
Mario Antonioletti
EPCC

mario@epcc.ed.ac.uk
+44 131 650 5141

Profiling and scalability
testing for Beatbox

Beatbox Workshop, 24-25 June 2013, Manchester 2

Outline

•  Why parallelism?

•  Some background

•  Performance metrics

•  Methodology
–  Scalability curves
–  Profiling

–  Example output

•  Results
–  Rabbit ventricle, human atrium, box3D

•  Conclusions

Why parallelism?

•  It takes one brick layer 3 days to lay a wall
–  How long will it take 3 brick layers?
–  Opportunity to do things faster or bigger

•  Can use multi-core systems in the same way
–  Most laptops now come with multiple core systems
–  Can take advantage of computers on a network

– Communications latencies may prove expensive
–  Can used dedicated parallel machines (e.g. HECToR)

– Have fast communication interconnects

•  Main parallelisation strategies:
–  OpenMP (multi-threading) shared memory machines
–  MPI explicit message passing
–  Can use both

•  Beatbox uses MPI
Beatbox Workshop, 24-25 June 2013, Manchester 3

Some background

•  Beatbox scripts are agnostic as to whether they are:
–  Run serially
–  Run in parallel

•  Beatbox is currently not memory or I/O constrained.
–  Issues more to do with obtaining enough CPU power
–  Impacts on the parallelisation strategy used

– Domain decomposition used

•  Need to determine how well the parallel code works
–  See how well it scales
–  Dive down to identify performance bottlenecks

Beatbox Workshop, 24-25 June 2013, Manchester 4

CPU	

Memory	

 IO	

•  Speed-up Sn:

•  Where:
–  T1 is the execution time on 1 processor
–  Tn is the execution time on n processors

•  Parallel Efficiency En:

•  Can also:
–  Strong scaling: fixed problem size throughout
–  Weak scaling: fixed problem size per processor

Performance metrics: speed-up & efficiency

Beatbox Workshop, 24-25 June 2013, Manchester 5

​𝑺↓𝒏 = ​​𝑻↓𝟏 /​𝑻↓𝒏  	

number of processors	

Sp
ee

d-
up
	

​𝑬↓𝒏 = ​​𝑺↓𝒏 /𝒏 	

number of processors	

Pa
ra

lle
l E

ffi
ci

en
cy
	

Ideal (100%)	

Methodology: scalability curves

•  Use chained PBS (Portable Batch System) scripts
–  PBS is the scheduling/batch system that operates on HECToR

•  Could use shell script loops but max run time is 12 hours
–  Total run time for all the scripts can exceed that

•  Variance not high so run jobs only once

Beatbox Workshop, 24-25 June 2013, Manchester 6

qsub run1.pbs	

#!/bin/bash --login	

#PBS -N run1	

#PBS -l mppwidth=1	

#PBS -l mppnppn=1	

#PBS -l walltime=10:00:00	

#PBS -A e203	

	

# Make sure any symbolic links are resolved to absolute path	

export PBS_O_WORKDIR=$(readlink -f $PBS_O_WORKDIR) 	

 	

# Change to the direcotry that the job was submitted from	

cd $PBS_O_WORKDIR	

	

# Set the number of threads to 1	

# This prevents any system libraries from automatically 	

# using threading.	

export OMP_NUM_THREADS=1	

	

# Unlimit the use of any resources.	

ulimit -s unlimited	

	

# n is the total number of processes	

# N is the number of processes per node	

# Launch the parallel job. Using fewer number of cores than max 	

# (1 Hector node = 32 cores) is reccommended by Hector helpdesk.	

To use ./Beatbox, you must copy the Beatbox binary to the concerned
directory.	

aprun -n 256 -N 28 ./Beatbox humanAtrium_start_crn.bbs -verbose -
profile	

# or like this:	

	

time aprun -n 1 -N 1 ./bin/Beatbox crn_ffr.bbs 	

	

qsub run2.pbs	

run1.pbs	

#!/bin/bash --login	

#PBS -N run2	

#PBS -l mppwidth=2	

#PBS -l mppnppn=2	

#PBS -l walltime=10:00:00	

#PBS -A e203	

	

