
BeatBox User Workshop:

Hands-On Tutorial

June 25, 2013

Start

The computers should already be booted. Note that the operating system and all the files for this
tutorial are on the memory stick, so this sticks should never be removed! If the screen goes locked
due to long inactivity, your username is beatbox and your password is beatbox.

Notice the icon in the top left corner with the word BeatBox. Click at it and it will open
a terminal (command line) window with the current directory /beatbox. This is our ‘home’
directory.

[beatbox@localhost ~]$ ls

bin Desktop Downloads lost+found

CRN_model Documents FitzHugh -Nagumo_model parallel_Hector

[beatbox@localhost ~]$ ls

We will work with scripts located in subdirectories FizHugh-Nagumo_model, CRN_model and
parallel_Hector.

Sequential mode, FitzHugh-Nagumo model

Look into the FitzHugh-Nagumo model directory:

[beatbox@localhost ~]$ cd FitzHugh -Nagumo_model

[beatbox@localhost FitzHugh -Nagumo_model]$ ls *.bbs

(from this point on, we shall abbreviate the prompt in the screen listings to [...]$).

FitzHugh-Nagumo in 0D

First look at the contents of script fhn0.bbs using more command. This script was discussed
yesterday, and it also contains detailed comments. Refresh in your memory what it is supposed
to do. Run it:

[...]$ Beatbox_SEQ fhn0.bbs

This run will take a few seconds, while showing the progress of the phase trajectory on the
screen. Make sure this has created file fhn0.rec using ls -lt command, and check its contents
using more command.

FitzHugh-Nagumo in 1D

Now look at the next script, fhn1.bbs and run it:

[...]$ Beatbox_SEQ fhn1.bbs

1

This will show propagating pulses and will take a few seconds. In the end, the picture stops and
the program hangs up until you press Enter key.

FitzHugh-Nagumo in 2D

[...]$ Beatbox_SEQ fhn2.bbs

This will show propagating rotating spiral wave and will take a minute or two. In the end,
the picture will freeze for 3 seconds and then the program will terminate without having to press
Enter key.

[...]$ gnuplot

G N U P L O T

...

Terminal type set to ’wxt ’

gnuplot > set size square

gnuplot > plot ’fhn2.trj ’ u 1:2 w l

This will show the trajectory. The command set size square here ensures that the scale of x
and y coordinates will be the same, so a circle is drawn as a circle rather than an oval.

To finish, click on the terminal window, and

gnuplot > quit

[...]$

Now let us try to change the parameters of the last run. Launch the editor Leafpad through
Start - Accessories, and open in it the file /beatbox/FitzHugh-Nagumo_model/fhn.par.
Change

//FHN model kinetics parameters epsilon , beta , gamma

def real eps 0.30; def real bet 0.71; // rigid rotation , positive fi

//def real eps 0.20; def real bet 0.71; // meander

//def real eps 0.3; def real bet 0.77; // negative filament tension

def real gam 0.50;

to

//FHN model kinetics parameters epsilon , beta , gamma

//def real eps 0.30; def real bet 0.71; // rigid rotation , positive

def real eps 0.20; def real bet 0.71; // meander

//def real eps 0.3; def real bet 0.77; // negative filament tension

def real gam 0.50;

Run fhn2.bbs again, and plot the tip trajectory again. Instead of seeing just the new trajectory,
you will see both the previous trajectory and the new trajectory.

Question. Explain why it happened. How this could have been avoided?
Answer. This happened because the new data were appended to the existing file fhn2.trj

rather than overwriting it. As with record device, device singz has parameter append which
defaults to 1. Hence to avoid appending new data to the old file, either of the two things could
be done:

• Delete or rename the fhn2.trj file before the second run of fhn2.bbs.

• Add append=0 to the body of singz device. In this case the old data in fhn2.trj will be
overwritten with the new data.

2

If you need to run this script several times, the second solution may be preferable, since you would
not need to remember to remove/rename the trj file every time.

