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Abstract

Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the
major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of
the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery
from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients
of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The
interplay between these factors allows one to explain how spirals form, drift together with the moving
boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the
well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and
scroll waves based on response functions provides explanation of the drifts involved in this mechanism,
with the exception of e↵ects due to the discreteness of cardiac tissue. In particular, this asymptotic
theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone
can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into
a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our
simulations have shown that such collapse of newly generated scrolls is not inevitable and that under
certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply
leading to a fibrillation-like state within small areas of cardiac tissue.

Introduction

Heart is a remarkably reliable machine whose function is to pump the blood as required by the organism.
An important part of its work is the orderly propagation of electrical signal, that is the wave of excitation
passing through cardiac muscle, which subsequently triggers its ordered contraction. Abnormalities of
the excitation wave propagation, known as arrhythmias, are precursors of sudden cardiac arrest and other
life-threatening pathologies. This paper focuses on mathematical analysis of arrhythmogenic conditions
associated with cardiac tissue recovery from acute ischemia, also known as reperfusion arrhythmias. Such
recovery can be more dangerous then ischemia itself and often leads to ventricular fibrillation and sudden
cardiac death [1]. Reperfusion can be spontaneous (relief of coronary spasm, dislodging of a thrombus)
or externally imposed (antithrombolitic therapy, angioplasty). It can also occur on a microscopic scale
during ischemia itself as a result in shifts in microcirculation [2]. As of today, the exact mechanisms
of reperfusion arrhythmias remain poorly understood. This is because the inner layers of ischaemic
boundary are inaccessible for live visualization on a spatial scale required to distinguish behaviour of
individual cells. Therefore, in order to understand how the abnormal activity spreads from single cells to
the bulk of cardiac tissue, we and others had to rely on either in vitro experimental preparations or on
computer modeling.

Our work builds on the experimental data acquired from monolayers of cardiac myocytes under con-
ditions that mimicked the ischaemic boundary [3–5], and the results of direct numerical simulations that
closely matched these experimental observations [5–7]. The in silico modelling provided an explana-
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Figure 1. We consider excitation dynamics on a microscopic spatial scale, in areas of cardiac tissue with severely

suppressed cell-to-cell coupling superimposed with elevated cell excitability.

tion to several experimental findings, including the dependence of drift of boundary-bound spirals on
their chirality, pin-drift-pin type of spiral tip motion and the e↵ect of boundary movement on spiral
detachment [6, 7].

The rotating waves of activity to be discussed in this paper, occur on a much smaller spatial scale as
compared to classical cardiac reentry [8–12], see figure 1. Specifically, we are focusing on a dynamically
and spatially changing set of conditions which can occur within a thin layer of cells sandwiched between
intact healthy tissue and the recovering ischaemic areas. Myocytes within such layers can become sponta-
neously active as a result of calcium overload and/or local noradrenaline release. The impact of intrinsic
myocyte heterogeneity on network behaviour is markedly enhanced due to decrease in electrical coupling
between the cells. It gets even more complicated as the physicochemical factors that create the boundary,
such as low pH, lack of oxygen, hyperkalemia, noradrenaline, move in space due to the dynamic nature
of reperfusion. Altogether the moving boundary, heterogeneous substrate, steep gradient of coupling and
self-oscillatory activity of individual cells can give rise to a rich network behaviour discussed in our pre-
vious paper [7]. A continuous generation of mini-reentries from individual ectopic sources occurs within
the least coupled cells layers, and then the activity spreads towards the better coupled layers of the
boundary [8]. This scenario was suggested by our experiments in neonatal rat cardiomyocytes and was
later supported and expanded upon using the in silico approach. Yet, numerical modelling of cellular
behaviour has its limitations, and there is a need to understand how much of the phenomena observed
in the simulations are generic and how much of it depends on the specifics of the model. Further still,
cardiac tissue is three-dimensional, whereas our experiments and simulations reported previously were
conducted using two-dimensional cell networks. Extrapolation of the two dimensional data into three
dimensions requires additional theoretical understanding.

In the present paper, we use an asymptotic theory of spiral and scroll waves’ drift together with the
recently developed numerical technique to compute the response functions of spiral waves [13–15] to pro-
vide theoretical analysis of our experimental and numerical data. We then use this theoretical framework
to predict behaviour of the scroll waves in an ischaemic border zone in 3D, where such experiments are
not currently feasible. Finally we confirm theoretical 3D predictions by numerical simulations of cell
network behaviour.

Specifically, we address the following questions:

1. In both experiments and numerical simulations, spiral waves were not static within the border zone.
What determines the components of the drift velocity, and why the spiral cores can be dragged
together with the moving border zone?

2. In both experiments and numerical simulations, the drift of the spirals was interrupted by their
“pinning” to clusters of cells. We have shown numerically that these can be cell clusters of either
elevated or suppressed excitability. What is the mechanism of such pinning?

3. In both experiments and numerical simulations, the episodes of spiral drift and pinning alternated.
What is the mechanism by which pinning can give way to further drift?
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Figure 2. Schematic of numerical protocols. Top row: 2D setting [7]. Distribution of the di↵usivity D and
excitability/automaticity ↵ across the border zone. The three colour panels are representative snapshots of solutions at di↵erent
values of ↵, as it was slowly growing at a fixed profile of D. Here and below we use the red colour component to show the
excitation wave (transmembrane voltage), blue component for the cell excitability/automaticity (denoted as ↵, see definition in
the text) and the green component for the cell electrical coupling strength (denoted as D for transmembrane voltage di↵usivity).
E.g. yellow is a sum of green and red, and magenta is a sum of red and blue. Bottom row: 3D setting for this paper. The
transition zone moves downwards.

4. One of arrhythmogenic scenarios proposed in [6, 7] involved pinning of a spiral wave to a local
heterogeneity which persists long enough until the border zone passes and the spiral gets into the
better coupled tissue. Is this scenario viable in 3D?

Methods

Direct Numerical simulations: tissue model

The mathematical model mimicking the conditions when tissue recoveres from acute ischaemia, and its
experimental foundations are described in detail in our previous works [7] and references therein. To
capture the complexity of pathophysiological conditions associated with reperfusion arrhythmias, we use
a simplified kinetic model of individual cells, and enrich it by adding individual cell heterogeneity, di↵erent
course of recovery of cell coupling and excitability, and spatial arrangement of conditions on the boundary
of ischemic tissue. The importance of the latter three factors, cell heterogeneity, individual cell excitability
and cell-to-cell coupling, for the cardiac network behaviour was studied in our previous paper [6]. The
arguments and experimental evidence presented there suggest that from the network/tissue perspective,
it is not very important exactly how these properties are altered. In this paper, we model a tissue
recovering from acute ischaemia as a three-layered slab made of a heterogeneous mix of cells, subject
to a vertical gradient of average cell excitability and a vertical gradient of cell-to-cell coupling strength.
The 2D and 3D versions of the model are illustrated in figure 2. In terms of the parametric diagram
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Figure 3. The parameter space diagram of the numerical model (1,2) [6]. The parameter regions I-V correspond to
distinctive regimes of wave initiation and propagation, observed in simulations where ↵ and D were maintaned constant
throughout the simulations. The panels on the sides show representative snapshots of solutions, corresponding to regions I, III, IV
and V.

described in [6] and shown in figure 3, the bottom layer corresponds to the parametric region IV. It has
low excitability and weak coupling which result in the quiescent state where propagation is not possible.
The outer layer with high excitability and strong coupling is in the parametric region V of the digram,
corresponding to the quiescent state where wave propagation is possible. The middle, or transitional,
layer is sandwiched between inner and outer layers, so, from bottom to top, it starts in region III (high
excitability and weak coupling resulting in spontaneous fragmented waves) and then via a gradual increase
in coupling strength proceeds to region V (high excitability, strong coupling, quiescent state where wave
propagation is possible) characteristic of the upper layer. The layers are not static but move downwards
through the slab, which represents the reperfusion, or wash-out, of the agents a↵ecting the relevant tissue
properties. Depending on type of reperfusion, blood flow can recover within seconds (cases of resolved
coronary spasm, spontaneous dislodging of thrombi, angioplasty) or within minutes (cases of changes in
coronary flow due to gradual accumulation of metabolites or pharmacological interventions). Therefore,
the dynamics of moving border zone can vary in a rather wide range, from cm/s to mm/min. We select
the values of the border zone speed that produce interesting e↵ects.

