved. 

PACS: 42.50.Ne; 42.55.Px; 05.45. + b 
Keywords: Laser with optical injection; Bifurcation diagram; Routes to chaos 

1. Introduct ion 

The idea of optical injection is that external light, 
usually of high monochromaticity, is injected into a 
laser in order to dictate certain properties of the 
laser's output light. This is sometimes referred to as 
master-slave relationship. In semiconductor lasers, 
external injection produces an enormous variety of 
phenomena and the purpose of this paper is to 
present a unified treatment of all these seemingly 
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unrelated phenomena with emphasis on their global 
interrelationships. Optical injection has several im- 
portant applications such as injection locking [1], 
frequency stabilization [2], linewidth narrowing and 
chirp reduction [3]. It is a very interesting technique 
from the more fundamental point of view. In spite of 
experimental difficulties, such as implied by the 
requirement of using a very stable master oscillator, 
the injected laser has developed into a key system 
for studies and demonstrations of complex nonlinear 
dynamics. The latter holds interesting promises, 
among others, for cryptography [4] and computing 
[5]. From a theoretical point of view it is the simplest 
laser system showing such a wealth of behavior. This 
makes the injected laser a generic system and a key 
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to understanding dynamical behavior in more diffi- 
cult cases like a laser with external optical feedback 
[6]. 

Before 1990 optical injection was studied mainly 
in gas and solid state lasers [7-10], but later most of 
the interest was directed towards semiconductor 
lasers as they feature new effects and find very 
important applications today. Even though the prob- 
lem of optical injection in semiconductor lasers is 
old (see [6] and references therein) there are many 
properties concerning its dynamics that are still far 
from being well understood, especially in terms of 
connecting links between the various different types 
of behaviors. Actually there is no analytical picture 
showing how the dynamics of an injected laser de- 
pends on parameters in its global scale. Existing 
studies usually focused on some small regions of 
parameter space, showing small and isolated pieces 
of a bifurcation diagram only [11-15], or presenting 
some particular routes to chaos [7,10,16-20]. The 
only map showing the various dynamical properties 
of this system for a relatively large range of parame- 
ters comes from experimentalists [21,22]. One reason 
for focusing on some particular aspects of dynamical 
behavior rather then on a global vision is that in 
many cases the original three-dimensional rate equa- 
tions are impossible to examine analytically, forcing 
those investigators to deal with special approxima- 
tions and simplifications of rate equations that could 
be dealt with. 

At that time both analytical and experimental 
investigations were satisfactory and have revealed 
amazingly rich behavior like stable locking, coexis- 
tence of attractors, quasiperiodicity, instabilities, pul- 
sations and many routes to chaos like period-dou- 
bling cascades, intermittency, break-up of tori, and 
homoclinic and heteroclinic tangencies [7-34] that 
demand further systematic investigation now. Espe- 
cially many of these seemingly unrelated phenomena 
should find their place in a unified global picture. 
Therefore we look at this problem from a more 
global point of view with the purpose of showing the 
universal picture of the dynamics of optically in- 
jected (semiconductor) lasers. To this end we apply 
fundamental bifurcation theory that allows us to (i) 
systematically analyze the complex dynamics, (ii) 
put all these known pieces together and (iii) under- 
stand why and how they are related to each other. 

We deal with the original three-dimensional rate 
equations and investigate how the laser dynamics 
depends on parameters. This is made possible by 
following bifurcations with the package AUTO [35], 
a powerful tool that allows us to map out the overall 
bifurcation structure in unprecedented detail. For 
example, we are able to compute curves of bifurca- 
tions in parameter space even if the bifurcating 
object is unstable. This should be contrasted with the 
method of producing bifurcation diagrams by simula- 
tion used in earlier works, which is time consuming 
and capable of catching only parts of the relevant 
bifurcations. 

We study the dependence of the dynamics on the 
injected field strength K and its detuning w from 
the unperturbed laser resonant frequency and the 
linewidth enhancement factor c~ which seem to have 
the most significant influence on the dynamics. The 
first two parameters can be changed during an exper- 
iment and are obvious to look at. On the other hand, 
there were not many attempts to study how the 
dynamics changes with the third parameter a [ 13,15]. 
Before we explain what the real significance of c~ is 
in this model we would like to stress that the inten- 
sity and the frequency of the steady state of the free 
running laser (without injection) may change only if 
one changes the pump current, or the temperature. 
However, we assume here that the pump current and 
temperature are held constant. Moreover we distin- 
guish between two frequencies: (i) the free-running 
laser frequency o)~,)t which then serves as the optical 
reference frequency with respect to which our dy- 
namical equations will be formulated and (ii) the 
instantaneous resonant frequency which is a dynami- 
cal quantity influenced by the external injection. 
Then, under these conditions the c~ parameter quan- 
tifies to what extent the instantaneous resonance 
frequency will alter due to variations in the internal 
optical intensity caused by external injection. The 
physical principle behind this is that the refractive 
index depends on the inversion which in turn de- 
pends on the light intensity inside the laser. The 
value of the linewidth enhancement factor o~ is 
mainly a laser material property and thus cannot or 
only with difficulty be changed during an experi- 
ment. However, different kinds of semiconductor 
lasers have different c~-values. For instance edge 
emitting diode lasers have a-values between 4 and 
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10, VCSELs between 2 and 3, and manufacturing 
semiconductor lasers with very small c~ approaching 
zero [36,37] seems to be a holy grail. Hence, follow- 
ing the nature of  the problem, we present bifurcation 
curves in the (K,w)-plane for different but fixed 
values of  a from a = 0 to higher values. In particu- 
lar, we show how the dynamics and bifurcations 
become increasingly complex when c~ is increased. 
Thus we present here, to our best knowledge, a more 
far-reaching overview of  the dynamics of  injected 
semiconductor lasers than has ever been presented 
before. 

