Using Beatbox: further details

Plan

Parallel BeatBox

Complex geometries

More about BBS syntax
More advanced scripts: fhnO
More advanced scripts: fhnl

More advanced scripts: fhn2

(pictures thanks to Ross McFarlane)

PARALLEL BEATBOX

24/06/2013 BeatBox Users Workshop

Domain Decomposition Supergrid with
Superindices

ix

24/06/2013 BeatBox Users Workshop 4

Launching BeatBox: MPI mode

> mpirun —np 27 BeatBox somescript.bbs
for automatic domain decomposition,

> mpirun —np 27 BeatBox somescript.bbs —decomp 3x3x3

for explicit domain decomposition formula. Note that in this
example, 3x3x3=27: each subdomain is allocated one process to
work with it.

As in sequential mode, the script can be followed take extra
parameters and further options.

Domain decomposition in 2D

The grid and boundary points

Subdomains with halos Subdomains united
24/06/2013 BeatBox Users Workshop

The concept of a device space

Sequential Parallel
. 8§ kg s
£§3 & 3 v g
xx 2 % = X
global_y1 OO0 OO0 v = global_y1
"""""""" 833883388308 " S| 83988 | 839883 - .
y0 = local_ymin
000022832229 EEEE [T [T
Q00000000000 (T1 11 [T 11 [T 1 1]
888233882333 883828 328888 -
ooooooooooog 8— u 888?— —88888
00000000000 Q | [©O000Q | [©OO00
888888888888 O 00000 OO0 0 = local_ymin
---------------- ©O00C0000009 v RN | | L
! 5555 OO0 OOOOOM v - bca yrac
x0 X O | [1O000Q | | ©OO000
Q | L O0000® | | OO000D
global yo OO0 - OOOOOO Y0 - global_yo

0x |eqo|b
6

X leqoj

24/06/2013 BeatBox Users Workshop 7

Halo swap in 2D

(d) Step 4

24/06/2013 BeatBox Users Workshop

Magic corners

 Exchange with
diagonal

neighbours |‘
does not ‘ ¥

require extra
action if halo \J
swapping is ¥
done in the

right order

24/06/2013 BeatBox Users Workshop

The ring of devices in MPI

== Return code check éz?
(>
&

24/06/2013

10

Parallel output:
MPI source types and file types

[JeOC0C #8000 8COC [1]

U
LI [T 0 [OO08_0O00e CO0e [[1]
[(TT] [] [T 1] [TTTT o000 800G @8COO [[T 11]

ce Rl

LT LITTTTOO08 0008 0008 [[1]

[] 1] [TTTTe0C00 #0000 @000] (]
[TTTTT o000 000 000 1} (]
[TTTTT 0008 0008 00o0e |

(a) The decomposed space to be (b) Source types for each process, defining the
written to file. local space as part of New.
000 000 000
000 000 000
000 000 000
000 000 000
000 000 000
000 000 000
000 000 000
000 000 000
000 000 000
(c) Filetypes for each process, defining the local space as part of the global space.

ﬁﬁq
)}
)]

(d) The com-
pleted file.

24/06/2013 BeatBox Users Workshop

COMPLEX GEOMETRIES

Arbitrary domain in Cartesian grid

0]0]0/0]0/0/0]0/0/0/0/0/0/0/0]0/0]0/0/0]0,
ool 1 oo Jeeelee] I ol I 10000
000000000000000000000
000000000000000000000
000000000000000000000
000000000 00000000
00000000
elelelelel I I
oleloelee] 1
oleloelee] 1
oleloeel I 1
00000000
00000000
00000000
00000000
0000000 000000000O OO0O00
0/0/0l000l0/0leel I I 1 JO/0/0/0/0)0]e,
0]0/0]0]0/0]0/0,0/0]0/0/0]0]0,0/0]00/0]0.

00000000000

24/06/2013 BeatBox Users Workshop

Key

O Void
@ Tissue (internal)
® Tissue (irregular)

13

Format of a geometry file

Comma-separated (in recent
versions can be space-separated)

text file with four or seven
columns.

Each row describes a point of the

geometry.

Columns 1-3: integer x,y,z
coordinates of the point

Column 4: integer point type. 0
means void (non-tissue). Nonzero
values are all equivalent (this may

change in later versions)

Columns 5-7: real components of

a vector defining the fibre

direction at the point. May or

may not be normalized.

24/06/2013

66,16,50,1,-0.455,1,0.278
67,16,50,1,-0.3,1,0.32
68,16,50,1,-0.098,1,0.336
69,16,50,1,0.216,1,0.328
70,16,50,1,0.353,1,0.35
71,16,50,1,0.489,1,0.373
72,16,50,1,0.61,1,0.388
/3,16,50,1,0.711,1,0.386
65,17,50,1,-0.524,1,0.284
66,17,50,1,-0.458,1,0.29
67,17,50,1,-0.383,1,0.26
68,17,50,1,-0.277,1,0.224
69,17,50,1,-0.187,1,0.2.

BeatBox Users Workshop

14

state command
with realistic geometry

state geometry=<file.bbg> [vmax=<value>]
[anisotropy=<value> [normaliseVectors=<value>]] ;

* The enclosing box size is calculated automatically. Hence xmax, ymayx,
zmax are not only not required, but are not allowed.

* vmax defaults to 2 (as in FitzZHugh-Nagumo).
e anisotropy defaults to 0 (means no)
* normalizeVectors defaults to O (means no).

Adjusting the grid to fit the geometry

max_y

min_y

24/06/2013

Geometry File

ololeleolel 1 I Jeloelelel | 100@)
000000000000 000000
0000000 00000000000
00000000000000
00000000000 ®
00000000000
00000000 0®
0000000000
000000000

00000008

00000000

3. 100/0]0/0/®
OO0000000
0/0]0]0/0/0/0/0/0]0/010/00/0]0/0]0)
0/0]0]0/0/0/0/0/0]0/010/0/0/0]0/0]0/0/0]0)
0/0]0]0/0/0/0/0/0]0/010/00/0]0/0]0/0/0]0)
0/0]0]0/0/0]0,0/0]0/0/0/0/0/0]00]0/0/0]0)

min_x max_x

o
:..QOQOO
o

0000000000,

00®
ool 1 1O
elel 1 1@
elel 1 @
00000
0000®
0000 @
00000
00000
00000
00000

0000000000

O
00
OO0
| J0®,
000
000
0] /
000
000

0]0/0]0/0]0]0]0/0]0]0]0]00]e,
0]0/0]0/0]0]0]0/0]0]0]0]00]e,
0]00]0]0]0]0]00]0]00]00]e,

BeatBox Users Workshop

Geom

0]0/0]0/0/0/0]0]0/0/0/0]0/0]0]0]0)
ololel I I lelolelelel I O[0l0)0)
00000000000 000000
00000000000
00000000
0000000

OOQ.%OOOO

o

o

o

O

O

o
elolel I I lelele] |

O00@O0000
0]0/0]0]0]0]0]0]6)

Key

O Void

® Non-void
O Void in halo

0000000000000,
000000000008
0000000000000

O
O
O
O
O
o
o
o
O
O
O
O

eelelelel I I lelele]

0000000000000
ceeeeeel I 1)) IO
0]0]0/0/0]0/0]0]0]0]00]0,

16

Launching BeatBox in MPI mode
with geometry

> mpirun —np 96 BeatBox humanAtrium.bbs —decomp 5x5x5

With complex geometries, some of the subdomains may happen
to contain no tissue points at all. In that case, it is not necessary
to allocate processors for those points, and number of
processors (96 in this example) may be less than the number of
subdomains in the decomposition (5x5x5=125 in this example).

Filling quality

547 21:14:33 FitzHughNagumo model IVB$ mpirun -np 32 Beatbox fhn ffr.bbs

#1!
/*
/*
/*

/*
/*

BeatBox 1.3 revision 692M, MPI compile Jun 20 2013 21:14:25

Domain decomposed as (002,004,004). */

31 processes will be active, 1 will be idle. */

1 subdomains are empty. */

Loading geometry data and normalising vectors...done. */

Filling quality 50.6%, 0=0.0% processes with empty subdomains */

The speed of computations is defined by the speed of the slowest
processor, i.e. the one with the fullest subdomain.

Filling quality is the ratio of the average load per active process to the load
of the busiest process. It is a rough indication of slow-down due to
unevenness of the load.