We assume that the cells are arranged in a rectangular grid of N
x

⇥ N
z

(in 2D) or N
x

⇥ N
y

⇥ N
z

(in 3D) cells connected to each other via Ohmic resistances. Properties of the cells and resistivities
of the contacts are varied in time an space. The cells are assumed to have linear size of 30µm which
serves as a space scale to endow the voltage di↵usivity and other space-related quantities with suitable
dimensionality. The cells are connected to the nearest neighbours, so an internal cell has four contacts
in 2D and six contacts in 3D.

The excitable dynamics of cells is described by the Beeler-Reuter-Pumir [6] (BRP) model of a neonatal
cardiac myocyte. The BRP model is based on the generic Beeler-Reuter [16] model of a cardiac myocyte,
which contains an explicit, albeit simplified, description of individual ionic currents, and was slightly
modified to match the ionic currents reported for neonatal cardiac cells used in our experiments [6]. The
complete set of the BRP model equations is given the Appendix; here we only outline the modifications.
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The last equation in (1) is written, for brevity, as the continuous limit, whereas actual calculations of the
inter-cellular currents were discrete, as described in more details in the Appendix. The coupling strength
between the cells is represented by the voltage di↵usion coe�cient D(z, t), and some of the values of D
we use here are too low to hold the continuous limit of the (1). Note that as far as the continuous limit
is concerned, the voltage di↵usivity D is the only quantity in the model related to space, so while within
this limit, all results are easily rescaled from one value of D to another.

The maximum permeability of the fast inward current g
Na

is 60% of the standard (2.4 vs 4), and that
of the slow inward current, g

s

, is 50% of the standard (0.045 vs 0.09).
We also have altered the balance between inward and outward currents by inhibiting the inward

potassium rectifier current, i
K

1

[6, 17, 18]. Suppression of i
K

1

to 30% of the standard value mimics its
smaller contribution reported for neonatal cardiomyocytes [19,20] as compared to the original Beeler and
Reuter values for adult ventricular cells [16]. We use this supressed value of i

K

1

(↵ = 0) for the bottom
layer of the ischemic slab. In the upper layers, further suppression, represented by the factor (0.3 � ↵),
↵ > 0, enhances excitability. For high enough values of ↵, this leads to spontaneous firing of individual
cells, i.e. makes them automatic [6]. In [6] we considered ↵ values that led to the in silico network
behaviour closely matching the behaviour of neonatal cardiomyocyte layers. The excitability of the latter
cells was increased using beta-adrenergic stimulation with isoproterenol [5] and ischaemia-reperfusion
protocol [4]. Compared to [6], here we only consider a narrow range of values of ↵, where phenomena
interesting for our present study are observed. In our previous paper [7], parameter ↵ = ↵(x, y, z, t)
varied in space and time and it was essential that it covered both excitable and automatic regimes, so it
was called both “automaticity” and “excitability”. Here we concentrate mostly on the events happening
in the excitable regime (↵  0.13, within the range of intermediate coupling values, or region V in the
parametric space, shown in figure 3), hence for brevity we mostly refer to parameter ↵ as “excitability
parameter” or simply “excitability”. It should be kept in mind, however, that due to the above ambiguity,
this usage may di↵er from the meaning of “excitability parameter” in other studies.

Heterogeneity of individual cells’ excitability is described as

↵(x, y, z, t) = ↵(z, t) (1 + �
↵

⌘(x, y, z)), (2)

where ⌘(x, y, z) is the Gaussian distributed uncorrelated random variable with unit dispersion, and pa-
rameter �

↵

represents the intensity of heterogeneity.
Space-time variations of D and ↵ are defined as

D(z, t) =

8
<

:

Dmin, z  z1,

Dmin

z
2

�z
z
2

�z
1 Dmax

z�z
1

z
2

�z
1 , z1  z  z2,

Dmax, z � z2,

(3)

and

↵(z, t) =
1

2

✓
1 + tanh

✓
z � z1
w

◆◆
↵max, (4)

where z is the coordinate across the boundary, z1 = z1(t) and z2 = z2(t) are the limits of the steepest
part of the coupling gradient, Dmax is the di↵usion coe�cient in the upper, well-coupled layer, Dmin
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corresponds to the bottom, uncoupled layer, and ↵max is the highest level of excitability within the slab.
We used the boundary width w = 3 ⇥ 30µm in all simulations. Parameters z1, z2 vary linearly in time,
z1 = z1,0 � ct, z2 = z2,0 � ct.

Thus, the recovering ischaemic tissue is modelled as layers with imposed excitability and coupling
profiles as shown in figure 2. Specifically, we are modelling experimental conditions when previously
severely uncoupled ischaemic areas are reperfused with agents which elevate cell excitability.

Finally, we also made simulations with deliberately arranged parametric distributions not exploiting
random number generators. The details of those are given where the results are described.

Asymptotic theory of drift

The asymptotic theory of spiral and scroll dynamics under small perturbations [13,15,21–23] is formulated
for the “reaction-di↵usion” system of partial di↵erential equations (PDEs),

@
t

u = f(u) +Dr2
u+ ✏h, u, f ,h 2 R`, D 2 R`⇥`, ` � 2, (5)

where u(~r, t) = (u1, . . . u`

)T is a column-vector of the reagent concentrations, f(u) = (f1, . . . f`)T is a
column-vector of the reaction rates, D is the matrix of di↵usion coe�cients, ~r 2 Rm (m = 2 or 3) is the
vector of coordinates, and ✏h = ✏h(u;~r, t) is some small perturbation of the right-hand side, |✏| ⌧ 1. For
the Beeler-Reuter-Pumir model, ` = 7, and D = Dn, where n = [n

i,j

], n1,1 = 1 and n
i,j

= 0 otherwise.
The theory assumes that spiral wave solutions to equations (5) for m = 2 are stationary rotating,

not meandering. This is indeed satisfied for BRP model for all ↵ values considered. Mathematically,
the assumption means that a spiral wave solution to (5) for m = 2 in the (x, z)-plane has particular
dependence on space and time, so it rotates around a center of rotation ~R = (X,Z) with angular velocity
! and fiducial phase �

u(~r, t) = U(⇢(~r � ~R),#(~r � ~R) + !t� �), (6)

where ⇢(~r� ~R),#(~r� ~R) are polar coordinates centered at ~R. A spiral wave can of course rotate in either
direction; we assume ! > 0 for clockwise rotation.