An additional aim of  this paper is to serve as a 
reference for further, more detailed studies. There- 
fore it gives a unified and consistent picture of  the 
majority of  bifurcations, linking various earlier re- 
sults, but leaves several detailed questions for future 
analysis. 

The paper is organized as follows. In Section 2 
we discuss the rate equations we are working with. 
Section 3 introduces the bifurcation diagram in gen- 
eral terms. In Section 4 we then present bifurcation 
curves of  stationary points, and in Section 5 those of  
periodic orbits. Section 6 points out routes to chaos, 
namely via a period-doubling cascade and the break- 
up of  tori. We finally draw our conclusions and point 
to future work in Section 7. 

2. Rate equations 

Free-running semiconductor lasers working above 
threshold have two stationary points: an unstable one 
with zero intensity which is referred to as the OFF- 
point and a stable ON-point with nonzero electric 
field amplitude E 0, population inversion N o and 
frequency ~ooj. They also have an intrinsic reso- 
nance, which is characteristic for class B lasers and 
which is known as r e l a x a t i o n  o s c i l l a t i o n  (RO) [6]. 
This resonance corresponds to a damped oscillatory 
exchange of  energy between electric field and popu- 
lation inversion with frequency w R. It can easily be 
excited by several kinds of  external perturbation 
such as injection or feedback, but for a free running 
laser it is always damped. 

In this paper we study the dynamics of  the three- 
dimensional rate equations for a single-mode class B 
laser with monochromatic external optical injection. 

To normalize the optical field to a dimensionless 
quantity we express it in terms of  units such that 
I E012 equals the total number of  photons within the 
laser cavity. The electric field inside the laser is 
represented as 

~ ( ~ )  = ~(  ~')e ~ .... ~ + c.c., ( l )  

where symbols with a hat are used here, for time and 
electric field, for reasons of later convenience. The 
rate equations describing the optically injected laser 
can be written as two equations, one for the dimen- 
sionless complex electric field envelope /~ and an- 
other for the population inversion N: 

- ½ ( c  - r 0 )  + K e i . j e  

d N  I 
-- -- -- -- F U N - -  (ReG)]/~I 2 . (2) 

dt" e 

Here the source term I / e  accounts for the pump 
current, F u is a carrier loss rate due to spontaneous 
recombination and F 0 is the photon loss rate from 
the cavity. The complex gain function G is lin- 
earized around the ON-point of  the free running laser 

G = F 0 + ( 1  + ic~) ~ ( S -  N0), (3) 

where c~ is the linewidth enhancement factor and 
= Ug O g / O N  is the differential gain (Vg is the group 

velocity and g is the optical gain per unit length). 
The term KE~nje i ~  in Eqs. (2) represents the exter- 
nally injected electric field with detuning between 
the injected light and free running laser frequency 
& = o)i,,j - ~O~o I and the injected field rate K = t~/"C;,,, 

where %, is the laser cavity internal roundtrip time 
and t~ is the transmission coefficient of the laser 
mirror through which light is injected. The frequency 
WRcharacterizing RO can be expressed as w R 

r 2 
=  / rolE01 [131. 

Equations (2) are written in the frame of  the free 
running laser frequency W~o j and they form a three- 
dimensional, periodically driven dynamical system. 
We transform (2) into a convenient form by rescal- 
ing the electric field with respect to E0, and time by 
WR 1 . Furthermore, we introduce the new population 
inversion n and express (5 in units of mR: 

E =  E / E  o, n = sC( N -  N o ) / o o R ,  w =  & / o )  R, 

t = ~w R . (4) 
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Thus Eqs. (2) can be expressed as 

E =  '2(1 + ice)nff~ + Ke i'°' 

h = - 2 F n -  (1 + 2Bn)(I/~] 2 - 1),  (5) 

where the dot indicates the derivative with respect to 
the rescaled time t. Furthermore, B = w R / 2 F  0 is 
the rescaled cavity l ifetime of  photons,  F 

1 
= g ( F N / W  R + 2B)  is the rescaled damping rate of  
the RO and the dimensionless injected field strength 
K is (KEinj)/(O)RE0). 

System (5) is mathematically a three-dimensional 
vector field, referred to as nonautonomous because 
its right-hand side depends explicitly on time. This 
implies that its three-dimensional flow is time-de- 
pendent. To get rid of  this explicit time dependence 
we introduce the phase difference r/(t) = o ) t -  ~b(t) 
between output and input of  the laser and substitute 
E ( t ) = f f ~ ( t ) e  i ~ ' = r ( t ) e - i ~ u ) .  Equations (5) can 
now be rewritten in polar coordinates as 

I i. = 7nr  + K cost/ 

= - 2 £ n  - ( 1  + 2 B n ) (  r 2 - 1) (6)  

sinr/ 
1 i ? = w - y c ~ n - K - - ,  

r 

with the decoupled equation for the phase of  the 
electric field 

sinr/ 
7c~n + K - -  

r 

Consequently, one only needs to study the dynamics 
in ( r ,n , r / ) -space of the three-dimensional au- 
tonomous vector field Eqs. (6), which is the system 
studied in Ref. [15]. Alternatively, we can rewrite 
Eqs. (5) in terms of the complex electric field E = 
E,  + iEy as 

# = K +  (½(1 + i ~ ) n  - i~o)E  (7)  

h = - 2 F n  - (1 + 2 B n ) ( I E I  2 - 1). 

We have transformed the three-dimensional nonau- 
tonomous vector field (5) into the three-dimensional 
autonomous (without explicit time dependence) vec- 
tor fields (6) or (7). Note that mathematically, the 
t ime-27r/o) map of the flow of Eqs. (7) is equal to 
the Poincar6 or stroboscopic map for the forcing 
frequency 27r/o9 of system Eq. (5); see [15] for 

details. Physically, we just changed the frequency ot 
reference from 6Oso 1 in Eqs. (5) to O)in j in Eqs, (7). 