This can be taken into account when choosing the decomposition formula.

24/06/2013 BeatBox Users Workshop 18

MORE ABOUT BBS SYNTAX

Preprocessing

skipping comments (already covered)
including other Beatbox scripts,
calling system commands and
expanding string macros.

Including other BeatBox scripts

main.bbs: // This is my own script
<useful.bbs>

// Here’s some more of my own code.
def real cpar=3;

// Here is a lot of useful code...

useful.bbs: def real apar=1;

def real bpar=2;

result: def real bpar=2;

I:I Effective def real apar=1;

def real cpar=3;

24/06/2013 BeatBox Users Workshop

Calling system commands

def str now date '+%Y%m%d-%H:%M:%S"";

L]
def str now 20130624-16:30:55;
I

(assuming it is now 16:30:55 of 24 June 2013)

24/06/2013 BeatBox Users Workshop

22

Expanding string macros

def str snack porkpie;
def str hat [snack];
def str headware hat;

L] def str snack porkpie;
I def str hat porkpie;
def str headware hat;

Name in square brackets is a macro call.

24/06/2013 BeatBox Users Workshop

23

Expanding string macros

def str ninetynine 99;
def int number [ninetynine];

def str ninetynine 99;
def int number 99;

L]
I—

Macro can expand into anything that can be typed in a

script, e.g. a number.
24/06/2013 BeatBox Users Workshop

24

Expanding string macros

def int number 99;

def str ninetynine number;

def int number 99;
def str ninetynine [number];

| defint number 99; | Error, unless you also

W def str ninetynine number; Wy defined somewhere
something like

def str number somevalue;

A number variable does not, however, make a macro

24/06/2013 BeatBox Users Workshop

25

Expanding string macros

def str subset xO=minx x1=maxx

yO=miny yl=maxy;

k_print [subset] when=often file=often.out;
k_print [subset] when=seldom file=seldom.out;

]
I—

Macro can expand into anything that can be typed in a script,

k_print xO=minx x1=maxx

yO=miny yl=maxy when=often file=often.out;
k_print xO=minx x1=maxx

yO=miny yl=maxy when=seldom file=seldom.out;

including spaces and several lines of code (excluding a
semicolon).

24/06/2013

BeatBox Users Workshop

26

Predefined string macros

Command line: Beatbox foo.bbs 7 8;

E foo.bbs: def str outdir [0].dir;

def int apar [1];
def str name [2];

| Effectiveresult: def str outdir foo.dir;
— def int apar 7;

def str name 8;

24/06/2013 BeatBox Users Workshop

27

MORE ADVANCED SCRIPTS: FHNO

What is this about

The minimal.bbs script considered earlier is indeed minimal
and does the sort of task done by any cardiac simulation
package. However, Beatbox's flexibility allows you to do
much more than that.

Now we will consider some sample BeatBox scripts that
illustrate further features of BeatBox, both in terms of
syntax and in terms of functional capabilities, as well as
some useful scripting techniques.

The scripts themselves can be found in the BeatBox
distribution, under data/scripts/, and they are well
commented so could be self-explanatory.

In the presentation we will focus on the novel features, as
much as time permits.

fhn0.bbs

* Location: data/scripts/sequential/FitzZHughNagumo_model/fhn0.bbs

* Protocol: single cell with FHN kinetics, the action potentials initiated repeatedly.
The solution corresponding to the n-th action potential, n=4, is output to file
fhnO.rec.

New features:
* Use of string macros.

 sample device to convert grid value into a global k-variable, which is required for
the k_func;

 k_func as a feedback control device: stimulating shock is defined as a function of
current cell state;

 screen command and k_draw device for run-time graphics output: draw phase
trajectory of the system as the solution progresses;

* BeatBox script conditionals;

* record output device to write contents of the grid (in this case, just single cell) to a
file.

e clock and k_clock output devices that shows integer simulation time counter.

Using string macros

// Allocation of layers to the state varables: u in layer 0, v in
layer 1.

def str u 0;
def str v 1;
state xmax=1 ymax=1 zmax=1 vmax=[v]+1l; // that means, vmax=1+1=2

e String macros are defined by def command, same as arithmetic variables,
but with a type str.

* They can be used in place of the script, not only in k-expressions. To tell
them from the normal text, the square brackets [...] are used.

* |tis convenient to give names to layers rather than keeping in mind what
layer keeps what field. We shall see that string macros are more
convenient for layer names than arithmetic variables.

sample
sample

// Get
sample
sample

sample control device

name=Ust when=begin v0=[u] result=Ust; // No x0=... etc are needed
name=Vst when=begin v0=[v] result=Vst; // as there is only one point
// in the grid.

the values of U and V as global variables, at all t.
name=U v0=[u] result=U;
name=V v0=[v] result=V;

* Function: assign a value from the grid to a global k-variable. This cannot be
done by a k_func device due to a parallelizability limitation (more about it
later).

* Only x0,y0,z0,v0 space coordinates are used: they identify the grid value.

 Parameter result should be assigned to a real k-variable, not an
expression. NB: unlike most device parameters, this is not an assignment
as such (not done at run time), but remembering the name of the k-
variable. In that sense it is similar to the generic when parameter.

24/06/2013 BeatBox Users Workshop 32

sample device

sample name=Ust when=begin v0=[u] result=Ust; // No x0=... etc are needed
sample name=Vst when=begin v0=[v] result=Vst; // as there is only one point
// in the grid.

// Get the values of U and V as global variables, at all t.
sample name=U v0=[u] result=U;
sample name=V v0=[v] result=V;

* In this example, name=Ust and name=Vst only work once in the beginning
before any calculations, so they record the initial value (the resting state).

* The name=U and name=V device work every time, and their global
variables are used as the run-time feedback for the stimulation protocol.

24/06/2013 BeatBox Users Workshop 33

k_func as feedback control device

// Feed-back stimulation: stim on when the cell is close to the resting state;
k func name=feedback nowhere=1 pgm={
Tu= 1t (U,Ust+0.05)*1t(V,Vst+0.05)*1.0; // 1.0 if both U and V are close to
// resting state.

pulsecount=pulsecount+gt(Iu,0); // Increment the counter if shock.
chosenpulse=eq(pulsecount,4)*often; // Check if this is the chosen pulse.
end=end+gt (pulsecount,4); // Update the end condition: nothing

// to do after the chosen pulse.

/* in the expression above, '+' serves as logical 'or' */

« Reminder: nowhere=1 means that this device operates with and only with
global variables.

24/06/2013 BeatBox Users Workshop 34

k_func as feedback control device

// Feed-back stimulation: stim on when the cell is close to the resting state;

k _func name=feedback nowhere=1 pgm={
Iu= 1t (U,Ust+0.05)*1t(V,Vst+0.05)*1.0; //

//
pulsecount=pulsecount+gt(Iu,0); //
chosenpulse=eq(pulsecount,4)*often; //
end=end+gt (pulsecount,4); //

//

/* in the expression above, '+' serves as

}i

1.0 if both U and V are close to
resting state.

Increment the counter if shock.
Check if this is the chosen pulse.
Update the end condition: nothing
to do after the chosen pulse.
logical 'or' */

* The first assigment uses U,V,Ust,Vst obtained through earlier sample
device to give value of 0 or 1 to k-variable Ist. It will be 1, if simultaneously
the current U is less than Ust+0.5 and the current V is less than Vst+0.5,
i.e. the phase point has approached the resting state sufficiently closely.

24/06/2013 BeatBox Users Workshop 35

k_func as feedback control device

// Feed-back stimulation: stim on when the cell is close to the resting state;

k _func name=feedback nowhere=1 pgm={
Iu= 1t (U,Ust+0.05)*1t(V,Vst+0.05)*1.0; //

//
pulsecount=pulsecount+gt(Iu,0); //
chosenpulse=eq(pulsecount,4)*often; //
end=end+gt (pulsecount,4); //

//

/* in the expression above, '+' serves as

}i

1.0 if both U and V are close to
resting state.

Increment the counter if shock.
Check if this is the chosen pulse.
Update the end condition: nothing
to do after the chosen pulse.
logical 'or' */

* The second assignment increments k-variable pulsecount by 1 if variable
lu (as a result of the previous assignment) is positive (it could be only O or
1, remember). Assuming (!) that this shall happen only once per pulse,
the value of pulsecount will correspond to its name.