In presence of a small perturbation, ✏ 6= 0, a spiral wave preserves the pattern, only slowly changing its
frequency and location of the core. It actually behaves as a localised object, only sensitive to perturbations
a↵ecting its core. The localised sensitivity to perturbations is mathematically expressed in terms of the
spiral wave’s response functions, that is the critical eigenfunctions of the adjoint linearised operator, which
are essentially nonzero only in the vicinity of the core and exponentially decay with distance from it.
Knowledge of the response functions allows quantitatively accurate prediction of spiral waves drift due to
small perturbations of any nature, which makes the response functions a property that is as fundamental
for spiral waves as mass is for matter. In particular, the ~R-drift velocity, i.e. the velocity of the drift of
the position of the core of the spiral, is defined, in the first order in ✏, by an integral of the perturbation
h,

Ṙ = ✏

�+⇡Z

��⇡

e�i⇠

D
W , h̃(U; ⇢, ✓, ⇠)

E d⇠

2⇡
+O(✏2), (7)

where R = X + iZ is the complex coordinate of the instant spiral centre, inner product h· , ·i stands for
the scalar product in functional space,

hw , vi =
Z

R2

w

+(~r)v(~r) d2~r =

I 1Z

0

w

+(⇢, ✓)v(⇢, ✓)⇢ d⇢ d✓,

function h̃ is perturbation h of the right-hand side in (5), re-written in the ~R-centered corotating frame
of reference (⇢, ✓), where ✓ = # + !t � �(t) is the polar angle in the corotating frame of reference, and
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Figure 4. Density plots of the components of a spiral wave solution U and its translational response function W.

Parameter ↵ = 0.115. The radius of the disk is 4mm assuming D = 10�2 cm2

/s. In each plot, white corresponds to a value A and
black corresponds to �A where A is chosen individually for each plot, e.g. for the V -component of U, A = 74.6mV. The grey
periphery of the W plots, the second and third rows, corresponds to 0.

� = !t��(t) is the time measured in terms of the spiral rotational phase. The kernel W(⇢, ✓) 2 C of this
integral is the (translational) response function which characterizes the unperturbed spiral wave solution
(6) and can be calculated numerically together with it. Given the dependence of the perturbation h̃ on
the current position of the spiral R, equation (7) is a closed system of ordinary di↵erential equations
(ODEs) for the coordinates of the instant centre of rotation of the spiral wave.

A more detailed exposition of the theory and description of the method of calculating the response
functions are given in [14, 15]. In the present study we use the same method with the modifications
relevant to the BRP model, which has l = 7 as opposed to simplified l = 2 models considered in [14,15].
Figure 4 shows density plots for the spiral wave, U, and its response functions, W, in BRP model for
↵ = 0.115; for other values of ↵ the plots look qualitatively similar. The important property is that all
components of the response functions are large only in the core of the spiral and quickly decay beyond it.

Scroll waves are three-dimensional analogues of spiral waves. They rotate around curves called fil-
aments, as spiral waves rotate around points called centres. In general, scroll filaments are not fixed
in space but move, typically on a slow timescale relative to the rotation period. Hence, in addition to
whatever dynamics 2D spiral waves might have, scroll waves exhibit additional dynamics associated with
filament motion [24–31]. Working in Frenet coordinates, the motion may be conveniently expressed in
terms of the velocities V

N

and V
B

in the normal and binormal directions, respectively, at each point
along the filament. Motion along the tangential direction is of no physical significance and is equivalent
to reparametrization of the filament.

Then, the motion equation for the filament, in the assumption of small filament curvature,  = O(✏),
and slowly varying phase, has the form [21,32–34]

Ṙ = V
N

+ iV
B

= �


+ . . . , �


2 C, (8)

where omitted are terms representing e↵ects of the perturbations of the right-hand sides, if any (which
may be of the same order as that shown), and higher-order terms. The complex coe�cient �



in the
equation (8) is calculated using the same response functions as for the underlying spiral wave, as

�


= �1

2

⌧
W(⇢, ✓) , De�i✓

✓
@
⇢

� i

⇢
@
✓

◆
U(⇢, ✓)

�
, (9)

and the positive sign of Re (�


) means movement towards the local centre of curvature.
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Following [32], some publications use the notation �


= b2 + ic3. As shown in [21, 33], the real
component b2 = Re (�



) has special importance: if b2 > 0, the overall length of the filament becomes
shorter with time, and if b2 < 0, the filament lengthens with time, as long as the asymptotic description
remains valid. Hence this coe�cient is sometimes called filament tension of the scroll wave. The coe�cient
c3 is the binormal drift coe�cient and describes the drift of a scroll ring filament perpendicular to the
plane of the ring, or more generally, the velocity component orthogonal to the local plane of the filament.

Superposition principle Since the right-hand side of (7) is linear in ✏h, the 1st-order asymptotic
theory obeys a superposition principle: if the overall perturbation is a sum of several components,

✏h =
X

j

✏
j

h

j

, (10)

then the overall drift velocity is determined by the sum of the corresponding partial “forces”,

Ṙ ⇡
X

j

�
j

✏
j

, (11)

where ✏
j

is the magnitude of the j-th perturbation, and �
j

is the force produced by a unit perturbation
of that sort, hereafter referred to as “specific force”, given by

�
j

=

I
e�i⇠

D
W , h̃

j

E d⇠

2⇡
. (12)

In the setup of our present study, the forces acting on a spiral or scroll wave of excitation within the
recovering ischaemic tissue are caused by the filament curvature (described by specific force �



), the
localised inhomogeneities and the smooth gradient of parameter ↵ (�

i

and �
↵

respectively), and the
gradient of di↵usivity (�

D

). We shall now present the explicit form of the the relevant perturbations and
the forces.

2D curvature drift. It had been shown [25] that due to the axial symmetry of a scroll ring solution,
there is a strong connection between the scroll ring filament’s motion in 3D and drift of the core of a spiral
wave in response to applied electric field (electrophoretic drift) in 2D. For the corresponding perturbed
2D reaction-di↵usion equation,

@
t

u = f(u) +Dr2
u+ ✏

r

h

r

, h

r

= h

r

[u] = D@
x

u, (13)

the specific force �
r

of the electrophoretic drift is given by [15,23]

�
r

=
1

2

⌧
W(⇢, ✓) , De�i✓

✓
@
⇢

� i

⇢
@
✓

◆
U(⇢, ✓)

�
, (14)

which is exactly the opposite of �


given by (9). The opposite sign can be understood if one remembers
that the positive sign of Re (�



) means movement towards the local centre of curvature of the filament,
and the form of the perturbation (13) with positive ✏

r

corresponds to the centre of curvature located at
the line (�1/✏

r

, 0), i.e. in the negative x direction with respect to the current spiral centre [25].
This equivalence of �



and �
r

up to the sign allows us to use the 2D simulations of system (13)
to estimate the drift velocity of a 3D scroll ring, and hence estimate the 3D coe�cient �



= ��
r

.
Subsequently, these 2D estimations can be used to verify/confirm both drift velocities �

r

and �


obtained
using the response functions in (14) and (9).



9

Smooth gradient of excitability. We suppose that the excitability kinetic parameter ↵ varies in
space,

f = f(u,↵), ↵ = ↵(~r), (15)

and, further, that the profile ↵(~r) is smooth enough and can be approximated by a linear spatial gradient,
within the spiral core where the components of the response functions are essentially non-zero,

↵(~r) ⇡ ↵0 + ~✏
↵

· (~r � ~R), ↵0 = ↵(~R), ~✏
↵

= r ↵(~r)|
~r=~

R

. (16)

Then, the velocity of the drift induced by the parameter ↵ gradient works out [15] as

Ṙ = �
↵

✏
↵

,

�
↵

=
1

2

⌦
W , e�i✓@

↵

f(U;↵0)
↵
,

✏
↵

= (@
x

+ i@
z

) p(~r)|
~r=~

R

. (17)

The real part of �
↵

gives the component of the drift velocity along the gradient of ↵ and is positive if
the drift is towards higher values of ↵. The imaginary part of �

↵

describes the drift across the gradient
of ↵; it is positive if the lateral component of the drift velocity is counter-clockwise with respect to the
direction of r↵.

Localized inhomogeneity of excitability. As can be seen from figure 4, the core size of the spiral
wave in BRP model is ⇠ 1mm for D = 10�2 cm2/ sec. A 1000-fold decrease of D down to 10�5 cm2/ sec
implies shrinkage of the core to the size of one cell, ⇠ 30µm. Hence for the coupling values at the lower
end of the range, localized heterogeneities of ↵ become of principal importance, and they cannot be
considered as smooth gradients.