So far, people have mostly been working with 
Eqs. (6) (or similar equations) in po lar  coordinates. 

The phase space of the system is R + × R × ( - 7r,Tr ], 
which is a half-cylinder. The cylinder is obtained by 
identifying the line {r/= -7 r}  with the line {~ = 7r} 
in (r,7/,n)-space, which is called the covering space. 
This is possible because Eqs. (6) have the symmetry 
r / ~  -r/+ 2~'. Then only the upper half of  the cylin- 
der needs to be considered, because Eqs. (6) also 
have the symmetry ( r ,B)  ~ ( - r , ~  + 7r). As a con- 
sequence, there is a qualitative difference between a 
limit cycle with bounded or trapped phase difference 
r/, and a limit cycle with unbounded phase difference 
r/ (also called a running solution) that runs around 
the cylinder. As we will see later, a bounded-phase 
limit cycle can become an unbounded-phase limit 
cycle, which is a bifurcation of Eqs. (6). 

The phase space of Eqs. (7) on the other hand is 
R 3, and on the level of phase portrait of (7) a limit 
cycle with bounded phase cannot be distinguished 
from a limit cycle with unbounded phase. The differ- 
ence is that a limit cycle with bounded phase differ- 
ence does not surround the origin in the E-plane, but 
an unbounded one does. When a bounded-phase 
limit cycle develops unbounded phase it simply 
crosses the N-axis in (E ,N)-space ,  which is not a 
bifurcation. Because of this it is of great advantage 
to follow limit cycles and their bifurcations, for 
example period-doublings, in Eqs. (7) where this can 
be done irrespective of  whether the limit cycle has 
bounded or unbounded phase. This new realization is 
extremely helpful during computations and we mainly 
work with Eqs. (7). 

There are five parameters appearing in Eqs. (7), 
of  which the injected field strength K and the detun- 
ing w are most important because they can be 
changed during an experiment. On the other hand, 
the parameters a ,  B and F are fixed during an 
experiment as they are given by the material proper- 
ties of the laser. Of these fixed parameters the 
linewidth enhancement factor a is the most impor- 
tant in this study. This is why we construct bifurca- 
tion diagrams in the two-dimensional (K,o))-plane 
for different but fixed c~, where we fix B and F to 
the physically realistic values of  B = 0.015 and F =  
0.035 [14]. Notice that there is the further symmetry 
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(w, ce, E) ~ ( - w, - c~, E* ) of  Eq. (7) involving the 
parameters. This allows us to restrict to positive 
values of  c~ and get the results for negative ce by 
this symmetry. (Note that semiconductor lasers with 
negative a may become available in the not too 
distant future.) Furthermore, this symmetry means 
that the (K, w)-plane has the symmetry o~ ~ - w  for 
ce = 0, which, to a good approximation, is the case 
for gas or Nd:Yag lasers [10]. Recall that Eqs. (7) 
describe a single-mode laser, so that the model is 
valid as long as the detuning w does not interfere 
with the longitudinal mode spacing of  the laser. 

An experimentally important parameter is the 
pump current I, and it is incorporated in K ~  
1 / / ~ Z  libr through E 0. In fact, one should interpret 
the injected field strength K as a ratio between the 
injected field amplitude and the laser field E 0. Hence, 
increasing K in an experiment is equivalent to either 
increasing the amount of  the injected light or de- 
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creasing the pump current. Note, however, that we 
cannot decrease the pump current to reach its thresh- 
old value Ith~ because then the electric field E o goes 
to zero and so K would not be well-defined. 

As we already mentioned, the electric fields E 
and E 0 as well as El. j are written in units of  photon 
numbers. To allow comparisons between our results 
and experiments, the expressions for the power and 
unscaled frequency of  the electric field injected into 
the laser are 

Pinj = K 2  ( ~ . )  2 R l  , 
(1 - - R l )  2P° O)in j : 0)09 R -~ O)so I . 

(8) 

Here P0 is the power that the free-running laser 
emits from its facet with power reflectivity R r, 
through which light is also injected. 

sl 
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/ / !  
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Fig. 1. The bifurcations of stationary points in the (K,w)-p lane  are the red Hopf  bifurcation curve H and the blue saddle-node bifurcation 
curve SN. These curves touch at two codimension-two saddle-node-Hopf points G 1 and G 2. Notice also the cusp bifurcation points on SN 
and the strong dependence of the bifurcation curves on a .  
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3. The bifurcation diagram 

In this section we present our results as bifurca- 
tion diagrams in the (K,w)-plane;  as general refer- 
ences to bifurcation theory see for example Ref. 
[38,39]. As mentioned earlier, we show the depen- 
dence of  the dynamics on K and w for a fixed 
B =0 .015  and F =  0.035 and different but fixed 
values of  o~. 

Each point in the (K,w)-plane corresponds to a 
particular phase portrait. Typically, such a phase 
portrait does not change qualitatively when K and w 
are changed a little. However, there are bifurcation 
points in this plane at which one can observe qualita- 
tive changes in phase space. Note that the term 
qualitative change is well defined in bifurcation 
theory; see Refs. [38,39] for details. The minimum 
number of  parameters necessary to describe such a 
bifurcation is called its codimension. The basis of  the 
bifurcation diagram is formed by the bifurcations of  
codimension one, which form curves in the (K,  w)- 
plane. Where two such curves intersect one finds a 
bifurcation of  codimension at least two. We used the 
package AUTO [35] to compute codimension-one 
bifurcation curves of  stationary points and limit cy- 
cles, which from the backbone of the dynamics of 
system (7). Note that our approach gives a more 
global view of the dynamics than the bifurcation 
diagrams one typically finds, where one phase space 
quantity is plotted against a single parameter. 