24/06/2013 BeatBox Users Workshop 36

k_func as feedback control device

// Feed-back stimulation: stim on when the cell is close to the resting state;

k _func name=feedback nowhere=1 pgm={
Iu= 1t (U,Ust+0.05)*1t(V,Vst+0.05)*1.0; //

//
pulsecount=pulsecount+gt(Iu,0); //
chosenpulse=eq(pulsecount,4)*often; //
end=end+gt (pulsecount,4); //

//

/* in the expression above, '+' serves as

}i

1.0 if both U and V are close to
resting state.

Increment the counter if shock.
Check if this is the chosen pulse.
Update the end condition: nothing
to do after the chosen pulse.
logical 'or' */

* The third assignment will make variable chosenpulse nonzero iff variable
pulsecount value equals 4, and at the same time, variable often is

nonzero.

* Variable often has been defined by k_func name=timing to be nonzero at

every 10t step.

* Variable chosenpulse will be used to control output: it will happen only
during the chosen pulse, and only at every 10t timestep.

24/06/2013 BeatBox Users Workshop 37

k_func as feedback control device

// Feed-back stimulation: stim on when the cell is close to the resting state;

k _func name=feedback nowhere=1 pgm={
Iu= 1t (U,Ust+0.05)*1t(V,Vst+0.05)*1.0; //

//
pulsecount=pulsecount+gt(Iu,0); //
chosenpulse=eq(pulsecount,4)*often; //
end=end+gt (pulsecount,4); //

//

/* in the expression above, '+' serves as

}i

1.0 if both U and V are close to
resting state.

Increment the counter if shock.
Check if this is the chosen pulse.
Update the end condition: nothing
to do after the chosen pulse.

logical 'or' */

* And finally, variable end will be nonzero if it was already nonzero (as a
result of k_func name=timing) or pulsecount variable exceeded 4.

* The first of these conditions is necessary to ensure against infinite runs
when for some reason pulses do not happen so pulsecount is not
incremented. The second condition is to avoid doing computations when

they are no longer needed.

24/06/2013 BeatBox Users Workshop 38

k_func as feedback control device

// Feed-back stimulation: stim on when the cell is close to the resting state;
k _func name=feedback nowhere=1 pgm={
Iu= 1t(U,Ust+0.05)*1t(V,Vst+0.05)*1.0; // 1.0 if both U and V are close to
// resting state.

pulsecount=pulsecount+gt(Iu,0); // Increment the counter if shock.
chosenpulse=eq(pulsecount,4)*often; // Check if this is the chosen pulse.
end=end+gt (pulsecount,4); // Update the end condition: nothing

// to do after the chosen pulse.

/* in the expression above, '+' serves as logical 'or' */

}i

* An alternative method would be to have two stop devices: one controlled
by a k-variable that is raised due to time expired, the other controlled by
another k-variable that is raised by the pulse count. Neither method is
wrong, but adding one assignment to in this (global) k func may be
cheaper than having one more device.

24/06/2013 BeatBox Users Workshop 39

k_func as feedback control device

// Shock to elicit the action potential.
k func name=stim when=Iu pgm={u[u]=u[u] + Iu} debug=stdout; // Debug parameter
// says print results of

// calculations to stdout.

* The variable lu assigned a value by the preceding name=feedback k_func,
is used in this one to kick the voltage.

* Note it has no space parameters so by default applies to all inner points
(there is one point in this 0D example, though). And it only works when lu
IS nonzero.

e Asaresult of the two k_func devices working together, lu is raised only
when the phase point comes close to the resting state, and once it is
raised, immediately u variable is pushed away from the resting state, thus
starting a new pulse. Hence the assumption that lu is nonzero only once
per pulse, which we made earlier, is justified.

* Since the k-program has any effect only when lu is nonzero, it makes
sense to execute this k_func only when lu is nonzero.

screen command

//**

// The graphics output window will be with 600x600 resolution with
// 10-pixel rims, located 10 pixels from the right and 10 pixels
// from the top of the screen.

screen WINX=-10 WINY=10 XMAX=620 YMAX=640;

// The coordinates of the output zone

def int row0 30; def int rowl 629;

def int col0 10; def int coll 609;

e Sets a window for run-time graphics output.
* Only one per script (just like state command)

« XMAX, YMAX: window size in pixels. Default is 640x480 (standard screen
size of computer displays at some ancient time).

WINX, WINY: coordinates of the window on the screen, in pixels. WINX:
from the left (if positive) or from the right (if negative) end of the screen,
similarly for WINY: from top if positive and from bottom if negative.

 The four parameters are then available as integer k-variables.
* In this example, we set the limits of graphics output within the screen.

24/06/2013 BeatBox Users Workshop 41

Running BeatBox with and without
graphics

e With graphics:
685 20:55:22 FitzHughNagumo model$ Beatbox SEQ fhnO.bbs
#! BeatBox 1.2 revision 529:530M, sequential compile Mar 29 2013 19:17:17

This run took 1.579033 seconds.
BeatBox 1.2 finished at t=71738 by device 13 "stop"
Thu Jun 20 20:56:15 2013

686 20:56:15 FitzHughNagumo model$

* Without graphics:
686 20:57:33 FitzHughNagumo model$ Beatbox SEQ fhn0O.bbs -nograph
#! BeatBox 1.2 revision 529:530M, sequential compile Mar 29 2013 19:17:17

This run took 0.387113 seconds.
BeatBox 1.2 finished at t=71738 by device 11 "stop"
Thu Jun 20 20:57:40 2013

687 20:57:40 FitzHughNagumo model$

24/06/2013 BeatBox Users Workshop

42

Conditionals in BeatBox scripts

// If the X11 graphics is switched off, then
// these clock devices would still print time labels to the stdout,
// so the "if" clause at the front disables that.

// This shows the integer step counter.
if Graph clock when=often color=WHITE row0O=1 col0=1;

// This shows real model time, the row, col coords of these are in

// characters, not pixels

if Graph k_clock when=often color=WHITE row0=1 col0=21 code=t*ht
format="T=%4.1f ms";

 Syntax: if <k-variable> <device-command>;

* Semantics: iff the k-variable is zero at parse time, the device command is
skipped (not inserted into the ring).

* In this example: Graph is a global read-only variable which is 1 iff run-time
graphics is switched on.

24/06/2013 BeatBox Users Workshop 43

clock device

// This shows the integer step counter.
if Graph clock when=often color=WHITE row(O=1 col0=1;

Very simple output device: displays the current value of t counter in the
graphical window if one is defined, or prints it to standard output if it is
not.

In this case, in the non-graphical mode it will not be running at all,
because of the if Graph clause.

WHITE is a predefined read-only k-variable which equals 15, the VGA
code for white colour. Note that the default background of the graphical
window is black.

Parameters row0 and colO are measured in characters, not in pixels. This
device will put the t=... message in the top row of the screen, from the
leftmost position.

k_clock device

// This shows real model time, the row, col coords of these are in
// characters, not pixels
if Graph k_clock when=often color=WHITE row0=1 col0=21 code=t*ht

format="T=%4.1f ms";

* Slightly more sophisticated version of clock device. This one will print not
just t but the value of any k-expression, given by the code parameter
(string), evaluated at run time.

* You can control the way it is printed using format parameter, also a string.
In our case, it will be a fixed-point representation to one decimal place,
preceded by “T=" and succeeded by “ ms”.

* Note that the value of format parameter here is enclosed in double
quotes, “...”. This is necessary because it contains a space.

* It will be shown starting from character position col0=21 which leaves
plenty enough space on the left for the message of the clock device.

24/06/2013 BeatBox Users Workshop 45

k_draw device

// Draw the phase trajectory
k _draw when=often
col0=col0 coll=coll rowO=row0 rowl=rowl // Defines the part of the graph

// window for this output.
color=WHITE*16+WHITE // Colour of the "window" border.
absmin=Umin absmax=Umax // Limits for the abscissa
ordmin=Vmin ordmax=Vmax // and for the ordinate of the plot.
lines=0.5 // Join the dots unless jump for 1/2 of the

// window or more.

pgm={ // Program that defines the drawing algorithm.

col=WHITE*mod(t,1000)/1000; // Colour will be cycling through VGA palette
// ever 1000 steps.

abs=U; // Abscissa is the U variable.

ord=V; // Ordinate is the V variable.