Using File Manager, navigate into directory /beatbox/FitzHigh-Nagumo_model/fhn2.dir,
open file uvi0000000.png using Image Viewer, and observe the high-resolution “movie” of the
solution. Do the same for the udg*.png series.

Question. Explain why the first image in the udg series is so different from all subsequent
images. How the script could be amended to avoid this.

Answer. The green component of the images represents the time derivative, which is found
by substracting the u-field at the previous step from the current u-field. For the very first image,
made at t = 0, there is no previous u-field, thus the time derivative is not found correctly. To
avoid outputting the incorrect image file, one can amend the fhn2.bbs by changing the when=

condition of the k_imgout device. This would have to be a new k-variable, which would equal
zero at t = 0 and otherwise be identical to k-variable out. If we call the new variable kout, this
may be done like this:

...

def real begin; // it is the very first step

def real out; // it is time to make outputs except for k_imgout

def real kout; // it is time to make outputs for k_imgout

def real dtime; // time to make outputs or a step preceding that

...

k_func name=timing nowhere =1 pgm={ /* Define when to begin and end*/

begin = eq(t,0); // beginning of simulation

out = eq(mod(t,tout),0); // time to make outputs every tout steps

kout = out*gt(t,0); // same as out except at t=0

dtime = out + eq(mod(t,tout),tout -1); // when to call d_dt device

...

k_imgout when=kout

...

Exercise. Make both of the above amendments to the singz and k_imgout devices in the
script fhn2.bbs, and run it again. Observe the difference in the fhn2.trj and solution output in
the fhn2.dir directory.

Exercise (extra). Also, modify the script fhn2.bbs in such a way that the parameters eps

and bet are given as the first and the second command-line arguments respectively. Check that
everything works as expected by running

[...]$ Beatbox_SEQ fhn2.bbs 0.20 0.71

FitzHugh-Nagumo in 3D

Run fhn3.bbs in the background:

[...]$ Beatbox_SEQ fhn3.bbs > fhn3.out &

[1] 11039

[...]$

Here > fhn3.out redirects the standard output of the program to the file fhn3.out, and & in
the end puts the execution into the “background”, so you can continue working with the terminal
window while BeatBox runs.

The full run will take quite a while, about half an hour, but some results could be seen already
in a few minutes. The file fhn3.out will contain a copy of what you would have seen on screen
in a normal, foreground run. The progress in terms of the created output files can be monitored
like this:

3

[...]$ ls -lt fhn3.dir | head

total 1081600

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000040. ppm

-rw -rw -r-- 1 beatbox beatbox 0 23 Jun 09:28 000041. ppm

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000039. ppm

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000038. ppm

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000037. ppm

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000036. ppm

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000035. ppm

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000034. ppm

-rw -rw -r-- 1 beatbox beatbox 1382989 23 Jun 09:28 000033. ppm

[...]$

These output files can be visualized using ezview (a visualizer based on graphical part of D.
Barkley and M. Dowle’s EZSCROLL) via the script view.pl located in this directory:

[...]$./view.pl fhn3.dir

There are two variations of the fhn3.bbs script in this directory (you do not need to run them!):

• fhn3_PositiveTension.bbs and

• fhn3_NegativeTension.bbs.

These are different from the base script fhn3.bbs in the following ways:

• The parameters are not taken from the file fhn.par but specified right within the script.

• The initial conditions are more sophisticated, using the phase distribution method.

Analyse the text of the three scripts and identify the places responsible for these differences. You
can run these scripts, it will take about an hour each. The results can be viewed by

[...]$./view.pl fhn3_PositiveTension.dir

and

[...]$./view.pl fhn3_NegativeTension.dir

respectively.

FitzHugh-Nagumo in a 2D slice 1

Run

[...]$ Beatbox_SEQ fhn_crossFieldStim_ffr_slice.bbs

This script will run a few seconds, and create a series of image files in
fhn_crossFieldStim_ffr_slice.dir subdirectory. View these files using Image Viewer,
as described previously. Observe that the simulations here are done in a complex geometry, this
is a 2D slice of the rabbit ventricle geometry. The initial conditions are cross-field but that does
not initiate a spiral wave due to geometric constraint.