Because there is an amazing complexity of  bifur- 
cations we introduce them one by one in a conve- 
nient order. First we present bifurcations of  station- 
ary points, namely saddle-node and Hopf bifurca- 
tions. They define the region of locking where the 
laser produces constant output at the frequency of  
the injected light. Then we add bifurcations of  limit 
cycles, period-doubling, saddle-node of limit cycle 
and torus bifurcations, which are particularly impor- 
tant for finding the locations of global bifurcations 
and chaotic dynamics. We show the bifurcation dia- 
grams in Figs, 1 through 7 in different windows of 
the (K,~o)-plane, from an overall view to enlarge- 
ments near the range of  small K and w. To distin- 
guish between bifurcations we use the color coding 
given in Table 1. Each bifurcation has a different 
base color, and the darker tone of a color stands for a 
bifurcation of an attracting object, called a supercriti- 

Table 1 
The color coding of the curves of different bifurcations 

T y p e  of b i furcat ion 

Saddle~nodv 

Hopf 

Period-doubling 

Saddle-node of limit cycle 

Tot t~q bifurcation 

Symbol ~, Color coding 
supercr i t ica l  subcr l t lca l  

SL 

cal bifurcation. The lighter tone of a color represents 
a subcritical bifurcations in which no attractors are 
born. In simulations or experiments only attractors 
are found, so that the darker colored curves are more 
relevant from a practical point of  view. However, we 
stress that it is a strength of our method that we can 
compute also the curves of  subcritical bifurcations 
which are necessary to obtain an overall and consis- 
tent picture. What is more, subcritical bifurcation 
curves may change their stability and become super- 
critical, for example when c~ changes. To further 
distinguish between bifurcation curves of periodic 
orbits of basic period and those that have already 
undergone a period-doubling, the latter are repre- 
sented by thinner curves. We also indicate this in 
superscript in the labeling. 

For the physical interpretation of different phase 
portraits of Eqs. (7) recall that the system is written 
in the reference frame of  the injection frequency w~,j. 
The time derivative of the phase "q of  E corresponds 
to the difference between the laser instantaneous 
resonant frequency and the injected signal frequency. 
A stationary point then corresponds to an output with 
constant intensity, population inversion and phase, 
which means that the frequency is that of  the in- 
jected field. A limit cycle with bounded phase ~/ 
describes an exchange of energy between electric 
field and population inversion, relaxation oscillations 
being the typical example. A limit cycle with un- 
bounded phase (running phase) corresponds to an 
output with oscillating intensity and a frequency that 
is the free running laser frequency shifted according 
to the new average carrier density caused by injec- 
tion. Superposition of the laser field and the injected 
field which have different frequencies results in beat- 
ing, that is, the signal oscillates with the optical 
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frequency but is modulated on a scale determined by 
the detuning between the component  fields. In this 
case, oscillations in the intensity of an unbounded 
limit cycle correspond to the offset of  the beating 
between the laser frequency and the frequency of  the 
injected light. An invariant torus in the system corre- 
sponds to a competit ion between two oscillators and 
is characterized by the frequencies of  these oscilla- 
tions in the spectrum. On an invariant toms trajecto- 
ries can either converge to an attracting periodic 
orbit or densely fill the toms, in which case the 
dynamics is quasiperiodic. The boundaries between 
these two different kinds of  dynamics are formed by 
curves of  saddle-node of  limit cycle bifurcations, 
which form the well known resonance or Arno l ' d  
tongues. 

4. B i f u r c a t i o n s  o f  s ta t i onary  po in t s  

In this section we describe local bifurcations of 
stationary points, saddle-node and Hopf  bifurcations, 
and also discuss more global aspect of  their organi- 
zation. There exist two codimension-two bifurcation 
points of  a simultaneous saddle-node and Hopf  bifur- 
cation where there is a tangency between the corre- 
sponding bifurcation curves. 

4.1. Saddle-node and H o p f  bifurcation 

In Fig. 1 are shown in blue the curve S N  of 
saddle-node bifurcations and in red the curve H of  
Hopf  bifurcations in four panels for different repre- 
sentative values of  c~. In the saddle-node bifurcation 
two stationary points are created that exist in the 

$ 

(~ = t) 

o 

O 

r ~  

O < a < ]  S • 

L . . . . . . . . . . . . . . . . . . . .  

s s ; 

SN ~ 

i) K 

Fig. 2. Qualitative sketches of the bifurcation curves in Fig. 1 with symbols indicating the stability of stationary points, where a stands for 
an attractor, r for a repellor, and s for a saddle point. The shaded region is the locking range. 
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triangle-shaped region bounded by SN. One of the 
bifurcating stationary points is an attractor where the 
curve SN is dark blue, but along the light blue curve 
a repellor and a saddle point bifurcate. The two far 
corners of the curves SN are formed by codimen- 
sion-two cusp bifurcations, where three stationary 
points bifurcate. The adjoining branches of  SN cor- 
respond to saddle-node bifurcations of different pairs 
of stationary points. Along the curve H a stationary 
point bifurcates with a limit cycle. The dark red part 
of  H corresponds to a supercritical Hopf bifurcation 
creating an attracting limit cycle, whereas the light 
red part corresponds to a subcritical Hopf bifurcation 
with the emergence of  an unstable limit cycle. The 
changes from super- to subcritical along both SN and 
H occur where the two curves become tangent at the 
codimension-two points G~ and G 2. 

The curves SN and H divide the (K,o~)-plane 
into regions of  different numbers and stability of  
stationary points. To highlight this we sketch in Fig. 
2 the different qualitative cases for different values 
of c~. A region of  the (K ,w) -  plane is labeled with 
the symbols a, r and s depending on whether there 
is a stationary point that is attracting, repelling or a 
of saddle-type. Whenever there is an attractor the 
laser locks to the input, which defines the shaded 
locking region in Fig. 2. 