}i

e This is one of the “essential” run-time graphical output devices.

* Itdraws a curve on the screen, by adding one segment to it at a time.

* Remember often is nonzero at every 10t time step; this is how often this
device will be executed.

24/06/2013 BeatBox Users Workshop 46

k_draw device

// Draw the phase trajectory
k _draw when=often
col0=col0 coll=coll rowO=row0 rowl=rowl // Defines the part of the graph

// window for this output.
color=WHITE*16+WHITE // Colour of the "window" border.

absmin=Umin absmax=Umax // Limits for the abscissa

ordmin=Vmin ordmax=Vmax // and for the ordinate of the plot.

lines=0.5 // Join the dots unless jump for 1/2 of the
// window or more.

pgm={ // Program that defines the drawing algorithm.

col=WHITE*mod(t,1000)/1000; // Colour will be cycling through VGA palette
// ever 1000 steps.

abs=U; // Abscissa is the U variable.

ord=V; // Ordinate is the V variable.

}i

* Parameters col0, coll, row0, rowl (measured in pixels) define the area of

the graphical screen to which this device will draw.

* Note their values are k-variables homonymic to the parameters. This is
choice rather than law: on the left, are device parameters, on the right are

k-variables (could be any k-expressions), completely different things!
24/06/2013 BeatBox Users Workshop 47

k_draw device

// Draw the phase trajectory
k _draw when=often
col0=col0 coll=coll rowO=row0 rowl=rowl // Defines the part of the graph

// window for this output.
color=WHITE*16+WHITE // Colour of the "window" border.

absmin=Umin absmax=Umax // Limits for the abscissa

ordmin=Vmin ordmax=Vmax // and for the ordinate of the plot.

lines=0.5 // Join the dots unless jump for 1/2 of the
// window or more.

pgm={ // Program that defines the drawing algorithm.

col=WHITE*mod(t,1000)/1000; // Colour will be cycling through VGA palette
// ever 1000 steps.

abs=U; // Abscissa is the U variable.

ord=V; // Ordinate is the V variable.

}i

e Parameter color defines the colour of the frame to be drawn, designating

the “sub-window”, the area of the window allocated for this device. The
exotic form in which it is specified is an atavism and is due for elimination
in future releases.

24/06/2013 BeatBox Users Workshop 48

k_draw device

// Draw the phase trajectory
k _draw when=often
col0=col0 coll=coll rowO=row0 rowl=rowl // Defines the part of the graph

// window for this output.
color=WHITE*16+WHITE // Colour of the "window" border.

absmin=Umin absmax=Umax // Limits for the abscissa

ordmin=Vmin ordmax=Vmax // and for the ordinate of the plot.

lines=0.5 // Join the dots unless jump for 1/2 of the
// window or more.

pgm={ // Program that defines the drawing algorithm.

col=WHITE*mod(t,1000)/1000; // Colour will be cycling through VGA palette
// ever 1000 steps.

abs=U; // Abscissa is the U variable.

ord=V; // Ordinate is the V variable.

}i

 The horizontal coordinate of this device is called abscissa, and the vertical

is called ordinate (not to confuse with x and y used in many other places).

* Parameter absmin=Umin means that the leftmost edge of the device sub-
window will correspond to the abscissa value Umin (which is a k-variable

assigned earlier). Likewise for absmax, ordmin, ordmax.
24/06/2013 BeatBox Users Workshop 49

k_draw device

// Draw the phase trajectory
k _draw when=often
col0=col0 coll=coll rowO=row0 rowl=rowl // Defines the part of the graph

// window for this output.
color=WHITE*16+WHITE // Colour of the "window" border.

absmin=Umin absmax=Umax // Limits for the abscissa

ordmin=Vmin ordmax=Vmax // and for the ordinate of the plot.

lines=0.5 // Join the dots unless jump for 1/2 of the
// window or more.

pgm={ // Program that defines the drawing algorithm.

col=WHITE*mod(t,1000)/1000; // Colour will be cycling through VGA palette
// ever 1000 steps.

abs=U; // Abscissa is the U variable.

ord=V; // Ordinate is the V variable.

}i

* This parameter controls whether the points of the curve will be joined or

not. The rule is: if the distance between successive points, relative to the
sub-window size, exceeds line (one half, in our case), then it will not be
joined. This is to reduce mess when discontinuous data are fed to this

device.
24/06/2013 BeatBox Users Workshop 50

k_draw device

k _draw when=often
col0=col0 coll=coll rowO=row0 rowl=rowl // Defines the part of the graph
// window for this output.
color=WHITE*16+WHITE // Colour of the "window" border.
absmin=Umin absmax=Umax // Limits for the abscissa
ordmin=Vmin ordmax=Vmax // and for the ordinate of the plot.
lines=0.5 // Join the dots unless jump for 1/2 of the
// window or more.
pgm={ // Program that defines the drawing algorithm.
col=WHITE*mod(t,1000)/1000; // Colour will be cycling through VGA palette
// ever 1000 steps.

abs=U; // Abscissa is the U variable.
ord=V; // Ordinate is the V variable.
}i

* The block parameter pgm defines what is to be plotted and how. The
syntax is the same as in k_func device, but here it can (should!) use local
variables abs, ord and col, which define the coordinates of the next point
and its colour.

* Aswith k_func, the right-hand sides here are expressions that will be

evaluated at run time. Note that the colour col depends on t!
24/06/2013 BeatBox Users Workshop 51

update device

update when=often; // This signals that the graphics output buffer is

// flushed to the screen.

This is a simple but important device: it tells X-windows to update the
contents of the graphics screen. Usually you would like to do that at every
step at which you did some outputs to the screen, which is the condition
when=often here is the same as in the preceding clock, k_clock and
k_draw devices. If you forget this device, you will be disappointed as you
will not see anything in your graphical window.

This is not made automatic since sometimes it may be better to update
not on every step when there was graphics, or even more than once on
some steps.

record device

// flushed to the screen.

// Output (record) all FHN dynamical variables into the file fhnO.rec
// at the time step "chosenpulse".
record when=chosenpulse file=[0].rec append=0 v0=[u] v1=[V];

* This is one of the textual (rather than binary or graphical) output devices.

* The function is to print, in human-readable form, the values in the device’s
space (in this case just the values from layer [u]=0 through to layer [v]=1
of the only point of the grid) to the specified disk file.

* The file will be overwritten since append=0; otherwise it would be
appended to.

* The string macro reference [0] here refers to the name of the script
without the bbs extension if any, so in our case the value of parameter file
will be thnO.rec. More about this sort of macros later.

24/06/2013 BeatBox Users Workshop 53

Snapshot of graphics from thn0.bbs

The Window title ShOWS e 00 X\| wiener.ex.ac.uk: Beatbox_SEQ fhn0.bbs
hostname on which the program
was executed and the command
line.

Near the top, we see the current
value of t and the value of T=t*ht.

The white frame shows the
rectangle corresponding to u
from Umin to Umax and to v from
Vmin to Vmax.

And within that frame is the main
output, the curve. The colour
changes with every point so we
can tell fast pieces of the phase
trajectory from slow pieces.

Textual output from thn0.bbs

And this is the beginning of
the file thnO.rec produced by
the record device. It has two
values per line, which are the
u and v values, so record has
produced one line per call.

The separators between layer-
values, x-, y- and z-values and
between individual outputs
(‘records’) are changeable
parameters (all two-character
strings, by law). In this case we
had the default vsep=" “ and
recordsep="\n".

This record file will be used in
the next script we consider.

-0.334310
-0.329961
-0.325563
-0.321117
-0.316620
-0.312073
-0.307475
-0.302823
-0.298119
-0.293360
-0.288545
-0.283675
-0.278747
-0.273761
-0.268716
-0.263610
-0.258443

-0.581535
-0.580533
-0.579525
-0.578511
-0.577491
-0.576465
-0.575433
-0.574395
-0.573350
-0.572300
-0.571243
-0.570179
-0.569109
-0.568032
-0.566949
-0.565859
-0.564761

MORE ADVANCED SCRIPTS: FHN1

fhnl.bbs

Location: data/scripts/sequential/FitzHughNagumo_model/fhnl.bbs

Protocol: initiate propagating pulses in a 1D cable with FHN kinetics, using non-
homogeneous Dirichlet boundary conditions on the left end of the cable. The
values for these conditions are from the file fhnO.rec, obtained as a results of the
previous run of fhn0.bbs. The n-th action potential, n=4, is output to file fhnl.rec.
We also measure and print the propagation speed.

