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ABSTRACT

This thesis studies the problem of initiation of propagation of excitation waves in one-
dimensional spatially extended excitable media. In a study which set out to determine
an analytical criteria for the threshold conditions, Idris and Biktashev [68] showed that
the linear approximation of the (center-)stable manifold of a certain critical solution
yields analytical approximation of the threshold curves, separating initial (or bound-
ary) conditions leading to propagation wave solutions from those leading to decay
solutions.

The aim of this project is to extend this method to address a wider class of ex-
citable systems including multicomponent reaction-diffusion systems, systems with
non-self-adjoint linearized operators and in particular, systems with moving critical
solutions (critical fronts and critical pulses). In the case of one-component excitable
systems where the critical solution is the critical nucleus, we also extend the theory to
a quadratic approximation for the purpose of improving the accuracy of the linear ap-
proximation. The applicability of the approach is tested through five test problems with
either traveling front such as Biktashev model, a simplified cardiac excitation model
or traveling pulse solutions including Beeler-Reuter model, near realistic cardiac exci-
tation model.

Apart from some exceptional cases, it is not always possible to obtain explicit so-
lution for the essential ingredients of the theory due to the nonlinear nature of the
problem. Thus, this thesis also covers a hybrid method, where these ingredients
are found numerically. Another important finding of the research is the use of the
perturbation theory to find the approximate solution of the essential ingredients of
FitzHugh-Nagumo system by using the exact analytical solutions of its primitive ver-
sion, Zeldovich-Frank-Kamenetsky equation.
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INTRODUCTION

1.1 Threshold Phenomenon

The threshold phenomenon “deals with the minimal, an event, or stimulus just strong
enough to be perceived or to produce a response” [118] and the presence of it “im-
poses the restriction on the types of mathematical model suitable to describe” bio-
logical/chemical systems [45]. Despite its extreme importance, it is not completely
understood. Below, we list some examples of how understanding the threshold phe-
nomenon can be rather important:

• Propagation of excitation in the heart involves action potential and threshold
value controls if an applied stimulus is sufficient enough to generate an ac-
tion potential. Understanding the mechanisms of initiation of propagating is
extremely crucial as successful propagation enables continuous electrical and
chemical communication between cells and failure may lead to serious medical
conditions [140].

• Another typical example of how the threshold phenomenon plays a key role is
prey-predator system, popular area of extensive study of the relation between
species and their environment. The threshold phenomenon in a prey-predator
system must be carefully examined as the effect would just be so dramatic [96].
Starting from low population densities of the prey and predator, a typical inter-
action between two species can be as follows [129]: initially, there occurs an
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CHAPTER 1. INTRODUCTION

increase of the prey population until self-limitation mechanisms take part so no
further growth is possible. On the other hand, the predator population starts in-
creasing as long as the prey density is above a certain threshold. As the excess
predators cause the prey population to decrease, the predator population then
declines rapidly due to starvation or emigration.

• Threshold phenomenon also plays a key role in understanding many age-related
diseases such as Alzheimer and Parkinson. Studies on neuronal changes in
brain suggest that the threshold hypothesis helps to explain “some of the asso-
ciations between clinical and pathological findings” [1, 113]. The importance of
the threshold concept in the clinical analysis of such diseases lies in its implica-
tions for diagnosis and further research into treatment.

1.2 An Introduction to Excitable Media

Originally, the term excitability has come to be used to refer to the “property of living
organisms to respond strongly to the action of a relatively weak external stimulus”
[141]. A well-known example of excitability is the ability of nerve cells to generate and
propagate electrical activity. To better understand the mechanisms of the electrical
activity in cells, it is helpful to categorise all cell types into two distinct types, excitable
and non-excitable.

Many cells maintain a stable equilibrium electric potential. For some, if electric cur-
rents are applied to the cell for a short period of time, the potential returns directly to its
equilibrium value once the applied current is removed. These type of cells are called
non-excitable. The epithelial cells that line the walls of the gut are typical examples
of non-excitable cells. Excitable cells, however, are characterized by an ability to re-
spond to sufficiently strong applied current in a specific way such that the membrane
potential goes through a large excursion, called an action potential, before eventu-
ally returning to rest. Some classic examples are cardiac cells, smooth and skeletal
muscle cells, secretory cells, and most neurons [74].

By definition, an excitable medium is a spatially distributed system, each element
of which possesses the property of excitability and it is usually defined as nonlinear
reaction-diffusion system, where the reaction term defines how the constituents of the
system are transformed into each other, and the diffusion part provides propagation
of information [7, 55, 141].

14



1.2. AN INTRODUCTION TO EXCITABLE MEDIA

The phenomenon of the excitability can be widely seen in nature and one example
of which is forest fire [6, 35]. By way of illustration, consider a forest consisting of
fully grown trees. Each individual tree may be in one of the following three states:
quiescent (the tree is healthy, unburnt), excited (the tree is on fire) and refractory (the
tree is temporarily unable to become excited). If a tree is excited, it will transfer its
excitation to its nearest neighbors, and hence the fire on a site will spread through
diffusion, followed by refractory period, during which a tree is no longer responsive
to a fire. After a certain amount of time, the site eventually returns more or less back
to its original state as the forest regrows. Thus, the entire forest can be considered a
notable example of excitable media. Figure 1.1 illustrates a typical process of a tree
on a site with excitability features in order.

University of Utah
Mathematical Biology

theImagine 
Possibilities

Examples of Excitable Media

• B-Z reagent

• Nerve cells

• cardiac cells, muscle cells

• Slime mold (dictystelium discoideum)

• CICR (Calcium Induced Calcium Release)

• Forest Fires

Features of Excitability

• Threshold Behavior

• Refractoriness RefractoryResting Excited Recovering

• Recovery What about flush toilets? – p.2/??
Figure 1.1: A tree with the features of excitability. Copyright 2016 by J. P. Keener [73].
Reprinted with permission.

There are a wide variety of areas where the term “excitable medium” has been
used repeatably for decades in many fields including physical, chemical and biological
systems and so on [32, 71, 87]. Some prominent examples of excitable media can be
listed as follow [40, 123, 141]:

• propagation of electrical excitation in various biological tissues, including nerve
fiber and myocardium,

• concentration waves in the bromate-malonic acid reagent (the Belousov-
Zhabotinsky reaction),

• waves of spreading depression in the retina of eye,

• pattern formation on tongue,
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CHAPTER 1. INTRODUCTION

• the Mexican wave (or La Ola).

1.3 Problem Statement and Aims

This thesis considers the problems of initiation of propagating waves in terms of one-
dimensional reaction-diffusion system,

∂u
∂t

=D
∂2u
∂x2 + f(u), (1.1)

where u :R×R→Rk is a k-component reagents field, k ≥ 1, defined for x ∈R and t ∈R+,
vector-function f : Rk → Rk describes the reaction rates and D ∈ Rk×k is the matrix of
diffusivity. Equation (1.1) is assumed to be an excitable medium that is a system
composed of elementary segments or cells, each of which possesses the following
properties [41]:

• an equilibrium resting state ur such that the solution to (1.1) will decay to it
whenever the initial datum is below a certain threshold,

• a threshold for excitation such that any applied stimulus below this threshold pro-
duces no persistent change in the system while a stimulus above this threshold
induces the cell to change from resting state to an excited state,

• a diffusive-type coupling to its nearest neighbors.

Our aim is to analyse wave motion in (1.1) that has been a topic of extensive studies,
both in biological media as well as in chemical processes according to following initial
and boundary conditions

u(x,0)=ur +Us X(x), Dux(0, t)=−Is T(t), (1.2)

where X and T describe the shape of the initial and boundary profiles, Us and Is

are amplitude and strength of those profiles, respectively. The cases of initial value
problem and boundary value problem are handled separately as follow:

• Case 1: Us = 0, Is ̸= 0. This is the case when the current is injected at the bound-
ary point x = 0 during some time interval. For a fixed boundary profile T(t), there
exist a corresponding threshold strength value Is

∗ such that the solution tends
to propagating wave (“ignition”) as t → ∞ whenever Is > Is

∗, and the solution
tends to resting state (“failure”) otherwise. This fixed value is called a threshold,
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1.3. PROBLEM STATEMENT AND AIMS

and the corresponding curve that illustrates a graphical representation of the re-
lationship between a set of boundary profiles and the corresponding threshold
values is called a strength-duration curve.

• Case 2: Us ̸= 0, Is = 0. Here the perturbation is instantaneous at t = 0, but is
spread in space. For a fixed initial profile X(x), there exist a corresponding thresh-
old strength value Us

∗ such that the solution tends to propagating wave as t →∞
whenever Us > Us

∗, and to resting state otherwise. This fixed value is called a
threshold, and we shall call the corresponding critical curve a strength-extent
curve.

From a mathematical point of view, the problem of initiation of propagation of
excitation waves in one-dimensional spatially extended excitable media is spatially-
distributed, non-stationary, nonlinear. Due to the complex nature of the problem, it is
not always possible to solve the initiation problem analytically, and hence the solu-
tion is mostly approximated by numerical simulations. However, it is highly desirable
to have a closed-form analytical solutions to this kind of problems and there have
been numerous phenomenological and heuristic approaches aiming to obtain such
answers e.g. [58, 79, 103, 115].

The motivation for this research is based on the results of McKean and Moll [88]
and Flores [48], who established that the boundary in the space of initial data of the
equation between the basins of attraction of the resting state and the propagating
wave solution is a stable manifold of a certain “standing wave” solution, later alterna-
tively called as critical nucleus.

The critical nucleus is a unique unstable nontrivial time independent solution of
the one-component case of (1.1) with exactly one positive eigenvalue. It plays a key
role in understanding the threshold phenomenon in one-component excitable media.
The reason is that the critical nucleus does not depend on the sort of initial data and
it appears as a long transient if the initial data are very near the threshold between
ignition and decay. One of the analytical approaches attempting to describe the criti-
cal conditions benefits from this understanding. In [101], Neu and co-workers derived
an analytical expression for the relationship between the parameters of the initial con-
dition using Galerkin style approximations. Another analytical approach to determine
the critical conditions is based on the idea of the stable manifold of the critical solution.
Idris and Biktashev [68] have demonstrated that linearisation of the stable manifold in
the functional space leads to an analytical expression for initiation criteria for a simple
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bistable model.

The purpose of this thesis is to quantify the threshold curve performing the bound-
ary between initial (or boundary) conditions leading to propagation wave solution and
initial (or boundary) conditions leading to the resting state as an extension further
study of [68]. Moreover, as the analytical ignition criteria for the one-component case
do not agree very well with their numerically obtained critical curves, we investigate
the feasibility of improving the accuracy by using a quadratic rather than a linear
approximation of the critical manifold, and related problems. Finally, we extend the
method to the case where there are no critical nucleus solutions. This is observed
in multicomponent reaction-diffusion systems, where it has been previously demon-
strated that instead of critical nucleus, one has unstable propagating waves, such as
critical pulses [49] or critical fronts [67].

1.4 Thesis Outline

The contents of the thesis are divided into seven chapters. This chapter was intended
to give a brief introduction about the main area of the study, initiation problem. Def-
initions of some concepts needed for the understanding of the problem have been
shortly provided. We will end the chapter by describing the contents of the thesis.

Introduction chapter is followed by the literature review beginning with the descrip-
tion of some concepts and terminologies including reaction-diffusion system and ac-
tion potential in Chapter 2. We then describe some well-known mathematical models
of excitable cells and excitability properties of each starting with the classic Hodgkin-
Huxley model, its logical reduction FitzHugh-Nagumo (FHN) model and its general-
isation version Beeler-Reuter model. We also explain the generic form of spatially
extended excitable systems and their traveling wave solution. Details of the test prob-
lems for two different traveling wave solutions are given. The first, models with travel-
ing front, consists of Zeldovich-Frank-Kamenetsky (ZFK) equation, McKean equation
and the simplified front model due to Biktashev. The second, models with traveling
pulse, includes spatially extended FitzHugh-Nagumo system and spatially extended
Beeler-Reuter model. The chapter is then closed with a brief history of the mathemat-
ical approaches to the initiation problem and a review of some essential numerical
methods.

Chapter 3 describes the proposed analytical methods, including both the linear
and quadratic approximations of the one-component case, and the linear approxi-
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mation for the multicomponent case. Subsequent sections are dedicated to specific
examples of application of the described method.

Though the method is analytical in nature, it is generally unlikely to obtain the
essential ingredients analytically due to the nature of the equations having nonlinear
term(s). Therefore, we need to take the aid of numerical methods for calculating these
ingredients numerically. Further, these numerical methods can be handled as a veri-
fication of the analytical derivation. We also describe direct numerical simulations of
the threshold curves in order to compare them with their analytical approximation. A
detailed outline of the technique introducing the numerical approaches to the initiation
problem is given in Chapter 4.

The applicability of the approach is demonstrated on five test problems and Chap-
ter 5 is devoted to one-component test problems with critical nucleus solutions. The
models considered are Zeldovich-Frank-Kamenetsky and McKean equations and both
the linear and quadratic approximations are employed for comparison with direct nu-
merical simulations.

In Chapter 6, we test the ignition criteria for the multicomponent systems. The
theory will be carried out on Biktashev model with moving critical front, and FitzHugh-
Nagumo system and Beeler-Reuter model with moving critical pulses where their
ingredients are found numerically. As ZFK equation is a one-component version of
FHN system (with γ = 0,v ≡ 0), the perturbation method is performed to analytically
obtain the ingredients of FHN with small excitability parameter β. Both strength-extent
and strength-duration curves are examined for all models except Biktashev model
where only the strength-duration case is considered as its strength-extent analysis
has been performed by Idris [66].

In Chapter 7, we summarise the work in this thesis. We present a short review of
the results and some possible further directions.

Finally, due to discontinuity of the right-hand sides of McKean and Biktashev mod-
els some non-standard numerical techniques are discussed in the appendices.

Some of the material contained in this thesis is used in the following publications:

• B. Bezekci, I. Idris, R. D. Simitev and V. N. Biktashev, Semi-analytical approach
to criteria for ignition of excitation waves, Phys. Rev. E, 92:042917, 2015.

• B. Bezekci and V. N. Biktashev, Strength-duration relationship in an excitable
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medium, submitted to Phys. Rev. E.

• B. Bezekci and V. N. Biktashev, Fast-slow asymptotic for semi-analytical ignition
criteria in FitzHugh-Nagumo system, in preparation, to be submitted to Chaos.
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2
LITERATURE REVIEW

2.1 Chapter Introduction

In this chapter, review of the relevant literature is given. Section 2.2 explains defi-
nitions and description of several key concepts including reaction-diffusion systems
and action potential. Section 2.3 describes some of the research on excitable cells
and their mathematical models of how action potentials in the cells are initiated and
propagated. Section 2.4 begins with the generic form of one-dimensional spatially
extended excitable systems followed by some forms of traveling wave solutions of it
and finally we then progress onto the models that we consider in the following chap-
ters. We shall then outline various mathematical approaches to the initiation problem
listed according to their publication year in Section 2.5. The chapter is concluded with
some essential numerical methods in Section 2.6 which can be used to find numeri-
cal threshold curve or to obtain the ingredients of explicit analytical expression of the
threshold curve.

2.2 Fundamentals and Definitions

In this section, we introduce some concepts that will be needed for the understanding
of the topic.
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CHAPTER 2. LITERATURE REVIEW

2.2.1 Reaction-Diffusion Systems

One of the much studied nonlinear and chaotic dynamics is reaction-diffusion sys-
tems since they, rather typically, arise in many areas such as physical, chemical, bio-
logical media and so on. The study of these phenomena requires a variety of different
methods from many areas of mathematics for instance bifurcation and stability theory,
singular perturbations, numerical analysis, just to mention a few. Typically, a reaction-
diffusion system is obtained by combining Fick’s law of diffusion with the chemical re-
action rate law [120, p. 783-789]. One-component reaction-diffusion system is consid-
ered as the simplest which is known as the KPP (Kolmogorov-Petrovsky-Piskounov)
equation [77]

∂u
∂t

= D
∂2u
∂x2 + f (u), (2.1)

where t and x respectively represent time and space position in one dimension, u =
u (x, t) is a state variable and describes density/concentration of a substance and D is
the diffusion coefficient. f (u) describes a local reaction kinetics and when it is equal
to zero, the equation represents a pure diffusion process called as heat equation in
the literature. There are various well-known choices of f (u) and here we introduce
some of them [53] :

• f (u) = u (1−u) yields Fisher’s equation named after R. A. Fisher who [44] de-
scribed the spatial spreading of biological population u over a one-dimensional
habitat,

• f (u) = u
(
1−u2) is known as Newell-Whitehead-Segel equation [102, 122] aris-

ing after carrying out a suitable normalization in the study of thermal convection
of a fluid heated from below. Considering the perturbation from a stationary
state, the equation describes the evolution of the amplitude of the vertical veloc-
ity if this is a slowly varying function of time t and position x,

• f (u) = u (1−u) (u−θ), 0 < θ < 1 (or its particular degenerate case f (u) = u2 −
u3) gives the general Zeldovich-Frank-Kamenetsky equation [139] that mainly
emerges in the combustion theory. This equation also known as Nagumo equa-
tion modeling the transmission of electrical pulses in a nerve axon,

• f (u)=−u+H(u−a) is a variant of Nagumo equation named as one-component
McKean model [89] with H(·) being Heaviside step function and in terms of hav-
ing piecewise smooth kinetics it is similar to “realistic” cardiac models.
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The last two equations will be further reviewed in the following sections in details
as they are the only ones with threshold parameters. On the other hand, two com-
ponent reaction-diffusion systems also have a great deal of importance especially in
chemical reaction systems, epidemiology and pattern formation research. A classical
two-component activator-inhibitor system is described by the following partial differ-
ential equations

∂u
∂t

= D1
∂2u
∂x2 + f 1 (u,v) ,

∂v
∂t

= D2
∂2u
∂x2 + f 2 (u,v) , (2.2)

where D1 and D2 are nonnegative diffusion coefficients, u and v are the state of
the system, f 1 and f 2 are the local dynamics. In a 1952 article in Biomathematics,
Alan Turing proposed that pattern formation could be understood using a simple two-
component system of reaction-diffusion equations [130]. Since then, there have been
further experimental and theoretical studies based on Turing’s theoretical work.

Additionally, reaction-diffusion systems with more than two components have been
widely investigated and one of the major areas of interest within the field of electro-
physiology is the mathematical description of the excitation and propagation of nerve
impulses firstly proposed by Hodgkin and Huxley [61]. In their Nobel Prize work, they
described how action potentials in neurons are initiated and propagated. Another ex-
ample of the system of equations (2.2) is promoted by the FitzHugh-Nagumo model
[47] that is a simplified version of the Hodgkin-Huxley model and is accepted as the
prototype of an excitable system. These two models will be explained in detail in the
following sections.

2.2.2 Action Potential

Neurons are specialized cells in the body of living organisms and they are basically
responsible for transmitting information to other nerve cells or other types of cells,
such as muscles. Transient electrical signals are considered to be particularly impor-
tant as they carry time-sensitive information over long distances and these electrical
signals are produced by changes in the current flow into and out of the cell, driving
the electrical potential across the cell membrane away from its resting value [70].

Membrane potential (also transmembrane potential or membrane voltage) refers
to the electrical potential difference in the concentration of ions on each side of the
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membrane. When the membrane potential is consistent so that there is no distin-
guishable change in it, the membrane potential is held at a stable value called resting
potential, i.e. unstimulated, polarized state of a neuron and it varies among different
cell types.

A typical action potential is initiated by a sudden change in the transmembrane
potential. During this event, the membrane potential changes rather dramatically and
noticeably usually from negative to positive. An action potential can be divided into
three phrases: depolarization, repolarization and hyperpolarization and we briefly de-
scribe each of which below.

An action potential is not produced unless a stimulus current of a sufficient magni-
tude is injected. Depolarization phase, or rising phase occurs once when a large
enough positive stimulus exceeding a certain value, at which point the neuron gen-
erates an action potential, is inputted. A simplified picture is that there is a certain
value of the minimum membrane potential giving rise to the action potential is called
as threshold potential. In this phase, the negative membrane potential becomes
positive for a very short time and it reaches its most positive value such that the
depolarization phase is then completed.

The next phase of the action potential is called repolarization, or falling phase
referring to the change in the membrane potential that returns it to a negative value
just after the action potential has reached its maximum. The membrane repolarizes
beyond the resting state due to the flow of potassium out of the cell where the third
phase called as hyperpolarization starts. This phase causes the potassium channels
to close so the membrane potential level it with the steady state resting potential.

The duration of an action potential can be divided into two phases. Absolute
refractory period comes immediately after the start of an action potential. During
this period, it is impossible to produce a second action potential no matter how strong
a stimulating current is applied. Relative refractory period follows the first phase
immediately and lasts until the membrane returns to the resting state. During this
phase, another action potential can be produced only if the stimulus is stronger than
those normally required to reach the threshold.

It is very important to bear in mind that the intensity of a stimulus does not affect
the strength of the action potential. If that stimulus exceeds the necessary threshold,
the neuron or, in general, any excitable cell will give a complete response and an
action potential will be transmitted from one end of the axon to the other. Otherwise,
there is no response. This characteristic property of action potentials is called as “all
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or none” principle.
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Figure 2.1: General shape of the phases of a typical action potential with respect to
time and voltage, adopted from [22].

Figure 2.1 shows the typical shape of an action potential on an expanded time
scale. The various parts of the action potential are labeled and the responses of
the stimulus current below the threshold that do not cause enough depolarization to
trigger an action potential are labeled as “failed initiation”.

2.3 Mathematical Models for Excitable Cells

The purpose of this chapter is to review several mathematical models describing the
generation of action potential.

2.3.1 Hodgkin-Huxley Model

Action potential has been the subject of extensive research in the field of electro-
physiology due to its dominant feature of the nervous system. In 1952, Alan Hodgkin
and Andrew Huxley conducted one of the most valuable studies in this research area.
In their work, Hodgkin and Huxley developed a mathematical model to analyse and
explain the ionic mechanisms underlying the initiation and propagation of action po-
tentials in a giant squid [61]. They received the 1963 Nobel Prize in physiology and
medicine together with John Eccles. Considering that they developed the model well
before the advent of electron microscopes or computer simulations, one could say
this Nobel Prize was well earned.

To describe the cell membrane, Hodgkin and Huxley constructed a simple elec-
trical equivalent circuit, as shown in Figure 2.2. The cell membrane is a lipid bilayer
and it acts as a capacitor with constant capacitance, C. During their experiments,
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Hodgkin and Huxley determined the sodium (Na+) and potassium (K+) ions to be
two most important species implied in the generation of the action potential. The Na+

and K+ channels are considered to be resistors described by voltage-dependent con-
ductances gNa and gK , respectively. The ionic currents of these two are denoted
by iNa and iK . The model also considers a third ionic current lumping together all
other ions designated by iL and a third leak conductance, gL, being independent of
the membrane potential. The electrochemical gradients driving the flow of ions are
represented by an electric source with voltages VNa, VK and VL.

C

iC iNa iK iL

gNa gK gL

VNa VK VL

̂ ̂ ̂ ̂

Intracellular

Extracellular

Figure 2.2: The typical representation of the membrane as an electric circuit contain-
ing active Na+ and K+ channels, a leakage channel and a membrane, adapted from
[61].

By employing Kirchhoff’s law, we have the following relationship between the sum
of ionic currents, the capacitive current iC and an externally applied current Iext

iNa + iK + iL + iC = Iext, (2.3)

where the capacitive current can be mathematically written as

iC = C
dV
dt

. (2.4)

The membrane voltage, V , is the potential difference between intracellular and extra-
cellular environments and is the same for each parallel branch of the circuit. As a
result, Hodgkin and Huxley described the individual ionic current as

is(V )= gs (V −Vs) , (2.5)
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for sodium, potassium and leak branches, i.e. s = Na+, K+ and L. Substituting this
quantity for each current into (2.3) and employing (2.4) give a mathematical formula-
tion of electrical activity as a first-order differential equation

C
dV
dt

= Iext − gNa (V −VNa)− gK (V −VK )− gL (V −VL) . (2.6)

Hodgkin and Huxley proposed the specific forms for the sodium and potassium con-
ductances as a product of gating variables and maximum conductances. Particularly,
they found

gK (n)= n4 ḡK , gNa (m,h)= m3hḡNa,

where ḡK and ḡNa are constants. The unknown functions n, m and h are gating
variables representing activation of the potassium current, activation of the sodium
current and inactivation of the sodium current, respectively and they all have dimen-
sionless values in the range of (0,1). Each of these gating variables obeys a simple
linear differential equation

ds
dt

=αs (1− s)−βss, (2.7)

where αs, βs, s = n,m,h are the rate constants that describe the transition rates of per-
missive and non-permissive gates. Further, applying the voltage clamp experimental
technique let Hodgkin-Huxley fix the membrane voltage, V , at almost any desired
value. Thus, steady-state of the gating variables can be found using the fact that the
rates of opening and closing are equal at steady-state

s∞ = αs

αs +βs
, t →∞.

An analytical solution of (2.7) can then be found as

s = s∞− (s∞− s0)exp(−t/τs) , (2.8)

where s0 is the initial condition and the quantity τs is called the time constant defined
in terms of the rate constants at a constant membrane potential

τs = 1
αs +βs

.
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We summarise the equations proposed by Hodgkin and Huxley to describe the nerve
action potential as follows:

C
dV
dt

=Iext − ḡNa(V −VNa)m3h− ḡK (V −VK )n4 − gL(V −VL), (2.9a)

dm
dt

=m∞−m
τm

, (2.9b)

dh
dt

=h∞−h
τh

, (2.9c)

dn
dt

=n∞−n
τn

. (2.9d)

Hodgkin and Huxley were able to fit their experimental data to derive the following
expressions for voltage-dependent rate constants

αn(V )= 0.01(V +55)
1−exp[−(V +55)/10]

, βn(V )= 1.125exp[−(V +65)/80], (2.10a)

αm(V )= 0.1(V +40)
1−exp[−(V +40)/10]

, βm(V )= 4exp[−(V +65)/18], (2.10b)

αh(V )=0.07exp[−(V +65)/20], βh(V )= 1
1+exp[−(V +35)/10]

. (2.10c)

The values of the constants are given in Table 2.1. As (2.9) is a set of four coupled
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Figure 2.3: (a) Hodgkin-Huxley waveform of the membrane potential with different
external currents applied at t = 0 ms and lasting for 0.05 ms, (b) the time constants of
the model.

nonlinear ordinary differential equations, it is impossible to find an explicit solution.
Hence, computer simulations are required to numerically approximate the action po-
tential of Hodgkin-Huxley squid axon model. In Figure 2.3, the voltage profile for four
different applied external stimuli (a) and time constants for Iext = 200 (b) are plotted.
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The initial conditions are fixed as (V0,m0,h0,n0) = (0,0.0529,0.5961,0.3177), to four
places of decimals.

Action potential generation in Hodgkin-Huxley model is a threshold phenomenon
and a great deal of effort has been made to determine such threshold experimentally.
The effect of a stimulus on the membrane potential varies according to its amplitude.
A smaller amplitude stimulus results in small magnitude response in the membrane
potential but it is insufficient to produce an action potential. This insufficient stimulus
is known as subthreshold stimulus. In the figure, two subthreshold external stimuli
Iext = 80 and Iext = 108.31 are shown such that the change in the voltage is small
and when the applied current is turned off, the magnitude of the potassium current
increases that acts to repolarize the membrane voltage so it returns to the resting
potential.

On the other hand, a large enough stimulus that produce an action potential is
called as superthreshold (or suprathreshold) stimulus (see Iext = 108.32 and Iext =
200 cases in the figure). In this case, the applied external stimulus can cause a large
change in the membrane potential and sodium influx via voltage-dependent sodium
channels further depolarizes the membrane potential until the membrane potential
reaches to the sodium equilibrium potential. Then, the potassium channels open that
cause potassium efflux from the cell and the cell becomes hyperpolarized due to a
small undershoot in the membrane potential. Finally, the recovery stage back to the
steady-state resting potential is associated with the action of sodium and potassium
pumping.

In the Hodgkin-Huxley model, some certain strength of the injected current can
produce partial-amplitude spike that is neither “none” nor “all” response. This inter-
mediate response will be further detailed in the FitzHugh-Nagumo model analysis.

Parameters Value Units

Membrane capacitance (C) 1 µF/cm2

Maximum sodium conductance ( ḡNa) 120 mS/cm2

Maximum potassium conductance ( ḡK ) 36 mS/cm2

Leak conductance ( ḡL) 0.3 mS/cm2

Sodium equilibrium potential (VNa) 115 mV
Potassium equilibrium potential (VK ) −12 mV

Leak equilibrium potential (VL) 10.613 mV

Table 2.1: Hodgkin-Huxley model constant parameters.

29



CHAPTER 2. LITERATURE REVIEW

2.3.2 FitzHugh-Nagumo Model

2.3.2.1 Bonhoeffer-van der Pol Model

The Hodgkin-Huxley model has to be judged one of the most successful mathematical
models in the field of electrophysiology. Ever since their publication in 1952, many
researchers have tended to focus on the generation of the nerve action potential.
Due to the complexity of a 4-variable system, a particular attention has been devoted
to obtain simpler and more mathematically tractable reduced-order systems.

In 1961, Richard FitzHugh sought to obtain two-dimensional simplification of the
Hodgkin-Huxley model by means of his observation indicating that the gating variable
m is much faster than that of the variables n and h, and that for the parameters values
specified by Hodgkin and Huxley the value of n+h remains approximately constant
during the action potential of the system [46, 47]. Therefore, he obtained following
two-variable model

C
dV
dt

=Iext − ḡNam3
∞ (0.8−n) (V −VNa)− ḡK n4(V −VK )− gL(V −VL), (2.11a)

dn
dt

=n∞−n
τn

. (2.11b)

Furthermore, FitzHugh discovered that the nullcline of V and n had approximately
cubic and linear shapes, respectively. This led to the following two-variable model

dV
dt

=Iext +V − V 3

3
−W , (2.12a)

dW
dt

=ϵ (V −a−bW) , (2.12b)

where V and W are dimensionless, normalized dynamic state variables being excita-
tion (fast) and recovery (slow) variables respectively, a, b and ϵ are constant parame-
ters.

FitzHugh in his original papers called this model the Bonhoeffer-van der Pol
model as he devised the model in the same way as the Van der Pol equation was
devised. Van der Pol equation known as the first model representing the heart’s dy-
namics [132] is the special case of (2.12) with a = b = Iext = 0. In another well-known
study, Nagumo et al. [98] described a prototype of a single cell excitable system and
came up with essentially the same form as (2.12). Thus, these equations (2.12) have
tended to be known as the FitzHugh-Nagumo model.

It is very useful to sketch the phase-plane for understanding the qualitative be-
haviour of the system (2.12). Figure 2.4 aims to illustrate the typical phase plane for
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parametrized trajectories. The resting state of the system (1) is stable. Subthreshold
perturbations (2) result in a simple return to resting state, but superthreshold pertur-
bations (3) generate a large excursion ( action potential) before returning to rest. First,
there is a phase (4) of rapid excitation, followed by a period (5) when the system
remains in the excited state. After the end of excitation phase (6), the system is at ab-
solute refractory period (7) and then recovers excitability (8) as it returns to the resting
state [131].

Bonhoeffer-van der Pol model exhibiting the threshold behaviour along with excitation
variable behaviour over time at varying values of applied current, Iext. The initial con-
dition are set to be resting steady state (V0,W0) = (1.2,−0.625) for parameter values
ϵ= 0.08, a = 0.7, b = 0.8. The chosen value of weak stimulus (subthreshold) that does
not lead to excitation is 0.2, and that of stronger stimuli (superthreshold) that cause
excitation to occur are 0.61 and 3.

A remarkable property of excitability in neuronal cells conducted by FitzHugh
[45, 46], who explained the absence of all-or-none responses in the Hodgkin-Huxley
model is such that any intermediate response between “all” and “none” can be ob-
tained if the stimulus intensity is well-adjusted. In other words, the Hodgkin-Huxley
model does not have a well-defined firing threshold. This property is called “quasi-
threshold” and is also valid for the FitzHugh-Nagumo model. As can be seen in Fig-
ure 2.4, the injected stimulus Iext = 0.6 produce this intermediate response between
sub- and superthreshold.

31



CHAPTER 2. LITERATURE REVIEW

2.3.2.2 The Generalized FitzHugh-Nagumo Model

There are also many other equivalent forms of the system, some of which can be
found in [112]. Here, we only introduce the generalized FitzHugh-Nagumo equation
that is in the following form

ϵ
dv
dt

= f (v,w), (2.13a)

dw
dt

=g(v,w), (2.13b)

where 0≤ ϵ≪ 1 represents the ratio of time scales. The nullcline f (v,w)= 0 resembles
a cubic shape and the nullcline g(v,w) only has one intersection with f (v,w).

2.3.3 Beeler-Reuter Model

Following the Hodgkin and Huxley, many researchers have extended their pioneer-
ing formulation to describe the electrophysiology of various specific cell types. In
1977, G.W. Beeler and H. Reuter [12] developed one of the simplest physiologically-
based model and successfully proposed a mathematical model of the action potential
of mammalian cardiac ventricular muscle cell based on experimental data from the
guinea pig.

Beeler-Reuter model is the first study taking into account the calcium currents.
Hence, compared to Hodgkin-Huxley model (with three ionic currents), the model con-
sists of four ionic conductance components. These are: the usual fast inward current
carried primarily by sodium, INa; a slow inward current carried mostly by calcium, Is; a
time-activated outward current based mainly on potassium ions, Ix1; and an outward
time-independent potassium current, IK1. Kirchhoff’s law gives the following total ionic
current expression as a combination of sum of these four currents, capacitive current
IC, and an externally applied current Iext

INa + IK1 + Ix1 + Is + IC = Iext. (2.14)

The equation for the membrane potential is then

dV
dt

= 1
Cm

(
Iext − INa − Is − IK1 − Ix1

)
, (2.15)

where Cm is the membrane capacitance. The fast inward sodium current INa has an
extra inactivation variable j as opposed to the standard Hodgkin-Huxley formulation

INa(V ,m,h, j)= (
g̃Nam3h j+ �gNac

)
(V −ENa) , (2.16)
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where g̃Na is the maximum sodium conductance, �gNac is the steady-state sodium
conductance, and ENa is the sodium reversal potential. Similarly, the slow inward
current Is is determined by

Is(V ,d, f ,Ca)= g̃s d f (V −Es(Ca)), (2.17)

where g̃s is the fully activated channel conductance of slow currents, d and f are
the activation and inactivation gate variables, respectively. The reversal potential Es

depends on the intracellular calcium ion concentration (using Nernst’s equation)

Es(Ca)=−82.3−13.0287ln(Ca). (2.18)

The time-independent outward potassium current IK1 is simply a function of the mem-
brane potential given by

IK1(V )= 0.0035

[
4

(
e0.04(V+85)−1

)
e0.08(V+53) +e0.04(V+53) +

0.2(V +23)
1−e−0.04(V+23)

]
(2.19)

and time-activated outward potassium current has a single gating variable x1

Ix1(V , x1)= 0.8x1
e0.04(V+77) −1

e0.04(V+35) . (2.20)

The time evolution of the intracellular calcium concentration is described by

dCa
dt

=−10−7Is +0.07(10−7−Ca) (2.21)

and each dimensionless gating variable y= m,h, j,d, f , x1 obeys

dy
dt

= y∞− y
τy

, (2.22a)

τy = 1
αy +βy

, (2.22b)

y∞ = αy

αy +βy
, (2.22c)

where y∞ is the steady-state curve, τy is the time constant curve, αy and βy represent
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the opening and closing rates. The values for the rate constants are found as

αm(V )= − (V +47)
e−0.1(V+47) −1

, βm(V )= 40e−0.056(V+72), (2.23a)

αh(V )= 0.126e−0.25(V+77), βh(V )= 1.7
e−0.082(V+22.5) +1

, (2.23b)

α j(V )= 0.055e−0.25(V+78)

e−0.2(V+78) +1
, β j(V )= 0.3

e−0.1(V+32)+1
, (2.23c)

αd(V )= 0.095e−0.01(V−5)

e−0.072(V−5) +1
, βd(V )= 0.07e−0.017(V+44)

e0.05(V+44)+1
, (2.23d)

α f (V )= 0.012e−0.008(V+28)

e0.15(V+28) +1
, β f (V )= 0.0065e−0.02(V+30)

e−0.2(V+30) +1
, (2.23e)

αx1(V )= 0.0005e0.083(V+50)

e0.057(V+50) +1
, βx1(V )= 0.0013e−0.06(V+20)

e−0.04(V+20) +1
. (2.23f)

Parameters Value Units

Membrane capacitance (Cm) 1 µF/cm2

Maximum sodium conductance ( g̃Na) 4 mS/cm2

Steady-state sodium conductance
( �gNac

)
0.003 mS/cm2

Sodium reversal potential (ENa) 50 mV
Fully activated conductance of slow inward ions ( g̃s) 0.09 mS/cm2

Table 2.2: Beeler-Reuter model constant parameters.

(V 0,Ca0,m0,h0, j0,d0, f 0, x10)= (−84.624,1.782×10−7,0.011,0.988,0.975,0.003,0.999
)
.

(2.24)
The values of the Beeler-Reuter model parameters are displayed in Table 2.2 and

the solution of the model with the resting steady-state initial conditions given by (2.24)
is shown in Figure 2.5. Two out of four consecutive (above-threshold) stimuli gen-
erate action potentials in the same way as Hodgkin-Huxley model. In both models,
the rapid upstroke of the action potential is mainly due to the sodium current, INa.
However, there are some significant differences between the two, for example their
plateau shapes. The plateau shape and duration of an action potential generated by
the Beeler-Reuter model highly depend on the presence of the activation of Ix1 or
the inactivation of Is and these can be changed via alterations in the parameters. For
example, the increased Is produces a higher plateau and longer action potential. Sim-
ilarly, a significant decrease in the parameter g̃s yields an action potential similar to
the Hodgkin-Huxley model.
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Figure 2.5: Standard Beeler-Reuter model waveform of the membrane potential with
different external currents applied at t = 10 ms and lasting for 1 ms.

2.4 Spatially Extended Excitable Systems

In the previous section, the excitability has been formulated for a number of single-
cell systems, i.e. in terms of ordinary differential equations (ODEs). Here, we are
presenting traveling waves in excitable media by means of a diffusion term leading
to the spreading excitation from one cell to another. In this thesis, our interests are
restricted to models in one spatial dimension. Thus, the theory of wave propagation
in excitable media is based on the following reaction-diffusion system of partial differ-
ential equations (PDEs)

∂u
∂t

= ∂

∂x

(
D
∂u
∂x

)
+ f(u), (2.25)

where u : R×R→ Rk is a k-component dynamic variable, k ≥ 1, defined for x ∈ R and
t ∈ R+, vector-function f : Rk → Rk describes the nonlinear kinetics of the system and
D ∈Rk×k is the matrix of diffusivity. Although D can be a function of space, time and/or
the density of the modeled species, we restrict our attention to the systems where the
properties of D do not depend on the space and time variables.