Now run
1Acknowledgement. The realistic geometries used here in the 2D slice and 3D realistic anatomy simulations

are by courtesy of Elizabeth M. Cherry and Flavio H. Fenton. If you use the anatomy geometries for any publications
please cite as:
“The Rabbit Ventricles Geometry data comes from A.McCulloch, National Biomedical Computation Resource;
NIH (USA) Grant P41 RR-08605 [F. J. Vetter, A. D. McCulloch, Three-dimensional analysis of regional cardiac
function: a model of rabbit ventricular anatomy, Prog. Biophys. Mol. Biol. 69, 157-183, 1998]; The cartesian
format: comes courtesy of Elizabeth M. Cherry and Flavio H. Fenton; The Beatbox format was produced by Ross
McFarlane.”

4

[...]$ Beatbox_SEQ fhn_spiral_ffr_slice.bbs

and view the files in Beatbox_SEQ fhn_spiral_ffr_slice.dir subdirectory. The initial condi-
tions are now set using phase distribution method, which leads to initiation of a spiral wave at a
location determined by k-variables x0 and y0 in the script.

Next, run

[...]$ Beatbox_SEQ fhn_spiral_ffr_slice_aniso.bbs

The main difference here from the previous case are the anisotropy=1 and normaliseVectors=1

parameters in the state command. Also, diff device now has Dpar=D*2 Dtrans=D/2 (for dif-
fusivities along and across the fibres, respectively) instead of D=D of the previous two examples:
with anisotropy on, diff device no longer understands parameter D but requires Dpar and Dtrans

instead. The spiral wave in this case is not stable and quickly drifts out of the tissue.

FitzHugh-Nagumo in a 3D ventricular geometry

There are four scripts on this topic:

[...]$ ls -l fhn_ffr *.bbs

-rwxrwxrwx 1 vadim vadim 1980 23 Apr 09:29 fhn_ffr.bbs

-rwxrwxrwx 1 vadim vadim 1936 23 Apr 09:27 fhn_ffr_iso.bbs

-rwxrwxrwx 1 vadim vadim 2411 24 Apr 13:24 fhn_ffr_iso_xz.bbs

-rwxrwxrwx 1 vadim vadim 2459 16 May 14:38 fhn_ffr_xz.bbs

[...]$

Here iso component of the name means isotropic diffusion, so the other two scripts are for
anisotropic diffusion. The xz component of the name means phase-distribution initialization using
x and z coordinates; the other two scripts are for cross-field initialization. Compare the contents
of these scripts.

One of these examples has been pre-run: fhn_ffr.bbs, for anisotropic diffusion and cross-field
stimulation. The results can be viewed with three different visualization methods, all exploiting
ezview with different visualization parameters:

[...]$./ view_ffr.pl fhn_ffr.dir/

[...]$./ surface.pl fhn_ffr.dir/

[...]$./ inside.pl fhn_ffr.dir/

The first and the second show evolution of the voltage on the surface of the tissue, the third shows
propagation of the wavefront through the bulk of the tissue. The first method shows the surfaces
solid (opaque), the second and the third show them semi-transparent. In all cases an attempt to
visualize the singular filaments is done, but there are some false singular points detected. The
detection of the filaments is controlled by line like

1 show_filament

inside the *.pl file; changing here 1 to 0 will abolish the attempts to visualize the singular
filaments.

ezview is an interactive program: scrolling through input files can be paused by pressing P

with the keyboard focus in the graphics window; then the image can be rotated using arrows or
mouse click-and-drag.

5

Sequential mode, Courtemanche et al. 1998 (CRN) model

CRN model in 0D

[beatbox@localhost FitzHugh -Nagmo_model]$ cd

[beatbox@localhost ~]$ cd ~/ CRN_model

[beatbox@localhost CRN_model]$ ls *.bbs

pd_crn0.bbs pd_crn1.bbs pd_crn2.bbs

[beatbox@localhost CRN_model]$ Beatbox_SEQ pd_crn0.bbs

The script will produce a series of action potentials, draw them in two different forms and write
them to disk files.