New features:

<..>to include contents of another bbs file;
".." to capture output of a child process;
Use of record files and magic variables in k_func device;

k_plot run-time graphics device: to plot spatial profiles of the dynamic fields at
selected moments of time.

k_poincare control device to detect arrivals of wavefronts at selected points,
which is then used both to control execution and to calculate the propagation

speed;
pause control device for suspending execution.

Inclusion of another script

// Include the file fhn.par with input parameters.

<fhn.par>

// the size of 1D strand

def

int nx 100;

With account of the contents of fhn.par, this results in the
following effective text:

def
def
def
def
def
def
def
def
def
def
def

real ht 0.005;

real hx 1.0/3.0;

real D 1.0;

real eps 0.30; def real bet 0.71;

real gam 0.50;

str u 0;

str v 1;

str i 2;

real umin -2.0; def real umax 2.0;def real umid 0.0;
real vmin -1.0; def real vmax 1.5;def real vmid 0.5;
int nx 100;

24/06/2013 BeatBox Users Workshop 58

Capturing output of another process

// Get the pacelength = number of lines in file fhnO.rec.
// This is needed to make the period of waves here the same
// as the period of oscillations generated by fhnO.bbs.

def real pacelength “cat fhnO.rec | wec -17;
k func name=bc x0=1 x1=1 file=fhnO.rec pgm={phasep=(2*pi*t)/pacelength;u0=p0;};

* In this way, the real variable pacelength equals the total number of lines in
fhnO.rec.

e This number is used later in the name=bc k_func device which implements
the non-homogeneous Dirichlet boundary condition.

24/06/2013 BeatBox Users Workshop 59

Record files and magic variables in
k func

k func name=bc x0=1 x1=1 file=fhnO.rec pgm={phasep=(2*pi*t)/pacelength;ul0=p0;};

* This function assigns a prescribed value to the Ot layer (u-variable) of the
leftmost internal point of the grid, thus imposing Dirichlet boundary
conditions at that point.

Record files and magic variables in
k func

k func name=bc x0=1 x1=1 file=fhnO.rec pgm={phasep=(2*pi*t)/pacelength;ul0=p0;};

e This function will also “know” the contents of the given file. This file will
be read, and interpreted as a space-separated table. The number of
columns in the table is detected based on the first line.

* The contents of this file can then be used for the work of the ‘magic
variable” phasep.

Record files and magic variables in
k func

k func name=bc x0=1 x1=1 file=fhnO.rec pgm={phasep=(2*pi*t)/pacelength;ul0=p0;};

* This local variable phasep has the following property. Every time it is
assigned a value within the program of the k_func device, this magically
leads to calculation of local variables pO, ..., p<N-1>, where N is the
number of columns in the record file. Say, if there are three columns,
assignment of a value to phasep will result into assignment of certain
values to p0, p1, and p2.

* The assigment occurs by the following rule. For variable p<j>, the contents
of the jt column is interpreted as a real-valued function, defined on the
interval [0,271). So p<j> is assigned the value of this function at the point
phasep mod 25t (using linear interpolation).

Record files and magic variables in
k func

k func name=bc x0=1 x1=1 file=fhnO.rec pgm={phasep=(2*pi*t)/pacelength;ul0=p0;};

As a result, the contents of the 0" layer of the point x=1, i.e. the leftmost
value of the u-variable of the FHN 1D model, at any moment of time will
be the same as the value of the u-variable in the FHN OD simulation, only
periodically continued in time.

Note that for this to work as described, one line in fhnO.rec should
correspond to one time step in the current model simulation. This is
‘incidentally’ true for our two simulations: the time step in the fhn0.bbs
was ht=0.0005, and the output to fhnO.rec was at every 10t time step,
and the time step in this simulation is ht=0.005, i.e. precisely 10*0.0005. If
that was not the case, we would need to correct the formula for phasep
correspondingly.

k_plot device

k plot name=uplot when=often

col0=col0 coll=coll rowO=row0 rowl=rowl // defines the part of the graph window

color=WHITE*16+WHITE // colour of the "window" border

lines=1 // connect the dots

clean=1 // clean window before drawing this graph
ordmin=umin ordmax=umax // limits for the ordinate of the plot

N=nx // the abscissa will be integer running from 1 to nx

pgm={ord=u(abs,0,0,[u]);col=LIGHTRED}; // ordinate is value of u variable

This is similar to k_draw device considered earlier, only this one draws a
whole curve at a time, rather than extending the curve point by point
from one call to the next.

24/06/2013 BeatBox Users Workshop 64

k_plot device

k _plot name=uplot when=often

col0=col0 coll=coll rowO=row0 rowl=rowl // defines the part of the graph window

color=WHITE*16+WHITE // colour of the "window" border

lines=1 // connect the dots

clean=1 // clean window before drawing this graph
ordmin=umin ordmax=umax // limits for the ordinate of the plot

N=nx // the abscissa will be integer running from 1 to nx

pgm={ord=u(abs,0,0,[u]);col=LIGHTRED}; // ordinate is value of u variable

* The difference from the k_draw interface is that device parameter N is
required (which will also be local read-only k-variable), and the abscissa of
the curve is fixed: it is an integer number running from 1 to N.

* In this example, the abscissa will run from 1 to nx inclusive, i.e. though the
integer coordinates of the inner points of the grid.

24/06/2013 BeatBox Users Workshop 65

k_plot device

k _plot name=uplot when=often

col0=col0 coll=coll rowO=row0 rowl=rowl // defines the part of the graph window

color=WHITE*16+WHITE // colour of the "window" border

lines=1 // connect the dots

clean=1 // clean window before drawing this graph
ordmin=umin ordmax=umax // limits for the ordinate of the plot

N=nx // the abscissa will be integer running from 1 to nx

pgm={ord=u(abs,0,0,[u]);col=LIGHTRED}; // ordinate is value of u variable

Correspondingly, local k-variable abs in k_plot is read-only, and the
assignment only done for the ordinate ord and colour col.

In this example, the ordinate will be the value of the layer [u]=0 (i.e. u-
variable) at the point with x-coordinate given by the abscissa abs, and the
colour of the curve is constant and is light-red (VGA code 9).

24/06/2013 BeatBox Users Workshop 66

k_plot device

k plot name=uplot when=often

col0=col0 coll=coll rowO=row0 rowl=rowl // defines the part of the graph window

color=WHITE*16+WHITE // colour of the "window" border

lines=1 // connect the dots

clean=1 // clean window before drawing this graph
ordmin=umin ordmax=umax // limits for the ordinate of the plot

N=nx // the abscissa will be integer running from 1 to nx

pgm={ord=u(abs,0,0,[u]);col=LIGHTRED}; // ordinate is value of u variable

Finally, device parameter clean defines whether the sub-window of this
device should be cleaned to its black background before plotting the
curve. In this case, clean=1 means yes: the profile of the u-variable will be
plotted "on the clean slate’.

24/06/2013 BeatBox Users Workshop 67

k_plot device

k plot name=vplot when=often

col0=col0 coll=coll rowO=row0O rowl=rowl // in the same window

COolor=WHITE*16+WHITE //

lines=1 //

clean=0 // but do not clean it beforehand
ordmin=vmin ordmax=vmax // limits for the ordinate

N=nx //

pgm={ord=u(abs,0,0,[Vv]);col=LIGHTBLUE}; // which is now v variable, and plotted

The next k_plot device plots the profile of the v-variable ([v]=1) in light
blue colour, in addition to the previously plotted profie of the u-variable.
Hence no need to clean the sub-window, an clean=0.

24/06/2013 BeatBox Users Workshop 68

k_poincare device

sample name=Ul x0=xoutl v0=[u] result=Ul;
sample name=U2 x0=xout2 v0=[u] result=U2;

// These devices will register arrival of the fronts at points xoutl and xout2
// as variables Ul and U2 have been measured there

k _poincare nowhere=1 which=0 sign=1 pgm={frontl=Ul-umid;tfrontl=t};
k _poincare nowhere=1 which=0 sign=1 pgm={front2=U2-umid;tfront2=t};

* This control device implements “Poincare cross-section” of the given
stream of data. This means it watches a set of dynamic variables, registers
the moments when one of them crosses a prescribed value of 0, and
reports the values of other variables at those moments.

