Prof. V.N. Biktashev: sample descriptions of Ph.D. projects

These are examples of Ph.D. topics I have recently offered but which have not (yet) started. Each of these descriptions was designed with a particular candidate in mind. Any actual new project will be designed with the actual candidate in mind, and may or may not be based on any of these descriptions.

Causodynamics of waves and patterns in reaction-diffusion systems.

The project will be concerned with numerical solution of partial differential equations of 'reaction-diffusion' type, particularly of the types that are used to describe waves and patterns in mathematical biology. Specifically, the project will focus on sensitivity of such solutions to initial conditions and/or perturbations. This sensitivity will be determined by the method of 'causodynamics', which involves integration of the adjoint linearized equations backwards in time. A few selected problems will be considered during the project. The tentative plan of the research is a follows. At the initial stage, this will be Turing patterns and propagating pulses in one spatial dimension and spiral wave solutions in two spatial dimensions. At the next stage, spatio-temporal chaos (such as generated by Kuramoto-Sivashinsky equation) in one spatial dimension will be considered. Further examples will concentrate on more complicated regimes, relevant for modelling cardiac fibrillation, such as: competing spiral waves, 'mother rotor' regimes, and two- and three-dimensional spiral and scroll wave turbulences of various sorts. The overall aim is to characterize the possibilities to control such regimes by small perturbations. The project will require from the candidate some fundamental mathematical knowledge, including linear algebra, basic dynamical systems theory, asymptotic methods for ordinary and partial differential equations, and possibly some elements of functional analysis. It will also require suitable IT skills, including numerical solution of partial differential equations. The candidate should be prepared to learn necessary disciplines and skills during the project, if they do not possess them already.

Hybrid asymptotic-numerical methods for cardiac excitation models

Modern mathematical models of cardiac excitation are ''stiff'', in that they involve processes happening on time scales from fractions of a millisecond to tens of seconds and longer, which in conjunction with the spatial complexity of the heart, makes cardiac simulations a serious computational challenge. On the other hand, the time scale ratios can be used as small parameters in asymptotic methods. One possible application for such asymptotics is their use in large-scale computations of normal and abnormal cardiac excitation patterns, in hybrid asymptotic-numerical schemes. The proposed Ph.D. project will make first steps in that direction, based on the recent progress by the supervisor's group in cardiac asymptotics. The main goal will be a methodology to combine asymptotic description of excitation waves, in terms of propagating fronts, with the original partial-differential equations for spatio-temporal evolution of nonlinear dynamic fields. This will be done first in one spatial dimension and subsequently extended to two and three dimensions. Initially we will consider simple topologies, when the front is a point (in one spatial dimension), or a manifold without internal borders (in two and three spatial dimensions). Then we extend it to the case of wavebreaks, where the wave front has edges within the excitable medium. Finally, we shall consider extension from the initial modomain (semi-parabolic PDE systems) to bidomain (with added elliptic equations) models of the heart.

The project will require knowledge of mathematical biology, asymptotic and numerical methods for PDEs and software development. Hence, depending on their background, the candidate may be required to do relevant modules offered by this and/or other Departments in this University, to be specified by the supervisor, and pass them at least at the level acceptable by M.Sc. standard, in his/her first year of the project.

Iterative methods of calculation of response functions of spiral waves

Spiral waves are a form of self-organization observed in distributed active media, such as some catalytic chemical reactions or heart muscle. Spiral waves in heart underlie dangerous arrhythmias. A peculiar feature of spiral waves is "wave-particle duality": being waves, they behave like particles when drifting in response to generic small perturbations. This allows description of their drift in terms of ordinary differential equations of motion, which are easier to solve and more amenable to qualitative analysis than the "reaction-diffusion" nonlinear partial differential equations of the original models. The success of this asymptotic approach depends on knowledge of so called response functions, which is critical eigenfunctions of the adjoint linearized operator. A numerical method for calculating the response has been developed recently by the supervisors' group, and its workability has been successfully demonstrated on a number of concrete models, including models of cardiac tissue. However, this method involves direct LU decomposition of a matrix of linearization, which severely limits the achievable spatial resolution, due to memory demands.

The subject of the present project will be development and investigation of alternative methods of calculation of response functions. The methods are likely to be iterative and based on the Conjugate Gradients idea. Apart from the development of the methods, the proposed programme will include study of their convergence and computational efficiency, and test applications to dynamics of spiral waves in selected models, most likely from cardiac dynamics.

The project will require knowledge of mathematical biology, asymptotic and numerical methods for PDEs and software development. Hence, depending on their background, the candidate may be required to do relevant modules offered by this and/or other Departments in this University, to be specified by the supervisor, and pass them at least at the level acceptable by M.Sc. standard, in his/her first year of the project.

Coevolution of bacteria and phages

Interaction of predators and prey can lead to a variety of complicated behaviours, particulary in the spatially extended context. For instance, theory predicts "pursuit-evasion" waves, where the only chance for prey to flourish is to flee away from the predators, and vice versa. The proposed project will look at the problem of coevolution of prey (bacteria) and predators (phages) as pursuit-evasion waves in the "trait space" instead of the physical space. This view has been motivated by in-vitro experiments when evolution bacteria and phages happens under controlled conditions and in real time. The project will involve construction and numerical and analytical studies of mathematical models of such coevolution, with a view to identify relevant scales of parameters and possible ways to relate the models with the experimental data.

The project will require knowledge of mathematical biology, dynamical systems theory and asymptotic and numerical methods for PDEs. Hence, depending on their background, the candidate may be required to do relevant modules offered by this and/or other Departments in this University, to be specified by the supervisor, and pass them at least at the level acceptable by M.Sc. standard, in his/her first year of the project.

Back to Vadim Biktashev's home page


V. N. Biktashev at exeter dot ac dot uk
Last modified: Fri Nov 22 10:35:07 GMT 2019