In the late 1930’s, the one-component case of equation (2.25) with particular ki-
netic term was first proposed by Fisher who intended to describe the propagation of
advantageous genes [44] and was studied mathematically by Kolmogorov, Petrovskii
and Piskunov [76] followed by Zeldovich and Frank-Kamenetsky [138] who developed
a model for flame propagation in the following year.
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2.4.1 Traveling Wave Solutions

Now, we present an approach called traveling wave that allows to reduce the reaction-
diffusion system from PDEs to ODEs. This helps us to describe the profile of the wave
under the assumption that wave propagates at a constant velocity without changing
the profile. In the transformed equation, the dynamic variable gives the profile as a
function of traveling wave coordinate.

From a mathematical point of view, if the solution of (2.25) can be written in the
following form

u (x, t)=U (ξ, t) ξ= x− ct, (2.26)

then u (x, t) is a traveling wave and it moves at a positive constant speed c in the
positive x direction. Hence, (2.25) reads

Ut =D∂ξξU+ c∂ξU+ f(U). (2.27)

Note that the traveling wave solution is the stationary solution of the equation (2.27),
i.e. Ut = 0 [97].

2.4.2 Classification of the Traveling Waves

Any stationary solution of (2.27) gives a traveling wave with a constant speed c. In
particular, if the velocity c = 0, then the traveling wave is called the standing wave.
When c ̸= 0, consider two points P and Q such that P >Q. Some examples of traveling
waves can be categorised in one dimension as [42, 75]:

• Periodic wave trains of wavelength L are represented by limit cycles of period L
in the profile equation.

• Traveling front where U (−∞) and U (∞) exist and are different from each other:

lim
ξ→−∞

U (ξ)= P, lim
ξ→∞

U (ξ)=Q.

• Traveling back satisfying the opposite condition:

lim
ξ→−∞

U (ξ)=Q, lim
ξ→∞

U (ξ)= P.

• Traveling pulse where U is not a constant and U (−∞) and U (∞) exist and are
the same:

lim
ξ→±∞

U (ξ)= R, where R = P or Q.
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There also are forms in two dimensions such as (x = (a,b) ,a = r cos(θ),b = rsin(θ))

• Target patterns where u (x, t)=U (r, t) and U is periodic in t.

• Rotating patterns (including e.g. spiral waves) where u (x, t) =U (r,θ− ct) and U
is periodic in the second argument.

wavetrain
front

back

pulse

Figure 2.6: Representation of some traveling wave patterns. Solid red lines represent
the membrane potential variable, while dashed blue lines are for the inactivation vari-
able.

A front solution is always a connection between two different points as ξ → ±∞.
This connection is called a heteroclinic orbit. A pulse solution connects a single point
by a loop to itself as ξ→±∞ . These connections are called homoclinic orbits. Trav-
eling fronts and traveling pulses are of particular importance in applications. Hence,
the models with these two traveling waves are reviewed in the following section.
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2.4.3 Models with Traveling Front

2.4.3.1 Zeldovich-Frank-Kamenetsky (ZFK) equation

In 1962, Nagumo et al. [98] who characterized the FitzHugh model as an equivalent
electrical circuit proposed a mathematical model of the nerve axon as

∂3z
∂t∂x2 = ∂2x

∂t2 +µ
(
1− z+ϵz2) ∂z

∂t
+ z, (2.28)

where µ > 0, 0 < ϵ < 3
16 and z is the normalized potential. In the following year, same

authors [99] introduced a more general active transmission equation in neuron

∂u
∂t

= ∂2u
∂x2 − (u+1)(u−m) (u−1), (2.29)

where −1< m ≤ 0. ZFK equation (also known as Nagumo’s equation or Bistable equa-
tion) is a generic form of (2.29) [74, 89, 139]

∂u
∂t

= ∂2u
∂x2 + f (u), (2.30)

where f (u) = − (u−u1) (u−u2) (u−u3), u1 < u2 < u3, u2 < (u1 +u3) /2 and f (u) has
three roots at u1, u2, u3. The values u = u1 and u = u3 are stable steady solutions
of the ordinary differential equation du/dt = f (u). Meanwhile, u2 is the threshold state.
The ZFK equation has the traveling front solution connecting two different steady
states (heteroclinic trajectory) at each end of the domain.

Time independent solution of (2.30) is found in [101] and such solution is called
critical nucleus. Specifically, (2.30) with the quadratic kinetic term, f (u)= u (θ−u) has
a unique critical nucleus as

û(x)≈ 3θ
2

sech2

(p
θ

2
x

)
, (2.31)

while the critical nucleus solution for the cubic kinetic term, f (u) = u (θ−u) (1−u) can
be found analytically [48, 68] 1

û(x)= 3θ
p

2

(1+θ)
p

2 +cosh(x
p
θ )

p
2−5θ+2θ2

. (2.32)

1 Actually, expressions given in both of these works contain typos.
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2.4.3.2 McKean equation

Another one-component simplification of the FitzHugh-Nagumo system was carried
out by McKean [89]. He started with the following equivalent form

∂u
∂t

=∂2u
∂x2 +u (1−u) (u−a)+v, (2.33a)

∂v
∂t

=βu−γv, (2.33b)

with 0< a < 1, β≥ 0, γ≥ 0. McKean suggested the piecewise-linear representation of
(2.33) as a simplification version as follow

∂u
∂t

=∂2u
∂x2 −u+H(u−a)+v, (2.34a)

∂v
∂t

=βu−γv, (2.34b)

where H(·) is the Heaviside step function defined as

H(w)=
1, if w ≥ 0

0, if w < 0.

It has commonly been assumed that ZFK equation with cubic kinetic term and
u-component of McKean model have a similar phase plane for large values of the
threshold parameters θ and a as piecewise-linear function has a similar shape to the
cubic function (see Figure 2.7). Fast subsystem of (2.34) can be obtained neglecting
the recovery component of the system by setting v ≡ 0, β= 0, and γ= 0

∂u
∂t

= ∂2u
∂x2 −u+H(u−α). (2.35)

Equation (2.35) is known as McKean equation and provided 0 < a < 1/2, it has a
unique critical nucleus solution found in [90] as

û(x)=


aex+m, if x ≤−m,

1−e−m cosh(x), if x < m,

ae−x+m, if x ≥ m,

where m = − ln(1−2a)/2. The key role of the critical nucleus will be outlined in more
detail later in this chapter. The propagating front solutions of ZFK and McKean models
are sketched in the left panel of Figure 2.8.
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u
0 a 1

Figure 2.7: Comparison between cubic and piecewise-linear functions for same cho-
sen parameters θ = a = 0.5.

2.4.3.3 Biktashev Model

The FitzHugh-Nagumo model has been one of the most studied excitable media since
the 1960s as it allows a fair amount of analytical and qualitative study. However, it has
been realized that this model does not adequately produce some phenomena. Bikta-
shev [16, 17] made the observation that the widely used FitzHugh-Nagumo model is
not able to capture the propagation failure due to the dissipation of the wavefront, a
phenomenon seen in more realistic models.

The construction of the Biktashev model is based on spatially extended version of
the original Hodgkin-Huxley model

∂E
∂t

=∂2E
∂x2 − ḡNa(E−ENa)m3h− ḡK (E−EK )n4− gL(E−EL), (2.36a)

∂m
∂t

=m∞(E)−m
τm(E)

, (2.36b)

∂h
∂t

=h∞(E)−h
τh(E)

, (2.36c)

∂n
∂t

=n∞(E)−n
τn(E)

, (2.36d)

where a diffusion term is only added into the membrane potential equation (repre-
sented in different letter E) and the membrane capacitance parameter C is fixed at
the value 1. Biktashev aimed to formulate the front separately from other phases of
the waves as a simplified model based on the Hodgkin-Huxley model. As the sodium
current iNa is more responsible for the rapid increase of the membrane potential in
the front than all other ionic currents, a limit ḡNa →∞ was considered. Thus, the vari-
able n is neglected while m and h which are responsible for the sodium current iNa

remain.
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Another simplification to notice is that the values of τm(E) (as seen in Figure 2.3-
(b)) at the front are considerably small compared to other time constants of the prob-
lem. Therefore, the differential equation for m is eliminated on account of it always
being close to its quasi-stationary value m∞(E). Thus, the remaining two equations
are

∂E
∂t

=∂2E
∂x2 + INa(E)m3

∞(E)h, (2.37a)

∂h
∂t

= 1
τh(E)

(h∞(E)−h) , (2.37b)

where INa(E) = gNa (ENa −E). This system differs from the FitzHugh-Nagumo model
in that there is an assumption that the variable h is a slow variable. Here, both dy-
namic variables E, h are considered as fast variables. Another simplification is based
on qualitative considerations where m∞(E) and h∞(E) are assumed to be step-like
functions. Hence, they are replaced with

m∞(E)=H(E−Em)= m3
∞(E), h∞(E)=H(Eh −E) ,

where H(·) is the Heaviside step function. Further simplifications can be made by
replacing τh(E) and INa(E) with constants and by suitable rescaling so that Eh = 0,
Em = 1. Hence, (2.37) finally becomes

∂E
∂t

=∂2E
∂x2 +H(E−1)h, (2.38a)

∂h
∂t

= 1
τ∗

(H(−E)−h) , (2.38b)

where τ∗ is a dimensionless parameter. In the original paper [16], this parameter was
taken to be τ. However, we find it convenient to replace it by τ∗ in order not to clash
with the notation in the rest of this thesis, where τ is used to designate time in the
moving frame of reference.

As (2.38) is a simplified model of the excitation front, one of the attractions of
the Biktashev model is to have analytical solutions such as traveling wavefront. The
traveling front solution of (2.38), going rightwards, is in the form

E (x, t)= Ẽ(z), h (x, t)= h̃(z), z = x− ct,

where c > 0 is the wave speed. Hence, (2.38) becomes

−cẼ′ =Ẽ′′+H
(
Ẽ−1

)
h̃, (2.39a)

−ch̃′ = 1
τ∗

(
H(−Ẽ)− h̃

)
, (2.39b)
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with the following auxiliary conditions

Ẽ (−∞)=ω> 1, Ẽ (+∞)=−α< 0, (2.40a)

h̃ (−∞)=0, h̃ (+∞)= 1 (2.40b)

and the phase of the front solution is chosen such that Ẽ(0)= 0 at z = 0, Ẽ(−∆)= 1 at
z =−∆ requiring that Ẽ(z) ∈ C1 and h̃(z) ∈ C0. This problem has a family of propagating
front solutions depending on one parameter, the pre-front voltage α,

Ẽ(z)=
ω− τ∗2c2

1+τ∗c2 exp
(
− z

τ∗c

)
(z ≤−∆),

−α+αexp(cz) (z ≥−∆),
(2.41a)

h̃(z)=
exp

(
− z

τ∗c

)
(z ≤ 0),

1 (z ≥ 0),
(2.41b)

where ω= 1+τ∗c2 (α+1), ∆= 1
c ln

(1+α
α

)
and c is an implicit function of τ∗ and α,

τ∗c2 ln

(
(1+α)

(
1+τ∗c2)
τ∗

)
+ ln

(
α+1
α

)
= 0. (2.42)

Note that here the pre-front voltage α is fixed and the only parameter is τ∗. The
transcendental equation (2.42) has two solutions for c if τ∗ > τ̂∗ ≈ 7.674 and it has
been shown that the propagating front solution (2.41) with smaller speed value is
unstable with exactly one positive eigenvalue while the solution (2.41) with bigger
speed value is stable [16, 60]. The propagating front solution (2.41) is sketched in the
right panel of Figure 2.8.
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Figure 2.8: Propagating front profiles for three front models, (a) ZFK (red solid line)
and McKean (blue dashed line), (b) Biktashev models.
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2.4.4 Models with Traveling Pulse

2.4.4.1 Spatially extended FitzHugh-Nagumo system

There are many different forms derived from the original FitzHugh-Nagumo model that
have been used as to model the cardiac/neuron dynamics. One of which (in spatially
extended form) has been introduced in [101] as

ut =uxx + f (u)−v, (2.43a)

vt =γ (αu−v) , (2.43b)

where f (u) is cubic polynomial function in the form f (u)= u
(
u−β

)
(1−u), the variables

u and v represent respectively membrane potential and the recovery variables, γ is a
small parameter describing the ratio of time scales of the variables u and v, and α is
a constant. The parameter β plays a key role in the fast dynamics of the model as it
is the threshold state of the system that must be in the range (0,1/2) in order for the
system to have a qualitative electro-physiological meaning [84, 85].

A propagating pulse solution to equation (2.43) is a function of the single variable
ξ= x− ct, i.e. (u (ξ) ,v (ξ)) that satisfies

−cu′ = u′′+ f (u)−v, −cv′ = γ (αu−v) , (2.44)

where (u,v) → (0,0) as ξ→±∞. There is a large volume of published studies on the
FitzHugh-Nagumo model and some of them particularly need to be mentioned. For
example, one study by Hastings [56] proven that the FitzHugh-Nagumo model has
two propagating pulse solutions with different values of speed c such that when c = cs,
the solution is called slow pulse solution and when c = c f , the solution is called the
fast pulse solution with 0< cs < c f . Yet another major study based on the significance
of small γ reviewed singular perturbation theory analysis of the FitzHugh-Nagumo
model where the propagating pulse solution can be derived by piecing together solu-
tions of certain reduced systems [27]. In addition, there are many other studies about
the stability of the propagating pulse solution stating that the slow pulse solution is
unstable and fast pulse is stable (see, for example [26, 27, 38, 56, 69]).

2.4.4.2 Spatially extended Beeler-Reuter model

Generally speaking, the analysis of models with several variables is much more com-
plicated than the fever variables models. The original Beeler-Reuter model has 8 vari-
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ables, with widely different time scales. The membrane potential equation of the spa-
tially extended Beeler-Reuter model is in the form

V t = D∇2V + IT ,

where D is the diffusion constant and IT is the instantaneous total ionic current

IT =−IK1(V )− Ix1(V , x1)− INa(V ,h, j)− Is(V ,d, f ,Ca).

Other 7 other variables’ equations and the values for the rate constants are held
same as described in Subsection 2.3.3. Several attempts have been made to obtain
the propagating pulse solution of the spatially extended Beeler-Reuter model, see for
example [31, 125]. One popular approach is to calculate conduction velocity restitu-
tion curve that splits into two branches, one for the stable pulse velocity and one for
the unstable pulse velocity.

2.5 Mathematical Approaches to Initiation Problem

2.5.1 An Introduction the Initiation Problem

In this section, we will look at the literature investigating the behaviour of the solutions
of the nonlinear reaction-diffusion equation

∂u
∂t

=D
∂2u
∂x2 + f(u), t > 0. (2.45)

We start by specifying the perturbation of the initial and boundary conditions in the
following form

u(x,0)=u0(x)=ur +UsH(xs − x)e, Dux(0, t)=−Is(t)=−IsH(ts − t)e, (2.46)

where ur is the resting state, xs is the spatial extent, Us is the stimulus amplitude, Is

is the strength of the current lasting for time duration ts, H(·) is the Heaviside step
function and e determines which reagents are being injected.

For convenience and brevity, the above notation will be adopted for all articles
referred even though the problem itself is different in some mentioned papers.

44



2.5. MATHEMATICAL APPROACHES TO INITIATION PROBLEM

2.5.2 A Brief History of the Mathematical Approaches

In the following, we state some of the crucial literature according to the publication
date:

Weiss(1901): There have been several experimentally tested theoretical models ad-
dressing the relationship between the minimum stimulus amplitude required to ex-
cite an axon and the duration for which the stimulus is applied even well before the
development of intracellular and voltage-clamp techniques. The study of the charge-
duration relation was first carried out by Weiss [135] who experimentally derived the
following linear equation

Q = a+bts, (2.47)

where Q is the threshold charge, a and b are unknown constants. In his original
formula, Weiss did not interpret the constants a and b physically and hence they were
later on replaced by the rheobasic current multiplied by the chronaxie, Irh×τ and the
the rheobasic current, Irh [24] so (2.47) becomes

Q = Irh (τ+ ts) , (2.48)

which is known as the Weiss excitation law for the charge. In neuroscience, the
rheobasic current refers to the minimal current amplitude of indefinite duration re-
quired to evoke an action potential and the chronaxie is a duration measurement for
electrical stimulation related to the time constant of the cell membrane [109, 136].

Lapicque(1907): Another empirical equation was developed by Lapicque [79] ( see
also its translated version [25]) who reiterated Weiss’s equation in a different form
for which the relation between the pulse strength and duration was instead formu-
lated. This relation is named as strength-duration curve. Lapicque observed that the
strength of the current Is required to stimulate an action potential increased as the
duration ts was decreased. Hence, he proposed the following current law for excitation

Is = Irh

(
1+ τ

ts

)
. (2.49)

As previously pointed out that the rheobase current, Irh may be defined as the
minimal current amplitude of infinite duration for which threshold can be reached and
also note that the chronaxie time of the cell, τ refers to the value of the pulse duration
ts at twice the rheobase current. Another important relation is the one between the
charge, Q and the stimulus strength, Is represented by Q = Ists and hence Weiss
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excitation law for the charge (2.48) actually reduces to the Lapicque current law for
excitation (2.49). These two empirical laws are two different ways aiming to express
the requirement for excitation.

Is, Q

Q

Is
2Irh

τ

Irh

Is = Irh

(

1 + τ

ts

)

Q = Irhts(1 + τ

ts
)

ts  0.1

 1
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Q Is
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Is, Q, UE

ts/τ

UE = Irh
2rts

(

1 + τ

ts

)

2

(a) (b)

Figure 2.9: (a) Lapicque hyperbolic strength-duration curve for current Is and the
Weiss linear strength-duration relationship for charge Q. (b) Universal strength-
duration curves in the logarithmic form, for current, energy and charge, with the dura-
tion axis divided by the chronaxie [52].

The sketch of the Lapicque hyperbolic strength-duration curve and the Weiss lin-
ear charge-duration relationship is shown in Figure 2.9. Another electrical parameter
that is used to describe a stimulus is energy, the minimum of which is located at pulse
duration equal to the chronaxie. It is also plotted in the right panel of Figure 2.9 for
illustration purposes only.

Blair(1932): An alternative expression for threshold stimulating current was based
on the realization that the nerve cell membrane could be represented by a parallel re-
sistance R and capacitance C. In 1932, Blair [20, 21] published a purely phenomeno-
logical method relying on an RC network to formulate the strength-duration curve. He
proposed the following exponential function for the current required to stimulate the
nerve

Is = Irh

1−exp(−ts/τ)
. (2.50)

In view of all models that have been mentioned so far, Blair’s formula is closely related
to that of Lapicque (2.49) and to Weiss’s law (2.48), and they all nearly fit the same
data [20].

Rashevsky(1933), Monnier(1934) and Hill(1936): Blair’s model has a number of at-
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tractive features and to give two of them: fairly accurately fit experimental outcomes
and mathematically simple descriptive approach for the strength-duration curve. Thus,
a number of researchers began to focus on it, among which three important ones are
Rashevsky, Monnier and Hill [58, 94, 108]. They developed a “two-factor” mathemat-
ical model of excitation and inhibition (the two extended Blair’s model). The equa-
tions they considered are equivalent and so are their results. Based on the literature
observed, higher priority has been given to Hill’s article, and therefore we use his
notation.

Hill examined the relationship among the stimulus, the excitability of the tissue,
and its accommodation, where the term “accommodation” [100] is used to describe
the membrane potential response to a sufficiently slow increase in the stimulating
current without exciting. This phenomenon of accommodation resulted in Hill’s two
time-constant model

Is = Irh (1−κ/λ)
exp(−ts/λ)−exp(−ts/κ)

, (2.51)

where κ, λ are the time constant of excitation and the time constant of accommoda-
tion, respectively. The constants κ and λ satisfy λ≫ κ and in particular when λ/κ→∞,
Hill’s equation (2.51) reduces to Blair’s equation (2.50).

All above approaches are basically experimental and the parameters of the equa-
tions can be measured and calculated through some data fitting algorithms such as
Levenberg-Marquardt method, one of the most used iterative procedure that will be
explained in the following section.

Rushton(1937): Study of spatially extended excitable media goes as far back as 1937,
when Rushton [115] first introduced a concept of the “liminal length”. This concept is
based on very impressive result that the ability of a stimulus to initiate a wave depends
also on its spatial extent. We can exemplify this in one of the model we consider,
i.e. Zeldovich-Frank-Kamenetsky equation. As pointed out earlier, the kinetic term in
(2.30) is a cubic polynomial with two of its three zeros are stable and the other (its
middle zero) is unstable. For any initial condition with the stimulus amplitude above
the unstable zero, the solution initiates the propagation wavefront and it tends to its
smaller stable zero otherwise [126].

Noble and Stein(1966): One of most noticeable features of the strength-duration
curve is that the threshold reduces when the time duration increases. Based on simpli-
fication of the Hodgkin-Huxley membrane equations, Noble and Stein [104] explored
the influence of the membrane activation time and accommodation on the strength-
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duration curve. They also deduced that the strength-duration curve time constant is
highly dependent on the geometry of the stimulus.

Aronson and Weinberger(1975): There have been a lot of works on the semi-linear
diffusion equation after the publication of the classical papers by Fisher [44] , Kol-
mogorov, Petrovski and Piskunov [76] (both in the year 1937), and Zeldovich and
Frank-Kamenetsky [139] (in 1938)

∂u
∂t

= ∂2u
∂x2 + f (u) , (2.52)

where f (u) is the continuous nonlinear function allowed to have various qualitative
behaviour. Aronson and Weinberger [3] systematically investigated the behaviour of
the solution of (2.52) as t →∞. They pointed out that the solution of (2.52) converges
to a traveling wave under some assumptions on the function f and the initial condition
u (x,0). For example, they introduced “heterozygote inferior” case with the following
feature of f

f ∈ C1 [0,1] , f (0)= f (1)= 0, f ′ (0)< 0, f (u)< 0 in (0,a) , (2.53a)

f (u)> 0 in (a,1) for some a ∈ (0,1) ,
∫ 1

0
f (u)du > 0, (2.53b)

where the equilibrium states u = 0 and u = 1 are stable while u = a is unstable. It
is pointed out for this case that if u (x,0) ∈ [0,a), then limt→∞ u (x, t) = 0 and that if
the initial distribution u (x,0) ∈ [a,1] for every x, then limt→∞ u (x, t) = 1 uniformly on R.
Consequently, this case exhibits a threshold phenomenon. Subsequent well-known
work by Fife and McLeod [43] proved the existence, uniqueness, and stability for
traveling front solutions to the equation (2.52) in the case

f (0)= f (1)= 0, f ′ (0)< 0, f ′ (1)< 0. (2.54)

McKean and Moll(1986): Another systematic study of (2.52) was reported by McK-
ean and Moll [90] who studied equation (2.52) with the kinetic term specified as a
piecewise-linear function introduced first by McKean [89], f (u) = −u+H(u−a) pro-
vided that a < 1/2. This study set out with the aim of investigating the asymptotic be-
haviour of the solution as t →∞ and made a noteworthy contribution to the previous
understanding of the asymptotic behaviour of the solution. They demonstrated that
there exists a threshold surface in the space of initial data that separates collapsing
solutions (subthreshold case) from expanding ones (superthreshold case).
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Figure 2.10: Illustration of the threshold surface separating initial conditions tending
to the equilibrium value 0 (blue lines) from those leading to the excited value 1 (red
lines). The initial conditions on the critical surface (black lines) tend towards a saddle
point designated by s. This figure is adapted from [90].

There is another important insight from this study: apart from these two resting
and excited state solutions, there is a unique, nontrivial, time-independent solution on
the threshold surface that satisfies,

∂2û
∂x2 + f (û)= 0. (2.55)

This unstable solution is known as the critical nucleus (or standing wave) and it sep-
arates the set of initial conditions leading to the excited state, from the set of initial
conditions evolving towards its resting state. Hence, it acts as a threshold separat-
ing two outcomes and is a saddle of codimension one. Figure 2.10 illustrates this
threshold surface.

In the following years, Flores [48, 49] who studied (2.52) for f (u) = u (1−u) (u−a)
used Sturm’s theorem to prove that the linearization spectrum of the equation around
the critical nucleus has exactly one positive eigenvalue, while all other eigenvalues
are negative.

Moll and Rosencrans(1990): After the observation of the existence of a threshold
surface introduced by McKean and Moll [90], a number of researchers showed an
increased interest in determining such threshold surface. In another major study, Moll
and Rosencrans [93] tried to trace this threshold surface numerically. They chose
rectangular pulse initial condition lying on the surface and analysed if the resulting
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solution would either decay to the resting state 0 or expand into a propagation wave.
If the eventual solution is a decay solution, they increased the amplitude of the initial
condition and decreased it otherwise. By repeating the procedure, they eventually
obtained the threshold surface as a relation between the amplitude and the width of
the initial pulse.

Neu et al.(1996): One of the analytical approaches to the initiation problem is based
on the method of projected dynamics, introduced by Neu, Preissig and Krassowska
[101] in 1996. They proposed that the equation (2.52) can be written as the gradient
flow of an energy functional

∂u
∂t

=−δE (u)
δu

, (2.56)

where E is energy and δE/δu is the variational derivative. For potential u (x, t) with
u (x, t)→ 0 as x →∞, energy can be defined as

E (u)=
∫ ∞

−∞

(
u2

x

2
+F (u)

)
dx, (2.57)

where F (u)=−∫
f
(
u′)du′. The potential u (x, t) can be parametrized in the form u (x, t)=

U (x,a (t)) where a (t) = a1 (t) , · · · ,aN (t) is a time-dependent vector of parameter. If the
exact solution is in this from, then (2.56) gives a system of ordinary differential equa-
tions of the form

M
da
dt

=−∇E, (2.58)

where ∇i = ∂/∂ai and M is an N ×N symmetric matrix whose components are given
by

mi j =
∫ ∞

−∞
∂U
∂ai

∂U
∂a j

dx. (2.59)

They then specifically chose the Gaussian pulse with time-dependent parameters for
the amplitude a(t) and the pulse width 1/k(t) 2

U (x, t)= a(t)e−(k(t)x)2 . (2.60)

Inserting the Gaussian representation of u (2.60) into the projected dynamics (2.58)
yields a pair of ordinary differential equations

ȧ =−a
(
2k2 +1− pa

)
, (2.61a)

k̇ =−k
(
2k2− qa

)
, (2.61b)

2though not every equation can be written in this form.
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where p and q are constants

p = 7
p

6
18

≈ 0.9526, q =
p

6
9

≈ 0.2722. (2.62)

The phase plane for the projected dynamics (2.61) has resting state at (0,0) and
critical nucleus at (1.47,0.447) . The stable manifolds of the critical nucleus divide the
phase plane into two regions: non-excitable and excitable. The non-excitable region
corresponds to the initial conditions that fail to start the propagation of excitation while
the excitable region refers to the initial conditions that succeed in starting the propa-
gation.

Idris and Biktashev(2008): As emphasized previously, the stable manifold of the crit-
ical nucleus is the threshold surface separating initial conditions leading to initiation
of propagation and to decay. Idris and Biktashev [68] showed that approximation of
this manifold by its tangent linear space yields an analytical criterion of initiation. They
considered the linearization of (2.52) near the critical nucleus and obtained analytical
expressions for both strength-duration and strength-extent curves.

2.6 Review of Some Essential Numerical Methods

Numerical methods are necessary to study the initiation problem since analytical re-
sults are not always possible to obtain explicitly. Even when analytical solutions are
feasible it can be convenient to validate and estimate their accuracy by means of
some numerical procedure. In this section, we will present a brief introduction to fi-
nite difference and finite element methods for simulation of the initiation problem and
some numerical methods for the computation of the ingredients of the analytical solu-
tion to the problem. Eigenvalues and eigenfunctions play an important part in formu-
lating the analytical solution to the initiation problem. Any discretized version of the
linear differential operator can be written in a matrix form so that the eigenpairs of the
system become the eigenpairs of such discrete matrix. There exist several iterative
methods for finding eigenpairs, two of which will be outlined in this section: power
iteration and Arnoldi methods. Least-squares fitting is a common technique to find
the best fitting curve. One of the most widely used iterative estimation technique is
Levenberg-Marquardt method, and thus it will also require to be mentioned. Finally,
we will introduce Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method,
a method for interpolation scattered data to obtain a smooth continuous set of data.
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2.6.1 Finite Difference Method

One of the simplest and of the oldest methods to solve (partial) differential equa-
tions is the finite difference methods. The main idea is to replace the derivatives in
the equations by their finite difference approximations. This converts the main equa-
tions into a system of algebraic equations, which can be conveniently implemented
in various computational programming languages and packages (C, Maple, Matlab,
Mathematica, etc.).

In all cases, for simulation of time-dependent problems, we discretize the problems
on a regular space grid on a finite interval x ∈ [0,L] as an approximation of x ∈ [0,∞),
with fixed space step ∆x and a regular time grid with time step ∆t. We first introduce
a rectangular mesh or grid consisting of points (tn, xi) with

0= t0 < t1 < t2, · · · , 0= x1 < x2 < ·· · < xN = L (2.63)

so that

xi = (i−1)∆x, tn = n∆t, i = 1, . . . , N n = 0, . . . . (2.64)

The grid function ûn
i denotes the numerical approximation, of u (xi, tn)

ûn
i ≈u (xi, tn) .

Approximate time derivative with the explicit Euler forward difference is

∂ûn
i

∂t
= ûn+1

i − ûn
i

∆t
+O (∆t) . (2.65)

Except where stated otherwise, we use explicit second-order central difference ap-
proximations in space for the diffusion term

∂2ûn
i

∂x2 = ûn
i+1−2ûn

i + ûn
i−1

∆x2 +O
(
∆x

2) . (2.66)

Hence, the discretization formula for (2.45) is

ûn+1
i = ûn

i +D∆t

( ûn
i+1 −2ûn

i + ûn
i−1

∆x2

)
+∆tf

(
ûn

i
)
. (2.67)

Notice that the approximate time and space discretizations have errors of size O (∆t)
and O

(
∆x

2), respectively. Hence, approximate solution (2.67) has an associated error
of

∆û=O (∆t)+O
(
∆x

2) .
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The proposed finite difference approximation scheme is said to be consistent if this
error goes to zero as ∆x → 0 and ∆t → 0. According to the von Neumann stability
analysis (which is detailed in e.g. [127]), this numerical scheme is stable if

max(D)∆t

∆x2 < 1
2

,

where max(D) is the maximum value of the elements of D.

2.6.2 Finite Element Method

Another widely used numerical technique for finding the approximate solution to the
(partial) differential equations is the finite element method (FEM), also known as finite
element analysis (FEA). The main concept of the FEM is to subdivide the mathe-
matical model into smaller components of simple geometry called finite elements. To
summarise in general terms how the FEM works, we shall study the method for the
approximate solution of the initiation problem (2.45). For simplicity, here we consider
one-component case so that the diffusion term of which component becomes scalar,
i.e. D̂ = D (m,m) for m− th component, and repeat the same procedure for any other
remaining component equation in the system.

First of all, as in the finite difference method, the finite interval domain x ∈ [0,L] is
to be used as an approximation of x ∈ [0,∞). We then divide this domain into smaller
regions such that 0 = x1 < x2 < ·· · < xN = L where the constant mesh spacing is as-
sumed, i.e. ∆x = L/(N −1). Next, we construct suitable basis (also known as trial or
shape) functions Φ j(x) with j = 1, · · · , N. There are a number of choices available for
the type of basis function. For example, nodal kind of basis function satisfies

Φ j (xi)=
1, if i = j,

0, if i ̸= j,

where i, j = 1,2, · · · , N. We then multiply one-component case of equation (2.45) with
an arbitrary test function V (x) so that integrating the resulting expression over the
domain leads to ∫ L

0

{
∂û
∂t

− D̂
∂2û
∂x2 − f (û)

}
V (x) dx = 0, (2.68)

which is known as the weak formulation ( or variational form) [124, 128]. Using homo-
geneous Neumann (no-flux) boundary condition, this further simplifies to

(ût,V )+ D̂ (∇û,∇V )= ( f ,V ) , (2.69)

53



CHAPTER 2. LITERATURE REVIEW

where (a,b)=
L∫
0

a⊤b dx. An approximate solution is expressed as a linear combination

of the basis functions

û (x, t)=
N∑

j=1
α j(t)Φ j(x), (2.70)

where α j(t) are unknown coefficients yet to be determined by minimising the error
between the exact and the approximate solutions. Substituting the ansatz (2.70) into
the equation (2.69) yields

N∑
j=1

α′
j(t)

(
Φ j,V i

)+ D̂
N∑

j=1
α j(t)

(∇Φ j,∇V i
)= ( f ,V i) .

In the Galerkin finite element method, the test function is the same as the basis func-
tion [30], i.e. V i =Φi, i = 1,2, . . . , N

N∑
j=1

α′
j(t)

(
Φ j,Φi

)+ D̂
N∑

j=1
α j(t)

(∇Φ j,∇Φi
)= ( f ,Φi) . (2.71)

Since Φ j
(
x j

) = 1 and Φ j (xi) = 0 for all j ̸= i, the expansion coefficients α can be re-
placed with approximate solution û. Thus, (2.71) can be written in a matrix form as

A
dû
dt

+ D̂Bû =F (û) , (2.72)

where A =
(
A i, j

)
is known as the mass matrix with entries A i, j =

(
Φi,Φ j

)
, B =

(
Bi, j

)
is

known as the stiffness matrix with entries Bi, j =
(∇Φi,∇Φ j

)
and F (û) = ( f (û) ,Φi). An

explicit piecewise linear representation of the basis functions is given by

Φ j (x)= 1
∆x


x− xi−1, x ∈ [xi−1, xi] ,

xi+1− x, x ∈ [xi, xi+1] ,

0, otherwise,

and its derivative is

Φ′
j (x)= 1

∆x


1, x ∈ [xi−1, xi] ,

−1, x ∈ [xi, xi+1] ,

0, otherwise.

This basis function is shown in Figure 2.11. For the given basis function, the elements
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Figure 2.11: An illustration of the basis function.

of the mass matrix A= [
ai, j

]
can be calculated as

A= ∆x

6



2 1 0 · · · 0

1 4 1
...

0 . . . . . . . . . 0
... 1 4 1

0 · · · 0 1 2


, (2.73)

while the elements of the stiffness matrix B= [
bi, j

]
are

B= 1
∆x



1 −1 0 · · · 0

−1 2 −1
...

0 . . . . . . . . . 0
... −1 2 −1

0 · · · 0 −1 1


. (2.74)

In the finite difference formulation, the time derivative is expressed in forward Euler
form. However, here we employ the generalized trapezoidal rule (also known as θ-
scheme) [110], in which the residual is evaluated at n+θ, with this notation implying

ûn+θ = θûn+1 + (1−θ) ûn, (2.75)

where 0 ≤ θ ≤ 1 is a real parameter. Based on the above, the fully discrete problem
(2.72) becomes [

A+∆tθD̂B
]
ûn+1 =F

(
ûn+θ

)
+ [

A−∆t (1−θ) D̂B
]
ûn. (2.76)
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For this scheme, the stability condition and error analysis are dependent upon the
choice of the parameter θ. In scheme (2.76), θ = 0 gives the explicit Euler method with
truncation error proportional to O (∆t)+O

(
∆x

2), θ = 1/2 gives the second-order neutrally
stable Crank-Nicolson method with truncation error proportional to O

(
∆t

2)+O
(
∆x

2),
and θ = 1 gives the first-order accurate implicit Euler rule that is unconditionally stable
with truncation error proportional to O (∆t)+O

(
∆x

2) [23].

2.6.3 Power Iteration

The power iteration method ( also known as the Von Mises iteration [91]) is very good
at approximating the largest eigenvalue in the magnitude of a given diagonalisable
matrix A ∈Cn×n as well as its associated eigenvector. Recall that if λ and q are respec-
tively eigenvalue and eigenvector for the matrix A, then Aq = λq. The power iteration
method is motivated by this definition. Given any arbitrary vector of unit Euclidean
norm as an initial approximation of the dominant eigenvector corresponding to the
eigenvalue of largest magnitude, the power iteration method can then be computed
via the following iterative procedure:

Input: Any given diagonalisable matrix A ∈Cn×n, a user-defined small
parameter tolerance and an arbitrary initial vector b∈Cn

Output: The dominant eigenvalue and corresponding eigenvector of A
Set: q1 = b/∥b∥2;
for n = 1,2,3. . . do

v=Aqn ;
qn+1 = v/∥v∥2;
λn+1 = qn+1

⊤Aqn+1;
if ∥qn+1−qn∥2 < tolerance then

break
end

end

Algorithm 1: The power method computation of the first eigenpair.

In the algorithm above, the eigenvector is normalized at each iteration so that it gets
closer to the desired eigenvector. The power iteration method can be terminated
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whenever the convergence criterion is met, i.e. the change in the eigenvector (or
eigenvalue) is negligibly small. Note that the algorithm can be of interest when the
matrix A is large and sparse and when there is a sufficient gap between the first
two largest eigenvalues in magnitude [54]. The main advantage of this method is
a faster convergence, especially when these two eigenvalues are distinct. However,
the method also has some major drawbacks, like returning only an estimate of one
eigenvector with the eigenvalue of largest magnitude.

2.6.4 Arnoldi Iteration

The power iteration method will only converge to a single eigenvalue of a given matrix
A. However, in many cases, it is likely that a small subset of the spectrum of a large-
scale matrix is to be sought. There are several approaches to computing a small
number of eigenvalues of such large matrix and one of the best-known approaches is
the Arnoldi method.

In 1951, Arnoldi [2] described an algorithm to provide a relatively good approxi-
mation to some eigenvalues after a relatively small number of iterations. It was later
discovered that his algorithm can indeed lead to an efficient technique for approximat-
ing eigenvalues of large sparse matrices. In the following, a general description of the
Arnoldi method and one of its variations will be presented.

Basic Arnoldi Iteration

The basic idea of the Arnoldi algorithm is grounded on projecting a given matrix
A ∈Cn×n onto a properly chosen low-dimensional subspace, and then solving a rather
small eigenvalue problem performing QR algorithm, an approach to compute the
eigenvalues and eigenvectors of a given matrix developed by Francis [51]. The Arnoldi
method [2, 116, 137] is an orthogonal projection method onto the kth order Krylov sub-
space,

Kk = span
{

q,Aq, · · · ,Ak−1q
}

, (2.77)

where q can be any starting normalized vector in Cn. For such given matrix A ∈Cn×n,
QR factorization is defined as a decomposition of the form A = QR where Q ∈ Cn×n

is an orthogonal matrix and R ∈ Cn×n is an upper triangular matrix. However, the
QR factorization of matrix AKk is unstable and thus, instead of using this subspace,
the Arnoldi iteration derives the (stabilized) Gram-Schmidt procedure to produce an
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orthonormal basis of the Krylov subspace,

Kk = span {q1, q2, · · · , qk} . (2.78)

Let Qk be the n×k matrix formed by the Arnoldi vectors q1, q2, · · · , qk, each of which is
constructed from the previous Arnoldi vectors except q1, arbitrarily chosen normalized
vector (see Algorithm 2 for the exact procedure). Then, k−step Arnoldi factorization
is of the form,

AQk =QkHk +hk+1,kqk+1e⊤
k , (2.79)

or equivalently
AQk =Qk+1H̄k, (2.80)

where Hk ∈ C(k)×k and H̄k ∈ C(k+1)×k are upper Hessenberg matrices, Qk+1 ∈ Cn×(k+1),
and ek = (0,0, · · · ,1)⊤. Note that the matrices Qk, Hk, Qk+1 and H̄k are uniquely deter-
mined by the first column of Qk, an arbitrary normalized initial vector q1. The Arnoldi
iteration can be essentially viewed in the following algorithm:

Input: Any given diagonalisable matrix A ∈Cn×n, a user-defined small
parameter tolerance and an arbitrary initial vector b∈Cn

Output: Upper Hessenberg matrix and a set of n+1 orthonormal vectors
Set: q1 = b/∥(b)∥2;
for n = 1,2,3. . . k do

v= Aqn ;
for j=1:n do

h jn = v⊤q j ;
v= v−h jnq j;

end
h(n+1)n = ∥(v)∥2;
if h(n+1)n < tolerance then

break
end
qn+1 = v/h(n+1)n;

end
Algorithm 2: Basic Arnoldi iteration method.