To elucidate possible role of the localised inhomogeneities, let us consider the case when the continuous
limit is still applicable, but the spiral core size is comparable with the size of a localized inhomogeneity,
or the magnitude of such inhomogeneity is so significant it a↵ects the spiral dynamics despite the small
geometry size. This can happen when the random distribution of properties produces relatively large
lumps of cells with local average excitability deviating from the overall average. Let’s consider an idealized
situation when the parametric inhomogeneity is localized in a disk of radius R

i

centered at ~r
c

= (x
c

, z
c

)
and is uniform within it, so

↵(~r) = ↵0 + ✏
i

↵1(~r), ↵1 =
1

⇡R2
i

H(R
i

� |~r � ~r
c

|), (18)

where H(x) is the Heaviside step function. Then for a small enough R
i

, the velocity of the drift induced
by the localized inhomogeneity is defined as [15, 35]

Ṙ = �
i

✏
i

, �
i

= � R� r
c

|R� r
c

|F (|R� r
c

|), (19)

where r
c

= x
c

+ iz
c

and

F (⇢) =

I
e�i✓ [W(⇢, ✓)]+ @

↵

f(U(⇢, ✓);↵0)
d✓

2⇡
+O(R

i

). (20)

Here Re (F ) is the radial component of the drift velocity, positive if the spiral moves towards the centre
of the inhomogeneity, and Im (F ) is its azimuthal component, positive if clockwise with respect to the
centre of inhomogeneity.
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Gradient of the di↵usivity We also deal with the drift caused by a gradient of the di↵usivity, so that

@
t

u = nr (D(~r)ru) + f(u) (21)

Suppose the di↵usivity varies smoothly, so it can be approximated by a linear function within the core
of the spiral,

D(~r) ⇡ D0 + ~✏
D

· (~r � ~R), D0 = D(~R), ~✏
D

= r D(~r)|
~r=~

R

. (22)

Substituting this into (21), we get the perturbed reaction-di↵usion equation of the form (5) with D = D0

and the perturbation
✏
D

h

D

= D0( ~✏D ·r)nu+ (✏
D

· (~r � ~R))Dr2
nu. (23)

This leads to the expression for the specific force induced by the gradient of the di↵usivity in the form

�
D

= �
(1)
D

+ �
(2)
D

(24)

where

�
(1)
D

=
1

2

⌧
W(⇢, ✓) , nD0e

�i✓

✓
@
⇢

� i

⇢
@
✓

◆
U(⇢, ✓)

�
, (25)

and

�
(2)
D

=
1

2

⌦
W(⇢, ✓) , ⇢ e�i✓

nD0r2
U(⇢, ✓;↵0)

↵
. (26)

It is easy to see that the specific force �
(1)
D

in (25) coincides with the 2D electrophoretic drift specific
force �

r

given by (14) up to the substution D = D0. On the other hand, Dierckx [34] has shown that
the problem of drift in the gradient of di↵usivity is equivalent to the problem of 2D electrophoretic drift,

up to a transformation of coordinates. This implies that �
D

= �
r

, and since �
(1)
D

= �
r

, the integral (26)

should be zero. In our calculations using response functions, the values of |�(2)
D

| do not exceed 3⇥ 10�6

for the whole range of ↵0 considered, which is indeed small compared with typical values of |�
D

| shown
in figure 5(a) (note that |�

D

| = |�


|). This small deviation of the calculated value of �(2)
D

from zero serves
as a measure of accuracy of the response function and the integrals based on it. Note that specific forces
correspond to the limit of ✏

j

! 0. Direct numerical simulations presented in [36], performed at finite
values of ✏

D

and in a di↵erent model, show empirical values of �
D

and �
r

di↵ering by as much as 10%.

Results

Continuous limit: predictions from the asymptotic theory

E↵ects of elementary perturbations

Based on the response functions shown in Figure 4, we have computed the values of the specific forces
acting on spiral (2D) and scroll (3D) waves under conditions associated with recovering ischaemic border.
These forces include the specific force �



caused by the curvature of the vortex filament, the specific force
�
D

caused by the gradient of di↵usivity, the specific force �
↵

caused by the gradient of parameter ↵ and
the specific force �

i

caused by a localised inhomogeneity of parameter ↵.
Figure 5(a) shows the theoretical predictions for the components of the specific force �



caused by the
curvature of the vortex filament. That panel also shows an excellent agreement of these predictions with
the results of the direct numerical simulations of electrophoretic drift (13) (remember that �



= ��
r

). The
components of �



correspond to the two filament’s drift coe�cients: the “filament tension” b2 = Re (�


),
and the binormal drift coe�cient c3 = Im (�



). The binormal drift coe�cient c3 determines e.g.the drift
of scroll rings along their axis. The filament tension b2 is usually much more important for a scroll’s
dynamic, as the positive filament tension means that the filament will tend to straighten or collapse
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Figure 5. Dependence of the specific forces � and �↵ on the unperturbed value of the excitability parameter ↵

0

.

Di↵usion coe�cient D = 10�2 cm2

/s. (a) Specific force � caused by filament curvature . Note that � = ��r = ��D. Symbols
“+” and “⇤” show estimates of ��r from direct numerical simulations of (13), for comparison. The di↵erence between predicted
and simulation values is smaller than 0.005 at all points. (b) Specific force �↵ caused by the gradient of excitability parameter ↵.
Red solid lines: real parts, the longitudinal components. Dashed blue lines: imaginary parts, the lateral components. The
meanings of the vertical axes are di↵erent for di↵erent curves and are designated in the legends.

if geometry allows it. Negative filament tension means that the filament will tend to spontaneously
lengthen and curve and can produce “scroll wave turbulence” which is phenomenologically similar to
fibrillation [21, 25, 33, 37, 38]. An important observation from Figure 5(a) is that in the shown interval
of parameter ↵, filament tension b2 = Re (�



) changes the sign and is overall smaller than the binormal
drift coe�cient c3.

As discussed above, the drift caused by the curvature of the filament is equivalent to the drift caused
by the gradient of the di↵usion coe�cient, so the same coe�cients, though taken with the opposite sign,
will describe the drift of the spiral core or scroll filament in response to gradient of di↵usivity. Namely,
coe�cient Re (�

D

) = �Re (�


) = �b2 will determine the component of the drift along the gradient of
di↵usivity and Im (�

D

) = �Im (�


) = �c3 across it. Following figure 5(a), Re (�
D

) = �Re (�


) < 0
at higher values of ↵, and Re (�

D

) = �Re (�


) > 0 at lower values of ↵. So, at higher values of ↵ the
negative specific force of the gradient of di↵usivity will drag the spirals towards poor coupled regions with
smaller di↵usion, while at lower values of ↵ the positive specific force of the gradient of di↵usivity will
drag the spirals towards better coupled regions with higher di↵usion. Thus, the fact that b2 changes sign
in the relevant range of parameters, means that the di↵usivity gradient can either drag spirals towards
the pourly coupled bottom layer or repell them into the better coupled upper layer, depending on the
local value of excitability parameter ↵. Also, the fact that |b2| < |c3| means that the spirals should move
preferentially across the di↵usivity gradient that is along the border zone, which agrees with the numerics
and experiments.

Figure 5(b) shows the theoretical predictions for the drift coe�cients in response to a smooth gradient
of parameter ↵. Here, an important feature is that the longitudinal coe�cient Re (�

↵

) is negative in the
whole range of ↵0. This means that the spirals should drift towards areas with lower excitability. This
agrees with the general rule noted e.g. in [39, 40].