It turns out that the two stationary points born 
along the dark blue part of SN are created in a 
saddle-node bifurcation on a limit cycle (or saddle- 
node infinite-period bifurcation [32]). The limit cycle 
exists outside SN and its period goes to infinity. 
Then a saddle-node appears on the limit cycle, which 
develops into two stationary points on an invariant 
circle; the situation is sketched in Fig. 3. The 
saddle-node bifurcation does not occur on a limit 
cycle along the entire curve SN: this happens near 
the point G~ and before a codimension-two homo- 

Fig. 3. Sketch of phase portraits before (a), exactly at (b) and after 
(c) the saddle-node bifurcation on a limit cycle that occurs when 
the dark blue part of the curve SN is crossed in Figs. 1 and 2. 

clinic saddle-node bifurcation is reached; compare 
[33]. 

As was mentioned earlier, there are two saddle- 
node-Hopf bifurcation points G~ and G 2 where SN 
and H are tangent. These codimension-two bifurca- 
tion points are known to generate very complicated 
dynamics in their vicinity. The dynamics near G~, 
which is in the region of small K and co, was 
studied in [ 12,14,15,33]. This revealed the existence 
of torus bifurcations (also discussed below) as well 
as homoclinic and heteroclinic bifurcations. On the 
other hand, there is not much known about G 2. This 
point was mentioned in Ref. [27] but has not been 
studied so far. Preliminary work shows that the local 
structure near G 2 is similar to that of  G I ,  but with 
the extra difficulty of slow-fast dynamics. How this 
organizes the dynamics near G 2 is beyond the scope 
of this paper and will be discussed elsewhere. 

Figs. 1 and 2 show that there is a strong qualita- 
tive dependence of  the bifurcation diagram on c~. 
For c~ = 0 the bifurcation diagram is symmetric. The 
panel for c~ = 0.5 of Fig. 1 is representative for the 
qualitative situation for 0 < ~ < 1, where the point 
G 2 shifts towards bigger K-values as c~ approaches 
l, but remains on the lower branch of S. A very 
special situation occurs for c~ = 1 because H has a 
cusp at G 1 and also goes through the cusp on SN at 
the point G 2, which makes this a bifurcation of 
codimension at least three. The panel for c~ = 3 of 
Fig. 1 represents the qualitative situation for any 
c~ > 1. Increasing ~ above 1 results in H developing 
a fish-like shape near G~, resulting in a characteristic 
shape of the locking range; compare Fig. 2. Increas- 
ing the injection strength K for small positive detun- 
ing o) results in locking at first, then unlocking and 
then again locking as K grows; compare for exam- 
ple [28]. For c~ > 1 there also exists a region with 
two attracting stationary points near G 2. This bista- 
bility is already pointed out in [27]. Bistable behavior 
in a resonant optical amplifier, which in fact is very 
similar to an optically injected laser, was studied in 
[40]. Because the bistability occurs for large injected 
power and large negative detuning, we conclude that 
this is a manifestation of dispersive optical bistability 
[41]. This is known to occur in Fabry-Perot interfer- 
ometers with power-dependent refractive index and 
must therefore also be expected in a laser with 
non-zero c~ [42]. 
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Finally, o~ affects the bifurcation diagram not 
only qualitatively, but also quantitatively. There is 
quite a change in the range of  the relevant values of  
K and w with increasing oe, as can be read off from 
the scaling of the panels in Fig. I. 

All figures in this paper show that the locking 
region becomes asymmetric with respect to positive 
and negative detuning w when the parameter c~ 
increases: for o~ > 0 one has to inject more light in 
order to obtain locking for positive a~ than for 
negative w. Also the opening angle between the two 
branches of  the curve SN (see Fig. 1) emerging from 
(K,  co) = (0,0) increases with o~. To understand this 
recall the property of  the linewidth enhancement 
factor oe that 

On,./ON 
a c~ (9) ag/aN 

Here n r is the refractive index, g is the optical gain 
and N is the population inversion. The instantaneous 
resonance frequency of  the laser is inversely propor- 
tional to the refractive index n r. Nonzero c~ there- 
fore means that the instantaneous resonance fre- 
quency of  the laser shifts if the inversion N changes 
(at fixed pump current). Moreover, injection usually 
causes a decrease of  the population inversion which, 
for positive c~, results through the increase of  the 
refractive index in a downshift of  the instantaneous 
resonance frequency. At the same time the output 
power increases. Because of  this frequency down- 
shift the laser can achieve locking for negative de- 
tuning w at a much smaller injection level than for 
positive w. For c~ = 0 this asymmetry is not present. 
The increasing opening angle of  SN occurs because 
bigger c~ means more significant changes in the laser 
instantaneous resonance frequency for the same 
amount of  injected light; see Eq. (9). Thus, as c~ 
increases less and less light has to be injected to 
obtain locking for a given negative detuning o~. 

5. Dynamics of limit cycles 

Along the Hopf bifurcation curve H discussed in 
the last section a limit cycle is created, and we now 
study what may happen to this and other limit cycles. 
To this end we consider the Floquet multipliers, 
which are the eigenvalues of  the Poincar6 return map 

on a suitable section transverse to the limit cycle. A 
limit cycle changes stability when Floquet multipli- 
ers cross the unit circle in the complex plane, and 
there are three different codimension-one bifurca- 
tions: period-doubling when a Floquet multiplier goes 
through - 1 ,  saddle-node of limit cycles when a 
Floquet multiplier goes through 1, and torus bifurca- 
tion (Neimark-Sacker bifurcation of the Poincar6 
map) when a pair of  complex conjugate Floquet 
multipliers crosses the unit circle. With the package 
AUTO [35] these bifurcations can be detected and 
followed in parameter space. This allows us to map 
out the dynamics and bifurcations of  limit cycles in 
great detail. We also look at the phase unbounding of 
limit cycles and other objects, which has physical 
meaning although it is not a bifurcation of system 
(7). 

