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Preface

International Conference

"Instabilities and Control of Excitable Networks:

From Macro- to Nano-Systems"

was held in Dolgoprudny, Russia in May 25-30 and devoted to the problems of complex excitable
network dynamics in physiology, biomedicine, physics, chemistry and social systems. The main topics
were:

• Instabilities in far-from-equilibrium excitable network dynamics;

• Pattern formation in network-organized systems;

• Control of threshold and kinetic cascade avalanche-like phenomena;

• Conceptual items and their application to natural and social systems.

The main goal of the conference was to advance interdisciplinary research and develop new cross-
disciplinary links in Russia and abroad. The Conference was attended by a few vibrant groups of
researchers at different stages of their academic careers. The participating scholars have studied
problems related to self-organization in various systems, engineering of excitable biological tissues
and control of excitable networks. We believe that this conference was foster new contacts and an
exchange of exciting ideas. Presented in this issue collection of the papers to some degree reflects the
present state of art in the area.

Sincerely Yours,
Co-Chairs,
Konstantin Agladze

and
Georgy Guria
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1 Introduction
Spiral waves in two spatial dimensions (2D), and scroll waves in three dimensions

(3D), are regimes of self-organization observed in physical, chemical and biological dis-
sipative systems, where wave propagation is supported by a source of energy stored in the
medium [1–9]. A spiral wave is a remarkably stable solution: it only reacts to perturbations
if they are sufficiently close to its “core”. The result of that is that when only relatively small
perturbations are concerned, dynamics of spiral waves is phenomenologically similar to that
of “particles”, despite the fact that a spiral wave is in no way a localized object, but tends to
fill up all the available medium. This macroscopic “wave-particle duality” [10] extends to
three dimensions: scroll waves can be described as “string-like” objects [11].

This article is a retelling of a conference presentation which reviewed a few selected
papers, dedicated to exploring this particle- and string-like dynamics and possibilities of
exploiting it for the purposes of their control. A particular importance of control may be in
cardiac tissue, where spiral and scroll waves underlie dangerous arrhythmias.

2 An outline of the theory
Here we briefly overview the key results of the asymptotic theory of spiral wave dynam-

ics, more details of which can be found e.g. in [10, 12, 13] This theory centers on reaction-
diffusion systems,

∂tu = f(u)+D—2u+ eh, u, f,h 2 R`, D 2 R`⇥`, `� 2.

Here ` is the number of reacting components, u = u(~r, t) is the column-vector of reagent
concentrations, ~r 2 R2 or R3 is the position vector in the physical space, D is the ma-
trix of diffusion coefficients, f is the column-vector describing the reaction rates, and
eh = eh(u,—u,~r, t), e ⌧ 1, is a small perturbation. The rationale of considering eh sep-
arately from f is that at e = 0, the system has a symmetry with respect to translations and
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Figure 1: Response functions for FitzHugh-Nagumo system [14].

rotations of the ~r space and translations in time t, so eh is a generic symmetry-breaking
perturbation.

We assume existence of steadily rotating spiral wave solutions at e = 0:

u(~r, t) = U(r(~r�~R),J(~r�~R)+wt �F),

where~r = (x,y), r( ·) and J( ·) are polar coordinates, ~R = (X ,Y ) = const, F = const, and
w is an eigenvalue, i.e. there are only discrete values of w possible for any given reaction
diffusion system; typically just one (up to the sign). This is not always the case with spiral
waves: in some systems they “meander”, that is rotate unsteadily; this case is not considered
here.

If e is nonzero but small enough, the spiral drifts: solution remains approximately as
above, but with ~R and F no longer constant but changing with time, d~R/dt =O(e), dF/dt =
O(e).

The velocity of the drift caused by the perturbation is given by

Ṙ = e

f+p

Z

f�p

e�ix ⌦W , h̃(U;r,q ,x )
↵ dx

2p

+O(e2),

where (r,q) are corotating polar coordinates, f and x measure the rotation phase, f =
wt �F(t), and the angular brackets denote an inner product in the functional space, that is
an integral of the form

hw , vi=
Z

R2

w+(~r)v(~r)d2~r =
I

•
Z

0

w+(r,q)v(r,q)r dr dq .