Note that the above procedure will stop if h(n+1)n < tolerance for some n and
tolerance, a small parameter typically chosen to be equal to the machine precision.
The advantage of this algorithm is that the matrix Hk has a modest number of nonzero
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entries and it represents the orthogonal projection of A onto the Krylov subspace. The
eigenvalues and eigenvectors of Hm can be computed efficiently using, for instance,
the QR algorithm. The eigenvalues of Hk are called Ritz values and provide a good
approximation for the eigenvalues of A. Also, the Ritz eigenvector, Qk y, can be taken
as an approximation of the eigenvector of A where y is an eigenvector of Hk associ-
ated with any considered eigenvalue of Hk.

Implicitly Restarted Arnoldi Iteration

One of the main disadvantages of the basic Arnoldi iteration method is that the re-
quired number of steps is typically large. This is the main issue especially when the
starting matrix, A, is very large. Another problem with this approach is that one cannot
set certain criteria for detection of the eigenvalues. For example, in some cases, only
first k eigenvalues of the largest real part may be required. To date, various methods
have been developed and introduced to compute a specific number of eigenpairs of
a given matrix in a more efficient manner. A numerically stable approach, named as
implicitly restarted Arnoldi method, that combines Arnoldi process with the implicitly
shifted QR algorithm is to be introduced here.

The method was proposed by Lehoucq and Sorensen [80] and the technique has
been also implemented in a freely available software package called ARPACK [81] by
them. This process is more convenient than some traditional approaches since it lets
the user specify in advance the number of eigenvalues with certain specified features
such as largest real part or largest magnitude. Hence, the required storage is fixed.

The Implicitly Restarted Arnoldi Method can be accomplished in the following three
steps [5]:

1. Extend a k−step Arnoldi factorization to a length m = k+ p Arnoldi factorization:

AQk =QkHk +hk+1,kqk+1e⊤
k ⇒AQm =QmHm +hm+1,mqm+1e⊤

m. (2.81)

2. Reorder the m−step Arnoldi factorization in such a way that the desired eigen-
values appear in the leading submatrix of Hm:

AQm =QmHm +hm+1,mqm+1e⊤
m ⇒AQ̃m = Q̃mH̃m + h̃m+1,m q̃m+1e⊤

m. (2.82)

3. Truncate the reordered m−step Arnoldi factorization to get a new k−step Arnoldi
factorization :

AQ̃m = Q̃mH̃m + h̃m+1,m q̃m+1e⊤
m.⇒AQ̃k = Q̃kH̃k + h̃k+1,k q̃k+1e⊤

k . (2.83)
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In step 2, p = m− k steps of the shifted QR algorithm on the Hessenberg matrix
Hm have been performed so that the eigenvalues of the leading principal submatrix
H̃m are ordered. In step 3, the unwanted eigenvalues are eliminated. Please refer to
[80, 81], for more detailed explanations and derivations of some expressions.

2.6.5 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm is one of the most widely used standard itera-
tive technique to solve nonlinear least squares problems. This optimization algorithm,
which was introduced firstly by Kenneth Levenberg in 1944 [82] and revised by Don-
ald Marquardt in 1963 [86], provides a numerical solution to the following nonlinear
least squares curve fitting problem:

S(θ)=
m∑

i=1
[yi − f (xi,θ)]2 , (2.84)

where (y1, y2, · · · , ym) is the desired output vector, f (x,θ) is the function of an indepen-
dent variable x and n parameters θ, and S(θ) is the function to be minimised.

The Levenberg-Marquardt algorithm is an iterative technique that starts with an
initial guess for the n parameters θ that are updated at every iteration until stopping
criterion is satisfied, i.e. the absolute change in the parameter estimates between two
consecutive iteration steps is less than a user-defined tolerance value. Furthermore,
the Levenberg-Marquardt algorithm acts as a combination of two other well-known
minimisation methods: the steepest descent method and the Gauss-Newton method.
When the parameters are far from their optimal value, the Levenberg-Marquardt al-
gorithm behaves like a steepest descent method. Similarly, it behaves like a Gauss-
Newton method when the parameters are close to their optimal value.

2.6.6 Piecewise Cubic Hermite Interpolating Polynomial

Interpolation is a method of estimating and constructing new data points within the
range of a finite set of known data points. One major purpose of using an interpola-
tion technique is to construct a regular grid from an irregular set of data points. For
this procedure, we focus on a shape-preserving interpolant method called piecewise
cubic Hermite interpolating polynomial (PCHIP). It is beyond the scope of this study
to rigorously and formally analyse this method, but reader should refer to [92] for its
detailed explanation and MATLAB implementation.
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There are two main advantages of the PCHIP interpolant [105]. First, this ap-
proach produces a monotone interpolant on each interval between two consecutive
measurements, i.e. it never overshoots the data. Secondly, the resulting interpolant
has one continuous derivative, which is reasonable provided that the signal being
measured is expected to be continuous.
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ANALYTICAL THEORY

3.1 Chapter Introduction

The focus of this chapter is to describe the analytical framework of the research.
The problem considered in this thesis is the ignition of propagating waves in one-
dimensional bistable or excitable systems. In Section 3.2, this problem will be mathe-
matically formulated. Analytical initiation criterion for such problem will be divided into
two cases: stimulation by voltage and stimulation by current. Section 3.3 and Sec-
tion 3.4 address how the linear approximation of the critical curves for each case can
be derived. An extension of the method from a linear to a quadratic approximation of
the (center-)stable manifold for both cases are also provided in each section. Finally,
the summary of the chapter is presented in Section 3.5.

3.2 Problem Formulation

We consider the problems of initiation of propagating waves in one spatial dimension,
which is formulated as a reaction-diffusion system,

∂u
∂t

=D
∂2u
∂x2 + f(u), (3.1)

where u :R×R→Rk is a k-component reagents field, k ≥ 1, defined for x ∈R and t ∈R+,
vector-function f : Rk → Rk describes the reaction rates and D ∈ Rk×k is the matrix of
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diffusivity. We assume that this system has a stable spatially uniform equilibrium state,
called resting state,

u(x, t)=ur, f(ur)= 0, (3.2)

and a family of stable propagating wave solutions of the form

u(x, t)=uw(x− cwt− sw),

uw(∞)=ur, uw(−∞)=u−,
(3.3)

where u− is also a stable spatially uniform equilibrium, f(u−)= 0, which may or may not
coincide with ur. In this thesis, we restrict our attention to the two types of propagating
wave solutions, and these are propagating pulse, which is the case when u− =ur and
propagating front otherwise. In (3.3), cw > 0 is a fixed constant, the wave propagation
speed, and sw is an arbitrary constant, the parameter of the family.

The main purpose of this study is to investigate the behaviour of the solutions of
the system (3.1) set on x ∈ [0,∞), t ∈ [0,∞) subject to the following initial and boundary
conditions,

u(x,0)=u0(x)=ur +us(x), x > 0,

Dux(0, t)=−Is(t), t > 0. (3.4)

Typically, these solutions either approach the propagating wave solution (“ignition”)
or the resting state (“failure”) as t →∞, as illustrated in Figure 3.1. 1 Without loss of
generality, we assume that the functions us(x) and Is(t) have a finite support, us(x)≡ 0
for x > xs, and Is(t)≡ 0 for t > ts.

Our analysis is carried out focusing attention on the cases when only one of us(·)
and Is(·) is nonzero. If the dependence is on just one parameter, then one talks about
threshold value(s) of the parameter, separating the two outcomes. When there are two
parameters, one can talk about a threshold curve, or a critical curve. The simplest and
standard formulations are:

• “Stimulation by voltage”:

Is(t)= 0, us(x)=Us X(x). (3.5)

1More precisely, since (3.4) is defined on half-line x ∈R+ and the propagating wave solution (3.3) on
the whole line x ∈R, the convergence should be understood in an appropriate sense, e.g. convergence
in any finite interval fixed in a co-moving frame of reference.
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That is, the initial condition is the resting state ur, displaced by the magnitude
defined by parameter Us with a normalized spatial profile defined by X(x). In all
specific examples, we shall use simply a rectangular profile of a width xs,

X(x)=H(xs − x)e, (3.6)

where H(·) is the Heaviside step function and e ∈Rk is a constant vector defining
the modality of the perturbation. Then the critical curve can be considered in the
plane (xs,Us), and we call it “strength-extent curve”.

• “Stimulation by current”:

us(x)= 0, Is(x)= Is T(t). (3.7)

That is, the initial condition is the unperturbed resting state, but there is a con-
stant current injected through the left boundary of the interval, where Is defines
the strength of the current and T(t) its normalized temporal profile. Similar to
stimulation by voltage case, we consider a rectangular profile of duration ts,

T(t)=H(ts − t)e, (3.8)

where the fixed vector e determines which reagents are being injected. The
critical curve will then be in the plane (ts, Is), and widely used standard term for
it is “strength-duration curve”.

We find it convenient to formalize the initiation problem as one posed on the whole
real line x ∈R,

∂u
∂t

=D
∂2u
∂x2 + f(u)+h(x, t), (x, t) ∈R×R+,

u(x,0)=ur +us(x), h(x, t)≡ 0 for t > ts, (3.9)

where the initial condition is an even continuation of the one in (3.4),

us(−x)≡us(x)=
UsX(x), x ≥ 0,

UsX(−x), x < 0
(3.10)

and the forcing term is formally represented by

h(x, t)= 2Is eH(ts − t)δ(x), (3.11)
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where δ(·) is the Dirac delta function. This term is derived firstly by integrating (3.9)
with respect to x from −ϵ to ϵ. Then, we take into account the boundary condition given
by (3.4) and the fact that the solution to either (3.9) or (3.1) is an even and continuous
function of x, while its derivative is discontinuous. Finally, we obtain the expression
(3.11) by taking the limit ϵ→ 0.
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û

(a) (b)

Figure 3.1: Response to slightly below- and slightly above-threshold initial con-
ditions in the McKean model. Parameter values: θ = 0.05, Is = 0, xs = 0.6,
Us = 0.557123722019382 (sub-threshold) (a) and Us = 0.557123722019383 (super-
threshold)(b).

3.3 Initiation by Voltage: Strength-Extent Curve

In this section, a mathematical formulation of the threshold curve in the (xs,Us)-plane
that serves as a boundary between initial conditions leading to the propagating wave
solution and initial conditions leading to the resting state is provided. To obtain the
expression for the strength-extent curve, we consider the problem (3.9) with h(x, t)≡ 0

for all t and the initial conditions (3.10). We begin with the principal assumption that
there exists a critical solution, which is defined as a self-similar solution,

u(x, t)= û(x− ct),

0=D
d2û
dξ2 + c

dû
dξ

+ f(û),

û(∞)=ur, û(−∞)= û−

(3.12)

(where û− may be different from u− but in our examples û− =ur when u− =ur) which
is unstable with one unstable eigenvalue. Naturally, the speed c of the critical solution
is also entirely different from the speed cw of the stable wave solution.
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Similar to the stable wave solution, there is then a whole one-parametric family of
critical solutions,

û(x− ct− s), s ∈R. (3.13)

Due to this translation invariance, this solution always has one zero eigenvalue. Hence
its stable manifold has codimension two, whereas its center-stable manifold has codi-
mension one and as such, it can partition the phase space, i.e. it can serve as a
boundary between basins of different attractors (see Figure 3.3). Our strategy is to
approximate this center-stable manifold. In the first instance, we consider a linear
approximation.

3.3.1 Linear Approximation

Let us rewrite the reaction-diffusion system (RDS) (3.1) in a frame of reference moving
with a constant speed c, so that u(x, t)= ũ(ξ,τ), ξ= x− ct− s, τ= t,

∂ũ
∂τ

=D
∂2ũ
∂ξ2 + c

∂ũ
∂ξ

+ f(ũ),

ũ(ξ,0)=ur +us(ξ+ s).

We linearize this equation on the critical solution, which is stationary in the moving
frame

ũ(ξ,τ)= û(ξ)+v(ξ,τ). (3.14)

The linearization gives

∂v
∂τ

=D
∂2v
∂ξ2 + c

∂v
∂ξ

+F(ξ)v,

v(ξ,0)=ur +us(ξ+ s)− û(ξ),
(3.15)

where

F(ξ)= ∂f
∂u

∣∣∣∣
u=û(ξ)

(3.16)

is the Jacobian matrix of the kinetic term, evaluated at the critical solution.
Equation (3.15) is a linear non-homogeneous equation, with time-independent lin-

ear operator,

∂τv=L v, L ≜D
∂2

∂ξ2 + c
∂

∂ξ
+F(ξ). (3.17)
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For the sake of simplicity, let us assume that the eigenfunctions of L ,

L V j(ξ)=λ jV j(ξ), (3.18)

are simple and form a basis in an appropriate functional space, and the same is true
for the adjoint L + 2. Then the general solution of problem (3.15) in that space can be
written as a generalized Fourier series

v(ξ,τ)=∑
j

a j(τ)V j(ξ). (3.19)

The coefficients a j will then satisfy decoupled ODEs,

da j

dτ
=λ ja j,

a j(0)=
⟨

W j(ξ)
∣∣∣v(ξ,0)

⟩
, (3.20)

the scalar product
⟨
·
∣∣∣ ·⟩ is defined as

⟨
a

∣∣∣b⟩
=

∞∫
−∞

a⊤bdξ,

and W j are eigenfunctions of the adjoint operator,

L +W j =λ jW j, L + =D⊤ ∂2

∂ξ2 − c
∂

∂ξ
+F⊤(ξ), (3.21)

normalized so that

⟨
W j

∣∣∣Vk

⟩
=

1, if j = k,

0, otherwise.
(3.22)

Another assumption, which simplifies formulas and is true for all examples consid-
ered, is that all eigenvalues important for the theory are real. We shall enumerate
the eigenpairs in the decreasing order of λ j, so by assumption we always have
λ1 >λ2 = 0>λ3 > . . . .

The solution of (3.20) is

a j(τ)= eλ jτa j(0).

2This assumption will, of course, have to be verified in each particular case.
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By assumption, λ1 > 0, and due to translational symmetry, λ2 = 0, and the rest of the
spectrum is assumed within the left half-plane. Hence the condition of criticality is

a1(0)= 0.

Using the definition of a1(0), we have, in terms of the original model (3.15),⟨
W1(ξ)

∣∣∣us(ξ+ s)
⟩
=

⟨
W1(ξ)

∣∣∣ û(ξ)−ur

⟩
. (3.23)

This is an equation of the center-stable space, i.e. a tangent space to the center-
stable manifold of the critical solution. Note that this tangent space is different for
every choice of the critical solution as identified by choice of s.

General Setting

Let us now consider the typical formulation, when the spatial profile of the initial per-
turbation is fixed and only its magnitude is varied,

us(x)=UsX(x). (3.24)

Then (3.23) gives

Us

⟨
W1(ξ)

∣∣∣X(ξ+ s)
⟩
=

⟨
W1(ξ)

∣∣∣ û(ξ)−ur

⟩
or

Us = N 1

D1(s)
, (3.25)

where the numerator N 1 is a constant, defined entirely by the properties of the model,

N 1 =
⟨

W1(ξ)
∣∣∣ û(ξ)−ur

⟩
, (3.26)

and the denominator D1 depends on the shift s,

D1(s)=
⟨

W1(ξ)
∣∣∣X(ξ+ s)

⟩
. (3.27)

Hence to get the ultimate answer, we need an extra condition to fix the value of the
shift s.
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The Case of Critical Nucleus

This is the case when c = 0, i.e. the critical solution is stationary, and moreover it is
even in x. Then there is a natural choice of s = 0 prescribed by symmetry. It can also
be motivated directly by considering the problem for x ∈ R as an even extension of
the problem for x ∈R+. In this case the position of the critical nucleus is fixed, there is
no translational invariance, no associated zero eigenvalue, and we can consider the
stable space, tangent to the stable manifold, as symbolised in Figure 3.2, rather than
center-stable manifold.

That is, we have x = ξ, t = τ, u = ũ, û(−ξ) ≡ û(ξ), and (3.25) gives the explicit
expression for the threshold

Us =

∞∫
0

W1(ξ)⊤ (û(ξ)−ur) dξ

∞∫
0

W1(ξ)⊤X(ξ)dξ
. (3.28)

If, further, the stimulation is done by a rectangular perturbation of the resting state,

X(ξ)=H(xs −ξ)H(xs +ξ)e, (3.29)

then we have

Us =

∞∫
0

W1(ξ)⊤ (û(ξ)−ur) dξ

xs∫
0

W1(ξ)⊤edξ
. (3.30)

This case was first considered in [68].

The Case of Moving Critical Solution

This is the case when c > 0, and then we call the critical solution either a critical pulse
(for u− = ur) or a critical front (u− ̸= ur) [67]. The problem now does not have the
symmetry ξ 7→ −ξ and the previous “intuitively obvious” choice of s is not generally
applicable. Recall that our approach is based on linearization, whereas the original
problem does not, in fact, contain small parameters. In this formulation, the criticality
condition depends on an “arbitrary” parameter s.

We select an optimal value of the parameter, so as to minimise the error in the pre-
diction. This is done based on a “skew-product” approach [14, 15, 50], which consider
solutions u(x, t) of (3.1) in the form

u(x, t)= ũ(ξ,τ),
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Figure 3.2: Diagram of a stable manifold of the stationary critical solution. The empty
circle denotes the critical nucleus and thin solid black lines represent the critical trajec-
tories that form the stable manifold. The critical trajectory (bold solid line) divides the
family of initial conditions into two classes: sub-threshold trajectories (blue lines) and
super-threshold trajectories (red lines). Note that the filled circle is the intersection
point of the initial condition and the stable manifold.

where ξ= x− s(t), τ= t, so ũ(·,τ) describes evolution of the shape of the wave profile
in a frame of reference which moves according to the law defined by the shift s(t), and
the dynamics of the shift s(t) is determined from an extra condition, such as

Γ(u(s(t), t))≡ 0, (3.31)

for an appropriately selected function Γ(·), which allows to choose a unique value of
s for any given profile u(·, t) at any given time t, perhaps with some inequalities to
distinguish the front from the back. This extra condition is an essential step for the
determination of the parameter s, and a popular and efficient choice of functional Γ(·)
can be made when one considers perturbations of a relative equilibrium, as done e.g.
in [13, 33, 78]. This choice is based on the following observation, adapted to our
case of a one-parametric symmetry group. An infinitesimal increment of the shift s is
equivalent, in this situation, to a corresponding infinitesimal change of coefficient a j in
an expansion like (3.19). Let V j(ξ) = û′(ξ) be the “translational” mode, corresponding
to λ j = 0. Then a (locally) unique fixation of s can be achieved by requiring that a j = 0.
In our present situation, the index of the projector to the shift mode is j = 2. The
resulting extra requirement is to be applied to the solution at all moments of time,
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including the initial condition, for which it gives⟨
W2(ξ)

∣∣∣ur +us(ξ+ s)− û(ξ)
⟩
= 0,

leading to

Us

⟨
W2(ξ)

∣∣∣X(ξ+ s)
⟩
=

⟨
W2(ξ)

∣∣∣ û(ξ)−ur

⟩
. (3.32)

Another interpretation of the same requirement is that the condition a2(0)= 0, in addi-
tion to the already imposed condition of criticality a1(0) = 0, makes sure that at least
two first terms in the Fourier series (3.19) are zero, thus making v(ξ,0) “smaller” in
that sense.

The two conditions give a system of two similar equations,UsD1(s) =N 1,

UsD2(s) =N 2,
(3.33)

where

N ℓ =
⟨

Wℓ(ξ)
∣∣∣ û(ξ)−ur

⟩
, ℓ= 1,2, (3.34)

and

Dℓ(s)=
⟨

Wℓ(ξ)
∣∣∣X(ξ+ s)

⟩
, ℓ= 1,2. (3.35)

The definitions of N 1, D1 here agree with the ones given earlier in (3.26), (3.27). We
note that, if û− ̸=ur, integrals (3.34) converge if Wℓ(ξ→−∞)→ 0 sufficiently quickly.

System (3.33) is a nonlinear system of two equations for two unknowns, s and Us.
It is linear and over-determined with respect to Us. The compatibility condition for the
two equations for Us is N 1D2(s)−N 2D1(s)= 0, or⟨

Φ(ξ)
∣∣∣X(ξ+ s)

⟩
= 0

where

Φ(ξ)=N 1W2(ξ)−N 2W1(ξ), (3.36)

presenting a nonlinear equation for s. For a rectangular stimulus profile,

X(x)=H(x+ xs)H(xs − x)e,
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the compatibility condition becomes

−s+xs∫
−s−xs

Ξ(ξ) dξ= 0

where

Ξ(ξ)= e⊤Φ(ξ). (3.37)

This equation for s can be transformed into a more convenient form if we introduce
the anti-derivative of Ξ(ξ),

Ξ(ξ)= η′(ξ).

Then

η(−s+ xs)−η(−s− xs)= 0, (3.38)

that is, the two points ξ+ =−s+xs and ξ− =−s−xs are points of equal value of function
η(·). If this function happens to be unimodal, then a unique solution of the compati-
bility condition is guaranteed to exist, and if its monotonic pieces η+(·) and η−(·) are
effectively invertible with, say, dom

(
η+

) > dom
(
η−

)
pointwise, then (3.38) leads to a

parametric equation for the critical curve Us(xs). If we denote the value of function η(·)
in (3.38) by ζ and take it as the parameter, then we have

ξ±(ζ)= (η±)−1(ζ),

xs(ζ)= 1
2

(
ξ+(ζ)−ξ−(ζ)

)
,

s(ζ)=−1
2

(
ξ+(ζ)+ξ−(ζ)

)
,

Us(ζ)=N 1
/
D1 (s(ζ)) .

(3.39)

For reference, we also summarise here the definitions of the ingredients of (3.39)
given earlier:

η(ξ)=N 1I 2(ξ)−N 2I 1(ξ), (3.40)

I 1,2(ξ)=
∫ ξ

e⊤W1,2(ξ′)dξ′, (3.41)

N 1,2 =
∞∫

−∞
W⊤

1,2(ξ) (û(ξ)−ur) dξ, (3.42)

D1(s)=I 1(ξ+)−I 1(ξ−). (3.43)
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Figure 3.3: The sketch of a center-stable manifold of a moving critical solution. The
dashed black line denotes the critical solution, while the solid black lines represent
the critical trajectories that form the center-stable manifold. The bold solid black line
is the critical trajectory that divides the family of initial conditions into two classes:
sub-threshold trajectories (blue lines) and super-threshold trajectories (red lines). The
point where the curve of initial conditions intersects the center-stable manifold is
shown as the filled circle.

We note that for the case of critical nucleus, c = 0, û is an even function, opera-
tors L and L + commute with the operator of inversion ξ 7→ −ξ, function W1 is even,
function W2 is odd, N 2 = 0, I 2 is even, η is even, ξ+ =−ξ−, s = 0 and (3.39) formally
recovers the result (3.25) obtained previously based on the choice s = 0 as “intuitive”
and “natural”.

3.3.2 Quadratic Approximation of the Stable Manifold

The use of a linear approximation around the critical solution for the situation when
distance from it is not guaranteed to be very small is, admittedly, the weakest point of
our approach. In this section, we consider the second-order approximation, in order to
assess the limits of applicability of the linear approximation, and possibly to improve
it. We restrict consideration to the case of critical nucleus, i.e. reaction-diffusion sys-
tem is a scalar equation. We use the formulation on x ∈ (−∞,∞) and space of even
functions u(·, t). Even though we only consider the scalar equation, we intend our
quadratic theory to be also applicable to the multicomponent systems.

Rather than using the matrix notation as in the linear approximation, we shall now
proceed with explicit notation for the components of the reaction-diffusion systems,

73
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use Greek letters for superscripts to enumerate them, and adopt Einstein’s summation
convention for those indices. In this way we start from the generic reaction-diffusion
system

∂uα

∂t
= Dαβ∂

2uβ

∂x2 + f α(uβ),

then consider the deviation vα of the solution uα from the critical nucleus ûα,

uα(x, t)= ûα(x)+vα(x, t),

the equation defining the critical nucleus,

Dαβ∂
2ûβ

∂x2 + f α(û)= 0, (3.44)

and the Taylor expansion of the equation for the deviation,

v̇α = Dαβvβ
xx + f α

,β(û)vβ+ 1
2

f α
,βγ(û)vβvγ+ . . . ,

where overdot denotes differentiation with respect to time, subscripts (·)x denote dif-
ferentiation with respect to space and Greek subscripts after a comma designate a
partial differentiation by the corresponding reactive components. The right and left
eigenfunctions are defined respectively by

Dαβ∂xxVβ
j(x)+ f α

,β(x)Vβ
j(x)=λ jVα

j(x)

and

Dβα∂xxWβ
j(x)+ f β

,α(x)Wβ
j(x)=λ jWα

j(x),

where j ∈ {1,2,3, . . . }, and the biorthogonality condition is

⟨
W j

∣∣∣Vk

⟩
≜

∞∫
−∞

Wα j(x)Vα
k(x)dx =

1, if j = k,

0, otherwise.

We consider only even solutions, so in the subsequent sums only those j that corre-
spond to even eigenfunctions are assumed. We seek solutions in the form of general-
ized Fourier series in terms of the right eigenfunctions,

vα(x, t)=∑
j

a j(t)Vα
j(x), (3.45)
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where the Fourier coefficients are defined by

a j(t)=
⟨

W j(x)
∣∣∣v(x, t)

⟩
≜

∞∫
−∞

Wα j(x)vα(x, t)dx. (3.46)

Time-differentiation of this gives

ȧ j =λ ja j +
∑
m,n

Q j
m,naman, (3.47)

where

Q j
m,n =Q j

n,m ≜ 1
2

∞∫
−∞

Wα j(x) f α
,βγ(û(x))Vβ

m(x)Vγ
n(x)dx. (3.48)

We assume that eigenvalues are real and ordered from larger to smaller, λ1 > 0, λ2 = 0

is of course the eigenvalue corresponding to the translational symmetry and an odd
eigenfunction V2 = û′, and λ j < 0 for all j ≥ 3. Our task is to determine conditions on
initial values of the Fourier coefficients

A j ≜ a j(0)=
∞∫

−∞
Wα

j(x)vα(x,0)dx

that would ensure that

a1(∞)= 0,

which means that the trajectory approaches the critical nucleus, so the initial condition
is precisely at the threshold.

Let us rewrite the system (3.47) as an equivalent system of integral equations,

a j(t)= eλ j t

A j +
t∫

0

e−λ j t′
∑
m,n

Q j
m,nam(t′)an(t′)dt′

 .

Successive approximations to the solution can be obtained by direct iterations of this
system,

a(i+1)
j (t)= eλ j t

A j +
t∫

0

e−λ j t′
∑
m,n

Q j
m,na(i)

m (t′)a(i)
n (t′)dt′

 . (3.49)

Taking a(0)
j = 0 for all j, we have

a(1)
j = A jeλ j t.
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With account of λ1 > 0, λ j < 0, j ≥ 3, and a(1)
j (t)→ 0, this implies that

A1 = 0, A j ∈R, j ≥ 3,

which is the answer we have from the linear approximation. The next iteration pro-
duces

a(2)
j (t)=eλ j t

(
A j +

∑
m,n≥3

Q j
m,n Am An

λ j −λm −λn

)
− ∑

m,n≥3

Q j
m,n Am An

λ j −λm −λn
e(λm+λn)t.

Assuming that the sums converge, the last term always tends to zero as t →∞ be-
cause λn ≤λ3 < 0 for all n ≥ 3, and the first term tends to zero for all j ≥ 3 for the same
reason. So, the condition a(2)

1 (t) → 0 implies that the first term vanishes for j = 1, that
is,

A1 =− ∑
m,n≥3

Q1
m,n Am An

λ1 −λm −λn
, (3.50)

which is our second-order (quadratic) approximation for the critical condition, as op-
posed to the first-order (linear) approximation which states simply that A1 = 0. We see
that the linear approximation will be more accurate when An, n ≥ 3 are smaller, and
that for given magnitudes of An, the linear approximation will be better if λ1 −λm −λn,
the smallest of which is λ1−2λ3, are larger (remember we exclude all eigenpairs with
odd eigenfunctions, including n = 2).

Further iterations of (3.49) lead to still higher-order approximations of the stable
manifold of the critical nucleus, and possibly further improvement of the critical condi-
tion. This, however, is beyond the scope of this thesis.

Substitution into (3.50) of the definition of A j in terms of the stimulation amplitude,

A j =
∞∫

−∞
W j(x)⊤ (ur − û(x)+UsX(x)) dx,

leads to a quadratic equation for Us,

AUs
2 +BUs +C = 0 (3.51)

where

A = ∑
n,m≥3

Rm,nDmDn,

B =D1 −2
∑

n,m≥3
Rm,nN mDn,

C =−N 1 +
∑

n,m≥3
Rm,nN mN n,

(3.52)
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and

Rm,n = Q1
m,n

λ1 −λm −λn
= Rn,m,

N j =
∞∫

−∞
W j(x)⊤ (û−ur) dx,

D j =
∞∫

−∞
W j(x)⊤X(x)dx.

(3.53)

Note that the definitions of N j, D j here are the same as in (3.34), (3.35), with
account of s = 0.

An essential detail is the question of properties of the spectra of L and L +. In
the above derivation, we assumed that these two spectra coincide, are discrete and
all eigenvalues are simple. In the specific cases we consider in the following chapters,
these assumptions will be tested numerically; in particular, we shall observe that the
spectra can in fact be continuous, so the formulas should be generalized, to replace
summation over eigenvalues to integrals with respect to the spectral measure, and
convergence issue becomes even more complicated.

3.3.3 A Priori Bound in the Critical Nucleus Case

Finally, we comment on a simple a priori bound for the critical curve, which follows
from considerations different from the analysis of the center-stable manifold of the
critical solution, and therefore may provide useful extra information. It applies for the
case of k = 1, when the critical solution is the critical nucleus:

∂u
∂t

= ∂2u
∂x2 + f (u), (3.54)

with the assumptions that f (u j)= 0, j = 1,2,3, u1 = ur < u2 < u3, f (u)< 0 for u ∈ (u1,u2)

and f (u) > 0 for u ∈ (u2,u3). In these terms, successful initiation means that at large t
solution u(x, t) is a trigger wave from u1 to u3, and the failure of initiation means that
u(x, t)→ u1 as t →∞ uniformly in x.

It follows from the results by Fife and McLeod [43], that any initial conditions such
that u(x,0) ∈ [u2,u3] for x ∈ (−∞, x1) and u(x,0) ∈ [u1,u2] for x ∈ (x2,∞) guarantee igni-
tion, and for rectangular initial conditions (3.24) this means that even for the smallest
excess of Us over u2−u1, this initial condition will produce ignition, provided that xs is
large enough, so we have

U∗
s (xs)↘U∗

s , xs →∞, (3.55)
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where

U∗
s = u2 −u1. (3.56)

3.4 Initiation by Current: Strength-Duration Curve

This section provides an analytical description of the threshold curve in the (ts, Is)-
plane that separates the boundary conditions leading to initiation from those leading
to decay. To obtain explicit approximations to the strength-duration curves, we con-
sider problem (3.9) with vanishing initial condition, i.e. initial condition is resting state,
us =ur and with the boundary condition given by (3.11) at x = 0.

3.4.1 Linear Approximation

Linear procedure for the strength-duration analysis is rather similar to the previous
case, thus we omit some intermediate calculations. The linearized equation in this
case is

∂v
∂τ

=D
∂2v
∂ξ2 + c

∂v
∂ξ

+F(ξ)v+ h̃(ξ,τ),

v(ξ,0)=ur − û(ξ), (3.57)

where

h̃(ξ,τ)=h(ξ+ cτ+ s,τ) (3.58)

is the forcing term as measured in the moving frame of reference. The coefficients of
the generalized Fourier series will now satisfy the following decoupled ODEs:

da j

dτ
=λ ja j +h j(τ),

a j(0)=
⟨

W j(ξ)
∣∣∣v(ξ,0)

⟩
, (3.59)

where

h j(τ)=
⟨

W j(ξ)
∣∣∣ h̃(ξ,τ)

⟩
. (3.60)

The solution of (3.59) is

a j(τ)= eλ jτ

a j(0)+
τ∫

0

h j(τ′)e−λ jτ
′
dτ′

 .
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Since the stimulation is supposed to be finite in time, h j(τ) ≡ 0 for τ > ts, then the
condition of criticality is in turn

a1(ts)= 0

which implies

a1(0)+
ts∫

0

h1(τ′) e−λ1τ
′
dτ′ = 0,

from which we seek to obtain the critical curve based on linear approximation.

General Setting

Using the definitions of a1(0) and h1(τ′), we have

ts∫
0

e−λ1τ
′ ⟨

W1(ξ)
∣∣∣h(ξ+ cτ′+ s,τ′)

⟩
dτ′ =

⟨
W1(ξ)

∣∣∣ û(ξ)−ur

⟩
. (3.61)

Consider the boundary condition with a rectangular profile,

h(x, t)= 2Is eH(ts − t)δ(x). (3.62)

Then (3.61) gives

2Is

ts∫
0

e−λ1τ
′
W1(−cτ′− s)⊤edτ′ =

∞∫
−∞

W1(ξ)⊤ (û(ξ)−ur) dξ. (3.63)

The Case of Critical Nucleus

This is the case when c = 0, and we again choose s = 0 due to symmetry considera-
tions. Hence, (3.63) gives the classical Lapicque-Blair-Hill formula [21, 58, 79]

Is = Irh

1− e−λ1ts
, (3.64)

where the rheobase is

Irh =
λ1

∞∫
0

W1(ξ)⊤û(ξ)dξ

W1(0)⊤e
. (3.65)
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The Case of Moving Critical Solution

In a similar fashion to the case of strength-extent curve, two criticality conditions
a1 (ts) = 0 and a2 (ts) = 0 must be obeyed. Taking into account these two criticality
conditions, we have 

2Is

ts∫
0

e−λ1τ
′W1

(−cτ′− s
)⊤edτ′ =N 1,

2Is

ts∫
0

e−λ2τ
′W2

(−cτ′− s
)⊤edτ′ =N 2.

(3.66)

System (3.66) is a nonlinear system of two equations for two unknown parameters, Is

and s. By eliminating the parameter Is, we find the compatibility condition as follows:

ts∫
0

[
N 2e−λ1τ

′
W1

(−cτ′− s
)⊤e −N 1e−λ2τ

′
W2

(−cτ′− s
)⊤e

]
dτ′ = 0. (3.67)

This can be further simplified by using the following change of variable,

τ′ = − (ζ+ s)
c

that leads to

µ(s)≜ N 1eλ2s/c

c

−cts−s∫
−s

eλ2ζ/cW2 (ζ)⊤edζ− N 2eλ1s/c

c

−cts−s∫
−s

eλ1ζ/cW1 (ζ)⊤edζ= 0. (3.68)

Equation (3.68) defines the shift s for a given ts (or vice versa). After finding the value
of s, one only needs to employ this value in one of the compatibility conditions in (3.66)
in order to find the amplitude Is since both produce the same result. This completes
the construction of the strength-duration curve Is(ts).

3.4.2 Quadratic Approximation of the Stable Manifold

As in Section 3.3, we adopt Einstein’s summation convention for indices notation to
find the quadratic approximation of the stable manifold of the critical nucleus solution.
In this way, we start from the initiation problem as one posed on the whole real line
x ∈R,

∂uα

∂t
= Dαβ∂

2uβ

∂x2 + f α(uβ)+2Is eαH(ts − t)δ(x),
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where Is ̸= 0. Now, linearizing this equation around the critical nucleus ûα using

uα(x, t)= ûα(x)+vα(x, t),

where the equation defining the critical nucleus is given by (3.44). Using Taylor expan-
sion, we have

v̇α = Dαβvβ
xx + f α

,β(û)vβ+ f α
,βγ(û)vβvγ+2Is eαH(ts − t)δ(x)+ . . . .

Here, yet again, we seek solutions in the form of generalized Fourier series given by
(3.45) and its Fourier coefficients are defined by (3.46). But, in this case, the time
differentiation of the Fourier coefficients yields,

ȧ j(t)=
⟨

Wα
j(x)

∣∣∣ v̇α(x, t)
⟩
=λ ja j +

∑
m,n

Q j
m,naman +2Is E j H(ts − t), (3.69)

where

E j =Wα
j(0)eα (3.70)

and Q j
m,n is same as in (3.48). The system (3.69) can be written in an equivalent

system of integral equations,

a j(t)=eλ j t

A j +2Is E j
1
λ j

(
1−e−λ j min(t,ts)

)
+

t∫
0

e−λ j t′
∑
m,n

Q j
m,nam(t′)an(t′)dt′

 .

Once again, we use the direct iteration method to obtain the approximate solution

a(i+1)
j (t)= eλ j t

A j +2Is E j
1
λ j

(
1−e−λ j min(t,ts)

)
+

t∫
0

e−λ j t′
∑
m,n

Q j
m,na(i)

m (t′)a(i)
n (t′)dt′

 .

Taking a(0)
j = 0 for all j, we have

a(1)
j (t)= eλ j t

[
A j + Is

2E j

λ j

(
1−e−λ j min(t,ts)

)]
.

Considering λ1 > 0 and λ j < 0 for all j ≥ 3, we have a(1)
1 → 0 as t →∞, this corresponds

to the linear approximation. The next iteration produces

a(2)
j (t)= eλ j t

A j + Is
2E j

λ j

(
1−e−λ j min(t,ts)

)
+

t∫
0

e−λ j t′
∑
m,n

Q j
m,na(1)

m (t′)a(1)
n (t′)dt′


= eλ j t

A j + Is
2E j

λ j

(
1−e−λ j min(t,ts)

)
+

t∫
0

{∑
m,n

eλm t′
[

Am + Is
2Em

λm

(
1−e−λm min(t′,ts)

)]

×eλn t′
[

An + Is
2En

λn

(
1−e−λn min(t′,ts)

)]
e−λ j t′Q j

m,n

}
dt′

)
.
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Note that e(λm+λn−λ1)t → 0 as t →∞ because λk ≤ λ3 < 0 for k = m,n. By requiring that
a(2)

1 (t)→ 0, we derive the following quadratic equation for Is,

ζ1Is
2+ζ2Is +ζ3 = 0, (3.71)

where

ζ1 = 4
∑
m,n

Q1
m,n

[EmEn

λmλn

{1−e−λ1ts

λ1
− e(λn−λ1)ts −1

λn −λ1

− e(λm−λ1)ts −1
λm −λ1

− e−λ1ts −e(λm−λ1)ts −e(λn−λ1)ts +1
λm +λn −λ1

}]
,

ζ2 = 2
∑
m,n

Q1
m,n

[ AmEn

λn

{e(λm−λ1)ts −1
λm +λn −λ1

− e(λm−λ1)ts −1
λm −λ1

}
+ AnEm

λm

{ e(λn−λ1)ts −1
λm +λn −λ1

− e(λn−λ1)ts −1
λn −λ1

}]
−2E1

(
e−λ1ts −1

)
λ1

,

ζ3 =− ∑
m,n

Q1
m,n

Am An

λm +λn −λ1
+ A1.