5.1. Period-doubling bifurcation 

The curves of  period-doubling bifurcations are 
shown in green in Fig. 4, added to the curves SN and 
H of  stationary points. They are denoted by P~ 
when a limit cycle of  basic period undergoes a 
bifurcation, and p2 when the bifurcating limit cycle 
has twice the basic period, in which case the curve is 
also plotted thinner. Dark green corresponds to su- 
percritical period-doubling of  an attracting limit cy- 
cle, and light green to subcritical period-doubling of  
a non-attracting limit cycle. Note that the curves 
form closed loops. 

The attracting limit cycle born on the dark red 
branch of  the Hopf curve H undergoes successive 
period-doublings when the dark green P~ and p2 
are crossed. On the other hand, the repelling limit 
cycle born on the light red branch of  H period-dou- 
bles on the light green part of P~. The color of  a 
period-doubling curve may change from light to dark 
green, which indicates a change from sub- to super- 
critical. This codimension-two bifurcation is the con- 
sequence of  an intersection with a toms or saddle- 
node of  limit cycle curve, as will be discussed 
below. The curves P~ and P2 in Fig. 4 are the first 
two steps in a period-doubling cascade to chaos. 
Higher period-doubling curves are not shown here in 
order to keep the figure simple, but they lie inside 
each other  and accumula t e  acco rd ing  to 



2gg S. Wieczorek et al. / Optics Communications 172 (1999) 279 295 

0 

-1 

-2 

0 

~ = 0  
p1 

....... (]1 

...... G2 

0.2 0.4 0.6 0.8 l 

°t 
-2 

1.2 0 

g~ (~ = 0.5 I 

J J 
p~ 

0.2 0.4 0.6 0.8 1 1,2 

I 

1 I -2 

0 

a = l  

0.3 0,6 0,9 L2 1.5 

0 

-1 

-2 

0 0.3 0.6 0.9 1,2 1.5 

2 

1 

0 

-1 

-2 

a = 3  

SN 

0.5 1 1.5 0 0.5 1 1.5 K 

Fig. 4. Curves of  period-doubling bifurcations in green, which turn out  to form closed loops. Notice how the overall structure of  

period-doublings becomes  more complex  as ~ increases. The superscripts indicate multiples of  the basic period; see Table 1 for the color 
coding. 

Feigenbaum's universal scaling law. The resulting 
chaotic islands will be studied in detail elsewhere, 
but the curves P2 in Fig. 4 already give a good 
indication where chaos is located. 

The period-doubling route to chaos was the sub- 
ject of a number of theoretical and experimental 

papers. It was usually presented in two ways: in the 
form of isolated pieces of bifurcation curves in the 
(K,w)-plane [11,13,22,29] and by plotting maxima 
and minima of  an amplitude of periodic orbits as a 
function of  one parameter [17-21].  All earlier results 
fit nicely into the overall picture presented here. An 
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inverse period-doubling cascade back to the period 
one limit cycle  was also observed [18,20]. This can 
now be explained by the shape of  the period-dou- 
bling curves in Fig. 4. Most striking is the similarity 
between the experimental stability map of  an in- 
jected semiconductor laser reproduced in Fig. 8 from 
[22] and our theoretical results in the panels a = 3 
and a = 4 in Fig. 4. 

The period-doubling curves show a remarkable 
sensitivity to a variation of  o~. They grow in the 
(K,w)-p lane  as a increases and become more com- 
plicated in shape by developing self-intersections. 
Furthermore, the curve P2 splits up into two isolas 
for o~ between 2 and 3. Period-doubling to chaos for 
zero detuning when K is increased has been found 
in semiconductor lasers [18,31]. However,  we con- 
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clude that this can only be the case for larger values 
of  c~, because the period-doubling curves do not 
cross the axis ~o = 0 for c~ < 3. We expect that it is 
possible to confirm this prediction experimentally in 
VCSELs. 

5.2. Saddle-node of  limit cycle bifurcation 

The saddle-node of limit cycle bifurcation curves, 
denoted SL, are shown in Figs. 5 - 7  in brown. In 
Fig. 7 there is a saddle-node of limit cycle curve SL 2 
of a limit cycle of  twice the basic period, which is 
also drawn as a thinner curve. This bifurcation re- 
sults in the creation of  two limit cycles, namely of a 
saddle limit cycle with either an attracting limit cycle 
in the supercritical case or a repelling limit cycle in 
the subcritical case. The supercritical case is one of 
the mechanisms leading to bi- or multistability. The 
curves SL generally form closed loops with a num- 
ber of  cusps in them, and they bound a region in the 

(K ,  o))-plane where there is an attracting or repelling 
limit cycle. The meaning of  the cusp is the same as 
for fixed points: two different pairs of limit cycles 
bifurcate when SL is crossed on different sides of a 
cusp. The regions bounded by saddle-node of limit 
cycle curves can be, but do not have to be resonance 
tongues of a toms. In the figures there are several 
curves of torus bifurcations, which will be discussed 
in the next section, and attached to each of them 
there are infinitely many resonance tongues. Here we 
only show the most prominent saddle-node of  limit 
cycle curves, which are responsible for bi- or even 
multistability. 

The curves SL change significantly with a varia- 
tion of ce. They grow in parameter space as c~ 
increases and become very complicated in shape by 
developing extra cusps (in codimension-three swal- 
low tail bifurcations). In order not to overcrowd Fig. 
5 we plot only the most significant parts of  curves; 
dashing indicates that a curve continues. 
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5.3. Torus bifurcation 

The existence of  quasiperiodicity and the exis- 
tence of  tori in laser systems was reported in [10,23] 
for injected gas lasers ( a =  0) and then also for 
semiconductor lasers in [ 11,12,15,28,29,31 ]. Here we 
present these toms bifurcation curves that are re- 
sponsible for color changes of  period-doubling curves 
and those which start in the vicinity of  the points G~ 
and G 2. The toms bifurcation curves, denoted by T, 
are shown in Figs. 5 - 7  in black or gray. Along a 
black supercritical curve T an attracting toms is born 
from an attracting limit cycle, whereas repelling tori 
are born along gray subcritical curves T. In Fig. 7 
there is a thin toms bifurcation curve T 2 of a limit 
cycle of  twice the basic frequency. The dynamics on 
the bifurcating toms is either quasiperiodic or there 
is an attracting limit cycle on the toms with a 
rational rotation number. The regions in which such 
limit cycles exist are the resonance tongues, and their 
boundaries are formed by saddle-node of  limit cycle 
curves. We did not draw these resonance tongues in 
the figures in order to keep them as clear as possible. 