These expressions use the so called response function W(r,q) = W(1)(r,q)2C: eigen-
function of the adjoint linearized operator, corresponding to eigenvalue iw . More pre-
cisely, this is “translational” eigenfunction as it describes drift (translation) of spiral centre ~R

Instabilities and Control of Excitable Networks: From Macro- to Nano-Systems 9



Figure 2: Resonant drift and resonant repulsion of a spiral wave in FitzHugh-Nagumo system.
Graphs on top: the record of the action potential in the top right corner, vs the sinusoidal repre-
senting the clock that controls periodic stimulation. Change of relative position of action potential
with respect to the clock means change of the direction of the drift. [13, 15]

through space; there is also “rotational” eigenfunction W(0)(r,q), which describes the drift
of the spiral’s fiducial rotation phase F; this is of a lesser interest in this review. Figure 1
illustrates the spiral wave solution and the response functions in a popular simple model of
excitable media, the FitzHugh-Nagumo system. The pictures represent density plots of the
corresponding solutions at a selected moment of time; they rotate clockwise as time pro-
gresses. The crucial feature of the response functions is that they quickly approach zero
beyond the “core” area near to the rotation centre. This is the mathematical basis for the
“particle-like” behaviour of spiral waves: the response functions show how an instantaneous
and infinitesimal perturbation of a particular component will affect the spiral wave position,
so the grey area outside the core means that any perturbation there will have virtually no
long-term effect of the spiral, whereas perturbation into the lighter or darker areas within the
core can cause a shift of the spiral wave rotation centre.

The simplest sort of spiral wave drift is a “resonant drift” of spirals, theoretically pre-
dicted by Davydov et al. [16] and first experimentally observed by Agladze et al. [17]. It
occurs in response to perturbation explicitly depending on time, h = h(u, t), so violating the
time shift symmetry. This dependence on time is periodic, with a period equal to the period
of the spiral wave, thus “resonant”. The idea is illustrated in figure 2. The perturbation has a
form of periodic pulses; the clock that controls these pulses is represented by the sinusoidal
curve on top of the pictures. The result of one pulse is a displacement of the scroll by a cer-
tain distance in the direction, depending on the orientation of the spiral wave at the moment
of the pulse delivery. The subsequent pulses are delivered with the period equal to the period
of the spiral, hence they fall at the same orientation of the spiral and cause its displacements
in the same direction again and again. The direction of this drift thus depends on the relative
phase of the stimulation clock and the spiral wave phase, which is represented by the action
potential, recorded at the top right corner, also shown on top of the pictures. However, the
period of the spiral wave changes as its core approaches the boundary of the medium. Hence
the phase relationship between the spiral and the stimulation changes, as can be seen by the
change of the relative position of the action potential and the stimulation clock. Change of
the phase difference means change of the direction of the drift, which will continue until the
spiral moves far enough from the boundary, so the resonance restores and the drift proceeds
at a straight line away from the boundary. This appears as a “repulsion” of the spiral from
the boundary. An asymptotic description of this resonant repulsion mechanism can be found
in [12, 15]. Since spiral waves underlie cardiac arrhythmias, their elimination by forcing
them to drift to an inexcitable boundary can be a viable anti-arrhythmic strategy. In this
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Figure 4: Drift speed: asymptotics (“theory”) vs direct numerical simulations (“DNS”) [13].

context, the resonant repulsion is an undesirable effect. It can, however, be easily overcome
by using a feed-back, to synchronize the stimulation with the rotation of the spiral wave and
thus ensure the resonance [12, 18].

Figure 3: Drift of a spi-
ral wave caused by step-
wise parametric inhomogene-
ity in FitzHugh-Nagumo sys-
tem [12, 13, 19].

Another well known sort of drift happens when the pertur-
bation violates the spatial translation symmetry, h = h(u,~r).
This means, that the right-hand sides of the reaction-diffusion
system depend on space coordinates, or, in physical language,
the medium is spatially inhomogeneous. Within the perturba-
tion theory, this results in an oscillating perturbation, applied
by the spiral wave “onto itself”, as it rotates through points
of the medium with different properties, so the perturbation is
periodic and always resonant. This sort of drift is illustrated
in figure 3, where the blue component of the colour represents
one of the parameters of the reaction kinetics, so the right and
left halves of the medium are slightly different in their proper-
ties, which causes the spiral to drift.

The speed and direction of the drift caused by a stepwise
inhomogeneity, as in figure 3, depend on the position of the
spiral’s instant rotation centre relative to the step. If the inho-
mogeneity is in the form of a slight linear gradient speading over a long distance, then the
spiral can drift with the same speed in the same direction throughout that distance. A yet
another sort of perturbation that can cause drift is the one that breaks the rotational symme-
try of the problem: h = h(u,—u). For instance, if the molecules of the reacting species are
electrically charged and an external electric field is applied, then h = A—u where diagonal
matrix A represents electrophoretic mobilities of the reagents.