* The variables that are watched are the right-hand sides of of the k-
program pgm of this device: Ul-umid and t in one case, U2-umid and t in
the second case.

 The way the results are reported may be somewhat unexpected so
requires some attention.

24/06/2013 BeatBox Users Workshop 69

k_poincare device

sample name=Ul x0=xoutl v0=[u] result=Ul;
sample name=U2 x0=xout2 vO0=[u] result=U2;

// These devices will register arrival of the fronts at points xoutl and xout2
// as variables Ul and U2 have been measured there

k _poincare nowhere=1 which=0 sign=1 pgm={frontl=Ul-umid;tfrontl=t};

k _poincare nowhere=1 which=0 sign=1 pgm={front2=U2-umid;tfront2=t};

* First of all, there is an important device parameter which which defaults
to 0 and is not present in the script. With this parameter made explicit,
the device commands will look as shown.

* This parameter defines which of the variables is watched for cross-section.
The variables are enumerated starting from 0, so this is Ul-umid in the
first case and U2-umin in the second case. Hence the first device will
register when U1 crosses umid, and the second device when U2 crosses
umid.

24/06/2013 BeatBox Users Workshop 70

k_poincare device

sample name=Ul x0=xoutl v0=[u] result=Ul;
sample name=U2 x0=xout2 vO0=[u] result=U2;

// These devices will register arrival of the fronts at points xoutl and xout2
// as variables Ul and U2 have been measured there

k _poincare nowhere=1 which=0 sign=1 pgm={frontl=Ul-umid;tfrontl=t};

k _poincare nowhere=1 which=0 sign=1 pgm={front2=U2-umid;tfront2=t};

* When this happens, all other assignments, except the one pointed by
which, will actually take place. There is just one “other assignment” in
each case here. That is, tfront1 will be assigned to the current value of t
when U1 crosses umid, and tfront2 will be assigned to the current value of
t when U2 crosses umid.

* More precisely, since the very moment of crossing will have happened
between the calls, the assigned value will be obtained by linear
interpolation of the value before and after the crossing.

* That assignment will be done, naturally, after the crossing happens. On all
other calls, the values of tfront1 and tfront2 remain unchanged.

24/06/2013 BeatBox Users Workshop 71

k_poincare device

sample name=Ul x0=xoutl v0=[u] result=Ul;
sample name=U2 x0=xout2 vO0=[u] result=U2;

// These devices will register arrival of the fronts at points xoutl and xout2
// as variables Ul and U2 have been measured there

k _poincare nowhere=1 which=0 sign=1 pgm={frontl=Ul-umid;tfrontl=t};

k _poincare nowhere=1 which=0 sign=1 pgm={front2=U2-umid;tfront2=t};

* |t remains to discuss the first assignment, the one pointed at by which
parameter. If it is easy to see, if this is done by the general rule, then the
left-hand sides would always be assigned 0 when crossing has happened,
or the value would remain unchanged if it has not. Not very interesting.

* Therefore, this assignment is done by a different rule: the left-hand side
(k-variables frontl and front2) will be given value 1 if the crossing has
happened, and 0 if it has not. In this way, these variable front1 and front2
can be used as condition variables for other devices, say which we want to
process the results of these crossings. ..

24/06/2013 BeatBox Users Workshop 72

k_poincare device

k _poincare nowhere=1 sign=1 pgm={frontl=Ul-umid;tfrontl=t};
k_poincare nowhere=1 sign=1 pgm={front2=U2-umid;tfront2=t};

// Count the fronts separately, calc arrival times and select Nth front in each
sequence

k _func nowhere=1 when=frontl pgm={nfrontl=nfrontl+l;
Tl=if (eq(nfrontl,Np),ht*tfrontl,T1)};

k_func nowhere=1 when=front2 pgm={nfront2=nfront2+1;
T2=if (eq(nfront2,Np),ht*tfront2,T2);

paceout=eq(nfront2,Np); /* if it is the last pulse we output it */

end=end+gt (nfront2,Np); /* and if more then it is time to stop; '+' works as
llorll */

}i

e .. like here: next k_func will count the times front was recorded at the
first point, and remember the time at which the front number Np has
been registered as T1. And the next one is measuring T2. This is what we
need to measure the speed!

24/06/2013 BeatBox Users Workshop 73

pause device

// Output the record of dynamical variables u and v at the "samplepoint"
// while "paceout" is nonzero into the file fhnl.rec.
k print nowhere=1 when=paceout file=[0].rec append=0 valuesep="\t" list={U2;V2};

// Keep the picture on the screen until the user presses Enter

if Graph pause when=end;

/* Stopping criterion. This is mandatory.*/

stop when=end;

end;

* ... Finally, a simple control device which suspends execution for a given
number of seconds (specified by device parameter seconds). The default is
-1 (used in this example) which means the program will stop until the user
hits Enter in the shell window from which the program was launched.

* This is needed to let user see the final picture in the graphical screen, so it
is needed only if graphics is on.

24/06/2013 BeatBox Users Workshop 74

Snapshot of graphics from thnl.bbs

\ vhb-macbook12.local: Beatbox_SEQ fhnl.bbs

MORE ADVANCED SCRIPTS: FHN2

fhn2.bbs

Location: data/scripts/sequential/FitzHughNagumo_model/fhn2.bbs

Protocol: initiate a spiral wave in a 2D sheet using phase distribution
method, and let the spiral rotate, while calculating and outputting the
time derivative and the gradient of the u-variable, and the trajectory of
the tip. New features:

more extensive use of k-variables to save typing and ease modification;

use of k_func as a computational device for creating intial conditions by
phase distribution method

computational devices d_dt and grad2d: time derivative and absolute
value of spatial gradient of a field;

k_paint: run-time graphical device to crudely visualize distribution of 2D
dynamic fields;

singz device: to detects spiral wave tips (both computational and output)
shell output device: to call arbitrary OS command from BeatBox;

imgout and k_imgout output devices: to output image files.

Phase distribution method
for initial conditions

// Initial conditions by phase distribution method

k_func when=begin name=initial file=fhnl.rec pgm={
phasep=atan2 (x-x0,y-y0) - 2*pi*hypot(x-x0,y-y0)/lam;
u0=p0; ul=pl

}i

* Similar to use of k_funcin fhnl.bbs for non-homogeneous Dirichlet
boundary conditions: the magic variable phasep represents the phase, and
it serves as the key for picking up the right row from the table in thnl.rec.

* There the phase variable phasep was defined as a linear function of time.
Here it is a function of x and y such that curves phasep(x,y)=const are
Archimedean spirals.

Phase distribution method
for initial conditions

// Initial conditions by phase distribution method

k_func when=begin name=initial file=fhnl.rec pgm={
phasep=atan2 (x-x0,y-y0) - 2*pi*hypot(x-x0,y-y0)/lam;
ul0=p0; ul=pl

}i

* The same effect could be achieved by using another magic variable,
phaseu. It works just like phasep, but make assignments straight to
variables u<j> (i.e. grid values) rather than local variables p<j> :

// Initial conditions by phase distribution method

k _func when=begin name=initial file=fhnl.rec pgm={
phaseu=atan2(x-x0,y-y0) - 2*pi*hypot(x-x0,y-y0)/lam;

}i

24/06/2013 BeatBox Users Workshop

79

About string macros again

// The reaction substep: [i] gives the extra term in the right-hand side for u.
// We do not need the resting state here so drop the 'rest' parameter.
euler v0=[u] vl=[v] ht=ht ode=fhncubpar

par={epsu=eps epsv=eps bet=bet gam=gam Iu=@[i]};

* In this fragment, the string macro i is expanded after the layer substitution
operator @. Since this string macro has been defined earlier as

def str i 2; // diffusion term will be in layer 2
(in fhn.par), the above idiom is equivalent to

lu=@2

which means that the value of parameter lu, at every step and at every
point, will be taken from layer 2 — that is where diff has put the value of the
diffusion term.