# Make sure any symbolic links are resolved to absolute path	

export PBS_O_WORKDIR=$(readlink -f $PBS_O_WORKDIR) 	

 	

# Change to the direcotry that the job was submitted from	

cd $PBS_O_WORKDIR	

	

# Set the number of threads to 1	

# This prevents any system libraries from automatically 	

# using threading.	

export OMP_NUM_THREADS=1	

	

# Unlimit the use of any resources.	

ulimit -s unlimited	

	

# n is the total number of processes	

# N is the number of processes per node	

# Launch the parallel job. Using fewer number of cores than max 	

# (1 Hector node = 32 cores) is reccommended by Hector helpdesk.	

To use ./Beatbox, you must copy the Beatbox binary to the concerned
directory.	

aprun -n 256 -N 28 ./Beatbox humanAtrium_start_crn.bbs -verbose -
profile	

# or like this:	

	

time aprun -n 2 -N 2 ./bin/Beatbox crn_ffr.bbs 	

	

qsub run4.pbs	

run2.pbs	

#!/bin/bash --login	

#PBS -N run4	

#PBS -l mppwidth=4	

#PBS -l mppnppn=4	

#PBS -l walltime=10:00:00	

#PBS -A e203	

	

# Make sure any symbolic links are resolved to absolute path	

export PBS_O_WORKDIR=$(readlink -f $PBS_O_WORKDIR) 	

 	

# Change to the direcotry that the job was submitted from	

cd $PBS_O_WORKDIR	

	

# Set the number of threads to 1	

# This prevents any system libraries from automatically 	

# using threading.	

export OMP_NUM_THREADS=1	

	

# Unlimit the use of any resources.	

ulimit -s unlimited	

	

# n is the total number of processes	

# N is the number of processes per node	

# Launch the parallel job. Using fewer number of cores than max 	

# (1 Hector node = 32 cores) is reccommended by Hector helpdesk.	

To use ./Beatbox, you must copy the Beatbox binary to the concerned
directory.	

aprun -n 256 -N 28 ./Beatbox humanAtrium_start_crn.bbs -verbose -
profile	

# or like this:	

	

time aprun -n 4 -N 4 ./bin/Beatbox crn_ffr.bbs 	

	

qsub run8.pbs	

run4.pbs	

qsub run2.pbs	

Methodology: profiling
•  Instrument the code to find out where it is spending time

–  Identify bottlenecks

•  Cray Performance Analysis Tools (PAT)
–  Instrument executable

–  Perform sampling experiments
–  Perform tracing experiments

Beatbox Workshop, 24-25 June 2013, Manchester 7

module load perftools	

 make clean; make	

pat_build –g mpi Beatbox	

run Beatbox+pat	

pat_report –o report.txt Beatbox+pat+XXXXXX-XX.xf	

CrayPat/X: Version 6.1.0 Revision 11030 (xf 10658) 03/20/13
16:42:24	

	

Number of PEs (MPI ranks): 32	

 	

Numbers of PEs per Node: 32	

 	

Numbers of Threads per PE: 1	

 	

Number of Cores per Socket: 16	

	

Execution start time: Tue May 28 09:43:00 2013	

	

System name and speed: login2 2300 MHz	

	

Current path to data file:	

 /home/z01/z01/marioa/work/beatbox/usr/mario/Profiling/decompTest/
Beatbox+pat+524597-84s.ap2 (RTS)	

	

	

Notes for table 1:	

	

 Table option:	

 -O profile	

 Options implied by table option:	

 <snip>	

apprentice (app2)	