Knowing the response functions, the velocities of these types of drift: resonant, elec-
trophoretic and inhomogeneity-induced, can be predicted. Figure 4 compares these pre-
dictions with direct numerical simulations, for the FitzHugh-Nagumo system, and for the
Barkley system, which is a very popular variation of the FitzHugh-Nagumo, particularly
convenient for conceptual simulations.

Instabilities and Control of Excitable Networks: From Macro- to Nano-Systems 11



Figure 5: Orbital movement
of a spiral wave in Barkley
system around a localized in-
homogeneity [20].

Theoretical predictions based on the response functions
showed that the dependence of the inhomogeneity-induced
drift on the relative location of the spiral wave and inhomo-
geneity sometimes may be not straightforward: attraction at
some distances may change to repulsion at other distances. For
the case of a localized inhomogeneity, this may lead to the sit-
uation that there is a stable distance between the spiral and the
inhomogeneity, so a spiral wave starting from a wide range
of initial conditions launches into a circular “orbital motion”
around the inhomogeneity, as shown in figure 5.

In the figure, the circular green spot in the middle repre-
sents the inhomogeneity, i.e. the site where the parameters of
the reaction kinetics slightly differ. The spiral wave is depicted
by the red/blue colour palette, with red component represent-
ing the “excitation” variable of the Barkley system and the blue
component representing the “recovery” variable. The thin white line depicts the trajectory
of the tip of that spiral wave, which is defined as an intersection of selected isolines of the
two components. This trajectory was averaged over every period of rotation, and the corre-
sponding instant rotation centres are represented by blue (earlier time moments) and yellow
(later time moments) small circles. At the selected parameters, the inhomogeneity is re-
pelling at small distances and attracting at larger distances. Correspondingly, the spiral wave
that started near the local inhomogeneity, departs away from it, but only until it reaches the
distance beyond which the repulsion changes to attraction. The spiral then continues to drift
along the circle of the radius at which the radial component of the drift force generated by
the inhomogeneity vanishes. The radius and the velocity of this orbital drift are in good
agreement with predictions based on the response functions.

3 Application in 2D: drift of spirals in an ischaemic border zone

In the asymptotic theory described above, the drift velocity ~̇R linearly depends on the
perturbation h. This immediately implies that when several different types of perturbations
are applied simultaneously, their effects add up. Thus we have a superposition principle: a
superposition of various perturbations

eh = Â
j

e jh j,

has additive effect on the drift velocity

Ṙ ⇡ Â
j

e jg j,

where the “specific forces” are

g j =

f+p

Z

f�p

e�ix ⌦W , h̃ j
↵ dx

2p

.

This has been used to explain some phenomena observed in a computational model, de-
scribing experiments with cultures of cardiac cells, which in turn mimic events that happen
at a boundary of an ischemic zone that gradually recovers during reperfusion ([21], see fig-
ure 6). In the experiments and in the simulations, a certain combination of variations in
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cell excitability/automaticity and in strength of their electric coupling with each other cre-
ated conditions in which spontaneous activity of individual cells created propagating waves
which broke up creating microscopic-scale spiral wave activity. One notable feature of these
spiral waves was their drift, which would often temporarily stop, or “pin” at local hetero-
geneities. This feature was essential for the arrhythmogeneity of the ischemic border zone,
as the pinned spiral waves had the chance to be not dragged together with the border zone,
but survive its passage, after which they develop into macroscopic scale re-entrant waves.
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27

Figure 6: Start/stop drift of spiral wave in (A,B) a culture of
neonathal rat cells, (C) in simulations using Pumir’s modifi-
cation of Beeler-Reuter model [21].

The asymptotic theory has
been applied to analyse and ex-
plain these phenomena. Figure 7
illustrates the response functions
calculated for the particular ionic
model of cardiac excitability that
was used in the simulations of
[21]. The figure shows the spi-
ral wave solution and the compo-
nents of the translational response
function, in the same format as
in figure 1, only this model has
` = 7 components. As before, a
prominent feature is the localiza-
tion of all the components of the
response function, which justifies
the particle-like description of spi-
ral waves in this system.

Indeed, comparison of the pre-
dictions of the asymptotic theory
with standard numerical simula-
tions, such as electrophoretic drift,
showed a good agreement. In simulations more specific for the electrophysiological setting
described above, one deals with a combination of perturbations: localized heterogeneities,
smooth gradients of excitability and of cell-to-cell coupling strength, i.e. diffusion coeffi-
cient. In realistic simulations, the strength of these perturbations is not necessarily small

Instabilities and Control of Excitable Networks: From Macro- to Nano-Systems 13



enough for quantitative correspondence, still the asymptotic theory has been able to explain,
on the qualitative level, some of the observed phenomena.