Inspect this script. Follow the logic of the control devices and of the feedback-driven stimulation
protocol. It is similar to fhn0.bbs considered earlier.

Guess what is the function of device k_print (it was not explained in the lecture yesterday).
Check your guess by looking at the contents of the file pb_crn0.vtg using more command. Plot
the action potentials using gnuplot.

Compare the functions of device k_print and record. Plot the action potential using gnuplot:

[...]$ gnuplot

G N U P L O T

...

Terminal type set to ’wxt ’

gnuplot > plot ’pd_crn0.rec ’ u 0:1 w l

gnuplot > plot ’pd_crn0.rec ’ u ($0 *0.005):1 w l

In the first case, the plot was of the voltage against the line number of the file pd_crn0.rec. In
the second case, it was against the time in milliseconds (why? find 0.005 in the file pd_crn0.bbs

for a hint).
Plot the contents of pd_crn0.vtg by gnuplot again and look closer at the graph. The shape of

the action potentials (APs) is not constant: during the first few APs, some tendency to alternances
can be noticed; however subsequently it all settles down to a stable AP profile.

Observe usage of string macros win1 and win2. Figure out how the action potentials in the
right half of the graphics window are drawn. Why lines=0.1 and what will happen if it is set to
0? to 1?

CRN model in 1D
Once pd_crn0.bbs has been run, we should have the record file pd_crn0.rec, so we can now do
the next step:

[...]$ Beatbox_SEQ pd_crn1.bbs

Inspect the script pd_crn1.bbs. Similar to fhn1.bbs considered earlier, the script pd_crn1.bbs

uses the record file pd_crn0.rec to set non-homogeneous Dirichlet boundary conditions on the
left end of the interval, to initiate propagating waves.

The script pd_crn1.bbs produces files pd_crn1.rec and pd_crn1.vtg. You can visualize them
using gnuplot as before (look again at the appropriate instructions for fhn1.bbs and modify them
for the present case appropriately). The first one contains record of all variables, not only voltage.
This is important for using it for initial conditions for the next script, pd_crn2.bbs.

Question. Find out, where in the script pd_crn1.bbs it is determined how long does the
simulation run. Currently it runs for as long as it takes for the second pulse to reach the middle
of the interval, so the output file crn1.vtg contains one full AP record plus a bit. How to modify
the script so it stops when the third pulse reaches the middle of the interval?

Answer. You need to change the line

def int countmax 1; // when to stop

6

to

def int countmax 2; // when to stop

Make sure you understand how it works, and ask the demonstrators if you don’t.
Exercise. Make this modification of the k-variable countmax in pd_crn1.bbs and run the

resulting script (NB don’t forget to check whether the file crn1.vtg is going to be overwritten or
appended!). Check the result visually during the run, and also by visualizing crn1.vtg afterwards.
Visualize also the AP as recorded in crn1.rec. There is only one AP there — explain why. Ask
the demonstrators if you can’t.

CRN model in 2D

This is a relatively long run, so it does not contain run-time graphics and can be run in the
background:

[...]$ Beatbox_SEQ pd_crn2.bbs > pd_crn2.out &

Its progress can be then monitored by checking the contents of the image directory,

[...]$ ls -lt pd_crn2.dir

total 216

-rw -r--r-- 1 vadim vadim 26604 23 Jun 14:13 uvi0000300.png

-rw -r--r-- 1 vadim vadim 25875 23 Jun 14:13 uvi0000200.png

-rw -r--r-- 1 vadim vadim 25157 23 Jun 14:12 uvi0000100.png

-rw -r--r-- 1 vadim vadim 23444 23 Jun 14:12 uvi0000000.png

546 14:13:38 CRN_model$

or by plotting the tip trajectory:

[...]$ gnuplot

G N U P L O T

...