Figure 6 shows the theoretical prediction for interaction of a spiral wave with a point-like heterogeneity
in parameter ↵. Here, the interaction force depends on the distance between the spiral’s centre and the
heterogeneity. The negative sign of the radial component Re (F (⇢)), observed for all distances ⇢ and all
values of ↵ considered, means that a localized inhomogeneity with lowered excitability, ✏

i

< 0, should
attract spiral waves, and those with higher than the background excitability, ✏

i

> 0 should repel them.
This is also intuitively consistent with the predictions for the linear gradient of ↵ given by figure 5(b).

The constant sign of the inhomogeneity specific force �
i

radial component Re (F (⇢)) in figure 6(a)
is not a general case, and in other models the sign of interaction with a localized inhomogeneity may
depend on the distance to it, which may lead to “orbital” motion around such inhomogeneity, with orbit
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Figure 6. Interaction with point-like inhomogeneity. Dependences of (a) radial and (b) tangential components of the
specific force caused by point-like inhomogeneity of excitability ↵, on the distance from instant spiral rotation centre to the
inhomogeneity, at selected values of background excitability ↵

0

as indicated in the legends. The scale of ⇢ is given in mm
assuming D = 10�2 cm2

/s.

radii at the zeros of Re (F (⇢)) [35]. So, following the graphs in figure 6(a) and the shown constant sign
of the radial component Re (F (⇢)), we should not observe an orbital motion in our present BRP model.

Complex perturbations and pinning/unpinning in 2D

We shall now use the superposition principle to analyse the 2D drift of a spiral wave subject to a
combination of forces caused by a smooth gradient of di↵usivity, a smooth gradient of the excitability
parameter ↵ and a localised inhomogeneity in parameter ↵. In a system of reference with the origin at
the centre of the disk inhomogeneity, ~r

c

= ~0, the equation of motion for a complex coordinate of spiral
wave rotation centre R is

Ṙ = �✏
i

R

|R|F (|R|) +G (27)

where F is the force induced by the localised inhomogeneity and G is the constant dragging force due
to the smooth gradient of parameter ↵ and/or the di↵usivity gradient. We use polar coordinates for
the instant centre position, R = ⇢ei✓, and also set G = gei� where g and � are the magnitude and
direction of the gradient force. Further, we separate the radial and azimuthal components of force F ,
F (⇢) = a(⇢) + is(⇢). Then, the equations of motion in the two real dynamic variables are

⇢̇ = �✏
i

a(⇢) + g cos(�� ✓),

⇢ ✓̇ = �✏
i

s(⇢) + g sin(�� ✓). (28)

An equilibrium in the system (28) may be observed at a radius ⇢ satisfying

✏2
i

(a2(⇢) + s2(⇢)) = g2. (29)

It is easy to see that equilibria will not exist, that is, the smooth gradient force will definitely tear a spiral
o↵ from the localized inhomogeneity, if

|g| > gcrit = |✏
i

|max
⇢

�
a2(⇢) + s2(⇢)

�1/2
= |✏

i

|max
⇢

(|F (⇢)|) , (30)

that is, if the gradient force exceeds the maximal force of interaction with inhomogeneity, including both
radial and azimuthal components (see also [41] where a special case with s(⇢) ⌘ 0 was considered).

Following (29), for every |g| < gcrit there are at least two equilibria at di↵erent values of ⇢. Note that
|g| < gcrit can happen at either sign of a, i.e. both for attracting and repelling inhomogeneities.
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Figure 7. Graphs for graphical solution of stability of “pinning equilibrium”. (a) ↵
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= 0.10, (b) ↵
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= 0.13.
Di↵usivity is assumed D = 10�2 cm2

/s. The meanings of the vertical axes are di↵erent for di↵erent curves and are designated in
the legends.

Standard calculations give that an equilibrium at a distance ⇢⇤ from the inhomogeneity will be stable
in linear approximation if and only if the following two conditions are satisfied simultaneously:

d

d⇢

�
a2(⇢) + s2(⇢)

�����
⇢=⇢⇤

> 0,

d

d⇢
(✏

i

⇢a(⇢))

����
⇢=⇢⇤

> 0. (31)

The stability conditions (31) can be easily checked graphically, and the graphs of the two functions
involved are shown in figure 7. These conditions require that both functions should be increasing at
⇢ = ⇢⇤. The first inequality does not depend on the sign of ✏

i

, and it therefore demands that ⇢⇤ is
smaller than the position of the maximum of a2(⇢) + s2(⇢) (the blue dashed curves). For the second
inequality the situation is more complicated as it depends on the sign of ✏

i

. For the case ✏
i

> 0, i.e.
repelling inhomogeneity with excitability higher than ↵0, the second stability condition demands that
the position of the equilibrium is to the right of the minimum of ⇢a(⇢), which is shown by the solid
red curve. For both values of ↵0 shown in figure 7, and also for all ↵0 in between, as we have checked,
this is incompatible with the first condition, as the red minimum always happens to the right of the
blue maximum. For ✏

i

< 0, i.e. attracting inhomogeneity with excitability lower than ↵0 around it,
the second stability condition demands that the position of the equilibrium should be to the left of the
red minimum, which is a requirement that is weaker than the first condition, as all points to the left of
the blue maximum are also to the left of the red minimum. So, in our model there cannot be a stable
equilibrium near a repelling inhomogeneity, but only near an attractive inhomogeneity. Intriguingly, if
the relative position of the two extrema was di↵erent, i.e. the red minimum was to the left of the blue
maximum, it would create a paradoxical possibility of a stable equilibrium occuring due to interaction
with a repelling inhomogeneity. We are not aware of any reasons why this could not happen in some
models, but it does not happen in our present model in the range of parameters that we are interested
in.

Thus, these theoretical predictions based on the response functions of the vortices suggest that stable
pinning of a spiral wave in our model may be to lowered-excitability sites only, while in the experimental
and simulations described in [7] the pinning to inhomogeneities of either sign was observed. We have a
closer look at this seeming contradiction below.

Firstly, the pinning observed in experiments and simulations was not permanent but temporary. An
explanation for that could be that the pinning persisted only until the gradient force exceeded the tear-
o↵ threshold (30). However, it is also possible that the pinning was temporary because it was really a
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(a) (b)

(c) (d)

Figure 8. Pinning of spiral wave’s drift to localized inhomogeneities. (a) An extension of the drift trajectory shown in
figure 8D in [7] with temporary pinning to a high-↵ cluster. This is a 25 ⇥ 25-cell fragment of a tip path in a simulation in a box
of 100 ⇥ 100 cells, ↵ = 0.12, D

min

= 5 · 10�5 cm2

/ sec, D
max

= 2 · 10�3 cm2

/ sec, c = 1/6 cell/ sec. The colour background shows
distribution of ⌘(x, y), smoothened by sliding averaging, (greenish) dark corresponds to high ↵ and (blue) light corresponds to low
↵. (b) Drift caused by a repelling circular inhomogeneity (green dots show a↵ected cells) of radius of Ri = 5 cells. Red solid line is
the tip trajectory in a 100 ⇥ 100-cell simulation, ↵ = 0.13 in the bulk of the medium and ↵ = 0.15 within the disk, and di↵usivity
D = 10�3 exp(�(y � y

0

)) cm2

/ sec, where � = 0.7mm�1 and y

0

is the middle of the box. The arrows represent the corresponding
direction field in the ODE model (27). The small blue open circles are the instantaneous centres of rotation of the spiral predicted
by the ODE model and shown at intervals corresponding to one rotation period of the spiral. These instantaneous centres of
rotation of the spiral can be thought of as sliding period-averaged positions of the tip, and make a drift trajectory as predicted by
the ODE model. (c) Two repelling inhomogeneities of the same kind as in (b) can stop the drift altogether. (d) Attractive
inhomogeneity with lowered excitability, ↵ = 0.11, within the disk of the same size as in (b). Now the spiral is permanently
stalled behind the heterogeneity. Here and elsewhere, the tip of the numerical spiral at any given moment of time is defined as an
intersection of isolines V = �35mV and f = 0.85 (f is the dimensionless inactivation gating variable for the slow inward current).