(a) (b)

(c) (d)

Figure 8: Pinning of drifting spiral wave to local
heterogeneity.

Figure 8 presents comparison of asymp-
totic theory with direct numerical simula-
tion. Panel (a) is a fragment of simulation
where the drifting spiral wave (the trajec-
tory of the tip is shown by a thin white line)
is temporarily stopped at a dark spot and
then resumed the drift afterwards. A small
puzzle was that the experimental data sug-
gested that such temporary stopping could
happen both near spots of higher excitabil-
ity, as well as spots of lower excitability,
whereas asymptotic theory predicts that if a
localized perturbation of one sign is attract-
ing then a perturbation of the opposite sign
must be repelling.

A hypothetical explanation that repul-
sion may change to attraction at different
distances (see discussion of “orbital mo-
tion” above), did not work for this case as
the response functions in this system did not
show the sign-changing character required
for that. Figure 8(b) describes a hypotheti-
cal mechanism of temporary pinning at a repulsive inhomogeneity, which is consistent with
the present system. In this case, the spiral drift slows down near an unstable equilibrium
point, where the drift forces due to localized inhomogeneity and due to the smooth gradients
equilibrate each other. Panel (c) illustrates another possibility, where two repelling circular
local inhomogeneities are arranged in such a way that a stable equilibrium between now three
forces exists, where the spiral can pin indefinitely (or in reality, until the smooth gradients
move away due to reperfusion). Panel (d) shows for comparison the more straightforward
case of pinning to an attracting heterogeneity. In panels (b–d), green dots in the middle
represent the local heterogeneities, the red cyloidal line is the trajectory of the tip in the nu-
merical simulations, the small black arrows are the direction field of the drift according to
the asymptotic theory and blue open circles are the trajectories of the drift calculated based
on the asymptotic theory.

4 Applications in 3D: resonant drift of scrolls and filament tension
The asymptotic theory of spiral waves in 2D can be extended to scroll waves in 3D. The

instantaneous rotation center of a spiral wave becomes the filament of a scroll in 3D. So
equations of motion for the spiral position ~R(t) and phase F(t) are transformed to equa-
tions of motions of the scroll wave filament ~R(s , t) and the corresponding phase distribution
F(s , t), where s is a coordinate along the filament. Thus we have new degrees of freedom
in 3D: the filament can be curved, and the phase may vary along the filament.

Variation of scroll phase along its filament is called twist. Remember that the direction of
the resonant drift of a spiral wave depends on the phase of that spiral. So if resonant forcing
is applied to a twisted scroll, then “spiral waves” in different cross-sections of this scroll will
have different phases and drift in different directions. This will lead to formation of a scroll
with a filament of a helical shape, illustrated in figure 9(a). The picture shows a snapshot of
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a wavefront, defined as an isosurface of the excitation variable, more precisely its part where
the recovery variable is less than a certain constant, so only the front of the excitation wave
is shown but not the back. Note that as a result, the scroll as a whole does not drift anywhere,
as its different parts tend to go into different directions.

(a) (b)

Figure 9: Twisted scroll with helical filament caused by reso-
nant stimulation, (a) in Barkley system, (b) in the rabbit ven-
tricle anatomical model with modified Beeler-Reuter kinet-
ics [23].

The twist of the scroll in fig-
ure 9(a) was created artificially
by using appropriate initial and
boundary conditions. In cardiac
tissue, twist may occur sponta-
neously due to inherent inhomo-
geneities of the electrophysiol-
ogy of cells and anisotropy of
the structure of tissue. This may
result in a failure of the reso-
nant forcing to eliminate scrolls
in heart tissue. A snapshot of
a simulation of resonant forcing
of a fibrillatory activity in an
anatomically realistic model of
heart ventricles is shown in fig-
ure 9(b). Unlike panel (a), here are shown only parts of the wavefronts that are close to the
filament. Technically, the wavefront is defined as an isosurface of the variable representing
transmembrane voltage, which is usually understood as the excitation variable. One of the
other 6 variables was chosen as the recovery variable that is often used to distinguish wave
fronts from wave backs. Here the selection of the voltage isosurface pieces for visualiza-
tion was done by selecting only intermediate (neither the front, nor the back) values of the
recovery variable. So we may assume that depicted are the “lines of singularity”, which cor-
respond to the tips of the spiral waves in 2D, and which rotate around the scroll filaments.
Besides, we can see variations of the phase of the filament, as change of orientation of the
visualized stripe of the front surface. Twist of the filament correlates with its helical shape.

Figure 10: Frenet-Serret
frame at a point of the scroll
filament.