Note that, in the case of strength-duration curve, the definitions of A j are slightly
different from those of defined in the strength-extent curve analysis. It is basically due
to the initial condition being the unperturbed resting state, i.e. Us = 0. Overall, these
coefficients are to be determined as

A j ≜ a j(0)=
∞∫

−∞
Wα

j(x)vα(x,0)dx =
∞∫

−∞
W j(x)⊤ (ur − û(x)) dx. (3.72)

3.4.3 A Priori Bound in the Critical Nucleus Case

We conclude this section with a simple a priori bound for the threshold curve, which
is applicable to scalar equations. For Us = 0 and boundary conditions (3.4,3.62), an
appropriate a priori bound has been obtained by Mornev [95]. In our notations, it
implies that

I∗s (ts)↘ I∗s , ts →∞, (3.73)

where

I∗s =max |û′(x)| = |û′(x∗)| =
(
−2

∫ u2

u1

f (u)du
)1/2

, (3.74)

and x∗ is the coordinate point where û(x∗)= u2.
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3.5 Chapter Summary

In this chapter, we provided analytical formulations of strength-extent and strength-
duration relationships for the problems of initiation of propagating waves in one spatial
dimension. These formulations are based on an approximation of the (center-)stable
manifold of a certain critical solution. The structure of each of these formulations is
similar.

Firstly, we have proposed a method of obtaining the linear approximation analyti-
cal criterion for ignition of excitation waves, under the assumption of the existence of
a critical solution. For scalar equation, the critical solution is the critical nucleus, un-
stable time-independent solution with one positive eigenvalue whose stable manifold
has codimension one that partitions the phase space separating ignition solutions
from decay solutions. Moreover, in multicomponent reaction-diffusion systems, the
critical solution is called either critical front or critical pulse (both moving) whose sta-
ble manifold has codimension two and its center-stable manifold has codimension
one that also partitions the phase space separating the two outcomes.

In the case of the critical nucleus, we have also considered the second-order ap-
proximation for each critical curve analysis. This allowed us to assess the limits of
applicability of the linear approximation and to further improve it. Another practical
finding for the critical nucleus case is the existence of an a priori bound for the critical
curve. This criterion provides a necessary condition to have ignition.
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NUMERICAL METHODS

4.1 Chapter Introduction

This chapter is devoted to numerical techniques for approximating the expressions for
the critical curves and all the ingredients of the analytical critical curves. Direct numer-
ical simulations are needed to compare and/or to validate the analytical solution. In
Section 4.2, numerical strength-extent threshold curve based on finite difference and
finite element simulations is given in detail. In Section 4.3, a similar analysis for nu-
merical strength-duration threshold curve is provided. The analytical initiation criteria
proposed in the previous chapter provided both the linear and quadratic approxima-
tion of the threshold curves. However, it is not always possible to derive the analytical
formula for the ingredients of these curves. The essential ingredients of the linear ap-
proximation are the critical solution and the leading eigenpair for the one-component
systems while two leading eigenpairs are needed for the multicomponent systems.
In addition, for the quadratic approximation in the critical nucleus solution case, we
need as many eigenpairs as possible to achieve better accuracy. In Section 4.4, we
propose a hybrid approach, where these key ingredients are determined numerically.
The chapter is then concluded with a summary in Section 4.5.
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4.2 Direct Numerical Simulation of the

Strength-Extent Curve

Numerical methods especially play an important role when partial or ordinary differ-
ential equations cannot be solved analytically and/or it can be used as a verification
of the analytical result as stated earlier. In this section, we introduce both finite dif-
ference and finite element discretization formula for the following generic initial and
boundary value problem:

ut =Duxx + f (u) ,

u(x,0)=ur +Us H(xs − x)e, x > 0, (4.1)

Dux(0, t)=Dux(L, t)= 0, t > 0,

where a finite interval x ∈ [0,L] is considered as an approximation of x ∈ [0,∞).

4.2.1 Finite Difference Discretization Formula

The finite difference discretization formula for the above problem (4.1) can be obtained
using explicit forward Euler differencing in time and explicit central differencing in
space

ûn+1
i = ûn

i +
D∆t

∆x2

(
ûn

i−1−2ûn
i + ûn

i+1
)+∆tf

(
ûn

i
)
, (4.2)

in conjunction with its initial condition and no-flux Neumann boundary condition at
x = 0 and x = L

û0
i =ur +Us H(xs − xi)e,

û0
0 = û0

2, û0
N+1 = û0

N−1, (4.3)

ûn+1
0 = ûn+1

2 , ûn+1
N+1 = ûn+1

N−1.

In (4.3), points with subscripts 0 and N +1 are known as “ghost points” since they
reside outside of the grid, which the solution is defined. We thus respectively replace
them by the values with subscripts 2 and N − 1 using no-flux Neumann boundary
conditions.

4.2.2 Finite Element Discretization Formula

To solve the initial value problem (4.1) using a finite element discretization, we find it
more convenient to perform the numerical computation of a single component, and
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then we repeat the same procedure for any other remaining component’s equation
in the system. Apparently, the diffusion term of such considered equation becomes
scalar, i.e. D̂ =D (m,m) for m− th component, and hence, its finite element discretiza-
tion formula becomes

[
A+∆tθD̂B

]
ûn+1 =F

(
ûn+θ

)
+ [

A−∆t (1−θ) D̂B
]
ûn, (4.4)

where F
(
ûn+θ) = θF

(
ûn+1)+ (1−θ)F (ûn) and 0 ≤ θ ≤ 1 is a real parameter. The ini-

tial condition is same as in the case of finite difference discretization formula and
the boundary conditions are implemented when constructing the mass and stiffness
matrices A and B, both of which are defined in Section 2.6.

4.2.3 Threshold Curve

We solve a sequence of the “stimulation by voltage” initial-value problem (4.1) in order
to obtain the threshold curve in the stimulus strength-extent plane. This is achieved
by fixing stimulation extent xs and varying amplitude Us. We use a standard bisection
method to determine the threshold value for Us which we denote as U∗

s . In essence,
the idea is to start from an upper estimate Us (superthreshold), known to be sufficient
for ignition, and a lower estimate Us (subthreshold), known to fail to ignite, and take
the average of these two values to be used as the new amplitude of the initial condition.
Then, we solve (4.1) for this initial condition, and update the amplitude according
to the solution giving rise to excitation or not. This procedure leads to the following
bisection loop (Algorithm 3).

This bisection loop is repeated until the absolute difference between Us and Us is
less than a user-defined tolerance value. In fact, to achieve the best result, we typically
use zero tolerance, i.e. repeat the bisection loop as long as Us

# remains distinct from
both Us and Us given the processor precision. The critical amplitude U∗

s for the given
xs is determined by the final value of Us

#. From a computational viewpoint, the zero
tolerance, in this algorithm, refers to the number of significant digits desired for the
approximation of |Us −Us|. Hence, it could conceivably be said that the last value of
Us and Us are equally likely approximations Us

# of U∗
s , as either of them may happen

to be equal to (Us +Us)/2 in computer arithmetics.

This procedure will be repeated as many times as necessary to obtain the strength-
extent threshold curve.
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Input: xs, Us, Us
Output: U∗

s

Set Us
# := 1

2

(
Us +Us

)
;

while
(
|Us −Us| ≥ tolerance

)
do

Solve (4.1) with Us =Us
# via FD (4.2) & (4.3) or FE (4.4) ;

if ignition then
Us :=Us

#;
else

Us :=Us
#;

end
end
U∗

s :=Us
#

Algorithm 3: Bisection loop for finding amplitude U∗
s for a fixed parameter xs.

4.3 Direct Numerical Simulation of the

Strength-Duration Curve

Now, we consider the second case where the initial condition is the unperturbed rest-
ing state and there is a constant current injected through the left boundary of the
interval,

ut =Duxx + f (u) ,

u(x,0)=ur, x > 0, (4.5)

Dux(0, t)=−Is H(ts − t)e, Dux(L, t)= 0, t > 0.

4.3.1 Finite Difference Discretization Formula

In the case of initiation by current, the finite difference discretization formula remains
the same as (4.2), while we now have the following initial and boundary conditions

û0
i =ur,

û0
0 = û0

2 +2∆xIs H(ts − t0)D−1e, û0
N+1 = û0

N−1, (4.6)

ûn+1
0 = ûn+1

2 +2∆xIs H(ts − tn+1)D−1e, ûn+1
N+1 = ûn+1

N−1,

where no-flux Neumann boundary condition is applied at x = L.
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4.3.2 Finite Element Discretization Formula

For the sake of simplicity, here we find it more convenient to consider the initiation
problem defined on the whole line x ∈ R, as given by equation (3.9). Once again,
we aim to solve the one-component version of (3.9), i.e. the transmembrane voltage
equation

∂u
∂t

= D̂
∂2u
∂x2 + f (u)+2Is H(ts − t)δ(x), u(x,0)= ur, (x, t) ∈R×R+. (4.7)

The discretization formula based on the finite element method is

A
dû
dt

+ D̂Bû =F (û)+2Is H(ts − t)G, (4.8)

where the entries of the load vector G are given by

G i =
∫ L

0
δ(x)Φi(x)dx, (4.9)

which has only one nonzero entry, G1 = 1 by definition of Dirac Delta function. Finally,
we apply the generalized trapezoidal rule to (4.8) to get

[
A+∆tθD̂B

]
ûn+1 =F

(
ûn+θ

)
+ [

A−∆t (1−θ) D̂B
]
ûn +2Is H(ts − t)G. (4.10)

One should bear in mind here that this discretization formula is only for transmem-
brane equation of (3.9), and the discretization formula for the remaining equations
can be obtained in a similar way, except that the last term in (4.10) is removed and
that the diffusion coefficient and kinetic term, of course, differ from component to
component.

4.3.3 Threshold Curve

Numerical strength-duration threshold curve can be obtained in a similar fashion to
the case of the strength-extent curve. We solve (4.5) using the finite difference dis-
cretization, or (3.9) using the finite element discretization, for fixed stimulation time
duration ts and varying the strength of the current Is. For any initial upper estimate Is

(superthreshold), known to be sufficient for ignition, and lower estimate Is, known to
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fail to ignite, the following bisection algorithm gives the threshold value I∗s :
Input: ts, Is, Is

Output: I∗s
Set Is

# := 1
2

(
Is + Is

)
;

while
(
|Is − Is| ≥ tolerance

)
do

Solve (4.1) with Is = Is
# via FD (4.2) & (4.6) or (4.7) via FE (4.10) ;

if ignition then
Is := Is

#;
else

Is := Is
#;

end

end
I∗s := Is

#

Algorithm 4: Bisection loop for finding the strength of the current I∗s for a fixed
parameter ts.

This procedure is repeated as many times for different ts as necessary to obtain
the strength-duration curve.

4.4 Hybrid Approach

4.4.1 Rationale

As outlined in the previous chapter, the linear approximation of the strength-extent
threshold curves requires the knowledge of û(x), W1(x), and, for the non-self-adjoint
cases, also W2(x), whereas for the strength-duration threshold curves, we also need
the first leading eigenvalue λ1 as λ2 = 0 due to the translational symmetry. In the
critical nucleus case, we have also proposed the quadratic approximation of both
strength-extent and strength-duration critical curves, in which ideally the whole spec-
trum of λℓ, Wℓ, Vℓ, ℓ= 1,3,5, . . . is needed. As will be discussed in the following chap-
ters, these can be calculated explicitly only in a few special cases. Therefore, for the
purpose of determining these key factors numerically, we present a hybrid approach,
after which the analytical expressions (3.30), (3.39), (3.64) or (3.66) can be applied.
In the following, we describe in detail how to numerically compute each of these key
factors.
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4.4.2 The Case of Critical Nucleus

Shooting: The numerical approximation of the critical nucleus is determined by solv-
ing a nonlinear boundary-value problem. The first essential step is to provide a good
initial guess for the solution, and this can be done by using the bisection loop de-
scribed in the previous sections. The idea of having initial or boundary conditions
very close to the threshold values is based on the behaviour of the generated solu-
tions that approach the saddle point û(x) to within a small distance and will remain in
its vicinity for a long time. Keeping in mind similar derivations can be made concerning
“initiation by current”, here we propose the numerical procedure for finding the critical
nucleus according to the initial condition. Using an initial condition with its amplitude
Us

# very close to the exact threshold U∗
s (xs), we can approximate the critical nucleus.

The first step is to find the speed of the change of the voltage profile over time, which
is measured by computing

S(t)= ||u̇||2L2 =
∫ L

0
u2

t (x, t)dx. (4.11)

We observe that when the voltage profile is the slowest, it is also the closest profile to
the critical nucleus, and therefore, we can take this voltage profile as an approximation
of the critical nucleus. Thus, we find the time moment at which the minimum value of
S(t) is achieved,

t# = argmin(S(t)), (4.12)

so that the numerical solution at t = t# is taken as an estimate of the critical nucleus
û(x). This can be immediately used for the next step, or serve as an initial guess for a
more advanced boundary-value solver if a higher accuracy is required. This process
can be accomplished by the following algorithm:

Input: Pre-found value of Us
# for an arbitrarily chosen initial width xs

Output: û

Solve nonlinear problem:
∂u
∂t

= D
∂2u
∂x2 + f (u) for u (x,0)= ur +Us

#H(xs − x);

Find: S(t)= ||u̇||2L2 =
L∫
0

u2
t (x, t)dx, t# = argmin(S(t));

Solve nonlinear problem till t = t#:
∂u
∂t

= D
∂2u
∂x2 + f (u) and set û = u.

Algorithm 5: Numerical computation of the critical nucleus.
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Note that the center-stable manifold of the unique critical nucleus solution cor-
responds to the threshold curve that separates ignition initial conditions from decay
initial conditions. Hence, the above procedure should produce (nearly) the same û(x)

for any choice of xs. To verify the validity of this key assumption, and to assess the
accuracy of the found critical nucleus, we used the procedure for different values of
xs.

Marching: With the numerical approximation of the critical nucleus û#(x), we next
describe the algorithm used to calculate the principal eigenvalue λ1 and the corre-
sponding eigenfunction W1. Since λ1 by definition is the eigenvalue with the largest
real part, we should expect that the solution of the differential equation

∂w
∂t

=L +w ≜ D⊤∂2w
∂x2 +F⊤ (x)w, (4.13)

for almost any initial conditions, should satisfy

w(t, x)= C eλ1t W1(x) (1+O (1)) , t →∞, (4.14)

for some constant C.
The numerical estimate of λ1 can be found fitting the linear part of the graph of

ln |w(0, t)| to a straight line by least squares such that the slope gives this leading
eigenvalue. We have also verified that the profile w(t, x)/w(t,0) remained virtually un-
changed during this linear part, and took the most recent profile as the ignition mode
W1(x). An equivalent (and more general) procedure of estimating the eigenvalue λ1

for a time interval from t to t+δt is

ln
(⟨

w(x, t+δt)
∣∣∣w(x, t)

⟩)
δt

⟨
w(x, t)

∣∣∣w(x, t)
⟩ ,

under the assumption that this estimate converges as t → ∞. Again, the results of
these obtained λ1 and W1(x) can be immediately used or serve as an initial approx-
imation for a more sophisticated eigenvalue problem solver if a better accuracy is
required.

So far, we have numerically derived all key ingredients needed for the linear ap-
proximation of the critical curves. However, we have also proposed the quadratic ap-
proximation, which requires the whole spectrum, as emphasised before. From a nu-
merical point of view, we must consider a limited number of eigenpairs, not the whole
infinite spectrum. Thus, we extend this method to calculate a number of eigenpairs
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with largest eigenvalues as long as they are real. For a one-component excitable
medium, the critical solution is the critical nucleus, and hence L =L +. To obtain the
desired number of eigenpairs, we need to numerically solve (4.13) for a number of lin-
early independent initial conditions, then use the Gram-Schmidt procedure to extract
a solution that is orthogonal to W1, which will give the λ2 and W2 pair, then solution
orthogonal both to W1 and W2 to obtain λ3 and W3 and so on.

Now, we turn our attention to calculation of the eigenpairs based on a modified
power iteration method in an algorithmic form. To preserve stability and computational
efficiency, we use random number generator to assign an initial guess of W1, and
then we set W2 as the spatial derivative of W1, W3 as the spatial derivative of W2,
and so on. This guarantees that the initial estimation of the eigenfunctions is linearly
independent, as required, while the initial guess for the eigenvalues is set to be zero.
If we choose a time domain t ∈ (0,T), then, the following algorithm is applied until the
desired convergence criterion is fulfilled:

Input: Any linearly independent initial estimation of
(
W0

1,W0
2, · · · ,W0

n
)

Output: (λ1,W1) , (λ2,W2) , · · · , (λn,Wn)
Set: λ0

1,λ0
2, · · · ,λ0

n ← 0;
for i = 1,2, . . . do

for k = 1,2, . . . ,n do
Solve: Wi

k ← exp
(
L +T

)
Wi−1

k ;

Orthogonality: Wi
k ←Wi

k −
k−1∑
m=1

⟨
Wi

k

∣∣Wi
m

⟩×Wi
m ;

Normalization: Wi
k ←

Wi
k∥∥∥Wi
k

∥∥∥ ;

Eigenvalue : λi
k ←

ln
(⟨

Wi
k

∣∣∣Wi−1
k

⟩)
T ;

end
if |λi

k −λi−1
k | ≤ tolerance for all k then

break;
end

end

Algorithm 6: Numerical computation of n principal eigenpairs of a self-adjoint oper-
ator by “marching”.

We have chosen the stopping criterion according to the absolute change in each
eigenvalue, and such convergence criterion can also be stated in terms of the change
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in the eigenfunctions.

4.4.3 The Case of Moving Critical Solution

Co-moving Frame of Reference: As in Section 3.3.1, the idea of symmetry reduc-
tion can be here used in numerical simulations to replace the problem of moving
critical solution by the problem of a stationary critical solution. For that purpose, we
consider the unperturbed nonlinear equation

∂u
∂t

=D
∂2u
∂x2 + f(u), (4.15)

where the position of the front, s, is defined implicitly by

Γ(u(s, t))= 0,

and some extra inequalities may be also needed so that the front is distinguishable
from the back. Then, in the comoving frame of reference ξ= x− s(t), τ= t, we have an
unknown function of time and space,

ũ(ξ,τ)=u(x, t),

and an unknown function of time, s(t), the system of PDEs and a finite constraint

∂ũ
∂τ

=D
∂2ũ
∂ξ2 + ds

dτ
∂ũ
∂ξ

+ f(ũ),

Γ(ũ(0,τ))= 0. (4.16)

A relative equilibrium, including the moving critical solution, in the system (4.15), corre-
sponds to an equilibrium in (4.16). This allows us to solve the comoving system (4.16)
in a similar technique as the one described for the case of stationary critical solution.

Shooting: The moving critical solutions can be found solving initial value problems
for (4.16). The amplitude of the initial condition is chosen close to the initiation thresh-
old with high precision to improve the accuracy of the numerical computation of the
moving critical solutions. In the computation of the solutions of (4.16), we use Lie
operator splitting, known to be the simplest splitting method, to divide the equation
(4.16) into four subsystems, each of which is to be assigned as follows:

1. updating ũ by an explicit first-order (forward Euler) scheme, for the nonlinear
kinetics term f(ũ);
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2. updating ũ by a scheme semi-implicit (Crank-Nicholson) in time, and central

difference in space, for the diffusion term D
∂2ũ
∂ξ2 ;

3. finding the convection speed
ds
dτ

based on a “virtual” or “predictor” convection
substep, that would update ũ by an explicit in time, two-point upwind scheme
without smoothing;

4. the actual updating of ũ by an implicit in time, 3-point upwind scheme with

smoothing (Beam-Warming, [11]) for the convection term
ds
dτ

∂ũ
∂ξ

, using the value

of
ds
dτ

found in the previous substep.

Continuation: The accuracy of the moving critical solution found by the shooting
method described above is not always sufficient. Hence, alternatively, we can find
the non-stationary critical solution as a solution of boundary-value problem (3.12),
an autonomous system for û(ξ), with parameter c. We aim to calculate conduction
velocity restitution curve [125] that can be found from the following periodic boundary-
value problem using popular continuation software AUTO [34]:

0=D
d2uP

dξ2 + cP
duP

dξ
+ f(uP ),

uP (ξ+P)≡uP (ξ) ,
(4.17)

where P is the spatial period of the waves. When the problem is well posed, (4.17)
defines a curve in the (P, cP ,uP (ξ)) space. In the limit P →∞, this curve splits into two
branches, the upper branch with stable propagating pulse solution, (cw,uw(ξ)) and the
lower branch with the unstable critical pulse solution, (c, û(ξ)), which is of interest to
us.

To determine the unstable speed and the critical pulse, we proceed as follows.
We consider (4.17), with an extra parameter corresponding to “stimulation current”
added to the transmembrane voltage equation. Starting from an initial guess of cw,
the numerical derivation is performed by following Algorithm 7 below.

AUTO uses collocation to discretize the solutions, we, therefore, use piecewise
Hermite interpolation [92] to interpolate the solution obtained by AUTO to the regular
grid (for further details, see the related part in Section 2.6).

Marching: The shooting and continuation procedures described above let us deter-
mine the critical solution, which includes both û#(ξ) and c# = ds/dτ. We here seek to
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Input: An initial guess of cw and Iext = 0
Output: cP , û(ξ)

D
d2uP

dξ2 + cP
duP

dξ
+ f(uP )+ Iexte= 0, uP (ξ+P)≡uP (ξ) .

• Start from the equilibrium of the system and increase the continuation parame-
ter Iext until a Hopf bifurcation point is located. This is an essential step to com-
pute the homoclinic orbit.

• Continue the cycle from the Hopf in the (cP ,P)-plane, down by cP until the lo-
cus of the fold is depicted.

• By using (Iext, cP ,P) as the principal continuation parameters, decrease the va-
lue of Iext to be smaller than a predefined tolerance value. AUTO stores the va-
riables with 12 digits of precision. Hence, we set this tolerance value very close
to machine precision O

(
10−12).

• Trace the periodic orbit in the (P, cP )-plane both ways,

where lower branch gives the unstable speed cP along with the corresponding
critical pulse û(ξ).

Algorithm 7: Numerical critical pulse obtained using the continuation software
AUTO.

determine the right and left eigenfunctions, which are found by calculating solutions
of

∂v
∂τ

=L v≜D
∂2v
∂ξ2 + c#∂v

∂ξ
+F(ξ)v, (4.18)

and

∂w
∂τ

=L +w ≜ D⊤∂2w
∂ξ2 − c#∂w

∂ξ
+F⊤(ξ)w. (4.19)

The leading eigenvalue λ1 and corresponding right eigenfunctions V1 and left eigen-
functions W1 are obtained in the τ→∞ limit for almost any initial conditions in (4.18)
and (4.19). The second eigenvalue λ2 and the corresponding eigenfunctions V2 and
W2 are obtained as linearly independent solutions of the same equations, satisfying
the constraints ⟨

W2

∣∣∣V1

⟩
=

⟨
W1

∣∣∣V2

⟩
= 0, (4.20)
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using a Gram-Schmidt style process, adopted for our non-self-adjoint situation. Over-
all, following Algorithm 8 can be written for obtaining a number of eigenvalues and
corresponding left and right eigenfunctions.

Input: Any linearly independent initial estimation of
(
V0

1,W0
1
)
,(

V0
2,W0

2
)
, · · · ,

(
V0

n,W0
n
)

Output: (λ1,V1,W1) , (λ2,V2,W2) , · · · , (λn,Vn,Wn)
Set: λ0

1,λ0
2, · · · ,λ0

n ← 0;
for i = 1,2, . . . do

for k = 1,2, . . . ,n do
Solve: Vi

k ← exp(L T)Vi−1
k , Wi

k ← exp
(
L +T

)
Wi−1

k ;

Biorthogonality: Vi
k ←Vi

k −
k−1∑
m=1

⟨
Vi

k

∣∣Wi
m

⟩×Vi
m,

Wi
k ←Wi

k −
k−1∑
m=1

⟨
Wi

k

∣∣Vi
m

⟩×Wi
m;

Normalization: Vi
k ←

Vi
k∥∥∥Vi
k

∥∥∥ , Wi
k ←

Wi
k∥∥∥Wi
k

∥∥∥ ;

Eigenvalue : λi
k ←

ln
(⟨

Wi
k

∣∣∣Wi−1
k

⟩)
T ;

end
if |λi

k −λi−1
k | ≤ tolerance for all k then

break;
end

end

Algorithm 8: Numerical computation of n principal eigenpairs of a non-self-adjoint
operator by “marching”.

Arnoldi Iterations: Using the marching method discussed above to compute the re-
quired eigenvalues and eigenfunctions with the required accuracy sometimes causes
higher computational costs. In this case, we use the standard implicitly restarted
Arnoldi iterations as explained in Section 2.6, using the implementation described
in [107]. The eigenvalues with the biggest real parts and corresponding left and right
eigenfunctions are found by considering the matrix representation of the right-hand
side of (4.18) and (4.19). The Arnoldi iterative method can also be, of course, im-
plemented to determine the eigenpairs of the self-adjoint problem (4.13). Figure 4.1
show the matrix representation of discretized version of the one-component equation,
which is a tridiagonal matrix with all other entries are zero. This leads us to the Arnoldi
method so that the computational cost can be reduced.
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Figure 4.1: A matrix representation of the discretized L operator for one-component
reaction-diffusion system.

We now turn our attention to one of the main advantages of the hybrid approach.
All essential ingredients required for the theory are independent of the choices of
the initial and boundary profiles. Thus, the hybrid method is computationally efficient,
as opposed to direct numerical simulations, which naturally require a complete rerun
when a different family of initial or boundary profile is considered.

4.5 Chapter Summary

This chapter reviewed the direct numerical simulation of the threshold curves and
the numerical methods required to approximate the key ingredients of the analyti-
cal threshold curves. Initially, two numerical methods for solving initial and bound-
ary value problem were introduced. These standard approaches are finite difference
method and finite element method and the choice of the numerical method to use
depends on the specific model considered. A numerical procedure for identifying the
critical curve has been developed using the bisection method, an algorithm for find-
ing the threshold values by means of some upper and lower estimates which are
respectively known to be sufficient for ignition and to fail to ignite.

The ingredients of the analytical expressions for the threshold curves are not al-
ways explicitly found, except for a few specific ones. For the purpose of finding them
numerically, we proceeded to employ a hybrid approach. A numerical estimate of the
critical nucleus has been given by the fact that for any initial (or boundary) condition
near to the threshold, the solution of the problem approaches to the critical nucleus to

97



CHAPTER 4. NUMERICAL METHODS

within a small distance and remains in its vicinity for a long time. In the case of moving
critical solution, we have provided two different techniques for numerically evaluating
the critical solution, one of which is devoted to an operator splitting method for semi-
implicit time-stepping in which the critical solution is estimated as the slowest point
of the trajectory, and the other is based on the conduction velocity restitution curve
requiring solving periodic boundary value problem with the aid of the continuation
software AUTO.

Other essential ingredients of the analytical threshold curves are the eigenpairs.
To find as many eigenvalues and eigenfunctions as desired, we used a modified
power iteration method combined with the Gram-Schmidt orthogonalization proce-
dure. This method, however, may be too expensive computationally, especially when
the discrete matrix representation of the right-hand side of the problem is very large.
Therefore, we have used the standard implicitly restarted Arnoldi iterations as well for
the same purpose.
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5
ONE-COMPONENT SYSTEMS

5.1 Chapter Introduction

The two previous chapters have covered the analytical formulation of the ignition cri-
teria for the initiation problem and the hybrid approach that aims to find the essential
ingredients of the analytical theory numerically along with how to obtain the threshold
curves by direct numerical simulations. In this chapter, we demonstrate the applicabil-
ity of the approach on two one-component test problems, both of which have unique,
unstable, time-independent critical nucleus solution, whose center-stable manifold
is the boundary between ignition and decay. In Section 5.2, we analyse the initi-
ation problem in the Zeldovich-Frank-Kamenetsky (ZFK) equation, one-component
reaction-diffusion equation with cubic nonlinearity. The second test problem we con-
sider is the piecewise linear analogue of the ZFK equation, known as the McKean
equation and its detailed analysis is provided in Section 5.3. For both model types,
two different initiation protocols, namely, initiation by current and initiation by voltage
are addressed, and the linear and quadratic approximation of the stable manifold are
compared with numerical results. Finally, a brief summary of the chapter given in
Section 5.4.
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5.2 Zeldovich-Frank-Kamenetsky Equation

In this section, we demonstrate the ignition criteria on one-component bistable reaction-
diffusion equation, Zeldovich and Frank-Kamenetsky (ZFK) equation [138]. This equa-
tion is also known as “Nagumo equation” [89] and “Schlögl model” [119]. We consider
the equation in the following form:

k = 1, D=
(
1
)
, u=

(
u
)
,

f(u)=
(
f (u)

)
, f (u)= u(u−θ)(1−u), (5.1)

where θ is the threshold parameter satisfying θ ∈ (0,1/2). The critical nucleus solution
û=

(
û
)

for this equation is known exactly [48, 68] 1

û(x)= 3θ
p

2

(1+θ)
p

2 +cosh(x
p
θ )

p
2−5θ+2θ2

. (5.2)

The critical curve based on the linear approximation of the critical manifold also re-
quires the first leading eigenvalue λ1 and corresponding eigenfunction W1 =V1 =

(
V 1

)
which are solutions of

d2V 1

dx2 + (−3û2 +2(θ+1)û−θ
)
V 1 =λ1V 1,

λ1 > 0, V 1(±∞)= 0. (5.3)

We have been unable to solve this eigenvalue problem analytically. As stated in ref-
erence [68], the critical nucleus given by (5.2) is an even function, therefore û′ is the
eigenfunction of L corresponding to λ = 0. By Sturm’s oscillation theorem, û′ = V 2

and λ2 = 0, and therefore, there is indeed exactly one simple eigenvalue λ1 > 0.

For θ≪ 1, the nonlinear kinetic term can be approximated by f (u)≈ u(u−θ). Then,
the critical nucleus (5.2) is O (θ) uniformly in x, and is approximately

û(x)≈ 3θ

1+cosh(x
p
θ )

= 3
2
θsech2(x

p
θ /2), (5.4)

as in [101]. In the same limit, the eigenvalue problem (5.3) has the solution

λ1 ≈ 5
4
θ, V 1 ≈ sech3(x

p
θ /2). (5.5)

1 As pointed out before, expressions given in both of these works contain typos.
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5.2.1 Hybrid Approach

Numerical computation of the essential ingredients needed for the linear approxima-
tion of the critical curves is carried out using the “shooting” algorithm described in
Section 4.4.2. Figure 5.1 illustrates the processes involved in obtaining the critical
nucleus (a) and ignition mode (b) in ZFK model numerically. The stimulation is done
by fixing the threshold parameter and the excitation width at the values θ = 0.15 and
xs = 0.6. The left panel of the figure shows how typical functions S(t) are evolved at
near-threshold initial conditions. As seen, the minimum value of S(t) is achieved at
about t# ≈ 50, and therefore the solution u(x, t#) of the nonlinear problem (3.1) pro-
vides an estimate of the critical nucleus. Meanwhile, the right panel of the figure is the
graph of ln |w(0, t)|, the solution of the linear problem (4.13) at x = 0 in the semilogarith-
mic coordinates. We observe that the solution after an initial transient, mostly expiring
before t = 10, grows exponentially. The estimate of the ignition eigenvalue λ1 is given
by the increment of this exponential growth. We also find the numerical estimate of
the ignition mode V 1(x) = W1(x) given by the most recent profile w(x, t)/w(0, t) such
that it remains almost unchanged, i.e. after t = 10.
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Figure 5.1: Illustration of numerical computation of critical nucleus and ignition mode
by “shooting” and “marching” in ZFK. (a) Typical functions S(t) at near-threshold
initial conditions in (3.1), (3.4), (3.5), (3.6), (5.1). Parameters: θ = 0.15, xs = 0.6,
U∗

s ≈ 1.1676. . . , |U∗
s −U∗

s | < 10−5, L = 20, ∆x = 0.02, ∆t = 4∆x
2/9. (b) Growth of the

numerical solution of (4.13) in semilogarithmic coordinates, and its linear fit, defining
the numerical value of λ1.

The results of these numerical procedures are shown in Figures 5.2 and 5.3.
From the plots given in Figure 5.2(a), we can see that the numerical predictions of
the critical nuclei obtained using the shooting procedure agree very well with those
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derived analytically (5.2) for all threshold parameters θ ranging from 0.05 to 0.45 with
increment 0.1, whereas the accuracy of the approximation obtained for θ≪ 1, unsur-
prisingly, is not good for larger θ. The eigenvalues and corresponding eigenfunctions
of the adjoint linearized problem are sketched in Figure 5.2(b) and 5.3. Comparing
both analytical formula for the first eigenvalue (5.5) obtained in the limit of small θ and
the numerically found first eigenvalue, we see that the two start deviating noticeably
already for θ ≈ 0.1, and the further increase in θ leads to a monotonic increase for the
ignition eigenvalue λ1(θ) until it approximately reaches to 0.3. From this value on, λ1(θ)

stops increasing and starts decreasing, and the ignition mode V 1 stops shrinking and
starts expanding, and later even loses the unimodal shape and becomes bimodal
(see θ = 0.45 curve in the top left panel of Figure 5.3).
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Figure 5.2: Numerical computation of the components of the hybrid approach in ZFK.
(a) Critical nucleus solutions for a θ from 0.05 (bottom) to 0.45 (top) with step 0.1:
numerical found by shooting, û#(x); exact analytical given by (5.2); approximate an-
alytical for θ ≪ 1 given by (5.4). (b) First four eigenvalues, found by marching based
on numerical nucleus as functions of θ. Parameters used for numerical computation:
θ = 0.05, 0.15, 0.25, 0.35, 0.45, xs = 3, L = 30, ∆x = 0.02, ∆t = 4∆x

2/9.

Figure 5.2(b) also provides insight into the behaviour of λ j, j > 1. The first immedi-
ate observation from this figure is that all these eigenvalues are negative, as assumed
by the theory. Moreover, the distance |λ3−λ5| grows with θ, while the distance |λ5−λ7|
remains approximately the same and relatively small. This suggests that the eigen-
value λ3 lies in the discrete spectrum, while the remaining eigenvalues in the figure
λ5 and λ7 are located within the continuous spectrum. This is due to the finite length
L of the computational interval, and at increasing values of L, the distance |λ5 −λ7|
decreases. This is further confirmed by the study of the corresponding eigenfunctions:
the eigenfunctions V 1 and V 3 corresponding to the discrete eigenvalues λ1 and λ3 are
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5.2. ZELDOVICH-FRANK-KAMENETSKY EQUATION

well localised towards the left end of the interval x ∈ [0,L], whereas those correspond-
ing to the continuous eigenvalues are evidently non-localised, i.e. vary significantly
throughout x ∈ [0,L], as shown in Figure 5.3.
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Figure 5.3: Numerical computation of the first four ignition mode of the ZFK equation
for a selection of values of θ. Parameters used are same as in Figure 5.2.

5.2.2 Linear Approximation of the Strength-Extent Curve

In the small-threshold limit θ ≪ 1, both critical nucleus and the leading eigenpair
are exactly known. Substituting them into (3.30) gives an explicit expression for the
strength-extent curve in the form [68]

U∗
s ≈ 9πθ

8
[
4arctan

(
ex̃s

)+2tanh(x̃s)sech(x̃s)−π
] , (5.6)

where x̃s = 1
2 xs

p
θ .

In particular, if the amplitude of the initial condition is below the threshold parame-
ter, then the ignition is impossible. In other words, the strength-extent curve approxi-
mation remains above the a priori lower bound (3.56), U∗

s = θ, for all xs.
Comparison of this approximation with the direct numerical simulations is shown

in Figure 5.4(a). Result obtained for small threshold parameter is in close agreement
with numerical results, whereas it gets worse when the values of θ get bigger but this
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is totally expected as the analytical expressions used are only valid in the limit of small
θ.

Comparison of the resulting hybrid numeric-asymptotic prediction with the direct
numerical simulations is shown in Figure 5.4(b). As can be seen from the plots, better
agreement is observed over the entire parameter range of θ, as opposed the results
of the left panel. There are, however, still some large deviations, which are observed
when U∗

s gets large. The reason for this is that the theory involves a linear approx-
imation, and for large U∗

s all A j are large. We also note that for U∗
s ≲ 1, the hybrid

approximation achieves a better accuracy for larger θ. This is because the spectral
gap, which is related to the accuracy of the linear approximation, λ1 −2λ3 grows with
θ. Please refer to the discussion after equation (3.50) for more detailed explanation.
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Figure 5.4: Strength-extent curves for the ZFK model, for θ = 0.05, 0.15, 0.25, 0.35,
0.45 (bottom to top), comparison of direct numerical simulations (lines with symbols)
with theoretical predictions (dashed lines), (a) for the exact analytical answers in the
θ≪ 1 limit; (b) for the hybrid method, using the numerically found ignition eigenpairs.
Discretization parameters: ∆x = 0.03, ∆t = 4∆x

2/9, L = 100.

5.2.3 Quadratic Approximation of the Strength-Extent Curve

The second-order approximation of the strength-extent curve is characterized by a
quadratic equation given by (3.51) whose coefficients involve double infinite sums
over stable modes of the linearized problems, and in practice, we cannot evalu-
ate these infinite sums analytically. There is, however, particularly useful information
buried within these coefficients, which simplifies the quadratic approximation. This is
that these expressions have denominators increasing with the stable mode indices,
so one may expect that depending on the properties of the spectrum, the terms in the
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series may quickly decay and one can get a sufficiently accurate result by retaining
only a few principal terms.

As discussed in the previous subsection, the linearized problem has one discrete
stable eigenvalue and the subsequent eigenvalues are part of the continuous spec-
trum. For convenience, we thus retain only discrete eigenvalues and discard the rest,
which gives n = m = 3 in (3.51). Therefore, we get a closed expression for the critical
curve,

U∗
s ≈

2R3,3N 3D3 −D1 +
√

D2
1+4R3,3D3 (N 1D3 −D1N 3)

2R3,3D
2
3

(5.7)

or by expanding the square root,

U∗
s ≈ N 1

D1
−

Q1
3,3 (N 1D3−D1N 3)2

D3
1 (λ1−2λ3)

, (5.8)

the coefficients in which are defined by (3.48) and (3.53).