15
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Figure 9. Two-dimensional curvature drift. ↵ = 0.13, ✏r = 0.1mm�1. Shown are tip trajectories in system (13) in
100 ⇥ 100-cell box for various D, as shown under the panels, in cm2

/ sec. Smaller di↵usivity means stronger e↵ect of the
discreteness of the tissue, which can stop the drift altogether (the grid of dotted lines designates individual cells).

slow-down near an unstable equilibrium in the vicinity of a repelling inhomogeneity. Panel (a) in figure 8
reproduces the tip trajectory in a ‘pinning” event from [7], revealing that it was actually only a temporary
stall between two fast-drift episodes. Panel (b) illustrates that this sort of stalling is easily reproduced
in deliberately arranged simulations and is well described by the ODE model (27).

Secondly, a certain mutual allocation of repelling heterogeneities may cause ‘permanent’ pinning,
again until the parameters change. This is illustrated in figure 8(c). There are two identical repelling
inhomogeneities. For the given initial position of the spiral wave, if only the lower inhomogeneity was
present, the drift would proceed along a trajectory similar to that in panel (b). However this drift
is disallowed by the presence of the upper repelling inhomogeneity, hence the spiral stops at a point
of equilibrium of three forces: the constant dragging force and the two repulsion forces from the two
localized repelling inhomogeneities.

Panel (d) in figure 8 is given for completeness, to illustrate the more straightforward case of pinning
in the vicinity of an attracting inhomogeneity. It is worth noticing a simple phenomenological di↵erence
between pinning to a repulsive inhomogeneity and to an attractive one: for the former, the spiral wave
stops in front of the inhomogeneity, and for the latter, behind it.

There are several factors responsible for the quantitative discrepancies seen in figure 8(b–d) between
the theoretical predictions for the trajectories of the spiral drift and the trajectories obtained from direct
numerical simulations: large value of ✏

i

a↵ecting the applicability of the asymptotic theory, the crudeness
of the cell structure a↵ecting the behaviour of the direct simulations as compared to the continuous
limit, and also the finite R

i

used in simulations as compared to the small-R
i

limit assumed in the theory.
However, the theoretical trajectories and those obtained from direct numerical simulations are in good
qualitative agreement, so the asymptotic theory works really well for this complicated arrangement,
despite all the simplifications made.

Naturally, with the random distribution of heterogeneity, as present in the experiments and the
numerical simulations of the ischaemic border zone, all of the above scenarios with pinning to inhomo-
geneities of either sign could take place from time to time. In some experiments the pinning locations
subsequently became sources of ectopic waves of excitation and therefore were associated with points of
higher excitability. In other experiments, the pinning locations never produced the ectopic waves, which
suggested that the pinning inhomogeneity had the lowered excitability. Understanding that there are
di↵erent mechanisms of pinning to attractive inhomogeneity with lowered excitability and to a (group
of) repelling inhomogeneity(s) with elevated excitability provides an explanation for these seemingly
contradicting experimental observations.
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Generation of a 3D turbulent pattern

The asymptotic theory of spiral and scroll drift is valid for PDEs, describing continuous media. The
theory might not be applicable if the discreteness of the cell structure is significant when the di↵usivity
is small. Thus our findings here are purely empirical, based on direct numerical simulations. The role of
discreteness in 2D dynamics was extensively analysed in [6, 7] so here we concentrate on 3D aspects.

The e↵ect of dicreteness is to a certain extent similar to that of heterogeneities, i.e. it can hinder the
drift caused by the smooth parametric or di↵usivity gradient. This is illustrated in figure 9, where we
present simulations of 2D curvature-induced (electrophoretic) drift, for di↵erent values of di↵usivity at
↵ = 0.13 and positive ✏

r

. As can be seen from Figure 5(a), at ↵ = 0.13 Re (�


) > 0, so Re (�
r

) = �Re (�


)
is negative which corresponds to the drift in the negative x direction in figure 9.

It can be seen that in figure 9, in line with continuous limit predictions, as di↵usivity decreases,
so does the spatial scale of the spiral tip trajectory. Further still there is another e↵ect which has an
entirely discrete nature: as di↵usivity becomes too small, the drift of the spiral stops altogether. Panel
(b) indicates that there is a range of di↵usivities at which the longitudinal component of the drift (which
corresponds to the filament tension b2 and is smaller in absolute value than the lateral component, see
Figure 5(a)), ‘freezes out’, while the lateral component is still observed, so the drift proceeds along the
vertical grid line.

Note that change of filament tension due to relatively small discreteness is a generic feature of excitable
media, and has been reported in FitzHugh-Nagumo [23] and Barkley [?] models.

Another important e↵ect of the tissue discreteness is due to the role of microscopic heterogeneities
of parameter ↵, defined by equation (2), in the generation of ectopic foci and breakup of excitation
waves. In presence of the microscopic heterogeneity, �

↵

> 0, a macroscopically homogeneous tissue,
with D = Dmin = Dmax, z1 = �1 in (3) and (4), may either show spontaneous focal sources or be
quiescent depending on particular combination of D, ↵ and �

↵

. The critical curves in the (D,↵) plane,
separating the automatic and exctiable regimes (corresponding to the zones III and V in figure 3 and
transition between them), are shown in figure 10, for 2D and 3D cases. We obtained the 3D curve from
direct simulations on a thin three-dimensional grid of 40 ⇥ 60 ⇥ 5 cells at �

↵

= 0.5. The transition
curve obtained from 2D simulations, as in [6], is shown on the same graph for comparison. One can
see that position of the 3D transitional curve is elevated compared to the 2D transitional curve. This
elevation is due to the fact that every cell in 3D is connected to more neighbours, which increases the
load on the automatic cells surrounded by non-automatic environment. Therefore, in 3D it takes more
automaticity to overcome the coupling with the quiescent neighbours, so in 3D simulations the same
regimes are observed at di↵erent values of parameters ↵ and D than in 2D simulations.
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We performed numerical simulations of the 3D tissue slab with di↵usivity and excitability profiles
shown in figure 11(c). The lower layer contained fully uncoupled cells with excitability ↵ = 0. This layer
corresponded to the region IV in figure 3, “a quiescent state where wave propagation is not possible”. To
reveal the above described e↵ects of tissue discreteness, we performed simulations using three di↵erent
sets of parameters D, ↵ and �

↵

defining properties of the upper layer. We used Dmin = Dmax/100 in all
cases.

The first, “toy” set of parameters (figures 11 and 12) was Dmax = 5 · 10�5 cm2/s, ↵max = 0.13,
�
↵

= 0.1. At the small �
↵

= 0.1 the number of cells getting above ↵ = ↵osc line will be small, resulting
in further elevation of the 3D transitional curve compared to the �

↵

= 0.5 shown in figure 10. Therefore,
the upper layer with this set of parameters D, ↵ and �

↵

still corresponded to the region V “a quiescent
state where wave propagation is possible”, which ensured a transition from what is described as region
III “fragmented ectopic waves ” within the middle layer to region V in the top layer. The value Dmin /
10�7 cm2/s was below the physiologically meaningful range, so simulations with the smaller D were more
of a mathematical excercise, which allowed however, due to the smaller spatial scales involed, to perform
a relatively detailed study despite the computational expences of the three-dimensional model. The
principal conclusion was then tested with the more physiologically relevant set of paramers.

The two “more realistic” sets of parameters (figure 13) were Dmax = 10�3 cm2/s, �
↵

= 0.5, with
either ↵max = 0.105 or ↵max = 0.115, both corresponded to the region V “a quiescent state where wave
propagation is possible” (below the critical line in figure 10), which also ensured the transition from
region III to region V within the middle layer. This sets of parameters were “more realistic” in terms of
the value of di↵usivity more relevant to physiologically meaningful range.