There are several types of  toms curves in the 
figures. In Figs. 5 and 6 one can see toms curves 
associated with the codimension-two saddle-node- 
Hopf  point G j. In [29] an approximation was pre- 
sented that predicts a toms curve connecting G t in 
an arc with the point (K,  co) -- (0, l) .  Here we present 
in panels c~ = 0.5 through a = 3 of  Fig. 5 the upper 
part of  this curve. It starts at SL and is divided by a 
small period-doubling loop at co ~ 0.75 before it 

ends at a larger period-doubling loop. Its bottom part 
(the curve I in [15]) is not presented here but there is 
a second, subcritical T curve emerging from G l 
which is shown in panels a = 0.5 through a = 4 of 
Fig. 5. For  low values of  a it is not always below 
SN, and it turns out to interfere with a saddle-node of 
limit cycle curve SL lying very close to G I. An extra 
attracting torus curve appears close to the unstable 
toms curve for larger values of a ;  see Figs. 5 and 6. 
(This curve is recognized as the curve H discussed 
in detail in [15].) The existence of  quasiperiodic 
oscillations of  different stability in the vicinity of  G~ 
was also reported by Lee et al. [I 1]. The second type 
of toms curve is associated with the codimension-two 
point G 2 as shown in Fig. 7(a). A curve T starts at 
G 2 and extends all the way to small values of  K and 
w; an approximate formula for this curve can again 
be found in [29]. However,  the organization of  bifur- 
cations is quite intricate and toms curves are respon- 
sible for stability changes of  period-doubling curves 
for negative detunings. They are the third type of  
toms curves we find, connecting saddle-node of  limit 
cycle curves with period-doubling curves. These 
curves are responsible for changes of stability along 
period-doubling curves and generally provide a con- 
nection between bifurcations that seem to be inde- 
pendent of  each other at first glance. 

5.4. The overall picture of bifurcations 

We presented one by one several kinds of  bifurca- 
tions which form the backbone of  the dynamics of  an 
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injected (semiconductor) laser. Many of  these bifur- 
cations were studied before, but they were often 
treated as unconnected and isolated from each other. 
However,  this is not the case at all because the 
different bifurcations form a complicated structure of  
interrelated and interlinked objects as is evidenced 
by Figs. 5 and 6. The key to understanding the 
system is looking at the relationships between differ- 
ent phenomena which turn out to influence each 
other. For  example,  period-doublings have been stud- 
ied separately, and in Fig. 4 one may indeed get the 
impression that the period-doubling bifurcation 
curves are isolated from the rest of  the bifurcations. 
However,  they do change from super- to subcritical 
(1:2 resonance) and, following the nature of the 
problem, one finds toms bifurcations interacting with 
the period-doublings causing this change as pictured 
in Fig. 5. The torus bifurcation curves in turn con- 
nect to saddle-node of  limit cycle bifurcation curves 
(1:1 resonance) and some of them have their origin 
at the points G 1 and G 2. In this way all bifurcations 
interact and organize the overall dynamics of  the 
system. 

The overall picture of  bifurcation curves in the 
(K ,w) -p l ane  is in very good agreement with the 
experimental stability map reproduced from [22] in 
Fig. 8. If  one compares the experimental bifurcation 
diagram with panels a = 3 and c~ = 4 of  Fig. 4 one 
notices great similarity, where the supercritical 
branch of  the Hopf  bifurcation provides a good 
reference. The boundaries between the regions P1 
and P2 with a limit cycle of basic period and twice 
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Fig. 8. Experimental stability map of an injected semiconductor 
laser by Simpson et al. reproduced from [22]. 
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Fig. 9. Phase unbounding of an attracting limit cycle for a = 3 
and K = 1.7 shown in the ('q,r)-plane of Eqs. (6) (top row) and 
projected onto the complex E-plane of Eqs. (7) (bottom row) for 
w = 0.6 (a), w = 1.56 (b), and o~ = 2.2 (c). 

the basic period in Fig. 8 agree well with the curves 
P~ in Fig. 4. Our results shed light on the nature of 
the regions denoted by 'chaos '  in Fig. 8. These 
regions coincide with the area confined by the sec- 
ondary period-doubling curves p Z. Moreover,  we 
expect chaotic dynamics due to the break-up of  tori 
in the regions of  so-called subharmonic resonance 
SR in [22]. In short, the overall picture of  intercon- 
nected bifurcation curves presented here truly forms 
the backbone of  the dynamics that have been found 
experimentally.  

5.5. P h a s e  u n b o u n d i n g  

The limit cycle that exists for very low injection 
corresponds to a physical  process that can be approx- 
imated by four-wave mixing due to a nonlinear 
interaction between the external field, the laser field 
and the inversion inside the laser [16,43]. By increas- 
ing the injection strength the region of  multi-wave 
mixing is entered up to the moment when the phase 
of the limit cycle becomes bounded. This means that 
the injection is strong enough to force the laser to 
lase at the same average frequency as the input. In 
the polar coordinate description of Eqs. (6) this is a 
bifurcation. However,  in Eqs. (7) this merely means 
that an attracting limit cycle has crossed the n-axis, 
so that in projection onto the E-plane it now sur- 
rounds the origin. 