The resulting approximations of the critical curves are shown in Figure 5.5. It can
be seen from these figures that the quadratic correction term in (5.7) gives noticeably
better results for θ = 0.05 and θ = 0.15 when compared with the linear approxima-
tion due to the relatively small denominator (λ1−2λ3), whereas the results for other
threshold parameters are less improved because the linear approximation for those
are already reasonably good.
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Figure 5.5: Quadratic approximation of the strength-extent curve for ZFK model for
θ = 0.05, 0.15, 0.25, 0.35, 0.45 (bottom to top) compared with direct numerical simula-
tions (lines with symbols). The lower bound Us = θ is indicated by green dashed lines.
Parameters: ∆x = 0.03, ∆t = 4∆x

2/9, L = 100.
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5.2.4 Linear Approximation of the Strength-Duration Curve

In the small-threshold limit θ≪ 1, the classical Lapicque-Blair-Hill formula (3.64)

I∗s = Irh

1− e−λ1ts
, (5.9)

has the following rheobase and eigenvalue forms [68]:

Irh = 45
64

πθ3/2, λ1 = 5θ
4

. (5.10)
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Figure 5.6: Strength-duration curves for the ZFK model, for θ = 0.05, 0.15, 0.25, 0.35,
0.45 (bottom to top), comparison of direct numerical simulations (lines with symbols)
with theoretical predictions (dashed lines), (a) for the exact analytical answers in the
θ≪ 1 limit; (b) for the hybrid method, using the numerically found ignition eigenpairs.
Discretization parameters: ∆x = 0.03, ∆t = 4∆x

2/9, L = 30.

Figure 5.6(a) illustrates this approximate strength-duration curve, compared to the
direct numerical simulations. For chosen parameter values, the comparison is, yet
again, significantly better with smaller values of θ, as expected.

Remark that the performance of the resulting approximation based on the analyti-
cal expression for the strength-duration curve (5.9) and (5.10) can be further improved
by obtaining the essential ingredients numerically. This is done considering (5.9), in
which the rheobase is, instead, defined according to (3.65), as

Irh =
λ1

∞∫
0

V 1(x)û(x)dx

V 1(0)
. (5.11)

The plot of the hybrid numeric-asymptotic prediction is compared with the direct
numerical simulations as shown in Figure 5.6(b). As depicted in the figure, reasonable
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agreement between the two data sets is observed when the threshold parameter is
small.

It should be noted that the strength-duration curve approximation remains above
the a priori lower bound (3.74)

I∗s =
−2

θ∫
0

u(u−θ)(1−u)du

1/2

= θ3/2p(2−θ)p
6

,

for all ts. However, this bound lies outside of the domain of interest.

5.2.5 Quadratic Approximation of the Strength-Duration Curve

For the quadratic approximation, once again, we retain in (3.71) only the leading term,
using the same reasoning as in strength-extent threshold curve analysis. Setting n =
m = 3 gives a closed expression for the critical curve in the strength-duration plane,

ζ1I∗s
2+ζ2I∗s +ζ3 = 0, (5.12)

where

ζ1 =
4Q1

3,3E2
3

λ2
3

{1−e−λ1ts

λ1
−2

e(λ3−λ1)ts −1
λ3 −λ1

− e−λ1ts −2e(λ3−λ1)ts +1
2λ3 −λ1

}
,

ζ2 =
4Q1

3,3A3E3
(
1−e(λ3−λ1)ts

)
(2λ3 −λ1) (λ3−λ1)

− 2E1
(
e−λ1ts −1

)
λ1

,

ζ3 =−
Q1

3,3A2
3

2λ3 −λ1
+ A1,

the coefficients in which are defined by (3.48), (3.70) and (3.72). Figure 5.7 shows
the comparison between the quadratic approximation of the critical curves and the nu-
merical curves. Compared to the linear approximation, one can see some significant
improvement for θ = 0.05, 0.15, 0.25, 0.35, while the discrepancy between analytical
and numerical results continues for θ = 0.45.

5.3 McKean Equation

Our second example is a piecewise-linear representation of the ZFK equation, con-
sidered first by McKean in [89] and then also in [111]:

k = 1, D=
(
1
)
, u=

(
u
)
,

f(u)=
(
f (u)

)
, f (u)=−u+H(u−a), (5.13)
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Figure 5.7: Quadratic approximation of the strength-extent curve for ZFK model for θ =
0.05, 0.15, 0.25, 0.35, 0.45 (bottom to top) compared with direct numerical simulations
(lines with symbols). Parameters: ∆x = 0.03, ∆t = 4∆x

2/9, L = 100.

where we assume that a ∈ (0,1/2), and H(·) is the Heaviside step function. In contrast
to the ZFK equation with smooth right-hand side, this model has a discontinuous right-
hand side, similar to the front model we consider in the following chapter. Using direct
numerical simulations based on finite differences leads to qualitatively different be-
haviour from expected due to this discontinuity: the discretized critical nucleus solution
is not unique and is stable, although it is expected to be an even, unique, unstable,
nontrivial time-independent solution of the discretized equation. This phenomenon is
somehow similar to “propagation block” or “propagation failure” observed in several
different forms of discrete reaction-diffusion system (see e.g. [37, 62, 65, 72]), with
the exception is that here we are dealing with even solutions and spatially localised
solutions. It has been established that the generic system with a smooth cubic non-
linearity has “frozen solutions” for sufficiently large discretization steps [72]. For the
McKean model with its discontinuous right-hand side, the frozen solutions, however,
exist for all discretization steps. The details of the non-uniqueness and stability of the
discrete critical nucleus are contained in Appendix B. This motivates us to use the
finite-element approach to the numerical computation of the essential ingredients of
the theory, the critical nucleus and the ignition mode, as well as the critical curves.
The finite-element approach is discussed in detail in Appendix A.

The critical nucleus solution in this equation is found exactly in a closed form,

û(x)=


1− (1−a)

cosh(x)
cosh(x∗)

, x ≤ x∗,

a exp(x∗− x), x ≥ x∗,
(5.14)
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where

x∗ = 1
2

ln
(

1
1−2a

)
(5.15)

obtained by the fact that û(x) and its derivative are continuous at this point. This
solution is illustrated in Figure 5.9(a).

5.3.1 Analytical Derivation of the Eigenvalue Problem

In this subsection, we turn our attention to the solution to the eigenvalue problem of
the McKean equation. As the right-hand side of this equation includes the discontin-
uous Heaviside step function, its linearization contains the Dirac delta function, and
thus the linearized equation becomes singular. We present a precise formulation of
eigenvalue problem and solution of it below.

To begin with, we linearize (5.13) around critical nucleus using

u = û(x)+ϵu1 (x, t) ,

where ϵu1 is a small perturbation, ϵ≪ 1. Then, (5.13) becomes

ϵ
∂u1

∂t
= d2û

dx2 +ϵ
∂2u1

∂x2 + f (û+ϵu1) . (5.16)

Taking a linear Taylor series expansion to express f (û+ϵu1) in the form

f (û+ϵu1)= f (û)+ϵ
∂ f
∂u

(û)u1+O
(
ϵ2) .

Using the definition of Dirac delta function δ(u)= dH(u)
du and the chain rule, we have[

∂ f
∂u

]
u=û

=−1+
[
∂H(u−a)

∂u

]
u=û

=−1+ ∂H(x∗− x)
∂x

/∂û
∂x

∣∣∣
x=x∗

=−1− 1
û′(x∗)

δ (x− x∗) .

By neglecting higher order terms, equation (5.16) thus reduces to

∂u1

∂t
= ∂2u1

∂x2 +
(
−1+ 1

a
δ (x− x∗)

)
u1. (5.17)

Consider the solution of the linearized equation (5.17) of the form u1 (x, t) = eλtV (x)

which leads to the following eigenvalue problem

λV = d2V
dx2 +

(
−1+ 1

a
δ (x− x∗)

)
V , (5.18)
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where V (x) are some eigenfunctions. This eigenvalue problem can also be expressed
as

λV =L V , (5.19)

where the linearization operator is

L ≜ ∂2

∂x2 −1− 1
a
δ(x− x∗). (5.20)

Due to the singular term in the eigenvalue problem (5.18), it is not straightforward to
obtain the solution. To tackle this singularity, we integrate (5.18) from x∗−ρ to x∗+ρ∫ x∗+ρ

x∗−ρ
λV (x)dx =

∫ x∗+ρ

x∗−ρ
V ′′(x)dx−

∫ x∗+ρ

x∗−ρ
V (x)dx+ 1

a

∫ x∗+ρ

x∗−ρ
δ (x− x∗)V (x)dx,

for an arbitrary constant ρ. Taking the limit as ρ→ 0, we obtain the following condition

V ′ (x∗+0)−V ′ (x∗−0)+ 1
a

V (x∗)= 0. (5.21)

Using this condition along with assumption that we are looking for an even function V
which is bounded as x →∞, we can conclude that the eigenvalue problem (5.18) is
equivalently written as

d2V (x)
dx2 − (λ+1)V (x)= 0, (5.22a)

V (∞)= 0, V ′(0)= 0, V ′ (x∗+0)−V ′ (x∗−0)+ 1
a

V (x∗)= 0. (5.22b)

This problem has one positive eigenvalue. This eigenvalue and the corresponding
eigenfunction can be written in the form

λ1 =−1+κ2,

V 1 =


cosh(κx)
cosh(κx∗)

, x ≤ x∗,

exp(κ(x∗− x)) , x ≥ x∗,
(5.23)

where

κ= 1
2a

+ 1
2x∗

W0

( x∗
a

e−x∗/a
)

(5.24)

and W0(·) is the principal branch of the Lambert W-function as defined e.g. in [29]. Re-
mark that in the eigenvalue formulation, Lambert W-function always returns a positive
real value for all values of a in the range (0,1/2) and therefore, it is guaranteed that λ1

is a positive definite function of a.
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5.3.1.1 Asymptotic Analysis of the Eigenvalue

Alternatively, the leading eigenvalue can be asymptotically obtained. Employing the
condition (5.21) and the continuity property of V 1 at x∗, we have

tanh(ν)=−1+ θ

ν
, (5.25)

or equivalently,

e2ν (2ν−θ)= θ, (5.26)

where ν= κx∗ = κ
2 ln

( 1
1−2a

)> 0 and θ = x∗/a > 0. The domain of the threshold parameter
a can be redefined as a = 1/2−α where α ∈ (0,1/2). First, we examine asymptotic
estimation of eigenvalue when α→ 0. In this case,

θ = β

1−e−β
, x∗ = β

2
,

where β=− ln(2α) and β→∞ as α→ 0. In the limit of small α, we derive the following
expressions:

e−θ = exp
[
−β

(
1−e−β

)−1
]
= exp

[
−β+O

(
βe−β

)]
= e−β

[
1+O

(
βe−β

)]
,

θe−θ = βe−β
[
1+O

(
βe−β

)]
1+O

(
e−β

) ≈βe−β
[
1+O

(
βe−β

)
−O

(
e−β

)]
≈βe−β

[
1+O

(
βe−β

)]
,

where we have used L’Hôpital’s rule and the fact that O
(
e−β

) ≪ O
(
βe−β

)
. Hence,

θe−θ → 0 as β → ∞ which is why Taylor series of the Lambert W-function around 0

can be used
W0

(
θe−θ

)
≈ θe−θ+O

(
θ2) .

Therefore, κ can in turn be written as

κ= θ+W0
(
θe−θ

)
2x∗

≈ θ+θe−θ

β
= 1

1−e−β
+e−β

[
1+O

(
βe−β

)]
≈ 1+2e−β+O

(
βe−2β

)
= 1+4α+O

(
α2 ln(α)

)
(5.27)

and corresponding asymptotic formula for λ1 in terms of α is

λ(1/2)
1 = 8α+O

(
α2 ln(α)

)
. (5.28)

The above expression is plausible when a → 1/2. For the case a → 0, we have
x∗ ≈ a, θ ≈ 1 and assume that lim

a→0
ν = ν∗. The value of ν∗ is obtained from the tran-

scendental equation (5.25) as

ν∗ = 1
2

W0
(
e−1)+ 1

2
≈ 0.6392,
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from which the asymptotic approximate eigenvalue can be written as a function of a

λ(0)
1 ≈ ν2∗

a2 ≈ 0.4086
a2 . (5.29)

The behaviour of the analytical and asymptotic eigenvalue analysis at different
values of a is illustrated in Figure 5.8.
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Figure 5.8: The sketch of the asymptotic behaviour of the principal eigenvalue com-
pared with analytically found ignition eigenvalue.

5.3.2 Hybrid Approach

In this model, since the exact analytical solution for the critical nucleus and the igni-
tion eigenpair are known for an arbitrary a ∈ (0,1/2), the “hybrid approach” is not nec-
essary. However, for technical purposes, we address it here as well, to show when
the approach used with finite-element discretization it works satisfactorily.

Figure 5.9 illustrates the processes of numerical computation of the critical nu-
cleus and the ignition mode in McKean model for a range of threshold parameter
varying from 0.05 to 0.45 with increment 0.1. As seen in the top panel of this fig-
ure, the minimum of S(t) decreases when a increases. To obtain the minimum of
S(t) and t# = argmin(S(t)), the bisection loop is terminated as long as the absolute
difference between upper and lower estimate for the threshold is sufficiently small,
i.e. |U∗

s −U∗
s | < 10−7. The numerical estimate of the critical nucleus is then found

taking û#(x) = u(x, t#). The sketch of these numerical critical nuclei compared with
corresponding exact solutions is shown in the left bottom panel of Figure 5.9.

We now proceed to calculate the principal eigenpair numerically. Equation (5.17)
has solution in the form

u1 =
∞∑
j=1

a jeλ j tV j(x), a1 ̸= 0,
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Figure 5.9: Critical nucleus solutions and ignition modes of the McKean model (5.13)
for various values of the parameter a varying from 0.05 to 0.45 with increment 0.1.
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and numerical approximations, respectively. Parameters used: xs = 0.6, ∆x = 0.03, ∆t =
4∆x

2/9, |U∗
s −U∗

s | < 10−7, L = 10.

which yields

u1 (x, t)≈ a1eλ1tV 1(x), (5.30)

as t →∞ since a2 = 0 because the critical nucleus is an even function and its derivative
corresponds to the second eigenfunction, and λ j < 0 for all j ≥ 3. Fixing a1 using the
fact that the ignition mode is normalized with its maximum at x = 0, i.e. V 1(0) = 1

results in

V 1(x)≈ u1 (x, t)
u1 (0, t)

.

The comparison between this numerical eigenfunction and exact analytical eigen-
function is depicted in the right bottom panel of Figure 5.9. As seen, the numerical
solution produces a good approximation of the analytical one for every threshold pa-
rameter considered.

As an alternative approach to the standard marching procedure of identifying the
ignition eigenvalue discussed in Section 4.4, we use the least-square method. From
(5.30), we have the following condition for the principal eigenvalue

ln(u1 (0, t))≈ ln(a1)+λ1t,
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for all t > 0.For a given data set {(ts, ln[u1 (0, ts)]) , . . . , (tn, ln[u1 (0, tn)])}, we obtain the
following expression for leading eigenvalue λ1 using the least-square method

λ1 =

(
n∑

j=s
ln

(
u1

(
0, t j

)))×(
n∑

j=s
t j

)
−

(
n∑

j=s
t j ln

(
u1

(
0, t j

)))× (n− s+1)

(∑n
j=s t j

)2 −
(

n∑
j=s

t2
j

)
× (n− s+1)

. (5.31)

The computation of this eigenvalue expression for two different discretization steps

Discretization step ∆x = 0.03 ∆x = 0.01
Analytical eigenvalue 2.2714 2.2714
Standard marching 2.2453 2.2627

Least-square 2.3391 2.2852

Table 5.1: The comparison between exact analytical eigenvalue and numerical ones
obtained by the standard marching procedure and least-square method. Parameters:
ts = 0.8, tn = 25, a = 0.32, L = 15.

compared with the numerical prediction based on the standard marching procedure
and corresponding exact eigenvalue is given in Table 5.1. As seen, using the marching
method to compute the leading eigenvalue gives a more accurate result.

5.3.3 Linear Approximation of the Strength-Extent Curve

Substituting (5.14), (5.15), (5.23), (5.24) into (3.25), we obtain the analytical expres-
sion for the strength-extent curve,

U∗
s (xs)=


κN

sinh(κxs)
, xs < x∗,

κN

sinh(κxs)−cosh(κxs)
(
eκ(x∗−xs) −1

) , xs > x∗,
(5.32)

where

N = sinh(κx∗)
κ

+ a
κ+1

cosh(κx∗)− 1−a
2cosh(x∗)

(
sinh((κ+1) x∗)

κ+1
+ sinh((κ−1) x∗)

κ−1

)
.

Figure 5.10(a) shows this theoretical prediction compared with the direct numerical
simulations. As in ZFK equation, the ignition is impossible if the amplitude of the initial
condition is below the threshold parameter. Hence, we require to apply the a priori
bound U∗

s = a to improve the theoretical prediction. This is also shown in the figure.
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Figure 5.10: Strength-extent curves in McKean model: direct numerical simulations
(red circles) vs (a) linear theory, for a = 0.05 at the bottom increased by 0.1 to a = 0.45
at the top, and (b) linear and quadratic theories, for a = 0.48. Blue long-dashed lines:
analytical dependencies given by (5.32). Green short-dashed lines: the lower bound
Us = a in (a) and the predictions given by quadratic theory in (b). Discretization: ∆x =
0.01, ∆t = 4∆x

2/9, L = 10.

5.3.4 Quadratic Approximation of the Strength-Extent Curve

The linear approximation of the strength-extent curve can be improved by consider-
ing the second-order approximation. This is particularly needed when obtaining the
threshold curve for the parameter a close to 1/2 in which case the analytical strength-
extent curves move away from its numerical predictions.

To obtain the quadratic approximation of the critical curve, we adopt the method
described in Section 3.3.2. For our scalar McKean model, we have f α

,βγ = f ′′ and
Wα1(x)=V 1(x). Further, we define the expressions of Q1

m,n and A j as

Q1
m,n =Q1

n,m ≜ 1
2

∞∫
−∞

Wα1(x) f α
,βγ(û(x))Vβ

m(x)Vγ
n(x)dx

=

∞∫
−∞

V 1(x) f ′′ (û(x))V m(x)V n(x)dx

2∥V 1∥ · ∥V m∥ ·∥V n∥
, (5.33)

A j ≜ a j(0)=
∞∫

−∞
Wα

j(x)vα(x,0)dx =

∞∫
−∞

[u(x,0)− û(x)]V j(x)dx∥∥V j
∥∥ , (5.34)

where the eigenfunctions are normalized.
For the quadratic approximation, the knowledge of the whole spectrum is ideally

required. We know that the linearization spectrum of the critical nucleus has only one
unstable eigenvalue λ1 > 0, and due to translational symmetry, λ2 = 0, and the rest of
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the spectrum lies entirely in the left half-plane. The first aim of this part of the section
is to find these remaining stable eigenvalues and corresponding eigenfunctions. To
obtain these eigenpairs, we replace the infinite interval [0,∞) by a finite interval [0,L]

with a homogeneous Dirichlet boundary condition at x = L, aiming to consider the limit
L →∞.

The solution of eigenvalue problem (5.22) in this case is the linear combination of
the pair of trigonometric functions

{
cos(µx),sin(µx)

}
with µ being a positive constant

where λ=−1−µ2. For each case x < x∗ and x > x∗, the solution has the same form

Vµ(x)=
{

c1 cos(µx)+ c2 sin(µx), x < x∗,

c3 cos(µx)+ c4 sin(µx), x∗ < x,
(5.35)

where ci, i = 1,2,3,4 are constants to be determined. Employing the homogeneous
Dirichlet boundary condition at x = L, the continuity condition at x = x∗ and the equality
(5.21) gives the following relations between these four unknown coefficients:

c2 = 0,

(c1 − c3)cos
(
µx∗

)= c4 sin
(
µx∗

)
,

c3 sin
(
µx∗

)− c4 cos
(
µx∗

)= c1

(
sin

(
µx∗

)+ 1
aµ

cos
(
µx∗

))
, (5.36)

c3 cos
(
µL

)=−c4 sin
(
µL

)
.

This enables us to deduce the following transcendental equation for µ in terms of a,
x∗ and L,

h
(
µ
)
≜ tan

(
µL

)− tan
(
µx∗

)− aµ
cos2

(
µx∗

) = 0, (5.37)

and the corresponding generalized eigenfunction in the form

Vµ(x)=
{

−aµcos
(
µx

)
, x < x∗,

−[
aµ+sin

(
µx∗

)
cos

(
µx∗

)]
cos

(
µx

)+cos2 (
µx∗

)
sin

(
µx

)
, x∗ < x.

(5.38)

Now, we investigate the asymptotic behaviour of the transcendental equation (5.37).
When µ→ 0 and L →∞ we have µ ∼ L−1 such that µx∗ → 0, cos

(
µx∗

) ≈ 1, sin
(
µx∗

) ≈
µx∗. Hence the transcendental equation reduces to

tan
(
η
)= a+ x∗

L
η, (5.39)

where η = µL. For any positive integer k, we define η = kπ+ ϵk for |ϵk| ≪ 1. Thus, the
left-hand side of the last equality simplifies to

tan(kπ+ϵk)= tan(ϵk)≈ ϵk,
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and the right-hand side of which becomes

a+ x∗
L

(kπ+ϵk)≈ a+ x∗
L

kπ.

Hence η is in turn

η≈ kπ
(
1+ a+ x∗

L

)
and finally µ can be obtained explicitly as

µ= η

L
= kπ

L

(
1+ a+ x∗

L

)
≈ kπ

L
. (5.40)

For these asymptotic values, the eigenfunction expression also simplifies to

V k(x)=
{

tan
( kπ

L x∗
)
cos

( kπ
L x

)
, x < x∗,

sin
( kπ

L x
)
, x∗ < x.

(5.41)
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Figure 5.11: The sketch of the roots of the transcendental eigenvalue equation com-
pared with the approximate eigenvalue for two different choices of the domain length
(a) L = 40x∗ and (b) L = 100x∗ where the threshold parameter is set to a = 0.32.

Figure 5.11 illustrates the comparison between the roots of the transcendental
equation (5.37) and explicit asymptotic form of µ given by (5.40) within two bounded
domains L = 40x∗ and L = 100x∗. As seen from the figure, it is no surprising that the
asymptotic estimations get closer to their analytical counterparts when the considered
domain L is increased. However, the larger L results in high computational cost due to
the number of eigenvalues and eigenfunctions growing with the domain size. For this
reason, we stick to the transcendental equation (5.37) in order to obtain the values of µ
and hence, the stable eigenvalues via λ=−1−µ2 and their associated eigenfunctions.
Note that the stable spectrum of the linearized problem is entirely continuous.
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After finding analytical expressions for the eigenpairs, the next step is to calculate
Q1

m,n, A j and A1. When calculating Q1
m,n (5.33) there occurs a discontinuity at x = x∗

that can be removed by modifying the Heaviside step function as

Ĥ(x)= 1
2
+ 1
π

arctan(x/ϵ) , (5.42)

for a small parameter ϵ. Hence, f ′′ (û(x)) becomes

f ′′ (û(x))=− 2(x∗− x)ϵ

a2π
[
(x∗− x)2+ϵ2

]2 . (5.43)

For reducing the size of the equations, we introduce the following short notations:

Cx∗
η = cos

(
µηx∗

)
, Cxs

η = cos
(
µηxs

)
, Sx∗

η = sin
(
µηx∗

)
, Sxs

η = sin
(
µηxs

)
,

Tx∗
η = tan

(
µηx∗

)
, Hx∗

c = cosh(kx∗) , Hx∗
s = sinh(kx∗) , for η= m,n.

the expression for Q1
m,n can thus be rewritten as

Q1
m,n =

∫ L
0 V 1 (x) f ′′ (û(x))V m (x)V n (x) dx

∥V 1∥ ·∥V m∥ ·∥V n∥
= 2a2ϵµmµnI1 +2ϵHx∗

c I2

a2π∥V 1∥ ·∥V m∥ ·∥V n∥
,

where

I1 =−
∫ x∗

0
cosh(κx)

(x∗− x)cos
(
µmx

)
cos

(
µnx

)[
ϵ2+ (x∗− x)2]2 dx,

I2 =−
∫ L

x∗
eκ(x∗−x)

(x∗− x)
(
−[

aµm +Sx∗
m Cx∗

m
]
cos

(
µmx

)+ (
Cx∗

m
)2 sin

(
µmx

))
[
ϵ2 + (x∗− x)2]2

×
(
−[

aµn +Sx∗
n Cx∗

n
]
cos

(
µnx

)+ (
Cx∗

n
)2 sin

(
µnx

))
dx.

Now, we first perform the change of variable y = x∗−x
ϵ

and use the following second-
order Taylor series to approximate these two definite integrals

sin(γ (x∗−ϵy))= sin
(
γx∗

)−γϵycos
(
γx∗

)+O
(
ϵ2) ,

cos(γ (x∗−ϵy))= cos
(
γx∗

)+γϵysin
(
γx∗

)+O
(
ϵ2) ,

exp(ϵy)= 1+ϵy+O
(
ϵ2) ,
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for any scalar γ. Thus, I1 and I2 are evaluated as

I1 =− 1
ϵ2

∫ x∗/ϵ

0

[
Hx∗

c −κϵyHx∗
s

] · [Cx∗
m +µmϵySx∗

m
] · [Cx∗

n +µnϵySx∗
n

] · y(
1+ y2

)2 dy,

=−
(

Hx∗
c Cx∗

m Sx∗
n µn +Hx∗

c Cx∗
n Sx∗

m µm −kHx∗
s Cx∗

m Cx∗
n

2ϵ

)
×

(
arctan

( x∗
ϵ

)
− ϵx∗
ϵ2 + x∗2

)
− Hx∗

c Cx∗
m Cx∗

n

2ϵ2

(
1− ϵ2

ϵ2 + x∗2

)
+O (1) ,

I2 =− 1
ϵ2

∫ 0

−(L−x∗)/ϵ

[
−(

aµm +Sx∗
m Cx∗

m
)(

Cx∗
m +µmϵySx∗

m
)+ (

Cx∗
m

)2 (
Sx∗

m −µmϵyCx∗
m

)]×[
−(

aµn +Sx∗
n Cx∗

n
)(

Cx∗
n +µnϵySx∗

n
)+ (

Cx∗
n

)2 (
Sx∗

n −µnϵyCx∗
n

)] · (1+κϵy) y(
1+ y2

)2 dy

= a
2ϵ

[
µmµnCx∗

n
(
aµmSx∗

m +Cx∗
m

)+µnµmCx∗
m

(
aµnSx∗

n +Cx∗
n

)+κaµmµnCx∗
m Cx∗

n
]

×
(
arctan

(
−L− x∗

ϵ

)
+ (L− x∗)ϵ

(L− x∗)2+ϵ2

)
− a2µmµnCx∗

m Cx∗
n

2ϵ2

(
ϵ2

ϵ2 + (L− x∗)2 −1
)
+O (1) .

By taking the limit ϵ→ 0, we obtain

Q1
m,n =− 1

∥V 1∥ ·∥V m∥ ·∥V n∥
{

Hx∗
c

[
µmµn

(
Cx∗

m Sx∗
n µn +Cx∗

n Sx∗
m µm

)+ µmµnCx∗
m Cx∗

n

a

]
(5.44)

+ µmµnCx∗
m Cx∗

n e−κx∗

2

}
,

where the L2-norm of the eigenfunctions are

∥V 1∥ =
p

2
{

1
2κ

[
cosh(κx∗)sinh(κx∗)+κx∗−cosh2 (κx∗)

(
e−2κ(L−x∗) −1

)]}1/2

,

∥V m∥ =
p

2
[

a2µm

2
(
Cx∗

m Sx∗
m +µmx∗

)+ (
aµm +Cx∗

m Sx∗
m

)2

2µm

(
CL

mSL
m +µmL−Cx∗

m Sx∗
m −µmx∗

)
−

(
aµm +Sx∗

m Cx∗
m

)(
Cx∗

m
)2

µm

((
Cx∗

m
)2 −

(
CL

m

)2
)
+

(
Cx∗

m
)4

2µm

(
Cx∗

m Sx∗
m −µmx∗−CL

mSL
m +µmL

)]1/2

.

Meanwhile, initial values of the Fourier coefficients can be determined as

Am =
2

L∫
0

[u (x,0)− û (x)]V m (x) dx

∥V m∥ = 2
∥V m∥

{
Ush1

(
µm; xs

)−h3
(
µm

)
, xs < x∗,

Ush2
(
µm; xs

)−h3
(
µm

)
, x∗ < xs,

(5.45)
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where

h1
(
µm; xs

)=−aSxs
m , h2

(
µm; xs

)=−aSx∗
m −

(
aµm +Sx∗

m Cx∗
m

µm

)(
Sxs

m −Sx∗
m

)− (
Cx∗

m
)2 (

Cxs
m −Cx∗

m
)

µm
,

h3
(
µm

)= aµm (1−a)
1+µm2

[
Cx∗

m tanh(x∗)+µmSx∗
m

]+ a
(
Cx∗

m
)2

1+µm2

[
µmCx∗

m +Sx∗
m −µmex∗−LCL

m −ex∗−LSL
m

]
−aSx∗

m − a2µm +aSx∗
m Cx∗

m

1+µm2

[
Cx∗

m −µmSx∗
m −ex∗−LCL

m +µmex∗−LSL
m

]
.

Similarly, ∥V n∥ and An can be found replacing subscript m by n. The initial value of
the first Fourier coefficient can be expressed in a similar manner using the leading
eigenfunction,

A1 =
2

L∫
0

[u (x,0)− û (x)]V 1 (x) dx

∥V 1∥
= 2

∥V 1∥

{
Us g1 (κ; xs)− g3 (κ) , xs < x∗,

Us g2 (κ; xs)− g3 (κ) , x∗ < xs,
(5.46)

where

g1 (κ; xs)= Hxs
s

κ
, g2 (κ; xs)=

Hx∗
s −Hx∗

c
(
eκ(x̃−xs)−1

)
κ

,

g3 (κ)= Hx∗
s

κ
− 1−a

2cosh(x∗)

[
sinh((κ+1) x∗)

κ+1
+ sinh((κ−1) x∗)

κ−1

]
+ aHx∗

c

κ+1

(
1−e(κ+1)(x∗−L)

)
.

Before we formulate the quadratic approximation, it is helpful to introduce the following
quantity

Rm,n = Rn,m = 2∥V 1∥Q1
m,n

∥V m∥∥V n∥ (λ1 −λm −λn)
= 2∥V 1∥Q1

m,n

∥V m∥∥V n∥
(
λ1+2+µm2 +µn2

) . (5.47)

Substituting (5.45), (5.46) and (5.47) into (3.50), we obtain the quadratic equation for
Us {

AUs
2+BUs +C = 0, xs < x∗,

AUs
2+BUs +C = 0, x∗ < xs,

(5.48)

where

A = ∑
n,m≥3

Rm,nh1
(
µm; xs

)
h1

(
µn; xs

)
, (5.49a)

B = g1 (κ; xs)−
∑

n,m≥3
Rm,n

[
h1

(
µm; xs

)
h3

(
µn

)+h3
(
µm

)
h1

(
µn; xs

)]
, (5.49b)

C = ∑
n,m≥3

Rm,nh3
(
µm

)
h3

(
µn

)− g3 (κ)= C, (5.49c)

A = ∑
n,m≥3

Rm,nh2
(
µn; xs

)
h2

(
µm; xs

)
, (5.49d)

B = g2 (κ; xs)−
∑

n,m≥3
Rm,n

[
h2

(
µm; xs

)
h3

(
µn

)+h3
(
µm

)
h2

(
µn; xs

)]
. (5.49e)
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A representative result is shown in Figure 5.10(b). This was obtained for L = 10

and 287 eigenvalues. As seen, the quadratic approximation agrees well with direct nu-
merical simulation, considerably better than the linear approximation, for the selected
a.

5.3.5 Linear Approximation of the Strength-Duration Curve

The linear approximation of the strength-duration curve can be found using the ana-
lytically derived expression given by (5.9). However, it must be noted that in this case,
the rheobase is found as

Irh =
λ1

∞∫
0

V 1(x)⊤û(x)dx

V 1(0)
=λ1 cosh(κx∗)


x∗∫

0

cosh(κx)
cosh(κx∗)

(
1− (1−a)

cosh(x)
cosh(x∗)

)
dx

+
∞∫

x∗

exp(κ(x∗− x))a exp(x∗− x)dx

=λ1N ,

where N is same as used in the strength-extent curve formula.

This linear prediction formalism compared with the direct numerical simulations is
depicted in Figure 5.12(a). As in ZFK equation, the a priori bound for these chosen
threshold parameters is outside of the duration domain. As shown in the figure, the
linear approximation of large parameter value close to 1/2 better fits to the numerical
simulation than that of small parameter value. This is due to the fact that the leading
eigenvalue is inversely proportional to the threshold parameter a. Even for larger a,
there are still some deviations between the linear theory and numerical simulations,
which can be reduced by considering the second-order approximation that will be
outlined in the following subsection.

5.3.6 Quadratic Approximation of the Strength-Duration Curve

By substituting (5.44), (5.45) and (5.46) in the coefficients of the quadratic equation
for Is (3.71), the second-order approximation of the strength-duration curve can be
immediately generated.

Figure 5.12(b) shows graphs of the linear and quadratic approximation of the
strength-duration curves along with its numerical result for a = 0.4. As in the strength-
extent curve analysis, the quadratic approximation was obtained for L = 10 and 287
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Figure 5.12: Strength-duration curves in McKean model: direct numerical simulations
(red circles) vs (a) linear theory (blue lines), for a = 0.35 at the bottom , a = 0.4, a = 0.45
to a = 0.48 at the top, and (b) linear and quadratic theories, for a = 0.4. Blue long-
dashed lines: analytical dependencies. Green short-dashed line: the predictions given
by quadratic theory. Discretization: ∆x = 0.01, ∆t = 4∆x

2/9, L = 10.

eigenvalues. Confirming the hypothesis, the accuracy of the second-order approxi-
mation is much closer to the direct numerical simulation compared to the first-order
approximation.

5.4 Chapter Summary

In this chapter, the applicability of the ignition criterion has been tested on two one-
component reaction-diffusion systems, both of which have the same type of time-
independent critical solution, which corresponds to the critical nucleus. The impor-
tance of this critical nucleus solution is that its center-stable manifold has codimen-
sion one and separates the basins of attraction of propagation front solutions and
decaying solutions.

We have firstly reviewed Zeldovich-Frank-Kamenetsky (ZFK) equation for which
closed analytical formulas for the leading eigenpair is known only for θ≪ 1. Therefore,
the hybrid approach has been implemented to provide numerical estimation of the
ingredients of the linearized theory and their performance has been assessed as
satisfactory since hybrid numeric-asymptotic prediction is somewhat better than the
explicit expression for the threshold curves given in the small threshold limit.

For ZFK equation, the linearized problem has only one discrete stable eigenvalue
and thus, the quadratic theory result of the threshold curves has been estimated by
means of only first two principal eigenpairs. The resulting quadratic approximations
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of the critical curves has led to further improvement in accuracy as opposed to the
linear approximation. We also gave the explicit forms of a priori lower bound for the
ignition threshold.

The second test problem we considered in this chapter is McKean equation for
which both the critical nucleus and leading eigenpair is known exactly. However, we
have used the hybrid approach method here as well in order to validate the efficiency
of the method as the right-hand of the equation has discontinuous term, which directs
us towards the finite element numerical treatment. In some cases, the linear predic-
tions do not match well with the direct numerical simulations. This is the case espe-
cially for the strength-duration threshold curve analysis. For this reason, the quadratic
approximation of the threshold curves have been employed in order to perform the
discrepancy reduction.

Figure Parameter(s) & Discretization & L

Fig. 5.1 θ = 0.15,xs = 0.6,|U∗
s −U∗

s | < 10−5,∆x = 0.02,∆t = 4∆x
2/9,L = 20

Fig. 5.2 & 5.3 θ = 0.05,0.15,0.25,0.35,0.45,∆x = 0.02,∆t = 4∆x
2/9,L = 30

Fig. 5.4 θ = 0.05,0.15,0.25,0.35,0.45,∆x = 0.03,∆t = 4∆x
2/9,L = 100

Fig. 5.5 θ = 0.05,∆x = 0.03,∆t = 4∆x
2/9,L = 100

Fig. 5.6 θ = 0.05,0.15,0.25,0.35,0.45,∆x = 0.03,∆t = 4∆x
2/9,L = 30

Fig. 5.7 θ = 0.05,0.15,0.25,0.35,0.45,∆x = 0.03,∆t = 4∆x
2/9,L = 100

Fig. 5.9 a = 0.05,0.15,0.25,0.35,0.45,xs = 0.6,∆x = 0.01,∆t = 4∆x
2/9,L = 10

Fig. 5.10 (a) a = 0.05,0.15,0.25,0.35,0.45,∆x = 0.01,∆t = 4∆x
2/9,L = 10

Fig. 5.10 (b) a = 0.48,∆x = 0.01,∆t = 4∆x
2/9,L = 10

Fig. 5.11 a = 0.32,L = 40x∗(a),L = 100x∗(b)
Fig. 5.12 a = 0.35,0.4,0.45,0.48(a),a = 0.4(b),∆x = 0.01,∆t = 4∆x

2/9,L = 10

Table 5.2: The complete set of parameters and discretization values used in the fig-
ures.
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6
MULTICOMPONENT SYSTEMS

6.1 Chapter Introduction

In the previous chapter, we have demonstrated the applicability of the approach
on one-component test problems. This chapter is focused on the multicomponent
reaction-diffusion systems with moving critical solutions. In Section 6.2, we provide a
brief introduction to a caricature model of cardiac excitation propagating fronts, Bikta-
shev model, in which hybrid method is proposed and implemented to calculate the ex-
act analytical closed-form solution of its critical front and leading eigenpair, followed by
the derivation of the linear approximation of the strength-duration curve. Section 6.3
and Section 6.4 are dedicated to the systems that have critical pulse solutions. In
Section 6.3, we consider FitzHugh-Nagumo system serving as a prototype of an ex-
citable system and in Section 6.4, we present the results of a modified Beeler-Reuter
model. For the modified Beeler-Reuter model, the ingredients of the analytical igni-
tion criterion are exclusively numerically obtainable. For FitzHugh-Nagumo system,
on the other hand, there is a well-known alternative approach called perturbation the-
ory that can be used to find approximate solutions of the critical pulse and the first
two leading eigenvalues along with corresponding left and right eigenfunctions by
using the exact solution of the one-component version of the model, Zeldovich-Frank-
Kamenetsky equation. This perturbation method is also given in detail as well as the
strength-duration and the strength-extent curve analysis of these two models. Finally,
a brief summary of the chapter is offered in Section 6.5.
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6.2. BIKTASHEV MODEL

6.2 Biktashev Model

The first example of this chapter is the Biktashev model [16], simplified cardiac ex-
citation front model. As described in more detail in Subsection 2.4.3.3, this is a

two-component reaction-diffusion system (3.1) with u = (E,h)⊤, D =
(
1 0

0 0

)
and f =

( fE, fh)⊤, where

fE(E,h)=H(E−1)h,

fh(E,h)= 1
τ∗

(H(−E)−h) , (6.1)

and H(·) is the Heaviside step function. The component E corresponds to the trans-
membrane voltage, the component h describes the inactivation gate of the fast sodium
current, and τ∗ is the dimensionless parameter.