Figure 11 presents a simulation with the “toy” set of parameters in a box size 40⇥ 30⇥ 60 cells and a
relatively slow border speed of c = 1/6 cell/s. Panel (a) shows small ectopic sources giving rise to multiple
ectopic “bubbles” in 3D, also shown in cross-sections from the model’s cube of cells in figure 11(b). The
wavefronts from multiple smaller ectopic sources fused into larger wavefronts which were spreading toward
the upper, better coupled layers of the border zone. No scroll wave activity is observed in the upper zone.
When the transitional border zone has passed down, the cube is left without ectopics and all activity is
ceased.

Figure 11(c) illustrates the probability of the spirals’ escape as a function of the speed of the border
in a thin 3D grid of cells. When the border moves too slow, it tends to “drag” the spiral waves with it,
so none penetrate into the outer zone, as was the case in the simulation shown in panels (a,b). When
the border speed is too high, then again no spiral waves are observed in the better coupled upper layer,
as they do not have enough time to develop. So, as can be seen from the far right graph in Figure 11(c),
the escapes are possible when the transitional middle layer moves faster than a typical velocity of a
spiral wave drift, but slower than the conduction velocity (both speeds are measured for the conditions
of suppressed coupling which can be found in the border zone). In particular, the maximal number of
spirals was observed at the border speed of c = 4 cell/s. A snapshot half way through a simulation with
c = 3 cell/s, with a few spirals that have already penetrated the outer zone, is shown on the leftmost
panel. As we noted earlier, in reality the border zone speed may vary in a very broad range.

Simple escape into the well-coupled upper layer is not enough for the scrolls to cause fibrillation in
3D. Scroll waves are typically born as “scroll rings” with closed filaments. As shown above, in our model,
negative filament tension is predicted by the theory for the smaller values of excitability parameter ↵.
Moreover, the e↵ects of filament tension of either sign can be obstructed by the discrete structure of the
model tissue, which is particularly essential in the conditions of the suppressed coupling.

Figure 12 presents a simulation with the “toy” set of parameters in a box size 40⇥ 30⇥ 60 cells and a
higher border speed of c = 3 cell/s, when moving border zone led to generation of multiple scrolls which
stayed in the medium after the zone was gone (see also the supplementary video fig12.mpg). Figure 12(a)
shows the top view of the 3D box at four selected instants. To a viewer this will appear as small ectopic
sources developing into larger spiral waves. Figure 12(b) reveals the underlying 3D waves as they would
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Figure 11. The ischaemic border zone in three dimensions. “Toy” set of parameters: D

max

= 5 · 10�5 cm2

/s,
↵

max

= 0.13, �↵ = 0.1. (a,b) Box size 60 ⇥ 60 ⇥ 60 cells, border speed c = 1/6 cell/s. (a) Snapshot of activity on the surface and
inside the box (red semi-transparent surfaces are excitation fronts). (b) Activation patterns on a middle cross-section of the box.
(c) Schematic of the study of spirals’ probability to escape to the well coupled zone: a snapshot through the middle of a thin 3D
layer of cells (box size 40 ⇥ 5 ⇥ 60, border speed c = 3 cell/s); corresponding distribution of D, ↵ and ↵; movement of boundaries
with time; and average number of spirals left in the box after passing of the border zone, as function of the its speed. Here c

drift

is a typical drift velocity and CV is a typical conduction velocity.
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(a)

(b)

(c)

(d)
7.5 s 15 s 22.5 s 30 s

Figure 12. Moving border zone in 3D: vortex formation. “Toy” set of parameters: D

max

= 5 · 10�5 cm2

/s,
↵

max

= 0.13, �↵ = 0.1, box size 40 ⇥ 30 ⇥ 60 cells, border speed c = 3 cell/s. Left to right: successive moments of time. (a)
Activation patterns at the top face of the box. (b) 3D view of activation patterns at the surfaces of the box. (c) Excitation fronts
as semi-transparent surfaces. (d) Vortex filaments visualized as phase singularities where simultaneously V = �35mV and
f = 0.85. See also the supplementary video fig12.mpg.
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(a)

(b)
15 s 30 s 45 s 60 s

Figure 13. Vortex formation by moving border zone. “More realistic” sets of parameters: D

max

= 10�3 cm2

/s,
�↵ = 0.5, box size 120 ⇥ 90 ⇥ 180 cells, border speed c = 3 cell/s. 3D views of activation patterns as in figure 12(c): (a)
↵

max

= 0.105; (b) ↵

max

= 0.115. See also the supplementary video fig13.mov.

look on the side faces of the box. The 3D scrolls originate deep within the poorly coupled layers of the
ischaemic tissue and are spreading upwards as the border zone moves downwards. Figure 12(c) shows in
transparent colors the wavefronts of these newly born scrolls. Finally, figure 12(d) shows scroll filaments
visualized as phase singularities defined as the points where simultaneously V = �35mV and f = 0.85.
The dense cloud of the singularities corresponds to the area where the microscopic heterogeneities cause
multiple wavebreaks. Some of them develop into fully fledged scroll waves, which do not collapse and
spread through the whole network of cells to instigate persistent, self-supporting fibrillatory activity. Note
that at the value of ↵ used here, the filament tension is positive, and the scrolls in the upper layer would
tend to collapse were it not for the e↵ect of the medium discreteness which according to figure 9(c,d) is very
essential at this artificially low value ofDmax = 5·10�5 cm2/s. This simulation shown in figure 12 confirms
the main conclusion based on the two-dimensional tissue culture experiments and simulations [6,7]. That
is that the key factors of the ischaemic border zone, such as the gradient of coupling strength together
with the microscopic heterogeneity and macroscopic gradient of excitability, generate organizing centres
of sub-millimeter scale, which then penetrate into the bulk of the well coupled tissue, where the re-entry
reaches macroscopic scales.

This main conclusion is supported and reinforced by simulations at larger, more realistic values of D,
shown in figure 13 (see also the supplementary video fig13.mov). Stronger coupling results in stronger
e↵ective averaging of the microscopic heterogeneities. Hence, for the more realistic 3D similutions, we
have increased both the coupling strength D and the microscopic heterogeneity �

↵

. At this bigger Dmax

value, the filament tension is already essential, as evidenced by figure 9(a). We have chosen two values of
↵ which correspond to a negative and a positive tension of the generated vortex filaments (cf figure 5(a)).
The upper row in figure 13 shows results of simulations with a negative filament tension (↵ = 0.105). In
this simulation, the scroll that penetrated the bulk of the tissue has persisted after the ischemic border
zone had disappeared. On the contrast, the lower row in figure 13 shows that for ↵ = 0.115, when the
scrolls in the upper layer had a positive filament tension, they did not persist, but moved together with
the moving border zone. Continuation of the simulation figure 13(b) led to complete elimination of all
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activity (not shown). All that is in full agreement with what could be expected from the predictions of
the asymptotic theory.

Discussion

We have considered the quantitative predictions of the asymptotic theory for the forces acting on rotating
waves of activity that can form within a recovering ischaemic border. The direct numerical simulations
with deliberately arranged conditions confirmed the theoretical predictions for the evolution of the vor-
tices. Now, we can answer the specific questions posed in the Introduction as follows.

1. “In both experiments and numerical simulations, spiral waves were not static within the border
zone. What determines the components of the drift velocity, and why the spiral cores can be dragged
together with the moving border zone?”

• The theoretical analysis of the acting forces shows that regions with suppressed excitability ↵
are attracting for spirals, both if applied as a smooth gradient, or as a localized heterogeneity.
Conversely, if the upper layer of the boundary layer has a higher excitability, it tends to
repel spirals. This implies dragging the cores of the newly born re-entries by the moving
transitional border zone down towards the bottom layer with the lowered excitability, and
preventing them from escaping into the upper layer and ultimately into the normal tissue with
higher excitability.