24/06/2013 BeatBox Users Workshop 80

d dt device

k func name=timing nowhere=1 pgm={ /* Define when to begin and end */

begin eqg(t,0); // beginning of simulation

out eq(mod(t,tout),0); // time to make outputs every tout steps

dtime = out + eqg(mod(t,tout),tout-1); // when to call d dt device

// NB '+' above works as logical 'or
end = ge(t,50000); // end of simulation

}i

d _dt when=dtime vO0=[u] vl=[p] vd=[d] ht=ht;

* This device calculates the time derivative of a field recorded in layer vO
and put the result into layer vd. The differentiation backward Euler, i.e. it
is simply the difference between the current and the previous value,
divided by the time step ht. Layer v1 will be used by this device to store
that previous value. The value of ht should be equal to the time step ht of
the solver device euler if d_dt is called at consecutive steps.

24/06/2013 BeatBox Users Workshop 81

d dt device

k _func name=timing nowhere=1 pgm={ /* Define when to begin and end */

begin eqg(t,0); // beginning of simulation

out eq(mod(t,tout),0); // time to make outputs every tout steps

dtime = out + eqg(mod(t,tout),tout-1); // when to call d dt device

// NB '+' above works as logical 'or
end = ge(t,50000); // end of simulation

}i

d dt when=dtime v0=[u] vl=[p] vd=[d] ht=ht;

* In this example, d_dt is called when=out and also at preceding steps, so at
the steps when=out the above condition is satisfied: the interval between

successive calls is 1 step. And this is when it matters, since when=out is
condition for all outputs.

24/06/2013 BeatBox Users Workshop 82

grad2d device

grad2d when=out v0=[u] v1l=[g] hx=hx;

This device calculates the absolute value of the gradient of a 2D field
recorded in layer vO and put the result into layer v1. The differentiation is
by central differences, and hx is the space step. This is an instantaneous
operation so this device can be called when the result is needed for
output or control.

Note that the ratio of the time derivative of a field to the gradient of that
field gives the velocity of the isoline (aka contour line) of that field. So

when the gradient is not too small, this can be used for (almost)
instantaneous estimates of the conduction speed.

k paint device

// Run-time graphics to paint the field using VGA colour palette

k paint when=out nabs=nx nord=ny //
values

co0l0=col0 coll=coll rowO=row0 rowl=rowl //

color=WHITE*16+WHITE //
pgm={ //

//
col=ifgelO(u(abs,ord,0,[u]),LIGHTRED,0) //
+ ifge0O(u(abs,ord,0,[v]),GREEN,0)}; //

// NB: lightred+green=yellow, and absence of

how many abscissa and ordinate

output it into the left panel
white borders for the panel
program should calculate colour
and we take abs=x and ord=y

red component £ u > 0

and green if v > 0

both is black.

* This graphical device continues the line of k_draw and k_point. Now both
abs and ord are “independent variables”, running from 1 to nabs and nord
respectively, and the only functional dependence is for local variable col,

the VGA colour.

* Another difference: it renders not points or lines, but rectangles, so filling

in areas in the graphical window.

24/06/2013 BeatBox Users Workshop 84

k paint device

// Run-time graphics to paint the field using VGA colour palette

k _paint when=out nabs=nx nord=ny // how many abscissa and ordinate
values

col0=col0 coll=coll rowO=row0 rowl=rowl // output it into the left panel
color=WHITE*16+WHITE // white borders for the panel
pgm={ // program should calculate colour
// and we take abs=x and ord=y
col=ifgelO(u(abs,ord,0,[u]),LIGHTRED,0) // red component f u > 0
+ ifgeO(u(abs,ord,0,[v]),GREEN,0)}; // and green if v > 0
// NB: lightred+green=yellow, and absence of both is black.

 The image is rendered into a subwindow defined by device parameters
col0, coll, row0, row1, which are pixel coordinates within the BeatBox X11
graphics window. The marginal values of abs and ord correspond to left/
right and bottom/top extremities of the subwindow.

e As can be seen from the previous def commands in the script, global k-
variables col0 and coll correspond to the left half of the graphics window.

24/06/2013 BeatBox Users Workshop 85

singz device

// Detect the tip of the spiral

singz when=out
v0=[u] c0=0 // trace intersection of
vl=[v] cl1=0 // u(x,y,t)=0 and v(x,y,t)=0
col0=col2 coll=col3 // plot it
row0=row0 rowl=rowl // in the right panel
color=WHITE*16+LIGHTRED // red trace with white head
file=[0].tr] // and write into file fhn2.trj

.
14

* This device finds the tip(s) of the spiral wave(s), defined as intersection(s)
of isolines of two given fields, vO and v1, at two given levels, cO and c1
respectively.

24/06/2013 BeatBox Users Workshop

singz device

// Detect the tip of the spiral

singz when=out
v0=[u] c0=0 // trace intersection of
vli=[v] cl1=0 // u(x,y,t)=0 and v(x,y,t)=0
col0=col2 coll=col3 // plot it
rowO=row0 rowl=rowl // in the right panel
color=WHITE*16+LIGHTRED // red trace with white head
file=[0].trj // and write into file fhn2.trj

* The visualization of the found tips will be done into the subwindow
defined by device parameters colO, coll, row0, rowl, so that the device
space (here the default one) maps onto this subwindow.

* According to def commands made earlier, global k-variables col2 and col3
correspond to the right half of the graphics window.

24/06/2013 BeatBox Users Workshop 87

singz device

// Detect the tip of the spiral

singz when=out
v0=[u] c0=0 // trace intersection of
vli=[v] cl1=0 // u(x,y,t)=0 and v(x,y,t)=0
col0=col2 coll=col3 // plot it
row0=row0 rowl=rowl // in the right panel
color=WHITE*16+LIGHTRED // red trace with white head
file=[0].trj // and write into file fhn2.trj

* The visualization is done with dots, using a colour for the most recent
tip(s) different from those of the previous tips. The device parameter color
codes both of them: the VGA colour codes are numbers from 0 to 15, so
one such colour makes one hexadecimal digit. The device parameter color
has range from 0 to 255, making two hexadecimals. So the recent tip
colour is the most significant hex digit of the parameter, and the tail
colour is the least significant digit.

24/06/2013 BeatBox Users Workshop 88

singz device

// Detect the tip of the spiral

singz when=out
v0=[u] c0=0 // trace intersection of
vli=[v] cl1=0 // u(x,y,t)=0 and v(x,y,t)=0
col0=col2 coll=col3 // plot it
row0=row0 rowl=rowl // in the right panel
color=WHITE*16+LIGHTRED // red trace with white head
file=[0].trj // and write into file fhn2.trj

* This device will also output the data of calculated tip(s) into the file if
given.

* In this example, the name of the output file will be fhn2.trj since
prefedefined string macro call [0] expands to the name of the script
without bbs extension.

24/06/2013 BeatBox Users Workshop

89

The format of the singz text output

* In this example, the output

consists of 5 columns: the x,
coordinates of the tip, orientation

50.757942 50.763065 0.783060 -0.630097 0.156987
51.842682 52.343216 0.980653 -0.667252 -0.077032
51.964546 53.362553 1.208952 -0.328245 0.033593
51.616615 54.403961 1.363628 0.091823 0.294556

y

a-ngle of the gradient of the.ﬁrst 50.858425 55.406269 1.509650 0.339408 0.389929
field, same for the second field, 49.923473 56.288189 1.678501 0.463238 0.348090

and cosine of the difference
between the two angles.

* The coordinates of the tip are

48.889259 56.966110 1.870139 0.606913 0.302744
47.863079 57.396740 2.086076 0.796302 0.277338
46.799255 57.524334 2.301500 1.032696 0.297423
45.804020 57.338772 2.529980 1.304789 0.338766

found by bilinear interpolation of 4, 56185 56.865452 2.780592 1.601239 0.381522

the two fields. The angles are 44.327560 56.223251 3.055104 1.894736 0.399002
those the gradient vectors make 43.926010 55.404961 -2.933982 2.207295 0.415860

with the x axis, in radians.

* There are several parameters to

control the output, but that
a more detailed talk.

24/06/2013

43.791050 54.558804 -2.623706 2.515665 0.414126
43.940025 53.706367 -2.311339 2.840225 0.425193
. 44.350746 52.973225 -1.990245 -3.115053 0.431350
is for 44936375 52.400650 -1.654592 -2.795286 0.416964
45.714485 52.025787 -1.324978 -2.464945 0.417624
46.558998 51.880894 -1.003678 -2.160234 0.402495
47.442360 51.985394 -0.702522 -1.869566 0.392872

BeatBox Users Workshop

90

shell device

// Create the directory for the image files

// (no problem if it is already there)

def str outdir [0].dir; // so it will be fhn2.dir

shell nowhere=1 when=never advance=1 cmd="mkdir [outdir]";

// advance=1 means this will be done BEFORE the first step

* This device calls a sub-shell to execute a daughter process defined by
command string cmd. In that way it is similar to the "..." preprocessing

directive, only "..." is done once at parse time, whereas shell command is
execute every time the device is run.