The critical front solution û= (Ê, ĥ)⊤ is described by [16]

Ê(ξ)=


ω− τ∗2c2

1+τ∗c2 eξ/(τ∗c), ξ≤−∆,

−α+αe−cξ, ξ≥−∆,

ĥ(ξ)=


eξ/(τ∗c), ξ≤ 0,

1, ξ≥ 0,

(6.2)

where

ω= 1+τ∗c2 (1+α), ∆= 1
c

ln
(
1+α

α

)
, (6.3)

and the front speed c is defined by an implicit equation

τ∗c2 ln
(
(1+α)(1+τ∗c2)

τ∗

)
+ ln

(
α+1
α

)
= 0, (6.4)

or equivalently

τ∗ = g(β,σ) ≜ 1+σ

1−β
β−1/σ, (6.5)

where

σ= τ∗c2, β=α/(α+1). (6.6)

In terms of (3.3), this front solution has u ≡ E, ur =−α and u− =ω.
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6.2.1 Hybrid Approach

This section aims at providing a numerical scheme for computing the critical front
and the first two leading eigenpairs of the Biktashev model even though we know the
explicit form of them. The hybrid approach is needed not only because it helps to
validate the analytical result but also because, in some cases, it is the only option as
the analytical derivation is not always possible.

In the comoving frame of reference ξ= x− s (τ), τ= t, we have

Ẽ(ξ,τ)= E(x, t), h̃(ξ,τ)= h(x, t),

such that (6.1) reads,

∂Ẽ
∂τ

= ∂2Ẽ
∂ξ2 + ds

dτ
∂Ẽ
∂ξ

+H(Ẽ−1)h̃,

∂h̃
∂τ

= ds
dτ

∂h̃
∂ξ

+ 1
τ∗

(
H(−Ẽ)− h̃

)
, (6.7)

with the initial condition

Ẽ (ξ,0)= EsH(−ξ)H(ξ+2xs)−α. (6.8)

To find the critical solutions, we use shooting procedure and adjust the initial condi-
tion by employing the bisection method, as described in Section 4.4. The idea behind
this shooting procedure is to solve initial value problem (6.7) and (6.8) using operator
splitting method (see, for example [50]). This can be achieved by splitting (6.7) into
four subsystems. Due to the discontinuous right-hand sides, it is essential to use the
standard finite element method, at least when dealing with these discontinuous terms.
The complete discretization formula for the critical front of the model is presented in
Appendix C.

Figure 6.1 gives the comparison of the numerical critical front obtained using op-
erator splitting method and its analytical closed-form solution given by (6.2). We can
see that the shooting procedure provides a good approximation of the critical front
for the selected parameters. For two initial conditions, Figure 6.2 shows the evolution
of E component in the comoving frame of reference. For each case, the solution ap-
proaches the critical front, i.e. the solution at τ= 120 in the figure and then gives rise
to the stable propagating wave if the initial condition is above the threshold or decays
back to the resting state otherwise.

Numerical experiments suggest that there are two values of the speed c satisfy-
ing 0 < cslow < c f ast < ∞ such that the faster front is stable, and the slower front is
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ĥ
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ĥ− ĥnum

∆

(a) (b)

Figure 6.1: Comparison between analytical and numerical critical fronts of the Bik-
tashev model (a), and error analysis (b). Parameters: α = 1, τ∗ = 8.2, xs = 1.5,
|Es −Es| < 10−6, ∆ξ = 0.05, ∆τ = 4∆ξ

2/9, L = 20.

unstable, hence a slower front either dissipates or increases in the speed to the fast
branch solution depending on the initial condition being below- and above-threshold,
respectively [16, 60]. This can be seen in the right panel of Figure 6.2 where the blue
circle and green square symbols represent fast and slow front speeds for the selected
pair of α = 1, τ∗ = 8.2, and the red line indicates how the speed of the front changes
over the time interval τ ∈ (0,1000). For initial conditions slightly above threshold, the
front speed gets closer to the slow speed and stays in the vicinity of it for a long time
before developing into the fast speed while the initial condition slightly below threshold
results in the front speed to drop to zero eventually. Concerning the behaviour of the
Biktashev model near-threshold initial conditions, a different numerical scheme was
presented in [66, 67]. However, the method used here provides additional reliability
and validity in a discontinuity eliminating manner.

The next step after finding the critical front of the Biktashev model is the determi-
nation of the right and left eigenfunctions along with the corresponding eigenvalues
employing the marching procedure detailed in Section 4.4. To begin with, we linearize
(6.7) about the critical front

(
Ê, ĥ

)
using

Ẽ (ξ,τ)= Ê (ξ)+ϵE (ξ,τ) ,

h̃ (ξ,τ)= ĥ (ξ)+ϵh (ξ,τ) , (6.9)

where ϵ≪ 1, |E (ξ,τ) | ≪ 1, |h (ξ,τ) | ≪ 1. This results in the following linearized equa-

127



CHAPTER 6. MULTICOMPONENT SYSTEMS

-1

 0

 1

 2

 3

 4

 5

     

fast

slow

fast

slow

fast

slow

fast

slow

fast

slow

fast

slow

EEEEEE

τ = 0
= 20
= 120
= 300
= 1000

 

 

 

 

 

 

     
 0

 0.1

 0.2

 0.3

 0.4

 0.5

num
fast

slow

c

-1

 0

 1

 2

 3

 4

 5

-20 -10 0 10

fast

slow

ξ

τ = 0
= 20
= 120
= 300
= 1000

 

 

 

 

 

 

250 500 750
 0

 0.1

 0.2

 0.3

 0.4

 0.5

num
fast

slow

τ

Figure 6.2: Response to below- and above-threshold initial conditions in the Bikta-
shev model. Evolution of E component in the comoving frame of reference and the
speed of the front for sub-threshold Es = 2.59403 (bottom panel) and super-threshold
Es = 2.59404 (top panel) initial conditions. Parameters used: ∆n = 20, ∆ξ = ∆/∆n,
∆τ = 4∆ξ

2/9, L = 25∆, α= 1, τ∗ = 8.2, xs = 1.5.

tion:

∂E
∂τ

= ∂2E
∂ξ2 + c

∂E
∂ξ

− 1
Ê′ (−∆)

δ (ξ+∆) ĥE+H(−∆−ξ)h,

∂h
∂τ

= c
∂h
∂ξ

+
(

1
Ê′(0)

δ (ξ)E−h
)
/τ∗, (6.10)

while the adjoint linearized problem is

∂Ē
∂τ

= ∂2Ē
∂ξ2 − c

∂Ē
∂ξ

− 1
Ê′ (−∆)

δ (ξ+∆) ĥĒ+ δ (ξ)
τ∗Ê′(0)

h̄,

∂h̄
∂τ

=−c
∂h̄
∂ξ

+H(−∆−ξ) Ē− h̄
τ∗

, (6.11)

where c = ds
dτ

.
The eigenfunctions of the linearized and adjoint linearized problems are respec-

tively called as the right and left eigenfunctions. The numerical scheme aiming for
determining the first two left and right eigenfunctions and the corresponding eigen-
values of Biktashev model is presented in Appendices C.2 and C.3, and these are
compared with their exact analytical counterparts explicitly given in Appendix C.4. In
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Figure 6.3: Comparison between first two right and left eigenfunctions of Biktashev
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2/9, L = 25∆.

Figure 6.3, the eigenfunctions obtained using hybrid method fairly resemble exact
analytical eigenfunctions. The largest difference between the numerical and analyti-
cal eigenfunctions is observed in the vicinity of the discontinuous values, ξ = 0 and
ξ=−∆. This is totally expected as the numerical scheme used to calculate the eigen-
functions is the second-order accurate, except near discontinuities, where it reduces
to the first-order accuracy and introduces spurious oscillations due to Beam-Warming
method [39].

In the operator splitting method, as we have chosen the time step ∆τ proportional
to the second power of the spatial step, ∆τ = 4∆ξ

2/9, any error raised by the splitting
procedure is negligibly small (see, for example [63]) compared to the highest error as-
sociated with one of the subsystems. The truncation error in the numerical scheme is
therefore approximately proportional to O

(
∆ξ

2). This can be verified by looking at how
the absolute error between analytical and numerical leading eigenvalues changes
with the discretization step ∆ξ, as shown in Figure 6.4.

6.2.2 Linear Approximation of the Strength-Duration Curve

The result of the calculation of the strength-duration curve for Biktashev model is
visualized in Figure 6.5 on which the linear approximation is based on the formulas
(3.66) and (3.68). For every chosen duration of stimulus ts, we calculate the zeros
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Figure 6.4: The absolute error between analytical and numerical first eigenvalues of
the Biktashev model for different choices of discretization steps. As seen the absolute
error is the second-order as the scheme promises.

-3

-2

-1

 0

-30 -20 -10  0  10  20  30

ts = 10
ts = 3

µ(s)

-30 -20 -10  0  10  20  30

ts = 10
ts = 3

s

(a) (b)

 1

 10

 0  1  2  3

analytical
numerical

I∗
s

 0  1  2  3

analytical
numerical

ts

(c) (d)

Figure 6.5: Equation (3.68) that defines the shift s in terms of ts and comparison
of analytical and numerical strength-duration curve for the Biktashev model for the
following choice of parameters: ∆ξ = 0.03, ∆τ = 4∆ξ

2/9, L = 30, τ∗ = 7.8, α = 2/3 (a,c)
and τ∗ = 8, α= 9/11 (b,d).
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of (3.68) in order to find the value of the shift s. We then substitute this value of
s into one of the equation in (3.66) (since both produce the same result) to get the
corresponding value of Is. In the simulations, we choose two different set of the model
parameters, τ∗ = 7.8, α= 2/3 and τ∗ = 8, α= 9/11 from which the resulting curves are
respectively shown in Figure 6.5(a,c) and Figure 6.5(b,d). The shape of µ(s) is rather
similar for both cases and the main difference between the two is the closeness of the
s values for two different duration of stimulus values, ts = 3 and ts = 10. We observe
that the theoretical critical curve for the first set of parameter values is well adapted
to the direct numerical simulation threshold curve for smaller values of ts, and then
bends down dramatically as the value of ts increases. The theoretical prediction for
the second set of parameters values, however, gets better with ts.

6.3 FitzHugh-Nagumo System

Our second test problem in this chapter is another example of two-component reaction-
diffusion system with critical pulse solution rather than front, namely, the FitzHugh-
Nagumo (FHN) system, which is considered as a ZFK equation extended by a slow
variable, describing inhibition of excitation. This model is considered as a prototype
for excitable systems, and hence has been extensively studied. As mentioned before,
there are many different forms of the kinetics terms of the FHN system and we con-
sider the model in the form

k = 2, D= diag(1,0), u=
(
u,v

)⊤
,

f(u)=
(
fu(u,v), fv(u,v)

)⊤
,

fu(u,v)= u(u−β)(1−u)−v,

fv(u,v)= γ(αu−v), (6.12)

for fixed values of the slow dynamics parameters, γ = 0.01 and α = 0.37, and two
values of the excitation threshold for the fast dynamics, β= 0.05 and β= 0.13.

6.3.1 Hybrid Approach

System (6.12) has an unstable propagating pulse solution as opposed to its reduced
form, the ZFK equation with nontrivial stationary solution. It is known (see e.g. [49]
and references therein) that in the limit γ ↘ 0, v-component of the critical pulse is
very small compared to u-component of it which is close to the critical nucleus of the
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β c λ1 λ2
0.05 0.2561 0.17204 ±1 ·10−5

0.13 0.2328 0.18619 ±1 ·10−5

Table 6.1: Nonlinear and linear eigenvalues for the FitzHugh-Nagumo system.

corresponding ZFK equation. However, this by itself does not provide a well enough
approximation for the linearized theory (see, however, Section 6.3.4) and we used
only the hybrid approach. As discussed in Section 4.4.3, we have obtained the critical
pulse using numerical continuation software AUTO and Figure 6.6 shows the corre-
sponding conduction velocity (CV) restitution curves such that the lower branches
at P > 7.5 · 103 give the critical pulses and the upper branches estimate the stable
propagating pulse solution, which is not the case of interest to us in this thesis. The
corresponding unstable propagation pulse speeds are given in Table 6.1.
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P

Figure 6.6: CV restitution curves for the FHN model for two selected values of the
model parameter.

6.3.2 Linear Approximation of the Strength-Extent Curve

The result of the linear approximation of the strength-extent curve based on the formu-
las (3.39)–(3.43) is shown in Figure 6.8. The “pre-compatibility” function η(ξ) defined
by (3.40) in both cases is not unimodal, and has two local maxima and one local min-
imum, at least for β= 0.05. Hence, the implementation of the algorithm (3.39)–(3.43)
requires investigation of the local extrema. We find that in both cases the local max-
imum nearest to ξ = 0 provides the adequate answer. The corresponding theoretical
critical curves, as shown in the bottom panel of Figure 6.8, are compared with the
curves obtained by direct numerical simulation. Although the eigenfunctions for the
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legends at the top. Other parameters: γ= 0.01, α= 0.37, ∆ξ = 0.03, ∆τ = 4∆ξ

2/9.
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two cases look rather similar, as is illustrated in Figure 6.7, the theory works some-
what better for β= 0.05 than for β= 0.13 and better accuracy is associated with smaller
value of λ1.
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Figure 6.8: Results of linearized FitzHugh-Nagumo theory for (a,c) β= 0.05 and (b,d)
β = 0.13. (a,b): The pre-compatibility function η(ξ), used to compute the theoretical
critical curve. The u(ξ) component of the critical solution û is also shown for posi-
tioning purposes. (c,d): Comparison of the theoretical critical curves obtained in the
linear approximation, and the critical curves obtained by direct numerical simulations.
Parameters same as Fig. 6.7.

6.3.3 Linear Approximation of the Strength-Duration Curve

Figure 6.9 illustrates the calculation of the strength-duration curve for FHN model for
β= 0.05 and β= 0.13 according to the formulas (3.66) and (3.68). The equation (3.68)
has two roots, one of them is negative close to zero and the other is positive. We find
that in both cases the smaller root denoted by blue circle and red square points in
Figure 6.9(a,b) gives the corresponding value of s. The critical curves compared with
those obtained from direct numerical simulation are sketched in Figure 6.9(c,d). From
this plot, it can be seen that the theoretical prediction for both values of parameter is
almost equally close to the numerical prediction.
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Figure 6.9: Equation (3.68) that defines the shift s in terms of ts and comparison of
analytical and numerical strength duration-curve for the FHN model for β = 0.05 and
β= 0.13. Other parameters: γ= 0.01, α= 0.37, ∆ξ = 0.03, ∆τ = 4∆ξ

2/9, L = 60.

6.3.4 Perturbation Theory Analysis of the Model

Perturbation theory is one of the most reliable and popular method for finding an
approximate solution to a problem by reducing the problem to a related, relatively
easy problem with the exact analytical solution. In this section, we will present how
the perturbation theory can be employed to obtain the critical pulse, and even the
leading eigenfunctions and corresponding eigenvalues of FHN system using the exact
solution of its fast subsystem, ZFK equation. Clearly, when we set γ = 0 and v ≡ 0,
FHN system transforms into ZFK equation and formally, we use a series in γ and the
solution of ZFK equation to have the approximation to the full solution of FHN system.

Finding the Unstable Pulse

To find the critical pulse, we start with the usual procedure looking for solutions of
the form u(x, t)= ũ(ξ,τ), v(x, t)= ṽ(ξ,τ) where ξ= x− cτ, τ= t and the positive constant
c is the propagation speed of the rightward traveling wave, yet to be determined.
Then, FHN system can be converted into the following system of first-order ordinary
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differential equations:

ũξ = w̃,

w̃ξ = cw̃− f (ũ)+ ṽ, (6.13)

ṽξ = γ(αũ− ṽ)
c

.

The traveling wave solution vanishes at infinity along with its first derivative

lim
|ξ|→∞

ũ = lim
|ξ|→∞

ṽ = lim
|ξ|→∞

w̃ = 0.

Hastings has proven that for a sufficiently small γ, there are at least two distinct pos-
itive numbers c such that the above system has a homoclinic orbit [56]. It has been
also proven that the pulse with higher speed is stable, while the slower wave is un-
stable with the speed values c

(
γ
) ≈ p

2
(1

2 −γ
)

and c
(
γ
) ≈ O

(p
γ

)
[49, 57]. Since the

critical pulse corresponds to the pulse with slower speed, we restrict our analysis to
the slow-wave case. In this case, the basic idea of the perturbation method analysis is
to divide the domain of the problem into two subdomains such that the small positive
parameter of the problem, being γ for FHN system, causes the rapid change in the
solution in one region while the solution varies slowly in the other region. These two
regions are called as inner and outer regions while the solutions obtained in these
regions are called as inner and outer solutions, respectively. As a final step, the inner
and outer solutions are then matched together to ensure that the approximate solu-
tion is uniformly valid in the whole domain. This is achieved by using transition zone,
in which the two solutions are asymptotically equal.
Inner Solution: Even though there are various possibilities, we find the following inner
expansion proposed first by [27] more convenient:

ũinner = ũ0+γ1/2ũ1 +γũ2 + . . . ,

ṽinner = γ1/2ṽ1 +γṽ2+ . . . , (6.14)

c = γ1/2c1+ . . . ,

where ṽ0 ≡ 0 and c0 = 0 as ZFK equation is one-component and its critical nucleus
solution has zero velocity. Substituting this into equation (6.13) and collecting the
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terms according to the order of γ1/2, we have

d2ũ0

dξ2 + f (ũ0)= 0, (6.15)

d2ũ1

dξ2 + f ′ (ũ0) ũ1− c1
dũ0

dξ
− ṽ1 = 0, (6.16)

dṽ1

dξ
− αũ0

c1
= 0. (6.17)

Coefficient c1 can be determined by multiplying (6.16) by dũ0/dξ throughout and then
integrating the result using the equations (6.15) and (6.17) therein,

c1 =

 α
∮

ũ2
0dξ∮ (

dũ0
dξ

)2
dξ


1/2

, (6.18)

where the integration is performed over the domain of ũ0. As we aim to obtain explicit
analytical expressions if possible, we consider the limit of small β. For u ≲ β we can
estimate f (u)≈ u

(
u−β

)
for which the critical nucleus of ZFK is equal to,

ũ0 = 3βsech2
(
ξ
√

β /2
)
/2,

so that the coefficient c1 can be found as c1 =
√

5α
β

. Equation for ṽ1 (6.17) is a first-
order separable differential equation with solution,

ṽ1 =
3β

p
α

(
sinh

(
ξ
√

β /2
)+cosh

(
ξ
√

β /2
))

p
5 cosh

(
ξ
√

β /2
) . (6.19)

We can write the solution of (6.16) in the form,

ũ1 = g(ξ)
dũ0

dξ
,

as dũ0
dξ is the eigensolution of the governing equation (6.16). This transformation leads

to

c1
dũ0

dξ
+ ṽ1 = d2 g

dξ2
dũ0

dξ
+2

dg
dξ

d2ũ0

dξ2

Integrating twice and using equation (6.17), we get(
ũ′

0
)2 dg

dz
= ṽ1(z)ũ0(z)+ c1

∫ z

−∞

(
ũ′

0(z)
)2 dz− 1

c1

∫ z

−∞
(ũ0(z))2 dz.

By defining the right-hand side of above equation as F(z), we obtain

ũ1 = ũ′
0

∫ ξ

−∞
F(z)(
ũ′

0
)2 dz,
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which has an analytical solution in the following closed form,

ũ1 =
−6

p
αeξ

p
β

(
e2ξ

p
β
√

β +3eξ
p

ββξ−4eξ
p

β
√

β −3βξ−5
√

β
)

√
5β

(
eξ
p

β +1
)3 . (6.20)

Outer Solution: As outer variables, we use ζ defined by ζ = γ1/2ξ, and assume that
the outer expansion is proceeded in powers of γ1/2 as

ũouter = γ1/2û1 (ζ)+ . . . ,

ṽouter = γ1/2v̂1 (ζ)+ . . . . (6.21)

Substituting these into (6.13) and collecting the terms according to the order of γ1/2,
we get

βû1+ v̂1 = 0, (6.22)

c1
dv̂1

dζ
=αû1 − v̂1, (6.23)

which have the following nontrivial solutions

v̂1(ζ)= A e
−ζ

(
α+βp
5αβ

)
, (6.24)

û1(ζ)=−A
β

e
−ζ

(
α+βp
5αβ

)
, (6.25)

where the constant A is to be determined by the condition that the inner and outer
expansions give the same result in the transition zone. This can be achieved by re-
quiring that the inner solution at the boundary layer (i.e. as ξ → ∞) is equal to the
outer solution at the boundary layer (i.e. as ζ→ 0). In other words, we require that

lim
ξ→∞

ṽ1 = lim
ζ→0

v̂1, (6.26)

which gives

A = 6β
p
αp

5
.

In the literature, the condition (6.26) is known as Van Dyke’s matching principle [133].
So, we have derived all the terms of the inner and outer approximations of the critical
pulse of the FHN system. Figure 6.10 shows the inner and outer solutions of u and
v components of FHN system for the parameter values, γ = 0.01, β = 0.05, α = 0.37.
In the negative ξ region, the inner solution is wholly valid. In the positive ξ region, on
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the other hand, neither the inner nor the outer solutions alone can be the solution and
it is desired to combine these two solutions in a way that this so-called "composite
solution" is to be valid. This is done by adding the inner and outer approximations and
subtracting the common part, the overlap term, which would take into account twice,
otherwise. Thus, our final critical pulse solution based on perturbation theory, valid in
the whole domain, is in the following form,

û =


ũinner(ξ), ξ< 0,

ũinner(ξ)+ ũouter(ξ)− ũoverlap, ξ> 0,

(6.27)

v̂ =


ṽinner(ξ), ξ< 0,

ṽinner(ξ)+ ṽouter(ξ)− ṽoverlap, ξ> 0,

(6.28)

where the overlapping parts are

ũoverlap = lim
ξ→∞

ũinner, ṽoverlap = lim
ξ→∞

ṽinner.
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Figure 6.10: Inner and outer solutions of (a) û and (b) v̂ components of the perturbed
critical pulse. Parameters used: γ= 0.01, β= 0.05, α= 0.37.

Figure 6.11 shows the critical pulse solutions of FHN system based on the asymp-
totic perturbation theory analysis compared with the ones obtained using hybrid ap-
proach for two selected set of parameters γ = 0.001, β = 0.05, α = 0.37 (top panel)
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Figure 6.11: The plot of the perturbed critical pulse compared with the one obtained
numerically. Two set of parameter values are chosen: γ= 0.001, β= 0.05, α= 0.37 (a,b)
and γ= 0.00001, β= 0.01, α= 0.37(c,d).

and γ = 0.00001, β = 0.01, α = 0.37 (bottom panel). As seen, the asymptotic result
gets closer to the numerical critical pulse when the parameters β and γ both become
smaller, which is indeed expected.

Finding the Leading Eigenfunctions and Corresponding Eigenvalues

In a similar fashion, perturbation theory can be applied to approximate the eigen-
functions and eigenvalues of FHN system. For the purpose of demonstration of the
method, the eigenvalue problem is, generally speaking, to be solved as a two-stage
process for which the inner and outer approximations are taken into account sepa-
rately. However, in this model, we only need to look at the inner approximate solution
due to its validity almost in the whole domain as the outer approximations would
make a very small contribution to the composite solution, which is neglected. So, the
composite solution simply encompasses the inner approximations. To begin with, we
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linearize the FHN system around the critical pulse,

u(t,ξ)= ũ(ξ)+U (t,ξ) , v(t,ξ)= ṽ(ξ)+V (t,ξ) ,

such that FHN system with the quadratic nonlinearity becomes

∂U
∂t

= ∂2U
∂ξ2 − c

∂U
∂ξ

+ (
2ũ−β

)
U −V , (6.29)

∂V
∂t

=−c
∂V
∂ξ

+γ (αU −V ) . (6.30)

Let the above linearized equation support solution of the form U (t,ξ) = eλtϕ(ξ) and
V (t,ξ)= eλtψ(ξ), which leads to the following eigenvalue problem,

λϕ= d2ϕ

dξ2 − c
dϕ
dξ

+ (
2ũ−β

)
ϕ−ψ,

λψ=−c
dψ
dξ

+γ
(
αϕ−ψ

)
,

where ϕ(ξ) and ψ(ξ) are some eigenfunctions. This eigenvalue problem can be written
in the form,

λV =L V , (6.31)

where

L =
(
∂2
ξ
− c∂ξ+2ũ−β −1

γα −c∂ξ−γ

)
, V =

(
ϕ

ψ

)
.

Inserting the speed and critical pulse defined in the inner expansion analysis into the
operator L , we have

L =
(
∂2
ξ
−γ1/2c1∂ξ+2

(
ũ0 +γ1/2ũ1

)−β+O (γ) −1

O (γ) −γ1/2c1∂ξ+O (γ)

)
,

which can be considered as a combination of two linear operators,

L =L 0 +γ1/2L 1 +O (γ),

where

L 0 =
(
∂2
ξ
+2ũ0 −β −1

0 0

)
, L 1 =

(
−c1∂ξ+2ũ1 0

0 −c1∂ξ

)
.
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Now, we expand the eigenvalues and eigenfunctions in a power series in terms of
γ1/2,

λ= λ̃+γ1/2λ̂+O (γ),

V = Ṽ +γ1/2V̂ +O (γ).

This kind of expansion has been widely used in the field of quantum mechanics, see
for example [117]. Implementing this eigenpair expansion into the original eigenvalue
problem (6.31), we have(

λ̃+γ1/2λ̂
)(

Ṽ +γ1/2V̂
)
=

(
L 0 +γ1/2L 1

)(
Ṽ +γ1/2V̂

)
+O (γ).

Equating this in terms of the coefficients of the powers of γ1/2, we get

λ̃ jṼ j =L 0Ṽ j, (6.32)

λ̃ jV̂ j + λ̂ jṼ j =L 1Ṽ j +L 0V̂ j, (6.33)

for j = 1,2, . . .. At order γ0, we have (6.32) which refers to the eigenvalue problem of
the unperturbed problem, ZFK equation. The leading eigenvalue and corresponding
eigenfunction of the ZFK equation are known explicitly as [68]

Ṽ 1 =
(
ϕ̃1

ψ̃1

)
=

(
sech3 (

ξ
√

β /2
)

0

)
, λ̃1 = 5β

4
.

Also note that the derivative of the critical nucleus of ZFK equation corresponds to
the second eigenfunction with zero eigenvalue

Ṽ 2 =
(
ϕ̃2

ψ̃2

)
=

dũ0

dξ
0

 , λ̃2 = 0.

Our first goal is to find an analytical expression for the perturbed eigenvalue that can
be obtained using the identity of self-adjoint problems. We can rewrite (6.33) as(

λ̃ j −L 0
)
V̂ j =

(
L 1− λ̂ j

)
Ṽ j. (6.34)

As we already know the first two leading eigenvalues of the linearized eigenvalue
problem of ZFK equation, we take the inner product between the left-hand side of
(6.33) and Ṽ j to get,⟨

Ṽ j

∣∣∣ (
λ̃ j −L 0

)
V̂ j

⟩
= λ̃ j

⟨
Ṽ j

∣∣∣V̂ j

⟩
−

⟨
L +

0 Ṽ j

∣∣∣V̂ j

⟩
= λ̃ j

⟨
Ṽ j

∣∣∣V̂ j

⟩
− λ̃ j

⟨
Ṽ j

∣∣∣V̂ j

⟩
= 0,
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since L +
0 = L 0 and L 0Ṽ j = λ̃ jṼ j. Using this result in (6.33), we obtain a simple

expression for the perturbed eigenvalues,

λ̂ j =
⟨

Ṽ j

∣∣∣L 1Ṽ j

⟩
⟨

Ṽ j

∣∣∣Ṽ j

⟩ , (6.35)

where we have used the fact that all eigenvalues of the unperturbed system are real.
For example, for j = 1, we find the leading eigenvalue as

λ̂1 =

∞∫
−∞

ϕ̃1
(−c1∂ξ+2ũ1

)
ϕ̃1 dξ

∞∫
−∞

ϕ̃2
1 dξ

= 3
p

5α
2

, (6.36)

and for j = 2, λ̂2 = 0 due to the translational symmetry.
The linear approximations of the critical curves require the knowledge of the left

eigenfunctions, i.e. the eigenfunctions of the adjoint linearized equation. Hence, we
skip the details of the analytical construction of the right eigenfunctions. For the
adjoint-linearized problem for FHN system, we have

λW =L +W , (6.37)

where

L + =
(
∂2
ξ
+ c∂ξ+2ũ−β γα

−1 c∂ξ−γ

)
, W =

(
ϕ∗

ψ∗

)
.

This can be written using the inner expansions of the critical pulse and the speed as

L + =
(
∂2
ξ
+γ1/2c1∂ξ+2

(
ũ0 +γ1/2ũ1

)−β+O (γ) O (γ)

−1 γ1/2c1∂ξ+O (γ)

)
,

which can be simplified as a combination of two adjoint linear operators

L + =L +
0+γ1/2L +

1 +O (γ),

where

L +
0 =

(
∂2
ξ
+2ũ0 −β 0

−1 0

)
, L +

1 =
(
c1∂ξ+2ũ1 0

0 c1∂ξ

)
.

Since γ is a small parameter, we expand the left eigenfunctions in series as

W = W̃ +γ1/2Ŵ +O (γ).
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The expansion of the eigenvalue is same as in the case of the linearized problem.
Inserting this expansion into (6.37) and equating the system up to the order of γ1/2,
we have

λ̃ jW̃ j =L +
0W̃ j, (6.38)

λ̃ jŴ j + λ̂ jW̃ j =L +
1W̃ j +L +

0Ŵ j. (6.39)

It must be emphasized that the eigenvalues of the linearized and adjoint-linearized
systems must be same and from above two equations we can obtain first two per-
turbed eigenvalues as

λ̂1 = 3
p

5α
2

, λ̂2 = 0,

as expected. Now, we look for the eigenfunctions of the perturbed adjoint problem.
For j = 1, we begin with the first component of the first left eigenfunction satisfying the
following partial differential equation(

∂2
ξ +2ũ0−β− λ̃1

)
ϕ̂∗

1 = (
λ̂1− c1∂ξ−2ũ1

)
ϕ̃∗

1 . (6.40)

In other words, we need to solve an equation in the form of ∂2
ξ
ϕ̂∗

1+P(ξ)ϕ̂∗
1 = R(ξ) where

P(ξ) = 2ũ0 −β− λ̃1, R(ξ) = (
λ̂1 − c1∂ξ−2ũ1

)
ϕ̃∗

1 with all ingredients known. The solution
of the homogeneous equation (R(ξ) = 0) is ϕ̃∗

1 = sech3 (
ξ
√

β /2
)

and for the solution of
the full non-homogeneous equation, we introduce

ϕ̂∗
1(ξ)= ϕ̃∗

1(ξ)ν(ξ),

motivated by the reduction of order approach so we can reduce the equation (6.40)
to

ν′′+ 2ϕ̃∗
1
′

ϕ̃∗
1

ν′ = R
ϕ̃∗

1

which has the solution in the form

ν(ξ)=
ξ∫

−∞

ξ∫
−∞

ϕ̃∗
1(ξ)R(ξ)dξ+C1(

ϕ̃∗
1(ξ)

)2 dξ+C2,

where C1 and C2 are the constants of the integration. The explicit expression for ϕ̂∗
1 is

ϕ̂∗
1(ξ)= ϕ̃∗

1(ξ)ν(ξ)= 8(
eξ
p

β /2 +e−ξ
p

β /2
)3 × (C2 + I1+C1I2) (6.41)
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where

I1 =− 9
p
αξeξ

p
β√

5β
(
eξ
p

β +1
) ,

I2 =
(
e6ξ

p
β +9e5ξ

p
β +60ξ

√
βe3ξ

p
β +45e4ξ

p
β −45e2ξ

p
β −9eξ

p
β −1

)
e−3ξ

p
β

192
√

β
.

This eigenfunction expansion must be bounded at ξ=−∞ since the composite eigen-
function is exactly equal to inner expansion in the left half plane, and also in the limit
ξ→−∞, we have

lim
x→−∞

8(
eξ
p

β /2 +e−ξ
p

β /2
)3 = 0,

lim
x→−∞

8I1(
eξ
p

β /2 +e−ξ
p

β /2
)3 = 0,

lim
x→−∞

8I2(
eξ
p

β /2 +e−ξ
p

β /2
)3 =−∞,

and consequently, the constant C1 must be zero. Then (6.41) simplifies to

ϕ̂∗
1 = 8(

eξ
p

β /2 +e−ξ
p

β /2
)3 (C2+ I1). (6.42)

In order to determine the coefficient C2, we first find the ingredients of the second
components of the first adjoint eigenfunction as

ψ̃∗
1 =− ϕ̃∗

1

λ̃1
= −4sech3 (

ξ
√

β /2
)

5β
, (6.43)

ψ̂∗
1 = c1ψ̃

∗
1
′− ϕ̂∗

1 − λ̃1ϕ̃
∗
1

λ̂1
. (6.44)

The value of the coefficient C2 can then be found from orthogonality condition
⟨

W1

∣∣∣V 2

⟩
=

0. In the expanded form, this can be written as⟨(
u′

0

0

) ∣∣∣ (
ϕ̃∗

1

ψ̃∗
1

)⟩
+γ1/2

{⟨(
u′

0

0

) ∣∣∣ (
ϕ̂∗

1

ψ̂∗
1

)⟩
+

⟨(
u′

1

v′1

) ∣∣∣ (
ϕ̃∗

1

ψ̃∗
1

)⟩}
+γ

⟨(
u′

1

v′1

) ∣∣∣ (
ϕ̂∗

1

ψ̂∗
1

)⟩
= 0,

where the first term is actually equal to zero as the derivative of the critical nucleus
of ZFK equation, u′

0, is an eigenfunction corresponding to zero eigenvalue and ϕ̃∗
1
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refers another eigenfunction of ZFK equation with biggest real eigenvalue so their
inner product is equal to zero. Similarly, the second term in the above formula also
vanishes since the sum of all three definite integrals is equal to zero as calculated
below,

∞∫
−∞

u′
0ϕ̂

∗
1 dξ= C2

∞∫
−∞

u′
0ϕ̃

∗
1 dξ+

∞∫
−∞

u′
0ϕ̃

∗
1 I1 dξ= 81π

p
5α

200
,

∞∫
−∞

u′
1ϕ̃

∗
1 dξ=−9π

p
5α

40
,

∞∫
−∞

v′1ψ̃
∗
1 dξ=− 1

λ̃1

∞∫
−∞

v′1ϕ̃
∗
1 dξ=−9π

p
5α

50
.

Therefore, the coefficient C2 can be found from the third term as,

C2 =

∞∫
−∞

(
v′1ϕ̃

∗
1 I1 + λ̃1v′1ϕ̃

∗
1 − c1v′1ψ̃

∗
1
′− λ̂1u′

1ϕ̃
∗
1 I1

)
dξ

∞∫
−∞

(
λ̂1u′

1ϕ̃
∗
1 −v′1ϕ̃

∗
1
)

dξ
,

in which the integrals seem to be too complicated for an explicit analytical answer, but
these integrals can be evaluated using some numerical integration techniques such
as trapezoidal rule. Finding this constant C2 completes the derivation of the first left
eigenfunction. For the second left eigenfunction, the formulas (6.43) and (6.44) above
do not work as λ2 = 0, we use the following eigenfunction expansion instead

ϕ∗
2 = γ1/2ϕ̂∗

2 , ψ∗
2 = ψ̃∗

2 +γ1/2ψ̂∗
2 .

Substituting this expansion into adjoint linearized equation (6.37) and equating coeffi-
cients of powers of γ1/2, we have

ϕ̂∗
2
′′+ (

2u0 −β
)
ϕ̂∗

2 = 0, −ϕ̂∗
2 + c1ψ̃

∗
2
′ = 0,

with solutions

ϕ̂∗
2 =−3β3/2sech2

(
ξ
√

β /2
)
tanh

(
ξ
√

β /2
)
/2,

ψ̃∗
2 = 3

p
5β3/2sech2 (

ξ
√

β /2
)

10
p
α

. (6.45)

Figure 6.12 shows the first two estimated perturbed eigenfunctions of FHN system
for the parameters β = 0.05, α = 0.37. Since we have employed the inner expansion

146



6.3. FITZHUGH-NAGUMO SYSTEM

here, it is expected to have the perturbed eigenfunctions bounded at ξ=−∞. What is
surprising is that they are also vanishing at ξ=∞. The reason for this is not clear but
we assume it is related to the outer eigenfunction solution which likely has a very small
contribution to the composite eigenfunction solution and hence, we do not consider
the outer expansion here.
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Figure 6.12: Plot of the two components of first (a) and second (b) eigenfunctions of
FHN system. Parameters used: β= 0.05, α= 0.37.

Strength-Duration Curve

After finding the eigenfunctions of the model in closed forms, the next primary aim of
this section is to assess the critical curves by means of the formulas obtained through
the use of perturbation theory. We exclusively attempt to investigate the strength-
duration curve.

In our proposed procedure, the value of s is given by the transcendental equa-
tion (3.68). Employing the first component of the first two left eigenfunctions in the
equation, we are left with

f
(
β,γ, s, ts

)
≜2N 2eλ1s/c

[(
1+p

γC2
)
I3

(
β, s, ts

)− 9pγα√
5β

I4
(
β, s, ts

)]
(6.46)

+3N 1
p
γβI5

(
β, s, ts

)= 0.

The integral I3 in this equation is calculated as

I3
(
β, s, ts

)= −cts−s∫
−s

eλ1ξ/csech3
(
ξ
√

β /2
)

dξ= 1√
β

(
Υ1

(
e−(cts+s)

p
β
)
−Υ1

(
e−s

p
β
))

,
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where

Υ1
(
ρ
)= 2ρ(a+1)/2 (

aρ+a+ρ−1
)(

ρ+1
)2 −ρ(a+1)/2 (

a2 −1
)
Ω

(−ρ,1, (a+1)/2
)
, a = 2λ1

c
√

β

and Ω is the Lerch transcendent as defined e.g. in [10] given by

Ω (z,k, q)=
∞∑

n=0

zn

(q+n)k , (6.47)

provided that |z| < 1 and q ̸= 0,−1, . . .. The integral I3 is also calculated as a function
of Lerch transcendent as

I4
(
β, s, ts

)= −cts−s∫
−s

eλ1ξ/c ξeξ
p

β sech3 (
ξ
√

β /2
)

eξ
p

β +1
dξ= 2

β

(
Υ2

(
e−(cts+s)

p
β
)
−Υ2

(
e−s

p
β
))

,

where

Υ2
(
ρ
)= ρ(b+1)/2

6
(
ρ+1

)3

[((−b2 +2b+3
)
ρ2+ (−2b2+6b+8

)
ρ−b2+4b−3

)
ln

(
ρ
)

−4bρ2 −8bρ+4ρ2 −4b+12ρ+8
]− ρ(b+1)/2 (b+1)

(
b2 −4b+3

)
12

Ω
(−ρ,2, (b+1)/2

)
+

(
ln

(
ρ
)
b3 −3b2 ln

(
ρ
)−b ln

(
ρ
)+6b2+3 ln

(
ρ
)−12b−2

)
ρ(b+1)/2

12
Ω

(−ρ,1, (b+1)/2
)
,

b = 2

(
λ1

c
√

β
+1

)
and finally the integral I5 is calculated as

I5
(
β, s, ts

)= −cts−s∫
−s

sech2
(
ξ
√

β /2
)
tanh

(
ξ
√

β /2
)

dξ

= sech2 (
s
√

β /2
)−sech2 (

(cts + s)
√

β /2
)√

β
.