Dynamics of the filament position can be interesting in it-
self even without effects of twist or resonant forcing. The
asymptotic motion equation can be written in terms of the
Frenet-Serret frame, see figure 10, where ~T is the tangent vec-
tor, ~N is the principal normal vector and ~B is the binormal
vector at a point of the filament with coordinate s along the
filament.

Then in the lowest order, the filament equation of motion
is [26]

(~N + i~B) ·~R = (b2 + ic3)k (1)

where k = |∂s~T | is the filament curvature, s is the arclength coordinate, so ds= |∂
s

~R|ds , and
the coefficients b2 and c3 can be calculated using the response function. A simple property
of this equation of motion is that, neglecting boundary effects, the total length of the filament
satisfies

d
dt

Z

ds =�
Z

b2k

2 ds,

that is, if the coefficient b2 > 0, then the filament shrinks unless it is straight; and if b2 < 0,
then it will lengthen, and the straight filament is unstable. Thus this coefficient is sometimes
called filament “tension”.

Instabilities and Control of Excitable Networks: From Macro- to Nano-Systems 15



(a) (b)

Figure 11: Effects of negative filament tension: (a)
scroll wave turbulence in a big volume, (b) buckled
scroll in a thin volume, Barkley system [24, 25].

Instability of the straight filament,
in a large enough volume of excitable
medium, leads to constant lengthen-
ing through curving, and multiplication
through break-up of scroll filaments, and
can result in “scroll wave turbulence”,
see figure 11(a). The apparently chaotic
character of this regime, and the “critical
mass” phenomenon, in that a large enough
volume is required for it, make it similar to
cardiac fibrillation, hence a possibility that
negative tension may play a role in some
forms or stages of cardiac fibrillation.

Notably scroll wave turbulence occurs
in 3D in the same equations which in
2D render perfectly stable spiral waves.
Hence it is interesting, how transition from a stable 2D rotation to a 3D turbulence hap-
pens in thin sheets of excitable media, like some cardiac muscles, including human atria.
Figure 11(b) illustrates one such regime, where the filament bends but only slightly, and a
result of that bend is precession, showing up on the surface of the medium as a meander-
ing spiral, whose tip describes a flower-like trajectory. A similar phenomenon was observed
in a model of heart tissue [27]. This regime can be described using response functions, but
higher-order asymptotics compared to those in equation (1) are required [25]. The key role in
restabilizing a filament with negative tension belongs to a coefficient called “filament rigid-
ity”. There is an analogy here with mechanics of an elastic beam, so that the negative tension
of the scroll filament corresponds to the compressive stress of the beam, the filament rigidity
corresponds to the beam’s stiffness, and the regime illustrated in figure 11(b) is similar to
“Euler’s buckling” of the beam.

Figure 12: Effect of filament tension on arrhyth-
mogeneity of retracting ischemic border zone. Left:
negative tension. Right: positive tension [22].

The theory of arrhythmogenicity of
retracting ischamic border zone, briefly
described above, was 2D, as were the
cell culture experiments on which it was
based. However some real cardiac mus-
cles, including human ventricles, are es-
sentially 3D. The concept of filament ten-
sion is useful for consideration of possi-
ble 3D aspects, which cannot be studied in
cell culture experiments, but can be sim-
ulated numerically. Two snapshots from
such numerical experiments are shown in
figure 12. The settings in these two exper-
iments were exactly the same except for
the value of an excitability parameter for
the bulk of the recovered tissue above the
retracting ischaemic boundary zone. On the left panel, the excitability is low, so that the
filament tension is negative. After transition of the boundary zone, there is a scroll wave in
the recovered tissue, i.e. in the cardiac muscle we would see a macroscopic re-entry. On the
right panel, on the contrary, the excitability is higher and the filament tension is positive. As
a result, since all the newly born scroll waves have filaments ending within the chaotic activ-
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ity of the moving boundary zone, these filaments are dragged down together with that zone
by that tension. In the simulation in the right panel, after the passage of the boundary zone,
the medium returns to the resting state, which would correspond to no re-entrant activity in
the cardiac muscle.

5 Conclusion
Mathematically, the localization of the response functions of spiral waves is a special

feature of the corresponding linearization operator, when the eigenfunctions of the operator
and of its adjoint have very different properties and belong to different spaces. Physically this
localization means that spiral waves behave like point objects, and scroll waves behave like
string objects, despite their wave appearance. Asymptotic theory based on that is (within
its limits) in good quantitative agreement with direct simulations. This asymptotic theory
can successfully predict new qualitative phenomena (orbital motion, pinning to repelling
inhomogeneity, scroll turbulence, buckling). This theory is applicable to cardiac excitation
models and may have impact on clinically relevant problems.
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