Terminal type set to ’wxt ’

gnuplot > plot ’pd_crn2.trj ’ u 1:2 w lp

The parameter w lp here stands for with linespoints: in this model, the movement of the tip
is not continuous, and marking every position of the tip with a symbol helps to identify the jumps
of the trajectory.

By repeating the plot command while still within gnuplot from time to time (use arrow key
to return the previous command on the command line), you can monitor the progress of the tip.

You can also visualize the image files in pd_crn2.dir with Image Viewer as before.
One rotation of a spiral may take about XXXX of minutes in sequential run.

Parallel mode, remote runs on HECToR

[beatbox@localhost CRN_model]$ cd

[beatbox@localhost ~]$ cd parallel_Hector

[beatbox@localhost parallel_Hector]$ ls *.bbs

fhn3_NegativeTension.bbs fhn_ffr_xz.bbs fhn_ffr_xz_scaling.bbs

[beatbox@localhost parallel_Hector]$ ls *.bbg

ffr.bbg

[beatbox@localhost parallel_Hector]$ ls *.rec

fhn1_NegativeTension.rec fhn1_PositiveTension.rec

[beatbox@localhost parallel_Hector]$ ls *.pbs

fhn3_NegativeTension.pbs fhn_ffr_xz.pbs

7

This part of the tutorial is about running jobs on a remote supercomputer. For this you need
a username and password. A number of guest accounts have been created on HECToR for this
workshop which will be given to you on a separate piece of paper at your terminal. In this manual,
we will designate these as <username> and <password>.

Advance apology: the dedicated accounts for this workshop are only made available on the day
of the hands-on tutorial. Hence we are unable to test everything beforehand, and our instructions
are partly based on guesswork. In real life, some of the instruction may have to be adjusted to
the circumstances. We are sorry for possible inconveniences.

The overall schedule of our exercise will be:

• Prepare the jobs.

• Copy all necessary files to the remote computer.

• Submit the jobs on the remote computer.

• Copy the results back to the local computer.

Preparing the jobs.

The jobs on HECToR are defined by submission scripts, which are files with extention pbs. Syn-
tactically, they are bash scripts with some special sort of comments. Here is the contents of one
of them:

520 15:35:04 parallel_Hector$ more fhn_ffr_xz.pbs

#!/bin/bash --login

#PBS -N FhnFfrXz

#PBS -l mppwidth =96

#PBS -l mppnppn =32

time requested

#PBS -l walltime =00:10:00

#PBS -A e203

change to the directory where you will run the simulation.

cd /home/e203/e203/ivb203/work/FitzHughNagumo_model

ulimit -s unlimited

Launch the parallel job

aprun -n 96 -N 32 ./ Beatbox fhn_ffr_xz.bbs -profile -verbose -nograph

The special comments are those starting with #PBS.
The first of them, #PBS -N FhnFfrXz says that the name of the job, by which it can be

recognized in the queue, is FhnFfrXz.
The comment #PBS -l mppwidth=96 states that the job will be parallelized to run on 96

processors simultaneously.
The comment #PBS -l mppnppn=32 states that the number of processors per node will be 32.

Hence altogether this job will take 3 nodes. Note that 32 is the maximal number of processors
that can be run on a node. In practice sometimes it is recommended that the nodes are not fully
loaded with processes, but this depends on the sort of jobs and is a delicate matter; here we adopt
the simplest solution.

The comment #PBS -l walltime=00:10:00 does “what it says on the tin”: it states that the
maximal time that job will be allowed to run is 10 minutes. If the job does not finish by then, it
will be killed. It makes sense to put it slightly longer than the expected duration of the run, but

8

not much longer, as this amount affects scheduling: long jobs may have to wait longer before they
will be allowed to start.