Moreover, one of the FHN system parameters, namely, β has been assumed to
be small. A further simplification of these integrals can be made using this smallness
assumption by employing the change of variable, ρ = eξ

p
β , so that the limits of all

three integrals become close to 1. Hence, these integrals can be evaluated as the
Taylor expansion around 1 and they become regular functions,

I3
(
β, s, ts

)= 8√
β

e−(cts+s)
p

β∫
e−s

p
β

ρ(a+1)/2(
ρ+1

)3 dρ ≈ 1√
β

1−(cts+s)
p

β∫
1−s

p
β

(
1+ (

ρ−1
)
(a/2−1)

)
dρ

=λ1tss+γ1/2c1ts

(
λ1ts/2− s

√
β −1

)
−γc2

1ts
2√β /2,
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I4
(
β, s, ts

)= 16
β

e−(cts+s)
p

β∫
e−s

p
β

ln
(p

ρ
)
ρ(b+1)/2(

ρ+1
)4 dρ ≈ 1

β

1−(cts+s)
p

β∫
1−s

p
β

(
ρ−1

)
dρ

= γ1/2c1tss+γc2
1ts

2/2,
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Plugging these back into the transcendental equation (6.46), we have

N 2eλ1s/c
(
1+γ1/2C2

)(
λ1tss+γ1/2c1ts

(
λ1ts/2− s

√
β −1

)
−γc2

1ts
2√β /2

)
− 9

p
αN 2eλ1s/c√

5β

(
γc1tss+γ3/2c2

1ts
2/2

)
+ 3N 1β

3/2

2

(
γc1tss

√
β /2+γ3/2c2

1ts
2√β /4

)
= 0,

and equating this up to the order of γ1/2 gives the value of s as

s = c1 (2−λ1ts)
2

(
λ1C2 − c1

√
β

) +O
(
γ
)
. (6.48)

Having demonstrated how to obtain a closed expression for s for small parameter β,
the final step is to substitute the value of s into one of the equations in (3.33), i.e.

Is = N 1

2
ts∫
0

e−λ1τ′W1 (−cτ′− s)⊤ edτ′
= −cN 1

2eλ1s/c
[(

1+p
γC2

)
I3

(
β, s, ts

)− 9pγαp
5β

I4
(
β, s, ts

)] .

(6.49)

The plots of the asymptotic threshold curves given by equation (6.49), compared
against the direct numerical simulations, are shown in Figure 6.13. In the left panel
of the figure, since the value of slow dynamics parameter γ is fixed to 10−5, the nu-
merical curve for ZFK equation is also sketched, and it can be observed that there is
a good agreement between the two numerical curves. In the right panel of the figure,
the values of both γ and β are increased compared to the figure on the left panel
which is why the hybrid numeric-asymptotic prediction is presented instead of the nu-
merical result of ZFK. Expectedly, the asymptotic threshold curve, in this case, is not
better than the hybrid prediction. For each figure, we also plot the classical Lapicque-
Blair-Hill formula (3.64), where the values of the chronaxie and rheobase are obtained
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using the Levenberg-Marquardt nonlinear, least-squares fitting algorithm described in
Section 2.6. The asymptotic threshold curve at larger ts performs slightly better than
the formula (3.64) for much smaller value of γ. As evident from both figures, the classi-
cal Lapicque-Blair-Hill formula does not always fit the numerical data well. We believe
that the fully analytical linear approximation and/or the second-order approximation
of the strength-duration curve would presumably surpass this formula (3.64).
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Figure 6.13: (a) Sketch of the comparison between analytical and numerical strength-
duration curve where we used the perturbation analysis for analytical derivation and
Lapicque and ZFK curves also plotted for the parameters β= 0.01, α= 0.37, γ= 10−5.
(b) Same for β= 0.05, α= 0.37, γ= 10−2, apart from we do not include ZFK result and
add hybrid approach analytical derivation instead.

6.4 The Modified Beeler-Reuter Model

In this section, we apply the theory to a variant of the classical Beeler-Reuter (BR)
model [12], modified to describe phenomenologically the dynamics of neonatal car-
diac cells [4, 18, 19, 106]:

k = 7, D= diag(1,0,0,0,0,0,0), (6.50)

u=
(
V ,h, j, x1,d, f ,Ca

)⊤
(6.51)

f : (V ,h, j, x1,d, f ,Ca)⊤ 7→ (
f V , f h, f j, f x1 , f d, f f , f Ca

)
(6.52)
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where

f V = −IK1(V )− Ix1(V , x1)− INa(V ,h, j)− Is(V ,d, f ,Ca),

f h = αh(V )(1−h)−βh(V )h,

f j = α j(V )(1− j)−β j(V ) j,

f x1 = αx1(V )(1− x1)−βx1(V )x1,

f d = αd(V )(1−d)−βd(V )d,

f f = α f (V )(1− f )−β f (V ) f ,

f Ca = −10−7Is +0.07(10−7 −Ca),

where the ionic currents are given by

IK1(V )= 0.35(0.3−α) IK1(V ),

IK1(V )= 4
(
e0.04(V+85) −1

)
e0.08(V+53)+e0.04(V+53) +

0.2(V +23)
1−e−0.04(V+23) ,

Ix1(V , x1)= g ix(V )x1,

g ix(V )= 0.8
e0.04(V+77) −1

e0.04(V+35) ,

INa(V ,h, j)= (gNa (m(V ))3 h j+ gNac )(V −ENa),

Is(V ,d, f ,Ca)= gs d f (V −Es(Ca)).

The dynamic variable m is fixed at its quasi-stationary state,

m(V ) = αm(V )/(αm(V )+βm(V )),

the gate opening and closing transition rates are described as the following:

αx1(V )= 0.0005e0.083(V+50)

e0.057(V+50) +1
, βx1(V )= 0.0013e−0.06(V+20)

e−0.04(V+20) +1
,

αm(V )= V +47
1−e−0.1(V+47) , βm(V )= 40e−0.056(V+72),

αh(V )= 0.126e−0.25(V+77), βh(V )= 1.7
e−0.082(V+22.5) +1

,

α j(V )= 0.055e−0.25(V+78)

e−0.2(V+78) +1
, β j(V )= 0.3

e−0.1(V+32)+1
,

αd(V )= 0.095e−0.01(V−5)

e−0.072(V−5) +1
, βd(V )= 0.07e−0.017(V+44)

e0.05(V+44)+1
,

α f (V )= 0.012e−0.008(V+28)

e0.15(V+28) +1
, β f (V )= 0.0065e−0.02(V+30)

e−0.2(V+30) +1
,
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α f c λ1 λ2
0.105 0.04232 0.01578 ±2 ·10−8

0.115 0.04497 0.01515 ±1 ·10−8

Table 6.2: Nonlinear and linear eigenvalues for the modified Beeler-Reuter model.

and the calcium reversal potential is defined by the Nernst law,

Es(Ca)=−82.3−13.0287ln(Ca).

Here α is the excitability parameter and special attention was given to α= 0.105 and
α= 0.115, as in [19]. The other parameters of the model are fixed as follows:

gNa = 2.4, gs = 0.45, gNac = 0.003, ENa = 50,

the default parameter values as used in [4, 18, 19, 106].

6.4.1 Hybrid Approach

As in the FitzHugh-Nagumo system, the critical solution is a moving pulse, and thus,
we obtain the CV restitution curves and the critical pulse in a similar way. The CV
restitution curves for the modified Beeler-Reuter model is sketched in Figure 6.14
and the corresponding unstable propagation pulse speeds are given in Table 6.2.
Apart from the critical pulse, the solution at lower branches, the knowledge of the first
two left eigenfunctions and the corresponding eigenvalues is also required. These
ingredients have been found by the straightforward marching method and then verified
by Arnoldi iterations.

6.4.2 Linear Approximation of the Strength-Extent Curve

Figure 6.16 shows the results of the semi-analytical prediction of the strength-extent
curves according to the formulas (3.39)–(3.43). The pre-compatibility functions η(ξ)

are this time nearly unimodal compared to those of FHN system, but the shape of the
η(ξ) graphs is considerably different even though the eigenfunctions for the two cases,
as seen in Figure 6.15, look quite similar. The resulting theoretical critical curves,
shown in Figure 6.16(c,d), are much better for α= 0.105 than for α= 0.115.
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Figure 6.14: CV restitution curves for the BR model for two selected values of the
model parameter. Stable (upper) and unstable (lower) branches are shown by differ-
ent line types.

6.4.3 Linear Approximation of the Strength-Duration Curve

Figure 6.17 exhibits the strength-duration threshold curve analysis for BR model for
two different excitability parameters, α= 0.105 and α= 0.115. The resulting theoretical
critical curves are derived according to the formulas (3.66) and (3.68). Firstly, the
values of s are determined by the transcendental equation (3.68) and compared to
FHN system, it is easier to detect the zeros of this equation, two of which are shown
in the top panel of the figure for ts = 3 and ts = 10. Then, the remaining part is to
insert the found value of s back into theoretical threshold curve generated by (3.66).
The bottom panel of the figure shows these threshold curves being compared with
numerical critical curves. As can be seen from the figure, the analytical estimate for
α= 0.115 provides a somewhat better approximation than that for α= 0.105.

6.5 Chapter Summary

In this chapter, we have successfully tested the initiation of excitation waves on mul-
ticomponent reaction-diffusion test problems. Two different initiation protocols have
been reported for the models considered, except for the Biktashev model, in which
only the linear approximation of the strength-duration curve analysis has been per-
formed as the critical curve in the strength-extent plane is covered in [66]. For this
model, the analytical expression for the critical front and first two left and right eigen-
pairs are explicitly known. We have proposed a hybrid approach based on operator
splitting as a combination of the finite element and finite difference methods to cal-
culate these ingredients numerically. This hybrid procedure for such a model having
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Figure 6.15: BR theory ingredients for (a) α= 0.105 and (b) α= 0.115. Shown are com-
ponents of scaled vector functions, indicated in top right corner of each panel, where
. . . û=Sû, W j = 104S−1W j, and S= diag(10−2,1,1,1,1,1,105). The space coordinate is
chosen so that ξ= 0 at the maximum of V̂ . Correspondence of lines with components
is according to the legends at the top.
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Figure 6.16: Results of BR theory for (a,c) α = 0.105 and (b,d) α = 0.115. (a,b): The
pre-compatibility function η(ξ), used to compute the theoretical critical curve. The V (ξ)
component of the critical solution û is also shown for positioning purposes. (c,d): Com-
parison of the theoretical critical curves obtained in the linear approximation, and the
critical curves obtained by direct numerical simulations.

discontinuous right-hand side is essential, especially when there are no existing an-
alytical closed forms of the ingredients, which is the case for most of the realistic
cardiac excitation models.

Apart from the case of moving critical front, we have also considered two test
problems with moving critical pulse, FihzHugh-Nagumo and Beeler-Reuter models.
The critical pulse and eigenpairs for both models have been respectively obtained by
using AUTO continuation package and the marching method. These ingredients have
been then employed in the analytical description of the threshold curves.

To compare the performance of the proposed approach with direct numerical
threshold curves, the results of two set of parameter values for each model has been
presented. These results have indicated that the described method perform well, but
differently according to the parameters values and possible explanations given in the
text.

The FHN system is considered as a ZFK equation extended by a slow variable. It
is possible, therefore, that the perturbation theory can be applied in a straightforward
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Figure 6.17: Equation (3.68) that defines the shift s in terms of ts and comparison of
analytical and numerical strength-duration curve for the BR model for α = 0.105 and
α= 0.115.

way to determine the critical pulse and the first two eigenfunctions corresponding
to the first two leading eigenvalues of FHN system, and even hence the critical curve
itself analytically. This alternative approach has also been given in details in this chap-
ter.
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Figure Parameter(s) & Discretization & L

Fig. 6.1 α= 1,τ∗ = 8.2,xs = 0.6,∆ξ = 0.05,Us = 2.59404,∆τ = 4∆ξ
2/9,L = 30

Fig. 6.2 (top) α= 1,τ∗ = 8.2,xs = 1.5,Us = 2.59403,∆ξ = 0.05,∆τ = 4∆ξ
2/9,L = 20

Fig. 6.2 (bottom) α= 1,τ∗ = 8.2,xs = 1.5,Us = 2.59404,∆ξ = 0.05,∆τ = 4∆ξ
2/9,L = 20

Fig. 6.3 α= 1,τ∗ = 8.2,∆n = 7,∆ξ =∆/∆n,∆τ = 4∆ξ
2/9,L = 40∆

Fig. 6.4 α= 1,τ∗ = 8.2,∆n = 5,6,7,8,9,10,∆ξ =∆/∆n,∆τ = 4∆ξ
2/9,L = 40∆

Fig. 6.5 (a,c) τ∗ = 7.8,α= 2/3,∆ξ = 0.03,∆τ = 4∆ξ
2/9,L = 30

Fig. 6.5 (b,d) τ∗ = 8,α= 9/11,∆ξ = 0.03,∆τ = 4∆ξ
2/9,L = 30

Fig. 6.6 γ= 0.01,α= 0.37,β= 0.05(red,blue),β= 0.13(green,violet)
Fig. 6.7 & 6.8 γ= 0.01,α= 0.37,β= 0.05(a),β= 0.13(b),∆ξ = 0.03,∆τ = 4∆ξ

2/9
Fig. 6.9(a,c) γ= 0.01,α= 0.37,β= 0.05,∆ξ = 0.03,∆τ = 4∆ξ

2/9,L = 60
Fig. 6.9(b,d) γ= 0.01,α= 0.37,β= 0.13,∆ξ = 0.03,∆τ = 4∆ξ

2/9,L = 60
Fig. 6.10 & 6.12 γ= 0.01,α= 0.37,β= 0.05

Fig. 6.11(a,b) γ= 0.001,β= 0.05,α= 0.37
Fig. 6.11(c,d) γ= 10−6,β= 0.01,α= 0.37
Fig. 6.13(a) β= 0.01,α= 0.37,γ= 10−5

Fig. 6.13(b) β= 0.05,α= 0.37,γ= 10−2

Fig. 6.14 α= 0.105(red,blue),α= 0.115 (green,violet)
Fig. 6.15 α= 0.105(a),α= 0.115(b),∆ξ = 0.03,∆τ = 4∆ξ

2/9
Fig. 6.16 α= 0.105(a,c), α= 0.115(b,d),∆ξ = 0.03,∆τ = 4∆ξ

2/9
Fig. 6.17 α= 0.105(a,c),α= 0.115(b,d),∆ξ = 0.03,∆τ = 4∆ξ

2/9

Table 6.3: The complete set of parameters and discretization values used in the fig-
ures.
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7
CONCLUSION AND FUTURE WORK

In this final chapter, we shall summarise the results we have obtained in this thesis,
and then discuss the implications and limitations of the research. We finally conclude
the chapter with an outline of further directions.

7.1 Summary and Main Results

The main aim of this thesis was to substantially extend the method proposed in [68]
for analytical description of the threshold curves that separate the basins of attraction
of propagating wave solutions and of decaying solutions of certain reaction-diffusion
models of spatially-extended excitable media. The specific aims of this thesis were:

• Extending the proposed theory to analysis of a wider class of excitable sys-
tems, including multicomponent reaction-diffusion systems, systems with non-
self-adjoint linearized operators and in particular, systems with moving critical
solutions (critical fronts and critical pulses).

• Building an extension of this method from a linear to a quadratic approximation
of the (center-)stable manifold of the critical solution to demonstrate the discrep-
ancy between the analytical based on the linear approximation and numerical
threshold curves encountered when considering this quadratic approximation.

The mathematical structure of the theory of these main aims listed above has been
outlined in Chapter 3. The essential ingredients of the theory are the critical solution
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itself, and the eigenfunctions of the corresponding linearized operator. For the linear
approximation in the critical nucleus case, we need the leading left (adjoint) eigen-
function; in the moving critical solution case, we need two leading left eigenfunctions;
and for the quadratic approximations we require as many eigenvalues and left and
right eigenfunctions as possible to achieve better accuracy. Of course, closed analyt-
ical formulas for these ingredients can only be obtained in exceptional cases, and in
a more typical situation a “hybrid” approach is required, where these ingredients are
obtained numerically. In Chapter 4, we have provided insight into how the numerical
computation of these essential ingredients and the direct numerical simulation of the
threshold curves can be carried out. Specifically, the following has been covered in
Chapter 4:

• The finite difference and finite element numerical simulations of the strength-
extent and strength-duration curves generated using the bisection algorithm.

• A numerical procedure for the determination of the critical nucleus that is a
unique, time-independent solution of one-component reaction-diffusion equa-
tion.

• A shooting technique for the numerical solution of the initial value problem with
the initial condition very close to initiation threshold in order to identify the mov-
ing critical solution, in particular the critical front, by means of the operator split-
ting method.

• Providing insight into how the conduction velocity restitution curves are com-
puted with the help of the continuation software AUTO [34] as a solution of the
periodic boundary value problem such that one end of this curve (lower branch)
defines the critical pulse solution.

• Numerical computation of the eigenvalues, and left and right eigenfunctions us-
ing modified power iteration method that solves the linearized and adjoint lin-
earized eigenvalue problems.

• Proposing the standard implicitly restarted Arnoldi iterative method to approx-
imately determine the eigenpairs as an alternative and usually less time-
consuming technique compared to the power iteration.

The analytical theory and hybrid procedure have been demonstrated on five dif-
ferent test problems given in Chapter 5 and Chapter 6. Chapter 5 is dedicated to
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the one-component reaction-diffusion test problems where the critical solution is the
critical nucleus and Chapter 6 contains the multicomponent test problems with either
critical front or critical pulse solution. Some results that we have presented in these
chapters are as follows:

• The hybrid numerical method of calculating the essential ingredients of the the-
ory has been applied in a simple, generic manner as described in Chapter 4
even when we have the closed analytical formulas for some of these ingredients
so that the hybrid method is effectively validated.

• In all models, the analytical threshold curves are compared with the ones ob-
tained from direct numerical simulations. We have applied both the linear and
quadratic approximations for one-component test problems, ZFK and McKean
models. The quadratic approximation agreed very well with numerical threshold
curves compared to the linear approximations’ results, as would be expected.

• For the models with discontinuous right hand sides, the standard finite difference
discretization leads to the “frozen solution” phenomenon, which directs us to
a finite-element approximation instead and this approach prevented this frozen
solution as in explained in more detail in the appendices at the end of this thesis.

• For the multicomponent test problems, one is unlikely to obtain the analytical
description of the ingredients of the threshold curves, so we have invoked the
hybrid numerical-asymptotic method to deal with these ingredients. Neverthe-
less, we have presented a reasonable approach for FHN system to provide a
full analytical treatment by the use of the perturbation theory that benefits from
the exact analytical solutions of its primitive version, ZFK equation.

• We have also developed a numerical procedure based on an operator splitting
procedure for obtaining the critical front in a comoving frame of reference and
the first two leading left and right eigenfunctions along with corresponding eigen-
values for Biktashev model, as described in detail in Appendix C.

7.2 Research Implications and Limitations

As is emphasised in this thesis, the essential ingredients of the theory can not al-
ways be analytically calculated, and therefore we have presented the hybrid approach,
which describes how to obtain these ingredients numerically. The main disadvantages
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of such approach are that it naturally causes some error in the prediction of any con-
sidered ingredient(s), and also increases the computational expense of the theory.
For example, when performing the quadratic approximation in McKean equation, we
have considered a limited number of eigenpairs instead of the whole spectrum, and a
finite interval x ∈ [0,L) as an approximation of x ∈ [0,∞). With this in mind, the choice
of the parameter L is directly related to the required computation time and consider-
ing the performance of the quadratic approximation related to L, a large amount of
computational effort is usually required.

The accuracy and efficiency of the hybrid computation of the essential ingredients
are dependent on the numerical scheme and mesh resolution. In general, we have
chosen the spatial and temporal discretizations in the way that we keep the numerical
error under control and the computation time as small as possible. It is obvious that
some of the numerical schemes discussed in this thesis do not outperform other long-
running and mathematically more complicated numerical schemes. In particular, the
numerical study of Biktashev model has introduced the spurious oscillations and first-
order accurate result near the discontinuities due to Beam-Warming method, which
can be tackled using some advanced shape-preserving advection schemes (see, for
example, [114]). However, these approaches demand high computational cost, which
is why they are beyond the scope of this thesis.

Obviously, we have considered stepwise rectangular initial and boundary profiles
throughout the thesis. However, the theory can be easily generalized to any kind of
shape. Note that the hybrid approach determining the essential ingredients of the
theory is actually independent of the choice of both initial and boundary profiles.

As the results of the theory pointed out, our method provides more accurate re-
sults for some parameter values than the others, especially in the linear analysis. Even
though the quadratic approximation offered for one-component test problems with the
critical nucleus solutions provides more accurate estimates, still it is not fully under-
stood why the choice of parameter values significantly matters. We can, however,
point several possible likely explanations for this disagreement based on empirical ev-
idences. As can be observed from the related figures, the linear approximation works
better if the correction induced by the quadratic approximation is small. Yet again,
this has been verified only for the scalar equations since we have not investigated
the quadratic approximation for the cases of moving critical solutions. Another possi-
ble explanation for such discrepancy would be linked to the behaviour of the discrete
and continuous spectra, and hence corresponding eigenfunctions. We also believe
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that the absolute difference between the first (for the case of the critical nucleus) or
second (for the case of the moving critical solutions) leading eigenvalue and the next
eigenvalues with biggest real part has the effect of making the linear approximation
better or worse.

7.3 Future Work

• The theory established in this thesis is limited to one spatial dimension. There-
fore, it could be of interest for further researches to adopt the theory to two and
three dimensions.

• The proposed theory based on the moving critical solutions involves only the
linear approximation. As an additional consideration, the quadratic approxima-
tion for the cases of moving critical solutions can also be carried out. This could
lead us to understand why the performance of the theory varies according to the
choices of the parameters.

• Another extension of the work worth considering would be to investigate the
theory on some up-to-date realistic cardiac excitation models [28], simplified
cardiac models with unusual properties [36, 59], and other excitable media such
as combustible media [64, 83, 121], pipe flow [8, 9] etc.

• Throughout the theory, we have made the assumption that the spectrum is real.
This is, however, not necessarily the case for the non-self-adjoint problems,
which remains an interesting direction for future research.

• Although it is rather hard to obtain, development of new procedure to provide
closed analytical formulas for essential ingredients could also be another inter-
esting line of research. This is needed especially when we compare our theory
with some other well-known approaches. For instance, it is known that the clas-
sical Lapicque-Blair-Hill formula does not always work well. We have shown that
this is indeed the case for the FHN system by means of the asymptotic pertur-
bation theory analysis.
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A
FINITE ELEMENT DISCRETIZATION FOR THE MCKEAN

MODEL

Here, we present the finite element discretization formula for the McKean model to
solve initial-value problems both for the nonlinear equation,

∂u
∂t

= ∂2u
∂x2 −u+H(u−a),

and its linearization,
∂v
∂t

= ∂2v
∂x2 −v+δ(u−a)v.

These are equivalent (for u decreasing in x) to

∂u
∂t

= ∂2u
∂x2 −u+H(x∗− x),

∂v
∂t

= ∂2v
∂x2 −v+ 1

u′(x∗)
δ(x− x∗)v,

where x∗ = x∗(t) is defined by
u(x∗(t), t)= a.

As the right-hand sides of each equation include Heaviside step and Dirac delta func-
tions, the finite-element treatment is required for both cases, and we present the de-
tails for both cases together, by writing both as

∂w
∂t

= ∂2w
∂x2 + f (w, x), (A.1)
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where w = u, f =−u+H(u−a)=−u+H(x∗−x) in one case, and w = v, f =−v+δ(u−a)v =
−v+ (1/u′(x∗))δ(x− x∗)v in the other case.

Multiplying (A.1) by any “test function” Φ(x), and integrating over the domain gives
the weak formulation of the problem,∫ L

0
Φ(x)

{
∂w
∂t

− ∂2w
∂x2 − f (w, x)

}
dx = 0.

As is known and stated in Section 2.6, the solution of the weak formulation is also
the solution of the original equation. After integration by parts and taking into account
Neumann boundary conditions for w, the weak formulation can be formally re-written
as ∫ L

0

[
Φ(x)

(
∂w
∂t

− f (w, x)
)
+ ∂Φ

∂x
∂w
∂x

]
dx = 0. (A.2)

The difference is, of course, that whereas the original formulation requires that w is
twice differentiable in x, the weak formulation (A.2) uses only first derivatives of w,
and can be applied as long as the test functions Φ are once differentiable.

The standard finite element method is the Galerkin method applied to (A.2). It uses
a set of linearly independent functions,Φ j(x), j = 1, . . . , N, called the finite elements, as
the test functions, and seeks the approximation of the solution in the span of this
same set:

w(x, t)≈ w̌(x, t)=
N∑

j=0
w̌ j(t)Φ j(x). (A.3)

Substitution of (A.3) into (A.2) for Φ=Φi, i = 1, . . . , N, leads to the system of equations

N∑
j=0

A i, j
dw̌ j

dt
+

N∑
j=0

Bi, jw̌ j = C i
(
w̌ j

)
, i = 1, . . . , N,

or in the vector form, for w̌(t)=
(
w̌ j

)
,

A
dw̌
dt

+Bw̌=C, (A.4)

where the coefficients are given by

A i, j =
∫ L

0
Φi(x)Φ j(x)dx, (A.5a)

Bi, j =
∫ L

0
Φ′

i(x)Φ′
j(x)dx, (A.5b)

C i
(
w̌ j

)= ∫ L

0
Φi(x) f

(
N∑

j=0
w̌ jΦ j(x), x

)
dx. (A.5c)
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Throughout the thesis, we stick to the same simple and popular choice of the test
function, the piecewise linear tent functions:

Φi (x)=


(x− xi−1) /∆x, x ∈ [xi−1, xi] ,

(xi+1 − x) /∆x, x ∈ [xi, xi+1] ,

0, otherwise

(A.6)

for a regular grid of (xi),

xi = (i−1)∆x, i = 1, . . . , N, ∆x = L/ (N −1). (A.7)

Obviously, in this case

Φ j(xi)=
1, if i = j,

0, otherwise

and therefore w̌(xi) = w̌i. For these test functions, the mass matrix A =
(
A i, j

)
and the

stiffness matrix B =
(
Bi, j

)
are tridiagonal matrices as respectively given in (2.73) and

(2.74) whereas the load vector C=
(
C i

)
is expressed as

C (w̌)=−Aw̌+F, (A.8)

where F=
(
F i

)
and differs for the nonlinear problem and for the linearized problem.

For the nonlinear problem, w̌= ǔ, we get F=F(1) +F(2), where

F (1)
i = 1

2∆x



∆x
2, ǔi−1 > a, ǔi > a,

(x∗− xi−1)2, ǔi−1 > a, ǔi < a,

∆x
2 − (x∗− xi−1)2, ǔi−1 < a, ǔi > a,

0, otherwise,

(A.9)

and

F (2)
i = 1

2∆x



∆x
2, ǔi+1 > a, ǔi > a,

(x∗− xi+1)2, ǔi+1 > a, ǔi < a,

∆x
2 − (x∗− xi+1)2, ǔi+1 < a, ǔi > a,

0, otherwise

(A.10)
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for i = 2, . . . , N −1, and

F1 = 1
4∆x



2∆x
2, ǔ1 > a, ǔ2 > a,

(x∗− x0)2 + (x2 − x∗)2, ǔ1 < a, ǔ2 > a,

2∆x
2 − (x∗− x0)2− (x2− x∗)2, ǔ1 > a, ǔ2 < a,

0, otherwise,

(A.11)

and

FN = 1
4∆x



2∆x
2, ǔN−1 > a, ǔN > a,

(x∗− xN+1)2 + (xN−1 − x∗)2, ǔN−1 > a, ǔN < a,

2∆x
2− (x∗− xN+1)2 − (xN−1− x∗)2, ǔN−1 < a, ǔN > a,

0, otherwise

(A.12)

for the boundary points. In these formulas, where x∗ is the point such that ǔ(x∗, t) =
a by linear interpolation, i.e. for m such that (ǔm − a)(ǔm+1 − a) ≤ 0, we have x∗ =
((ǔm+1−a)xm + (a− ǔm)xm+1) /(ǔm+1 − ǔm), and the definition (A.7) is extended to i = 0

and i = N +1.
For the linear problem, w̌= v̌, we get

Fm = 1
a∆x2

[
(xm+1− x∗)2 v̌m + (xm+1− x∗) (x∗− xm) v̌m+1

]
, (A.13)

Fm+1 = 1
a∆x2

[
(xm+1 − x∗) (x∗− xm) v̌m + (x∗ =−xm)2 v̌m+1

]
, (A.14)

F j = 0, j ̸= m,m+1, (A.15)

where m and x∗ are defined based on the nonlinear solution ǔ based on the same
rule as above.

After forming the mass and stiffness matrices, and the load vector, we are left to
apply the generalized trapezoidal rule [110] to approximate the time derivative in the
residual of (A.4), which results in

(A+∆tθB)w̌n+1 = (A−∆t (1−θ)B)w̌n +C, (A.16)

for the regular discretization of time

tn = n∆t, n = 0,1. . . , ∆t = t1− t0. (A.17)

and the parameter θ is fixed to 1/2 so that we have a second-order neutrally stable
scheme.
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B
ON "FROZEN NUCLEI" IN THE MCKEAN EQUATION

As already mentioned in the previous chapters, the critical nucleus solution, which
is even, unstable, nontrivial time-independent solution of one-dimensional one-
component reaction-diffusion system (3.1) (with k=1) plays a crucial role in under-
standing initiation of propagating waves in ZFK and McKean equations. In addition,
such solution is unique as shown e.g. in [101]. For the sake of completeness and gen-
erality, we have presented the general technique approximating this critical nucleus
as outlined in Section 4.4 but without describing specific numerical integration. The
choice of the numerical method solving the discretized version of McKean equation is
particularly important, we have considered the standard finite difference discretization
at first. The numerical results based on this discretization, however, are not promising
and convincing since the numerical critical nucleus as defined by the standard differ-
ence scheme is not actually unique and is stable. This scenario is similar to “propa-
gation block” or “propagation failure” observed in several different forms of discrete
reaction-diffusion system (see e.g. [37, 62, 65, 72]). Keener [72] established that the
generic system with a smooth cubic nonlinearity has “frozen solutions” for sufficiently
large discretization steps. Roughly speaking, for McKean model, however, the frozen
solution exists for all discretization steps due to the discontinuous right-hand side, as
will be explained in more details below.

For the regular grid discretization,

u j = u(x j), x j = j∆x, j ∈Z, u− j ≡ u j,
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APPENDIX B. ON "FROZEN NUCLEI" IN THE MCKEAN EQUATION

the "discrete critical nucleus" is the nontrivial solution of

u j−1 −2u j +u j+1

∆x2 −u j +H(u j −a)= 0. (B.1)

Since the critical nucleus is even in x and strictly monotonically decreasing in 0 ≤ x <
∞, we let u j > a for j ∈ 0,m and u j < a otherwise. Then, we set v j = u j −H(u j −a) so
that (B.1) takes the same form on the each of the intervals

v j−1 −2v j +v j+1−∆x
2v j = 0. (B.2)

For v j ∝σ j, this gives

σ2− (
2+∆x

2)σ+1= 0,

and so σ=µ or σ= 1/µ, where

µ ≜ 2+∆x
2 +∆x

√
4+∆x2

2
. (B.3)

The general solution of equation (B.2) satisfying the boundary condition lim j→∞ v j = 0

is

v j =
Aµ− j, j ≥ m,

B
(
µ j +µ− j) , j ≤ m+1,

(B.4)

for some constants A and B, and these are specified by the matching conditions
implying that the two solutions should coincide at j = m and j = m+1

A =
(
µ2m+1 −1

)
µm

(
µ+1

) , B =− 1
µm

(
µ+1

) . (B.5)

The critical nucleus solution is then obtained by substituting these coefficients into
(B.4) and then v j back into u j = v j +H(u j −a)

û j =


1− µ j +µ− j

µm
(
µ+1

) , j ∈ 0,m+1,(
µ2m+1 −1

)
µ− j

µm
(
µ+1

) , j ∈ m,∞,

(B.6)

where we have considered a ∈ (ûm+1, ûm), i.e. there is no corresponding value of the
discretized solution exactly equal to a. The parameter a can be written as

a ∈
(
µm −µ−m−1

µm+1 +µm ,
µm+1−µ−m

µm+1+µm

)
= (

am,am
)
.
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Figure B.1: Non-uniqueness of the discrete critical nucleus solutions is observed for
some a > a1(∆x), and for all a > a2(∆x).

This verifies that there is a range of possible values of a for a given m. Hence, at a
fixed discretization step ∆x, the critical nucleus solution discontinuously depends on
the parameter a, and it is possible to obtain more than one solution for some com-
binations of ∆x and a, as opposed to the uniqueness property of the critical nucleus.
Indeed, this can be shown by solving the inequality

am+1 < am,

we find the following relation

m > m1 ≜
ln

(
µ2+µ+1

)
2lnµ

− 3
2

. (B.7)

Considering that the discrete critical nucleus solution (B.6) approximates the exact
critical nucleus solution (5.14), we have the corresponding matching point coordinate

x∗ > x∗1 ≈∆xm1, (B.8)

and then from (5.15)

a > a1 ≈ 1
2

(
1−e−2x∗1

)
= 1

2

[
1−exp

(
−∆x

(
ln

(
µ2+µ+1

)
lnµ

−3

))]
. (B.9)

Equations (B.3), (B.7), (B.8) and (B.9) define a1 as a function of ∆x, such that for
a > a1(∆x) there can be more than one discrete solution corresponding to the same a.
Similarly, by solving the inequality

am+2 < am,

we obtain

m > m2 ≜
ln

(
µ4 +µ3+µ2 +µ+1

)
2lnµ

− 5
2

. (B.10)
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In this case, the matching point coordinate is x∗2 ≈ ∆xm2 and we have the following
relation derived from (5.15)

a > a2 ≈ 1
2

(
1−e−2x∗2

)
= 1

2

[
1−exp

(
−∆x

(
ln

(
µ4+µ3 +µ2+µ+1

)
lnµ

−5

)]
. (B.11)

Figure B.1 shows the graph of functions a1 (∆x) and a2 (∆x), which characterizes the
non-uniqueness of the discrete critical nucleus solutions.

Moreover, to investigate the stability of the discrete critical nucleus solution, we
consider the linearized system around the critical nucleus

dv j

dt
= v j−1−2v j +v j+1

∆x2 −v j, j ∈Z. (B.12)

The spectrum of the system (B.12) in ℓ2(Z) is [−1−4/∆x
2,−1], with eigenpairs

W j = exp(iκ j)+exp(−iκ j), λ=−1−2(1−cosκ)/∆x
2, κ ∈R.

Thus, the discretized critical nuclei are almost surely asymptotically stable in the linear
approximation. Contrary to the expectation that any initial condition with amplitude Us

either ignites or decays (likewise for Is), the result of the direct numerical simulation
encounters time-independent solutions behaving like these “critical nucleus” solutions.
Generally speaking, these “frozen” solutions are to be observed for all discretization
steps and the region where “frozen” solutions occur is inversely proportional to the
discretization step. This “frozen” region is illustrated in Figure B.2.
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Figure B.2: The "frozen" nuclei solution of the McKean model obtained by direct nu-
merical simulations for different discretization steps where panel (a) corresponds to
the strength-extent curve analysis and panel (b) is for the strength-duration curve.
Parameters: a = 0.48, L = 10, ∆t = 4∆x

2/9.
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C
NUMERICAL APPROACHES TO THE BIKTASHEV MODEL

This appendix contains the discretization formula for the Biktashev model. Specifically,
we aim to provide the numerical procedure for finding the critical front and first two
leading eigenvalues and the corresponding left and right eigenfunctions accordingly.
To begin with, we consider an even extension of the model,

∂E
∂t

= ∂2E
∂x2 +H(E−1)h,

∂h
∂t

= 1
τ∗

(H(−E)−h) , x ∈ (−∞,∞) , t ∈ (0,∞) , (C.1)

E (x,0)= EsH(xs − x)H(xs + x)−α.

In the co-moving frame of reference ξ= x− s (τ), τ= t, (C.1) becomes

∂E
∂τ

= ∂2E
∂ξ2 + s′ (τ)

∂E
∂ξ

+H(E−1)h,

∂h
∂τ

= s′ (τ)
∂h
∂ξ

+ 1
τ∗

(H(−E)−h) , ξ ∈ (−∞,∞) ,τ ∈ (0,∞) , (C.2)

E (ξ,0)= EsH(−ξ)H(ξ+2xs)−α.

We also need to impose a pinning condition in order to find the value of s′ which varies
at each time step. This can be achieved by considering the shape of E component
of the critical front solution. A common way to define such condition is to choose a
constant E∗ represented once in the front profile for every time step,

E (s (τ),τ)= E∗. (C.3)

For simplicity, we take E∗ = 0.
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C.1 Discretization Formula for the Critical Front

Numerical analysis of the critical front for Biktashev model is based on a combination
of finite element and finite difference methods by using the operator splitting method
(see e.g. [50]). Finite element method is used to handle the right-hand sides of the
equations with discontinuous terms involving the Heaviside step function. For the stan-
dard finite difference discretization, we use the Beam-Warming scheme for the first
spatial derivatives of both E and h. We set the domain of ξ and τ coordinates to be
−L ≤ ξ≤ L, 0≤ τ≤ τ f so that the grid points ξi, τn are

ξi =−L+ i∆ξ, τn = n∆τ,

where ∆ξ > 0 and ∆τ > 0 are fixed space and time steps, and i = 1,2, · · · , N, n =
0,1, · · · , M for N, M > 0 . For convenience, we use the following shorthand notations:
En

i , hn
i as the numerical approximation of E (ξi,τn) and h (ξi,τn), En

i∗ = 0 as our pinning
condition which will be further explained later, and finally cn = s′ (τn) as the speed at
n− th time step. Using these representations, we solve (C.2) numerically using oper-
ator splitting method approach in the following seven steps:
Step 1(Finite element method): As a first step, we solve E equation without the ad-
vection term as it is multiplied by the speed which is not determined yet

∂E
∂τ

= ∂2E
∂ξ2 +H(E−1)h. (C.4)

We have to employ the finite element method due to the discontinuous Heaviside step
function which gives

[A+∆τBθ]En+1/2
i = [A−∆τB (1−θ)]En

i +∆τDhn
i , (C.5)

where we set θ = 0.5. The matrices A and B are the mass and stiffness matrices as
defined in (2.73) and (2.74), while the matrix D is the matrix obtained from the kinetics
term

D= [
di, j

]= ∫ L

−L
H(E−1)Φi(ξ)Φ j(ξ)dξ, (C.6)

which is a tridiagonal matrix with following diagonal elements,

di,i =
∫ L

−L
H(E−1)Φ2

i (ξ) dξ= 1
∆ξ

2

(∫ ξi

ξi−1

H(E−1)(ξ−ξi−1)2 dξ

+
∫ ξi+1

ξi

H(E−1)(ξi+1 −ξ)2 dξ
)
= I3

i + I4
i, for i = 2,3, · · · , N −1 (C.7)
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where

I3
i = 1

3∆ξ
2



∆ξ
3, E i−1 > 1, E i > 1,(

ξ∗i−1 −ξi−1
)3 , E i−1 > 1, E i < 1,

∆ξ
3− (

ξ∗i−1 −ξi−1
)3 , E i−1 < 1, E i > 1,

0, otherwise,

(C.8)

I4
i = 1

3∆ξ
2



∆ξ
3, E i > 1, E i+1 > 1,

∆ξ
3− (

ξi+1 −ξ∗i+1

)3 , E i > 1, E i+1 < 1,(
ξi+1 −ξ∗i+1

)3 , E i < 1, E i+1 > 1,

0, otherwise.