Lots of Options	

Available	

Profiling: example output

Beatbox Workshop, 24-25 June 2013, Manchester 8

Table 1: Profile by Function Group and Function

 Samp% | Samp | Imb. | Imb. |Group
 | | Samp | Samp% | Function
 | | | | PE=HIDE

 100.0% | 26362.7 | -- | -- |Total
|--
| 39.8% | 10499.8 | -- | -- |ETC
||---
|| 27.1% | 7157.4 | 103.6 | 1.5% |__isoc99_vsscanf
|| 4.8% | 1278.0 | 64.0 | 4.9% |____strtod_l_internal
|| 3.0% | 790.1 | 1436.9 | 66.6% |__cray2_EXP_14
|| 2.4% | 640.3 | 59.7 | 8.8% |____strtol_l_internal
|| 0.7% | 194.2 | 24.8 | 11.7% |_IO_getline_info
|| 0.5% | 131.6 | 247.4 | 67.4% |_ALOG_15
|| 0.2% | 60.1 | 13.9 | 19.4% |_IO_old_init
|| 0.2% | 55.8 | 11.2 | 17.3% |_IO_str_init_static_internal
|| 0.2% | 55.3 | 16.7 | 23.9% |_IO_no_init
|| 0.2% | 46.4 | 9.6 | 17.7% |__isoc99_sscanf
|| 0.2% | 41.3 | 21.7 | 35.5% |_IO_setb
|| 0.1% | 26.0 | 68.0 | 74.7% |_EXP
…

Where the code	

is spending its time	

Load Imbalance	

(max Time – Avg Time)	

•  Identify expensive parts
–  See if performance can be improved

•  Caveat: don’t want to optimise just one code execution path
–  Use different configurations/data files

Result: rabbit ventricle – FHN model

•  Approximately 470k points
–  No output, 800 time steps
–  T1 ~ 8900s, 11s per time step

•  FHN model has 2 ODEs/cell

Beatbox Workshop, 24-25 June 2013, Manchester 9

0

10

20

30

40

50

60

70

80

90

1 4 16 64 256 1,024

Sp
ee

d-
up

Processes

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 4 16 64 256 1,024

Ef
fic

ie
nc

y

Processes

Result: rabbit ventricle – CRN model

•  Approximately 470k points
–  No output, 10,000 time steps
–  T1 ~ 12,273, ~1.2s per time step

•  CRN model has 22 ODEs/cell

Beatbox Workshop, 24-25 June 2013, Manchester 10

0

10

20

30

40

50

60

70

80

90

1 4 16 64 256 1,024

Sp
ee

d-
up

Processes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 16 64 256 1,024

Ef
fic

ie
nc

y

Processes

Result: human atrium

Beatbox Workshop, 24-25 June 2013, Manchester 11

•  Approximately 19M points
–  No output, 2000 time steps
–  T1 ~ 5359, ~2.7s per time step

– Compiled with –O3

0

5

10

15

20

25

1 4 16 64 256 1024

Sp
ee

d-
up

Number of Processes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 4 16 64 256 1,024

Ef
fic

ie
nc

y

Number of Processes

Result: Box3D
•  Big box with biophysical realistic

models

•  Have a 302x302x302 grid

•  FHN has 2 ODEs/cell

•  CRN has 22 ODEs/cell

•  No output

•  FHN: 800 time steps

•  FHN T1 ~ 3430s,
4.8s per time step

•  CRN:200 time steps

•  CRN T1 ~ 13,859s, 69s per time step
Beatbox Workshop, 24-25 June 2013, Manchester 12

0
10
20
30
40
50
60
70
80
90

100

1 4 16 64 256 1,024

Sp
ee

d-
up

Number of cores

Speedup - FHN

0

50

100

150

200

250

300

1 4 16 64 256 1,024

Sp
ee

d-
up

Processes

Speedup - CRN

Conclusions

•  Performance depends on:
–  The model used
–  How much fill there is
–  Performance quickly saturates as more processes are added

•  You will get a definite benefit from using more processors
–  Do not have to go to HPC systems to observe this
–  Normally you want to achieve a performance of about 70%

•  Need to identify where parallel performance bottlenecks are

Beatbox Workshop, 24-25 June 2013, Manchester 13

humanAtrium bbs script

Beatbox Workshop, 24-25 June 2013, Manchester 14

state	

k_func timing	

k_func begin	

k_poincare	

k_func 	

diff	

euler	

k_func 	

sample	