The comment #PBS -A e203 is very important because we will need to amend this. This
defines the name of the project to which the cost of this job will be charged. At the moment
of creating the bootable USB sticks this name was not yet know, so in this place some arbitrary
name is put, which will need to be changed. On top of that, we will need to direct our script to
a special queue, reserved specifically for our workshop (otherwise our job may stuck in general
queues for hours). So, we will need to change the line:

#PBS -A e203

to two lines:

#PBS -A d26

#PBS -q R1499583

Further changes that need to be done: replace

cd /home/e203/e203/ivb203/work/FitzHughNagumo_model

with

cd /home/d26/d26/<username >/work/parallel_Hector/

— this is the directory where you will put all the files and from where you will launch the jobs.
Ignore the line

ulimit -s unlimited

— i.e. leave it as it is.
Finally,

aprun -n 96 -N 32 ./ Beatbox fhn_ffr_xz.bbs -profile -verbose -nograph

is the line that defines the job. It starts with aprun which is the name of MPI wrapper, i.e. a
system executable which will start simultaneously the necessary number of copies of BeatBox. Its
options are -n 96 for number of processes to be run simultaneously, and -N 32 for the number of
processes per one node. These should be the same numbers as in the special comments
discussed above. Finally, goes the usual BeatBox command line. Some notes:

• The name of the executable is Beatbox rather than Beatbox_SEQ as before: now we are
running the parallel version at last!

• The name of the executable is preceded with ./ to make it explicit that the executable will
be in the current directory.

• The BeatBox options -profile and -verbose work the same way as in the sequential version,
and are needed to look into details of the work and analyse the performance of BeatBox. In
real life production runs, when everything has been perectly tuned, these options may be
omitted, for better performance.

• The BeatBox option -nograph should switch off any real-time graphics. The real time
graphis will not work in parallel runs anyway (the devices ignored), and the BeatBox scripts
we are going to run do not have any run-time graphics anyway, but this option does not
affect performance so it is good practice to always put it there, “just in case”.

Task: Do the above described changes, of the project name and the user name, in both pbs

files.

9

Copying files to the remote computer

From now on, it is more convenient to proceed using two terminal window. In the menu of your
existing terminal window, click on File - New Window. Arrange the two terminal windows so it
is easy for you to switch between them. One of them will be logged to the remote computer and
will be referred to as remote terminal, the other for copying between the local computer and the
remote computer, and will be referred to as local terminal.

In the terminal window you designate as the remote terminal, do the login:

[...]$ ssh <username >@login.hector.ac.uk

Password: <password >

Last login: ...

...

<username >@hector -xe6 -7:~>

At the moment of writing these instructions, we are not aware whether your user directory on
HECToR will be cleaned up after the previous user. So these instructions are written without any
assumptions about that. One important thing to check is that there is work directory there:

...> cd

...> ls -dl work

lrwxrwxrwx 1 <username > d26 21 Jul 9 2012 work -> /work/d26/d26/<username >

...>

and that there is no subdirectory prallel_Hector in it:

...> cd ~/work

...> ls -dl parallel*

ls: cannot access parallel *: No such file or directory

...>

If you get something like this, it is probably safe to proceed to the next step. If not, some action
may be required: call one of the demonstrators for help.

The last thing we do before copying is to create the directory in which we will be working:

...> cd ~/work

...> mkdir parallel_Hector

...> ls -dl parallel_*

drwxr -sr -x 2 <username > d26 4096 Jun 23 16:41 parallel_Hector

...>

In the local terminal, do this:

[...]$ cd ~/ parallel_Hector

[...]$ scp -pr *.bbg *.rec *.bbs *.pbs \

<username >@login.hector.ac.uk:work/parallel_Hector/

Password: <password >

ffr.bbg 100% 12MB 163.5KB/s 01:15

fhn1_NegativeTension.rec 100% 34KB 34.0KB/s 00:00

...