This is why we can numerically follow a limit 
cycle of Eqs. (7) irrespective of  whether its phase is 
bounded or unbounded. This important fact is the 
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Fig. 12. Period doubling route to chaos for a = 2 and K = 0.625 
shown as attractors in the E-plane of the Poincard map defined by 
the section {n = 0}. From (a) to (D o) takes the values 0.3, 0.5, 
0.7, 0.71, 0.78, and 1.1. 

ma in  reason why we chose to work with Eqs. (7) 
rather than with Eqs. (6). In Fig. 9 the t ransi t ion 
from a bounded-phase  l imit  cycle to a unbounded-  
phase l imit  cycle is shown for Eqs. (6) and Eqs. (7), 
respectively.  It is clear from Fig. 9 (top row) that the 
bounded  phase l imit  cycle cannot  be cont inued  in 
Eqs, (6), but  there is no p rob lem when  one works 
with Eqs. (7) (bot tom row). The u n b o u n d i n g  of  the 
phase can also occur for a toms  or even a chaotic 
attractor, as is shown in Figs. 10 and 11. Notice how 
the toms and the attractor start to become unbounded  
in quite a spectacular fashion in the top row, whereas 
there is no quali tat ive change in the bot tom row. 

Phase -unbound ing  is important  from the physical  
point  of  view because it consti tutes the upper  bound-  
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Fig. 11. Phase unbounding of a chaotic attractor for d = 2 and 
K = 0.241 shown in the (~,r)-plane of Eqs. (6) (top row) and 
projected onto the complex E-plane of Eqs. (7) (bottom row) for 
w = 0.16 (a), ~o = 0.17 (b), and o~ = 0.2 (c). 

ary of  the bounded  phase dynamics .  This can be 
detected in exper iments  because the laser stops to 
operate at an average frequency,  which is that of  the 
injected light. Notice however  that there are regions 
of  mult is tabi l i ty  in the ( K , w ) - p l a n e  in which there 
are coexist ing attracting objects ( l imit  cycles, tori, 
chaotic attractors). For  each such attractor the phase 
becomes unbounded  for slightly different parameter  
values, so that there is not  a single wel l -def ined 
curve of  phase-unbounding .  On the other hand, when  
there is a single attractor this curve is well  defined. 

6 .  R o u t e s  t o  c h a o s  

As we already ment ioned  in Section 1 many  
different routes to chaos have been reported for 
(semiconductor)  lasers with optical injection.  Transi-  
t ions to chaotic behavior  via per iod-doubl ing  cas- 
cades, intermit tencies  and another  instabil i t ies were 
observed exper imental ly  [7 ,17-21,31]  as well  as in a 
various numerica l  s imulat ions  based on the rate 
equat ions [ 10 ,11,16-21,31 ]. 

For  i l lustration we picture two transi t ions to chaos, 
which are closely associated with the bifurcat ion 
curves we computed  in the ( K , w ) - p l a n e .  Fig. 12 
shows with a series of attractors of the Poincar~ map 
(computed  with DsTool  [44]) in the section {n = 0} 
how an attracting l imit  cycle per iod-doubles  repeat- 
edly and becomes  a chaotic attractor. The parameters 
are chosen so that the isolas of  nested per iod-dou-  
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Fig. 13. Break-up of an attracting toms for o~ = 2 shown simulta- 
neously in the (E,,n)-plane of the Poincar~ map defined by the 
section {E,. = 0} (top row) and in the E-plane of the Poincar~ map 
defined by the section {n = 0} (bottom row). The parameter values 
are o) = 0.7, K = 0.124 (a), ~o = 0.7, K = 0.152 (b), and o) = 0.6, 
K = 0.179 (c). 

the (K,~o)-plane together with its dependence  on 
material  properties of the laser, notably the c~ pa- 
rameter,  gives new insight  into the overall  dynamics  
of optically injected semiconductor  lasers. This  shows 
that there are quali tative differences in the optically 
injected laser behavior  for different c~-values. Start- 
ing from a symmetr ic  bifurcat ion diagram for a = 0, 
the symmetry  is gradual ly lost and the bifurcat ion 
curves evolve,  grow and become more  complex as c~ 
increases. 

As we already ment ioned  we are aware that there 
exist extra bifurcations,  like other toms bifurcations 
[29], homocl in ic  [12,33] and heteroclinic [12,15] bi- 
furcations,  as well  as chaotic dynamics  connected to 
them. This  is beyond  the scope of this paper, which 
is also in tended as a reference for future, more 
detailed research into the complex  dynamics  of  opti- 
cally injected lasers. 

b l ing bifurcat ion curves in Fig. 4 are crossed. Fig. 13 
shows the break-up of  an attracting torus that is born  
on one of the two T curves from the panel  c~ --- 2 in 
Fig. 5. Both top row and bot tom row show the same 
transition, but  in the two perpendicular  Poincar~ 
sections {E>.=0} and {n = 0 } ,  respectively.  The 
smooth toms  becomes  non-smooth  and very fractal- 
like and then develops into fu l l -b lown chaos that 
does not  resemble  the original  toms any longer. Such 
a toms  break-up is due to changing the parameters 
into a region of  over lapping resonance tongues.  

7. Conclusion 

With advanced tools f rom bifurcat ion theory we 
invest igated the organizat ion of the dynamics  in the 
full three-dimensional  rate equat ion model  describ- 
ing a (semiconductor)  laser with optical injection.  
Contrary to earlier works, our  results are exact in the 
context  of s ingle-mode rate equat ions because no 
further approximat ions  have been made.  We  pre- 
sented here a unif ied  picture inc luding different kinds  
of  injected laser behavior  and provided an under-  
s tanding of their interrelationships.  Our  work incor- 
porates and puts together into one global picture 
earlier theoretical studies and is in a good agreement  
with experiments .  C o mb i n i n g  the entire picture in 
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