* In this particular example, however, for this device when=never (which is
permanently tied to zero). But there is a device parameter advance, which
if not zero, means that the subshell call is executed right after parsing this
device command.

24/06/2013 BeatBox Users Workshop 91

shell device

// Create the directory for the image files

// (no problem if it is already there)

def str outdir [0].dir; // so it will be fhn2.dir

shell nowhere=1 when=never advance=1 cmd="mkdir [outdir]";
// advance=1 means this will be done BEFORE the first step

* In this example, the command is in creating a directory with the name
[outdir]=[0].dir=fhn2.dir. This is the directory into which the subsequent
imgout and k_imgout devices will place their outputs. Since those devices
check that they can open the output files at parse time, so creation of the
directory should be at parse time.

24/06/2013 BeatBox Users Workshop 92

imgout device

imgout when=out

// On-the-fly conversion including flipping top/bottom flip
filter="pnmflip -tb | pnmtopng > [outdir]/uvi%07.0f.png"
r=[u] rO=umin rl=umax // [u]-layer defines red component
g=[v] g0=vmin gl=vmax // [v]-layer defines green component
b=[i] b0=-1 bl=1; // [i]-layer defines blue component

The function and interface of this device are similar to that of ppmout
considered earlier, only here instead of writing the resulting ppm file to disk,

we pipe it into a filter, which can be any external command that take the ppm
format as input stream.

The filter parameter is a string which can contain a % sign, which then is
interpreted as a C format specifier. This means that the actual filter is
obtained each time by a sprintf function, using filter as a format string, and

the sprintf’ed expression is given by device parameter string code, which
defaults to t, the time loop counter.

In this case, the output file names will be
fhn2.dir/uvi0000100.png, fhn2.dir/uvi0000100.png, ...

24/06/2013 BeatBox Users Workshop 93

imgout device

imgout when=out
// On-the-fly conversion including flipping top/bottom flip

filter="pnmflip -tb | pnmtopng > [outdir]/uvi%07.0f.png"
r=[u] rO=umin rl=umax // [u]-layer defines red component
g=[v] g0=vmin gl=vmax // [v]-layer defines green component
b=[i] b0=-1 bl=1; // [i]-layer defines blue component

* |n this case, the actual filters will be, time after time,

pnmflip -tb | pnmtopng > fhn2.dir/uvi0000000.png
pnmflip -tb | pnmtopng > fhn2.dir/uvi0000100.png

* Programs pnmflip and pnmtopng are executables from the netpbm toolkit
freely available for all platforms. The first program flips top of the immage
with the bottom, thus converting pixel coordinates in which the smallest y
is at the top to the normal orientation. The second program converts ppm
format or any of its netpbm relatives to the standard png format, which is
then directed to the said files in the fhn2.dir subdirectory.

24/06/2013 BeatBox Users Workshop 94

k_imgout device

k_imgout when=out

filter="pnmflip -tb | pnmtopng > [outdir]/udg%06.0f.png"

filtercode="t/tout" // fancy numerating files sequentially

width=nx height=ny // i=0..width-1, j=0..height-1

pgm={ // this program should calculate r,g,b as real numbers in [0..1]
r=(u(l+i,1+j,0,[u])-umin)/ (umax-umin);
g=fabs(u(1+i,1+3,0,[d]))/2.0;
b=u(1l+i,1+3,0,[9])/2.0;

}i

* This is a more sophisticated version of imgout, in which the rgb
components are not just linear transformation of grid values at certain
layers, but arbitrary k-expressions.

* The local “independent” variables for these expressions are i and j for
horizontal and vertical coordinates, running from 0 to width-1 and from O
to height-1 respectively, where width and height are device parameters.

24/06/2013 BeatBox Users Workshop 95

k_imgout device

k_imgout when=out

filter="pnmflip -tb | pnmtopng > [outdir]/udg%06.0f.png"

filtercode="t/tout" // fancy numerating files sequentially

width=nx height=ny // i=0..width-1, j=0..height-1

pgm={ // this program should calculate r,g,b as real numbers in [0..1]
r=(u(l+i,1+j,0,[u])-umin)/ (umax-umin);
g=fabs(u(1+i,1+3,0,[d]))/2.0;
b=u(1+i,1+3,0,[g])/2.0;

}i

* The expression for the red component corresponds to the same mapping
as before: the value in layer [u]=0 (for the u-variable) is linearly mapped to
0 if it equals umin, and to 1 if it equals umax. The values of the expression
is automatically cropped to the interval [0..1] in any case, so u-values
below umin will all map to 0 and all above umax will all map to 1.

24/06/2013 BeatBox Users Workshop 96

k_imgout device

k _imgout when=out

filter="pnmflip -tb | pnmtopng > [outdir]/udg%06.0f.png"

filtercode="t/tout" // fancy numerating files sequentially

width=nx height=ny // i=0..width-1, j=0..height-1

pgm={ // this program should calculate r,g,b as real numbers in [0..1]
r=(u(l+i,1+3j,0,[u])-umin)/ (umax-umin);
g=fabs(u(1+i,1+3,0,[d]))/2.0;
b=u(1l+i,1+3,0,[9])/2.0;

}i

* For the blue component, the expression depends only on layer [g], where
the gradient values are kept, so 0 ->0, 2 -> 0. This also could have been

done by imgout.

24/06/2013 BeatBox Users Workshop 97

k_imgout device

k_imgout when=out

filter="pnmflip -tb | pnmtopng > [outdir]/udg%06.0f.png"

filtercode="t/tout" // fancy numerating files sequentially

width=nx height=ny // i=0..width-1, j=0..height-1

pgm={ // this program should calculate r,g,b as real numbers in [0..1]
r=(u(l+i,1+3j,0,[u])-umin)/ (umax-umin);
g=fabs(u(1+i,1+3,0,[d]))/2.0;
b=u(1+i,1+3,0,[g])/2.0;

}i

* For the green component, it is something that could not be done by
imgout: the expression involves nonlinear function fabs for (floating point)
absolute value. So the green component will be proportional to/cropped
the absolute value of the time derivative of the u-field.

24/06/2013 BeatBox Users Workshop 98

k_imgout device

k_imgout when=out

filter="pnmflip -tb | pnmtopng > [outdir]/udg%06.0f.png"

filtercode="t/tout" // fancy numerating files sequentially

width=nx height=ny // i=0..width-1, j=0..height-1

pgm={ // this program should calculate r,g,b as real numbers in [0..1]
r=(u(l+i,1+j,0,[u])-umin)/ (umax-umin);
g=fabs(u(1+i,1+3,0,[d]))/2.0;
b=u(1+i,1+3,0,[g]1)/2.0;

}i

* Note that in all cases, the functions for the colour components are such
that the pixels in the output correspond to the inner points of our 2D grid.
This makes sense in most cases but syntactically is not necessary. The
same device could be used for 2D visualization of 3D calculations by doing
cross-sections of 3D field by surfaces defined by arbitrary parametric
equations.

24/06/2013 BeatBox Users Workshop 99

k_imgout device

k _imgout when=out

filter="pnmflip -tb | pnmtopng > [outdir]/udg%06.0f.png"

filtercode="t/tout" // fancy numerating files sequentially

width=nx height=ny // i=0..width-1, j=0..height-1

pgm={ // this program should calculate r,g,b as real numbers in [0..1]
r=(u(l+i,1+3j,0,[u])-umin)/ (umax-umin);
g=fabs(u(1+i,1+3,0,[d]))/2.0;
b=u(1+i,1+3,0,[g])/2.0;

}i

* And the final touch: the output filter code, here called filtercode, is given
value t/tout rather than default t. Since when=out is nonzero precisely at
every tout steps, this leads to the output files being numbered
consecutively, as udg000000.png, udg000001.png, udg000002.png ...

24/06/2013 BeatBox Users Workshop 100

Snapshot of graphics from thn2.bbs

e OO0 \ modem05.csc.liv.ac.uk: bbxs fhn2.bbs

END

24/06/2013 BeatBox Users Workshop 102