[...]$

This will take a while to complete, mainly because of the big file ffr.bbg.
Finally, we will need our executable in the working directory. In the remote window, do this:

...> cd ~/work/parallel_Hector/

...> cp -p /usr/local/packages/budgets/bin/Beatbox ./

...>

10

Now check that everything is in place:

...> ls -l

total 20560

-rwxr -xr -x 1 guest21 d26 9359907 Jun 21 15:52 Beatbox

-rwxrwxrwx 1 guest21 d26 12556921 Sep 28 2011 ffr.bbg

-rwxrwxrwx 1 guest21 d26 34808 Apr 4 17:55 fhn1_NegativeTension.rec

-rwxrwxrwx 1 guest21 d26 34106 Apr 4 18:36 fhn1_PositiveTension.rec

-rwxrwxrwx 1 guest21 d26 4711 Apr 5 09:56 fhn3_NegativeTension.bbs

-rwxrwxrwx 1 guest21 d26 375 May 10 12:30 fhn3_NegativeTension.pbs

-rwxrwxrwx 1 guest21 d26 2459 Apr 24 16:01 fhn_ffr_xz.bbs

-rwxrwxrwx 1 guest21 d26 365 May 10 13:43 fhn_ffr_xz.pbs

-rwxrwxrwx 1 guest21 d26 2246 Jun 10 15:06 fhn_ffr_xz_scaling.bbs

...>

Submitting the jobs

To submit a BeatBox script, we send the corresponding pbs script to the queue:

...> qsub fhn_ffr_xz.pbs

...>

and similarly for the other pbs script. Perhaps it would be wiser to ensure that the first job runs
ok before submitting the second (at least in real life).

To monitor the progress of your jobs, do this

...> qstat -u $USER

from time to time.
In case something goes horribly wrong, it is possible to kill the job, whether queuing or running,

by

...> qdel [Job -ID]

where [Job-ID] is the one provided by the qstat command.
When the job has finished, you will no longer see it with the qstat command. Check the work-

ing directory for the outputs expected from the job, and also for the files like <jobname>.oXXXXXX

and <jobname>.eXXXXXX, where <jobname> is the name of the job as specified by the #PBS -N

comment in the pbs script, and XXXXXX is a unique number provided by the system. The file
<jobname>.oXXXXXX is the standard output, and <jobname>.eXXXXXX is the standard error from
the job.

You may inspect the contents of the resulting files on the remote computer, say using more

command, but for anything more substantial, say visualization, it is better copy it over to your
local computer.

Copying the results back to the local computer

.
Before we do that, we note that your working directory on the local computer contains results

of our runs of the same jobs. In the local terminal, do the following:

[...]$ ls -ld *.dir

drwxr -xr -x. 2 beatbox beatbox 16384 Jun 12 19:37 fhn3_NegativeTension.dir

drwxr -xr -x. 2 beatbox beatbox 4096 Jun 12 19:37 fhn_ffr_xz.dir

[...]$

11

Since these are exactly the same names as the directories created by HECToR runs, it is a
good idea to save these directories for subsequent comparison, by renaming them, say:

[...]$ mv fhn3_NegativeTension.dir fhn3_NegativeTension.old

[...]$ mv fhn_ffr_xz.dir fhn_ffr_xz.old

[...]$

After that, the easiest way to copy everything from the work directory on HECToR to local
computer, without copying something that is already here, is to use rsync:

[...]$ pwd

/beatbox/parallel_Hector

[...]$ rsync -vazu <username >@login.hector.ac.uk:work/parallel_Hector/ ./

Password: <password >

...

After this transfer has, hopefully, successfully completed, you can inspect and visualize the
output files. The ppm files in fhn3_NegativeTension.dir and fhn_ffr_xz.dir, as well as in
fhn3_NegativeTension.old and fhn_ffr_xz.old are the same sort of files as discussed in the
subsection “FitzHugh-Nagumo in a 3D ventricular geometry”, and can be visualized with the same
methods. You would only need to copy the necessary visualizer scripts to the current directory:

[...]$ cp -pr ../ FitzHughNagumo_model /*.pl ./

and then proceed with view_ffr.pl, surface.pl and inside.pl as before.
Do that and compare the outputs in *.dir and *.old directories.

END

12