• At the relatively low values of excitability ↵ in the upper layer corresponding to b2 = Re (�


) <
0, the spirals are repelled from the transitional border layer into the better coupled upper
layer with higher di↵usivity. This case corresponds to the simulation with ↵ = 0.105 shown
in figure 13(a). In this simulation, the newly born scroll penetrated the bulk of the tissue and
persisted even after the recovering border zone ceased to exist.

At the relatively high values of excitability ↵ in the upper layer corresponding to b2 = Re (�


) >
0, a gradient of di↵usivity drives spiral waves towards areas of smaller di↵usivity, i.e. towards
the poor coupled bottom layer. This case corresponds to the simulation with ↵ = 0.115 shown
in figure 13(b). In this simulation, the newly born scroll filaments never managed to get
far into the upper layer, where the positive filament tension further helped to complete their
elimination.

Hence, a relatively high excitability in the upper layer will suppress the transition to fibrillatory-
like state for two reasons: the gradient of excitability will prevent the cores of spirals or fila-
ments of scrolls from escaping into the more excitable outer zone; and at higher excitability,
the gradient of coupling will also drag them away from the better coupled outer zone.

2. “In both experiments and numerical simulations, the drift of the spirals was interrupted by their
“pinning” to clusters of cells. We have shown numerically that these can be cell clusters of either
elevated or suppressed excitability. What is the mechanism of such pinning?”

• The theoretical analysis shows that a combination of acting forces generated by smooth gra-
dients of tissue properties and a localized inhomogeneity in excitability parameter ↵ may lead
to temporary or permanent pinning of drifting spirals. The chances of pinning depend on the
trajectory of the drifting spiral and geometry of the heterogeneity, and it may happen at either
sign of the inhomogeneity (i.e. locally increased or decreased excitability).

• There is more than one mechanism of pinning. Apart from pinning to an attracting inho-
mogeneity, the drift can also be stopped by a certain spatial arrangement of repelling inho-
mogeneities. Even if “permanent” pinning is not achieved, a temporary pinning still may
be observed for some finite time if the trajectory of the spiral core passes near an unstable
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equilibrium. There is also a theoretical possibility of “orbital motion” which however is not
realized in the present model at interesting values of parameters.

3. “In both experiments and numerical simulations, the episodes of spiral drift and pinning alternated.
What is the mechanism by which pinning can give way to further drift?”

• Correspondingly, there is more than one mechanism of unpinning. One is that due to the
border zone dynamics, parameters of the tissue may change in such a way that gradient-
induced force exceeds the tear-o↵ threshold. The other is that the spiral wave core drifts away
from the pinning site because its position there was unstable in the first place.

4. “One of arrhythmogenic scenarios proposed in [6, 7] involved pinning of a spiral wave to a local
heterogeneity which persists long enough until the border zone passes and the spiral gets into the
better coupled tissue. Is this scenario viable in 3D?”

• In 3D, in addition to whatever dynamics 2D spiral waves might have, scroll waves exhibit
additional dynamics associated with the motion of filament, and characterized by the filament
tension and the binormal drift coe�cient. In the considered tissue model, the filament tension
is small compared to the binormal drift coe�cient, and changes sign in the relevant range of
excitability parameter. This means that scroll waves that managed to escape into the well
coupled upper zone, might not necessarily immediately collapse.

• The scroll filaments that managed to stay until the tissue is recovered, may not collapse
but survive, if the filament tension is negative. These filaments may subsequently generate
scroll wave turbulence. Note a nontrivial coincidence following from the asymptotic theory:
excitability of the upper layer at the lower range of parameter ↵ ensures the negative filament
tension and hence is a condition of survival of scrolls in that zone, and it also ensures that
the specific force caused by the coupling gradient repells the scrolls into the upper, better
coupled layer. So here we have a third reason a relatively high excitability in the outer layer is
“anti-arrhythmic”: at higher excitability, the scrolls in the outer layer are less likely to survive
due to 3D e↵ects.

• Further, there are some features revealed by the 2D simulations which are beyond direct
applicability of the asymptotic theory. That is the e↵ect of the dicreteness of the medium,
which particularly matters at low values of di↵usivity. The discretness of the medium can
arrest the drift of spiral cores, and when applied to 3D scrolls, the filaments can freeze as
long as their curvature is not too high, and the “filament tension” component of their drift
freezes sooner than the “lateral binormal drift” component. Therefore, the scroll filaments that
managed to stay until the tissue is recovered, may not collapse but survive, as their filament
tension is frozen due to low di↵usivity. In that case of the “frozen”, zero filament tension, the
regime might rather look like a persistent tachycardia similar to the pinned 2D spiral regime.

To summarize, we explored a biophysically plausible mechanism as to how ectopic beats and spreading
scrolls of abnormal activity can be generated from the recovering boundary of acutely ischaemic tissue.
Complex boundary behaviour in heterogeneous cell network was modeled with certain assumptions and
simplifications, extensively discussed in our previous publications [6, 7].

With all the assumptions and limitations, the following combined conclusions can be made based on
the in vitro and in silico data from our previous publications and the current study. First, the data
suggested that the combination of the two gradients (i.e. the spatial gradient in cell-to-cell coupling and
the temporal gradient in excitability/automaticity) ensured that somewhere within the border zone there
was a region where multiple ectopic sources were continuously being formed. They were highly localized
focal points of activity, with activation spreading only to a few surrounding cells. Number of ectopic
sources and specific window of conditions when they occured were a↵ected by the degree of the network
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heterogeneity. Secondly, the data argued that if the ectopically active layer was su�ciently wide and/or
the overall cell automaticity rose, ectopic sources developed into target-like waves. If coupling gradient
and automaticity levels remained spatiotemporally fixed, the pattern of target-like sources persisted and
no spiral activity was observed. However, when cell automaticity rose and/or border zone moved in
space, the propagation patterns became non-stationary. This led to multiple wavebreaks resulting in
spiral generation activity. The spiral waves typically demonstrated start-stop drifting behaviour, as
a result of competing forces between pinning force due to local heterogeneity and a gradient-induced
directional drift. The likelihood of a spiral escape into the better coupled upper tissue zone depend on
the speed at which the border zone moves in space.

Our extrapolation of 2D events into 3D is more theoretical, as tissue culture experiments similar to
those described in [5, 6] are not feasible in 3D. Still, this extrapolation has shown that the border zone
can give rise to 3D analogues of spirals, the scroll waves. If a scroll wave escapes into a better coupled
tissue it will not necessarily cause fibrillation, because the scroll wave with positive filament tension have
tendency to collapse. However, our simulations have shown that this collapse of newly generated scrolls is
not inevitable and, instead, scroll filaments can stabilise or, in case of negative filament tension, expand
and multiply leading to a fibrillation-like state.

In this study, we considered the asymptotic theory’s quantitative predictions for the forces acting on
a cardiac re-entry, and causing its drift, in the vicinity of the ischaemic border zone. The theoretical
predictions allow to tell apart and highlight di↵erent mechanisms of arrythmogenesis by the ischaemic
boder zone in three-dimentiontional settings. The direct numerical simulations with deliberately arranged
conditions confirmed the theoretical predictions for the drift.

We fully realize that in vivo, the above considered scenarios will be a↵ected by multiple additional
factors. These might include excitability kinetics di↵erent from the simplified generic model we used here,
presence of highly excitable Purkinje fibers, macroscopic myofiber orientation, coronary vessels, fibrous
or fat deposits, transmural di↵erences in myocytes metabolic activity and their sensitivity to ischaemia.
Yet, with all its limitations, this study represents one of the first attempts to theoretically explore a
very complex set of highly arrhythmogenic conditions that can occur on the boundary of the recovering
ischaemic tissue.
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