(C.9)

The supradiagonal elements of D are evaluated as

di,i+1 =
∫ L

−L
H(E−1)Φi(ξ)Φi+1(ξ)dξ= 1

∆ξ

∫ ξi+1

ξi

H(E−1)(ξi+1 −ξ) (ξ−ξi) dξ

= 1
6∆ξ

2



∆ξ
3, E i > 1, E i+1 > 1,

3ξi+1ξ
∗
i+1

2 +3ξi+1ξ
2
i −2ξ∗i+1

3 −ξ3
i

−6ξi+1ξiξ
∗
i+1 +3ξiξ

∗
i+1

2, E i > 1, E i+1 < 1,

ξ3
i+1 −3ξi+1ξ

∗
i+1

2+2ξ∗i+1
3 −3ξiξ

∗
i+1

2

−3ξiξ
∗
i+1

2+6ξiξi+1ξ
∗
i+1, E i < 1, E i+1 > 1,

0, otherwise,

(C.10)

and finally the subdiagoanal elements are

di−1,i =
∫ L

−L
H(E−1)Φi(ξ)Φi−1(ξ)dξ= 1

∆ξ
2

∫ ξi

ξ−1
H(E−1)(ξ−ξi−1) (ξi −ξ) dξ

= 1
6∆ξ

2



∆ξ
3, E i−1 > 1, E i > 1,

3ξiξ
∗
i−1

2+3ξi−1ξ
∗
i−1

2 +3ξiξ
2
i−1−ξ3

i−1

−6ξi−1ξiξ
∗
i−1−2ξ∗i−1

3, E i−1 > 1, E i < 1,

ξ3
i +6ξiξi−1ξ

∗
i−1+2ξ∗i−1

3 −3ξi−1ξ
2
i

−3ξiξ
∗
i−1

2 −3ξi−1ξ
∗
i−1

2, E i−1 < 1, E i > 1,

0, otherwise.

(C.11)
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Inserting the no-flux boundary conditions at each end gives

d1,1 = 1
3∆ξ

2



2∆ξ
3, E1 > 1, E2 > 1,

2∆ξ
3− (

ξ2−ξ∗2
)3 − (

ξ∗2 −ξ2 +2∆ξ

)3 , E1 > 1, E2 < 1,(
ξ∗2 −ξ2+2∆ξ

)3 + (
ξ2 −ξ∗2

)3 , E1 < 1, E2 > 1,

0, otherwise,

(C.12)

dN,N = 1
3∆ξ

2



2∆ξ
3, EN−1 > 1, EN > 1,(

ξN−1+2∆ξ−ξ∗N−1

)3+ (
ξ∗N−1 −ξN−1

)3 , EN−1 > 1, EN < 1,

−(
ξN−1 +2∆ξ−ξ∗N−1

)3 +2∆ξ
3− (

ξ∗N−1 −ξN−1
)3 , EN−1 < 1, EN > 1,

0, otherwise.

(C.13)

Having in mind that the tent functions we have chosen are piecewise linear, the
points ξ∗i−1, ξ∗i+1, ξ∗2 and ξ∗N−1 are then obtained from the linear interpolation method

ξ∗k+1 =
[E (ξk+1)−1]ξk + [1−E (ξk)]ξk+1

E (ξk+1)−E (ξk)
,

for k = 1, i−2, i, N −2.
Step 2(Thomas algorithm): Inserting the elements of the matrices A, B and D into
(C.5) yields 

β1 γ1 0 0

α2 β2 γ2

α3 β3
. . .

. . . . . . γN−1

0 αN βN





En+1/2
1
...
...
...

En+1/2
N


=



δ1
...
...
...

δN


, (C.14)

where

βk = ak,k +∆τ (1−θ)bk,k, for k = 1,2, · · · , N,

αm+1 = γm = am,m+1 +∆τ (1−θ)bm,m+1, for m = 2, · · · , N −1,

δ1 =
[
a1,1+∆τ (1−θ)b1,1

]
En

1 +
[
a1,2 +∆τ (1−θ)b1,2

]
En

2 +∆τ

[
d1,1hn

1 +d1,2hn
2
]
,

δi =
[
ai,i−1 +∆τ (1−θ)bi,i−1

]
En

i−1 +
[
ai,i +∆τ (1−θ)bi,i

]
En

i +
[
ai,i+1 +∆τ (1−θ)bi,i+1

]
En

i+1

+∆τ

[
di,i−1hn

i−1+di,ihn
i +di,i+1hn

i+1
]
, for i = 2, · · · , N −1,

δN = [
aN,N−1+∆τ (1−θ)bN,N−1

]
En

N−1+
[
aN,N +∆τ (1−θ)bN,N

]
En

N

+∆τ

[
dN,N−1hn

N−1 +dN,N hn
N

]
.
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System (C.14) is a tridiagonal system of N equations that can be solved using a
standard Gaussian elimination method such as Thomas algorithm and using such
algorithm is sometimes crucial as it leads to a reduced computational cost. The back
substitution procedure (see e.g. [134] for more detailed explanation) generates the
solution as

γ′i =


γi
βi

, i = 1,
γi

βi−αiγ
′
i−1

, i = 2,3, · · · , N −1,
(C.15)

δ′i =


δi
βi

, i = 1,
δi−αiδ

′
i−1

βi−αi−γ′i−1
, i = 2,3, · · · , N −1,

(C.16)

En+1/2
N = δ′N ,

En+1/2
i = δ′i −γ′iE

n+1/2
i+1 , i = N −1, N −2, · · · ,1. (C.17)

Step 3(Finding the value of the speed): We have divided E equation in (C.2) into
two parts and it remains to find the solution of the advection step in the splitted
scheme. Before we update the solution, it is necessary to find the value of the speed
according to the pinning condition En+1/2

i∗ = 0, where the index i∗ corresponds to an
integer value, indicating the spatial position at which the solution is equal to zero ini-
tially, i.e. ξi∗ = 0. As the Beam-Warming method is a second-order accurate scheme,
we find the speed value using the Beam-Warming scheme by means of the discretized
solution found in the previous step as,

c =−
∆ξ

(
3En+1/2

i∗ −4En+1/2
i∗−1 +En+1/2

i∗−2

)
2∆τ

(
En+1/2

i∗ −2En+1/2
i∗−1 +En+1/2

i∗−2

) (C.18)

−

√[
∆τ

2∆ξ

(
3En+1/2

i∗ −4En+1/2
i∗−1 +En+1/2

i∗−2

)]2− 2∆τ
2

∆ξ
2

(
En+1/2

i∗ −2En+1/2
i∗−1 +En+1/2

i∗−2

)(
En+1/2

i∗ −E∗
)

∆τ
2

∆ξ
2

(
En+1/2

i∗ −2En+1/2
i∗−1 +En+1/2

i∗−2

) .

This formula is actually derived from the following standard Beam-Warming dis-
cretization, which is quadratic in c.
Step 4(Beam-Warming scheme): The next step is to use the Beam-Warming scheme
to update the solution of advection term of E component at step n+1,

En+1
i =En+1/2

i + c∆τ

2∆ξ

(
3En+1/2

i −4En+1/2
i−1 +En+1/2

i−2

)
+

(
c∆τp
2∆ξ

)2 (
En+1/2

i −2En+1/2
i−1 +En+1/2

i−2

)
.

(C.19)
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Step 5(Finite element method): In a similar manner, the equation of h component
can be divided into two parts and once again, we use finite element method to solve
h equation with the advection term removed

∂h
∂τ

= 1
τ∗

(H(−E)−h) , (C.20)

which gives

A
[
1+ ∆τθ

τ∗

]
hn+1/2

i =A
[
1− ∆τ (1−θ)

τ∗

]
hn

i +
∆τG
τ∗

, (C.21)

where the load vector G is

G = [g i]=
∫ L

−L
Φi(ξ)H(−E) dξ, (C.22)

with entries

g i = 1
∆ξ

(∫ ξi

ξi−1

H(−E) (ξ−ξi−1) dξ+
∫ ξi+1

ξi

H(−E) (ξi+1−ξ) dξ
)
= I5

i + I6
i,

where

I5
i = 1

2∆ξ



∆ξ
2, E i−1 < 0, E i < 0,(

ξ∗i−1−ξi−1
)2 , E i−1 < 0, E i > 0,

∆ξ
2− (

ξ∗i−1 −ξi−1
)2 , E i−1 > 0, E i < 0,

0, otherwise,

(C.23)

and

I6
i = 1

2∆ξ



∆ξ
2, E i < 0, E i+1 < 0,

∆ξ
2− (

ξi+1 −ξ∗i+1

)2 , E i < 0, E i+1 > 0,(
ξi+1−ξ∗i+1

)2 , E i > 0, E i+1 < 0,

0, otherwise,

(C.24)

for i = 2,3, · · · , N −1. On the boundaries, we have

g1 = 1
2∆ξ



2∆x
2, E1 < 0, E2 < 0,

2∆ξ
2− (

ξ∗2 −ξ2 +2∆ξ

)2− (
ξ2−ξ∗2

)2 , E1 < 0, E2 > 0,(
ξ∗2 −ξ2+2∆ξ

)2 + (
ξ2 −ξ∗2

)2 , E1 > 0, E2 < 0,

0, otherwise,

(C.25)
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gN = 1
2∆ξ



2∆x
2, EN−1 < 0, EN < 0,(

ξN−1 +2∆ξ−ξ∗N−1

)2 + (
ξ∗N−1−ξN−1

)2 , EN−1 < 0, EN > 0,

2∆ξ
2− (

ξ∗N−1 −ξN−1
)2− (

ξN−1 +2∆ξ−ξ∗N−1

)2 , EN−1 > 0, EN < 0,

0, otherwise.

(C.26)

The spatial points that are not actually on the grid can be found using the linear
interpolation method,

ξ∗k+1 =
E (ξk+1)ξk −E (ξk)ξk+1

E (ξk+1)−E (ξk)
, (C.27)

for k = 1, i−2, i, N −2.
Step 6(Thomas algorithm): Yet again, we would like to make our computation less
expensive. The equation (C.21) can be written as a tridiagonal matrix system,



β̂1 γ̂1 0 0

α̂2 β̂2 γ̂2

α̂3 β̂3
. . .

. . . . . . γ̂N−1

0 α̂N β̂N





hn+1/2
1
...
...
...

hn+1/2
N


=



δ̂1
...
...
...

δ̂N


, (C.28)

where

β̂k =
[
1+ θ∆τ

τ∗

]
ak,k, for k = 1,2, · · · , N,

α̂m+1 = γ̂m =
[
1+ θ∆τ

τ∗

]
am,m+1, for m = 2, · · · , N −1,

δ̂1 = a1,1

[
1− ∆τ (1−θ)

τ∗

]
hn

1 +a1,2

[
1− ∆τ (1−θ)

τ∗

]
hn

2 +
∆τg1

τ∗
,

δ̂i =
[
1− ∆τ (1−θ)

τ∗

](
ai,i−1hn

i−1 +ai,ihn
i +ai,i+1hn

i+1
)+ ∆τg i

τ∗
for i = 2,3, · · · , N −1,

δ̂N = aN,N−1

[
1− ∆τ (1−θ)

τ∗

]
hn

N−1 +aN,N

[
1− ∆τ (1−θ)

τ∗

]
hn

N + ∆τgN

τ∗
,
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so that the Thomas algorithm results in

γ̂′i =


γ̂i
β̂i

, i = 1,
γ̂i

β̂i−α̂iγ̂
′
i−1

, i = 2,3, · · · , N −1,
(C.29)

δ̂
′
i =


δ̂i
β̂i

, i = 1,
δ̂i−α̂iδ̂

′
i−1

β̂i−α̂i−γ̂′i−1
, i = 2,3, · · · , N −1,

(C.30)

hn+1/2
N = δ̂

′
N ,

hn+1/2
i = δ̂

′
i − γ̂′ih

n+1/2
i+1 , i = N −1, N −2, · · · ,1. (C.31)

Step 7(Beam-Warming scheme): Once again, we use the second-order accurate
Beam-Warming scheme with truncation error O

(
∆τ

2,∆ξ
2) for the advection term of

the h component

hn+1
i =hn+1/2

i + c∆τ

2∆ξ

(
3hn+1/2

i −4hn+1/2
i−1 +hn+1/2

i−2

)
+

(
c∆τp
2∆ξ

)2 (
hn+1/2

i −2hn+1/2
i−1 +hn+1/2

i−2

)
.

(C.32)

The numerical computation of the critical front is achieved by solving (C.2) accord-
ing to above seven-step procedure using the “shooting” technique as described in
Section 4.4. As the Biktashev model is a two-component system, to find the numeri-
cal estimation of the critical front, we calculate S(τ) as

S(τ)=
L∫

−L

(
E2

τ(ξ,τ)+h2
τ(ξ,τ)

)
dξ. (C.33)

C.2 Discretization Formula for the Linearized

Problem

We linearize the system (C.2) about the critical front
(
Ê, ĥ

)
using

E (ξ,τ)= Ê (ξ)+ϵE (ξ,τ) ,

h (ξ,τ)= ĥ (ξ)+ϵh (ξ,τ) , (C.34)

178



C.2. DISCRETIZATION FORMULA FOR THE LINEARIZED PROBLEM

where ϵE and ϵh are small perturbations, ϵ≪ 1. Hence, we have the following system
of equations:

∂E
∂τ

= ∂2E
∂ξ2 + c

∂E
∂ξ

− 1
Ê′ (−∆)

δ (ξ+∆) ĥE+H(−∆−ξ)h,

∂h
∂τ

= c
∂h
∂ξ

+
(

1
Ê′(0)

δ (ξ)E−h
)
/τ∗. (C.35)

We solve this linearized equation with the operator splitting technique by splitting the
system into four equations. We use either the finite element or finite difference meth-
ods to obtain the solution of each of these four equations as follows:
Step 1(Finite element method): First of all, we solve

∂E
∂τ

= ∂2E
∂ξ2 − 1

Ê′ (−∆)
δ (ξ+∆) ĥE+H(−∆−ξ)h,

using the finite element method this yields[
A+∆τθ

(
B+ L

Ê′ (−∆)

)]
En+1/2

i =
[
A−∆τ (1−θ)

(
B+ L

Ê′ (−∆)

)]
En

i +∆τKhn
i , (C.36)

where the matrices K and L are

K=[
ki, j

]= ∫ L

−L
H(−∆−ξ)Φi(ξ)Φ j(ξ)dξ,

L=[
l i, j

]= ∫ L

−L
δ (ξ+∆) ĥ(ξ)Φi(x)Φ j(ξ)dξ= ĥ (−∆)Φi (−∆)Φ j (−∆) .

The matrix L has exactly 4 non-zero elements and these are

l i, j = ĥ (−∆)
∆ξ

2



(ξm+1 +∆)2 , i = j = m,

− (ξm+1 +∆) (∆+ξm) , i = m, j = m+1,

− (∆+ξm) (ξm+1 +∆) , i = m+1, j = m,

(∆+ξm)2 , i = j = m+1,

0, otherwise,

(C.37)

where ξm ≤∆≤ ξm+1. Actually, this can be further simplified by discretizing the spatial
domain in the way that ∆ is situated exactly on the grid that makes L with only one
non-zero element. On the other hand, the diagonal entries of the matrix K are found
as

ki,i =
∫ L

−L
H(−∆−ξ)Φ2

i (ξ) dξ

= 1
∆ξ

2

(∫ ξi

ξi−1

H(−∆−ξ) (ξ−ξi−1)2 dξ+
∫ ξi+1

ξi

H(−∆−ξ) (ξi+1−ξ)2 dξ
)
= I7

i + I8
i,
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where

I7
i = 1

3∆ξ
2



∆ξ
3, E i−1 <−∆, E i <−∆,

− (∆+ξi−1)3 , E i−1 <−∆, E i >−∆,

∆ξ
3 + (∆+ξi−1)3 , E i−1 >−∆, E i <−∆,

0, otherwise,

(C.38)

and

I8
i = 1

3∆ξ
2



∆ξ
3, E i <−∆, E i+1 <−∆,

∆ξ
3 − (ξi+1 +∆)3 , E i <−∆, E i+1 >−∆,

(ξi+1+∆)3 , E i >−∆, E i+1 <−∆,

0, otherwise.

(C.39)

The supradiagonal elements of K are evaluated as

ki,i+1 =
∫ L

−L
H(−∆−ξ)Φi(ξ)Φi+1(ξ)dξ= 1

∆ξ
2

∫ ξi+1

ξi

H(−∆−ξ) (ξi+1−ξ) (ξ−ξi) dξ

= 1
6∆ξ

2



∆ξ
3, E i <−∆, E i+1 <−∆,

3ξi+1∆
2 +6ξi+1ξi∆+2∆3+3ξi∆

2 +3ξi+1ξ
2
i −∆3, E i <−∆, E i+1 >−∆,

ξ3
i+1 −3ξiξ

2
i+1−2∆3 −3ξi∆

2−3ξi+1∆
2 −6ξiξi+1∆, E i >−∆, E i+1 <−∆,

0, otherwise.

(C.40)

The subdiagonal elements of K are also found as

ki−1,i =
∫ L

−L
H(−∆−ξ)Φi(ξ)Φi−1(ξ)dξ= 1

∆ξ
2

∫ ξi

ξi−1

H(−∆−ξ) (ξ−ξi−1) (ξi −ξ) dξ

= 1
6∆ξ

2



∆ξ
3, E i−1 <−∆, E i <−∆,

3ξi∆
2+2∆3 +3ξiξ

2
i−1 −ξ3

i−1+6ξi−1ξi∆+3ξi−1∆
2, E i−1 <−∆, E i >−∆,

ξ3
i −3ξi−1ξ

2
i −6ξiξi−1∆−2∆3 −3ξi∆

2−3ξi−1∆
2, E i−1 >−∆, E i <−∆,

0, otherwise,

(C.41)
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and on the boundaries, we have

k1,1 = 1
3∆ξ

2



2∆ξ
3, E1 <−∆, E2 <−∆,

2∆ξ
3 − (

2∆ξ−∆−ξ2
)3 − (ξ2+∆)3 , E1 <−∆, E2 >−∆,(

2∆ξ−∆−ξ2
)3 +∆ξ

3, E1 >−∆, E2 <−∆,

0, otherwise,

(C.42)

kN,N = 1
3∆ξ

2



2∆ξ
3, EN−1 <−∆, EN <−∆,(

ξN−1 +2∆ξ+∆
)3− (∆+ξN−1)3 , EN−1 <−∆, EN >−∆,

2∆ξ
3+ (∆−ξN−1)3 − (

ξN−1+2∆ξ+∆
)3 , EN−1 >−∆, EN <−∆,

0, otherwise.

(C.43)

Step 2(Beam-Warming scheme): The second step is to solve the pure advection
equation using the Beam-Warming scheme giving

En+1
i =En+1/2

i + c∆τ

2∆ξ

(
4En+1/2

i+1 −3En+1/2
i −En+1/2

i+2

)
+

(
c∆τp
2∆ξ

)2 (
En+1/2

i −2En+1/2
i+1 +En+1/2

i+2

)
,

(C.44)

that finishes the numerical scheme of E component of the linearized problem.
Step 3(Finite element method): Again the finite element method is conveniently em-
ployed to numerically solve the first equation of h component,

∂h
∂τ

=
(

1
Ê′(0)

δ (ξ)E−h
)
/τ∗,

that results in [
A+ ∆τθA

τ∗

]
hn+1/2

i =
[
A− ∆τ (1−θ)A

τ∗

]
hn

i +
∆τM

τ∗Ê′(0)
En

i , (C.45)

where

M=[
mi, j

]= ∫ L

−L
δ(ξ)Φi(ξ)Φ j(ξ)dξ=Φi(0)Φ j(0)

= 1
∆ξ

2



ξ2
r+1, i = j = r,

−ξr+1ξr, i = r, j = r+1,

−ξrξr+1, i = r+1, j = r,

ξ2
r , i = j = r+1,

0, otherwise,

(C.46)
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such that ξr ≤ 0≤ ξr+1.
Step 4(Beam-Warming scheme): Similar to E equation, we employ the Beam-Warming
scheme for pure advection equation of h component,

hn+1
i =hn+1/2

i + c∆τ

2∆ξ

(
4hn+1/2

i+1 −3hn+1/2
i −hn+1/2

i+2

)
+

(
c∆τp
2∆ξ

)2 (
hn+1/2

i −2hn+1/2
i+1 +hn+1/2

i+2

)
,

(C.47)

that completes the numerical solution of the linearized equation.

C.3 Discretization Formula for the Adjoint Linearized

Problem

The adjoint linearized problem Biktashev model is

∂Ē
∂τ

= ∂2Ē
∂ξ2 − c

∂Ē
∂ξ

− 1
Ê′ (−∆)

δ (ξ+∆) ĥĒ+ δ (ξ)
τ∗Ê′(0)

h̄,

∂h̄
∂τ

=−c
∂h̄
∂ξ

+H(−∆−ξ) Ē− h̄
τ∗

. (C.48)

This problem can also be solved in 4-steps as follows:
Step 1(Finite element method): We begin with the equation of Ē component and
solve first the following,

∂Ē
∂τ

= ∂2Ē
∂ξ2 − 1

Ê′ (−∆)
δ (ξ+∆) ĥĒ+ δ (ξ)

τ∗Ê′(0)
h̄,

with the solution based on the finite element method,[
A+∆τθ

(
B+ L

Ê′ (−∆)

)]
Ēn+1/2

i =
[
A−∆τ (1−θ)

(
B+ L

Ê′ (−∆)

)]
Ēn

i +
∆τM

τ∗Ê′(0)
h̄n

i . (C.49)

Step 2(Beam-Warming scheme): As the advection term has a negative sign in the
front, the Beam-Warming numerical scheme is in this case,

Ēn+1
i =Ēn+1/2

i − c∆τ

2∆ξ

(
3Ēn+1/2

i −4Ēn+1/2
i−1 + Ēn+1/2

i−2

)
+

(
c∆τp
2∆ξ

)2 (
Ēn+1/2

i −2Ēn+1/2
i−1 + Ēn+1/2

i−2

)
.

(C.50)

Step 3(Finite element method): Using the finite element method to solve

∂h̄
∂τ

=H(−ξ−∆) Ē− h̄
τ∗

,
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let us obtain,

[
A+ A∆τθ

τ∗

]
h̄n+1/2

i =
[
A− ∆τA (1−θ)

τ∗

]
h̄n

i +∆τMĒn
i . (C.51)

Step 4(Beam-Warming scheme): We conclude the numerical solution of the adjoint
problem by solving the pure advection equation for h̄ component,

h̄n+1
i =h̄n+1/2

i − c∆τ

2∆ξ

(
3h̄n+1/2

i −4h̄n+1/2
i−1 + h̄n+1/2

i−2

)
+

(
c∆τp
2∆ξ

)2 (
h̄n+1/2

i −2h̄n+1/2
i−1 + h̄n+1/2

i−2

)
.

(C.52)

We note that the Thomas algorithm can also be applied to the diagonal systems
(C.36), (C.45), (C.49) and (C.51) in a similar manner to the earlier calculation steps in
Section C.1. Hence, we skip the similar derivations here.

For this model, the linear approximation of the critical curves requires the knowl-
edge of the critical front as well as the first two leading eigenvalues and corresponding
left and right eigenfunctions. The numerical calculating of the eigenpairs are deter-
mined by the modified power iteration method discussed in Section 4.4 using the
numerical solutions of the linearized and adjoint linearized problems, and these two
last sections are dedicated to how to derive such numerical solution of these prob-
lems by means of the operator splitting method. Alternatively, the implicitly restarted
Arnoldi method can be used to estimate these essential ingredients, in which case
we use the matrix representations of the discretized versions of the equations (C.35)
and (C.48).

C.4 Analytical Eigenfunctions

The numerical estimation of the first two leading eigenvalues and corresponding left
and right eigenfunctions must agree with the analytical results found in [66]. We briefly
provide the analytical expressions of the eigenfunctions with the aim of comparing
them with their numerical versions (please refer to [66] for more details). Equation
(C.35) support solutions of the form E = eλτϕ (ξ) and h = eλτψ (ξ) and inserting this into
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(C.35) leads to a temporal eigenvalue problem with the general solution,(
ϕa

ψa

)
= a1

(
1

−νq

)
eν1ξ+a3

(
1

0

)
e−ν̄2ξ,

(
ϕb

ψb

)
= b1

(
0

1

)
eν1ξ+b2

(
1

0

)
e−ν2ξ+b3

(
1

0

)
e−ν̄2ξ, (C.53)

(
ϕc

ψc

)
= c2

(
1

0

)
e−ν2ξ,

where

ν= 1+τ∗c2

cτ∗
, ν1 = 1+λτ∗

cτ∗
, ν2 = c+

p
c2+4λ
2

, ν̄2 = c−
p

c2 +4λ
2

, (C.54)

and the three intervals are defined based on the discontinuous Heaviside and Dirac
delta functions as ξ ∈ (−∞,−∆) (a), ξ ∈ (−∆,0)(b) and ξ ∈ (0,∞) (c). The arbitrary con-
stants are determined from matching conditions of the solutions in these three inter-
vals, which gives a system of six equations,

a1αcν1e−ν1∆−a3αcν̄1eν̄2∆+b2eν2∆
(
αcν2 −e−ν∆

)+b3eν̄2∆
(
αcν̄2 −e−ν∆

)= 0,

a1e−ν1∆+a3eν̄2∆−b2eν2∆−b3eν̄2∆ = 0,

a1νq +b1 = 0,

b1ατ∗c2+ c2 = 0,

b2 +b3 − c2 = 0,

b2ν2 +b3ν̄2 − c2ν2 = 0. (C.55)

The solvability condition for this system gives a characteristic equation

f (λ; c,α,τ∗)≜αc (ν2− ν̄2)eν∆−1+ τ∗c (ν1+ ν̄2)
(1+λτ∗)2 +τ∗c2

e−(ν1+ν2−ν)∆ = 0, (C.56)

from which the leading eigenvalue can be identified. On the other hand, the eigenpairs
of adjoint linearized problem (C.48) support the solutions in the form Ē = eλτϕ∗ (ξ) and
h̄ = eλτψ∗ (ξ) with the solution,(

ϕ∗
a

ψ∗
a

)
= a∗

2

(
1

γ3

)
eγ2ξ,

(
ϕ∗

b

ψ∗
b

)
= b∗

1

(
0

1

)
e−γ1ξ+b∗

2

(
1

0

)
eγ2ξ+b∗

3

(
1

0

)
eγ̄2ξ, (C.57)

(
ϕ∗

c

ψ∗
c

)
= c∗1

(
0

1

)
e−γ1ξ+ c∗3

(
1

0

)
eγ̄2ξ,
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where

γ= 1+τ∗c2

τ∗c
, γ1 = 1+λτ∗

τ∗c
, γ2 = c+

p
c2+4λ
2

,

γ̄2 = c−
p

c2+4λ
2

, γ3 = 1
c
(
γ1 +γ2

) , ∆= 1
c

ln
(
1+α

α

)
. (C.58)

Similarly, the arbitrary constants are determined from the matching conditions which
give a system of six equations

a∗
2αcγ2e−γ2∆−b∗

2e−γ2∆
(
αcγ2 +e−γ∆

)−b∗
3e−γ̄2∆

(
αcγ̄2+e−γ∆

)= 0,

a∗
2e−γ2∆−b∗

2e−γ2∆−b∗
3e−γ̄2∆ = 0,

a∗
2γ3e−γ2∆−b∗

1eγ1∆ = 0,

b∗
2ατ∗cγ2 +b∗

3ατ∗cγ̄2+ c∗1 − c∗3ατ∗cγ̄2 = 0,

b∗
2 +b∗

3 − c∗3 = 0,

b∗
1 − c∗1 = 0, (C.59)

with the same solvability condition (C.56).

185



BIBLIOGRAPHY

[1] T. ARENDT AND V. BIGL, Alzheimer’s disease as a presumptive threshold phe-
nomenon, Neurobiology of Aging, 8 (1987), pp. 552–554.

[2] W. E. ARNOLDI, The principle of minimized iteration in the solution of the matrix
eigenvalue problem, Quarterly of Applied Mathematics, 9 (1951), pp. 17–29.

[3] D. G. ARONSON AND H. F. WEINBERGER, Nonlinear diffusion in population
genetics, combustion, and nerve pulse propagation, in Partial differential
equations and related topics, Springer, 1975, pp. 5–49.

[4] A. ARUTUNYAN, A. PUMIR, V. KRINSKY, L. SWIFT, AND N. SARVAZYAN, Be-
havior of ectopic surface: effects of β-adrenergic stimulation and uncou-
pling, American Journal of Physiology-Heart and Circulatory Physiology,
285 (2003), pp. H2531–H2542.

[5] R. ASTUDILLO AND Z. CASTILLO, Computing pseudospectra using block im-
plicitly restarted Arnoldi iteration, Mathematical and Computer Modelling,
57 (2013), pp. 2149–2157.

[6] P. BAK, K. CHEN, AND C. TANG, A forest-fire model and some thoughts on
turbulence, Physics Letters A, 147 (1990), pp. 297–300.

[7] D. BARKLEY, A model for fast computer simulation of waves in excitable media,
Physica D: Nonlinear Phenomena, 49 (1991), pp. 61–70.

[8] D. BARKLEY, Modeling the transition to turbulence in shear flows, in Journal of
Physics: Conference Series, vol. 318, IOP Publishing, 2011, p. 032001.

[9] D. BARKLEY, B. SONG, V. MUKUND, G. LEMOULT, M. AVILA, AND B. HOF, The
rise of fully turbulent flow, Nature, 526 (2015), pp. 550–553.

[10] H. BATEMAN, A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER, AND F. G. TRI-
COMI, Higher transcendental functions, vol. 3, McGraw-Hill New York, 1955.

186



BIBLIOGRAPHY

[11] R. M. BEAM AND R. F. WARMING, An implicit finite-difference algorithm for
hyperbolic systems in conservation-law form, Journal of Computational
Physics, 22 (1976), pp. 87–110.

[12] G. W. BEELER AND H. REUTER, Reconstruction of the action potential of ven-
tricular myocardial fibres, The Journal of Physiology, 268 (1977), pp. 177–
210.

[13] V. BIKTASHEV, Diffusion of autowaves: Evolution equation for slowly varying
autowaves, Physica D: Nonlinear Phenomena, 40 (1989), pp. 83–90.

[14] V. BIKTASHEV AND A. HOLDEN, Deterministic brownian motion in the hyper-
meander of spiral waves, Physica D: Nonlinear Phenomena, 116 (1998),
pp. 342–354.

[15] V. BIKTASHEV, A. HOLDEN, AND E. NIKOLAEV, Spiral wave meander and sym-
metry of the plane, International Journal of Bifurcation and Chaos in Applied
Sciences and Engineering, 6 (1996), pp. 2433–2440.

[16] V. N. BIKTASHEV, Dissipation of the excitation wave fronts, Physical Review
Letters, 89 (2002), p. 168102.

[17] V. N. BIKTASHEV, A simplified model of propagation and dissipation of ex-
citation fronts, International Journal of Bifurcation and Chaos, 13 (2003),
pp. 3605–3619.

[18] V. N. BIKTASHEV, A. ARUTUNYAN, AND N. A. SARVAZYAN, Generation and es-
cape of local waves from the boundary of uncoupled cardiac tissue, Biophys-
ical Journal, 94 (2008), pp. 3726–3738.

[19] V. N. BIKTASHEV, I. V. BIKTASHEVA, AND N. A. SARVAZYAN, Evolution of spiral
and scroll waves of excitation in a mathematical model of ischaemic border
zone, PLoS One, 6 (2011), p. e24388.

[20] H. BLAIR, On the intensity-time relations for stimulation by electric currents. ii,
The Journal of General Physiology, 15 (1932), pp. 731–755.

[21] H. A. BLAIR, On the intensity-time relations for stimulation by electric currents.
i, The Journal of General Physiology, 15 (1932), pp. 709–729.

187



BIBLIOGRAPHY

[22] M. BLAUSTEIN, J. KAO, AND D. MATTESON, Cellular Physiology and Neuro-
physiology, Elsevier, 2012.

[23] P. B. BOCHEV, M. D. GUNZBURGER, AND J. N. SHADID, Stability of the SUPG
finite element method for transient advection–diffusion problems, Computer
Methods in Applied Mechanics and Engineering, 193 (2004), pp. 2301–
2323.

[24] H. BOSTOCK, The strength-duration relationship for excitation of myelinated
nerve: computed dependence on membrane parameters., The Journal of
Physiology, 341 (1983), pp. 59–74.

[25] N. BRUNEL AND M. C. VAN ROSSUM, Quantitative investigations of electrical
nerve excitation treated as polarization, Biological Cybernetics, 97 (2007),
pp. 341–349.

[26] G. A. CARPENTER, A geometric approach to singular perturbation problems
with applications to nerve impulse equations, Journal of Differential Equa-
tions, 23 (1977), pp. 335–367.

[27] R. G. CASTEN, H. COHEN, AND P. A. LAGERSTROM, Perturbation analysis of
an approximation to the Hodgkin-Huxley theory, Quarterly of Applied Math-
ematics, 32 (1975), pp. 365–402.

[28] R. CLAYTON, O. BERNUS, E. CHERRY, H. DIERCKX, F. FENTON,
L. MIRABELLA, A. PANFILOV, F. B. SACHSE, G. SEEMANN, AND H. ZHANG,
Models of cardiac tissue electrophysiology: progress, challenges and open
questions, Progress in Biophysics and Molecular Biology, 104 (2011),
pp. 22–48.

[29] R. M. CORLESS, G. H. GONNET, D. E. HARE, D. J. JEFFREY, AND D. E.
KNUTH, On the Lambert W function, Advances in Computational Mathemat-
ics, 5 (1996), pp. 329–359.

[30] M. COSTABEL, Principles of boundary element methods, Computer Physics Re-
ports, 6 (1987), pp. 243–274.

[31] M. COURTEMANCHE, L. GLASS, AND J. P. KEENER, Instabilities of a propagat-
ing pulse in a ring of excitable media, Physical Review Letters, 70 (1993),
pp. 2182–2185.

188



BIBLIOGRAPHY

[32] M. C. CROSS AND P. C. HOHENBERG, Pattern formation outside of equilibrium,
Reviews of Modern Physics, 65 (1993), pp. 851–1112.

[33] H. DIERCKX, O. BERNUS, AND H. VERSCHELDE, Accurate eikonal-curvature re-
lation for wave fronts in locally anisotropic reaction-diffusion systems, Phys-
ical Review Letters, 107 (2011), p. 108101.

[34] E. DOEDEL AND J. P. KERNEVEZ, AUTO, software for continuation and bifurca-
tion problems in ordinary differential equations, California Institute of Tech-
nology, 1986.

[35] B. DROSSEL AND F. SCHWABL, Self-organized critical forest-fire model, Physi-
cal Review Letters, 69 (1992), pp. 1629–1632.

[36] G. DUCKETT AND D. BARKLEY, Modeling the dynamics of cardiac action poten-
tials, Physical Review Letters, 85 (2000), pp. 884–887.

[37] T. ERNEUX AND G. NICOLIS, Propagating waves in discrete bistable reaction-
diffusion systems, Physica D: Nonlinear Phenomena, 67 (1993), pp. 237–
244.

[38] J. W. EVANS, The stable and the unstable impulse, Indiana University Mathe-
matics Journal, 24 (1975), pp. 1169–1190.

[39] R. E. EWING AND H. WANG, A summary of numerical methods for time-
dependent advection-dominated partial differential equations, Journal of
Computational and Applied Mathematics, 128 (2001), pp. 423–445.

[40] I. FARKAS, D. HELBING, AND T. VICSEK, Social behaviour: Mexican waves in
an excitable medium, Nature, 419 (2002), pp. 131–132.

[41] F. H. FENTON, E. M. CHERRY, H. M. HASTINGS, AND S. J. EVANS, Real-time
computer simulations of excitable media: Java as a scientific language and
as a wrapper for C and Fortran programs, Biosystems, 64 (2002), pp. 73–96.

[42] P. C. FIFE, Asymptotic states for equations of reaction and diffusion, Bulletin of
the American Mathematical Society, 84 (1978), pp. 693–726.

[43] P. C. FIFE AND J. B. MCLEOD, The approach of solutions of nonlinear diffusion
equations to travelling front solutions, Archive for Rational Mechanics and
Analysis, 65 (1977), pp. 335–361.

189



BIBLIOGRAPHY

[44] R. A. FISHER, The wave of advance of advantageous genes, Annals of Eugen-
ics, 7 (1937), pp. 355–369.

[45] R. FITZHUGH, Mathematical models of threshold phenomena in the nerve
membrane, The Bulletin of Mathematical Biophysics, 17 (1955), pp. 257–
278.

[46] R. FITZHUGH, Thresholds and plateaus in the Hodgkin-Huxley nerve equations,
The Journal of General Physiology, 43 (1960), pp. 867–896.

[47] R. FITZHUGH, Impulses and physiological states in theoretical models of nerve
membrane, Biophysical Journal, 1 (1961), pp. 445–466.

[48] G. FLORES, The stable manifold of the standing wave of the Nagumo equation,
Journal of Differential Equations, 80 (1989), pp. 306–314.

[49] G. FLORES, Stability analysis for the slow travelling pulse of the FitzHugh-
Nagumo system, SIAM Journal on Mathematical Analysis, 22 (1991),
pp. 392–399.

[50] A. FOULKES AND V. BIKTASHEV, Riding a spiral wave: Numerical simulation
of spiral waves in a comoving frame of reference, Physical Review E, 81
(2010), p. 046702.

[51] J. G. FRANCIS, The QR transformation a unitary analogue to the LR
transformation—part 1, The Computer Journal, 4 (1961), pp. 265–271.

[52] L. A. GEDDES, Accuracy limitations of chronaxie values, IEEE Transactions
Biomedical Engineering, 51 (2004), pp. 176–181.

[53] B. H. GILDING AND R. KERSNER, Travelling waves in nonlinear diffusion-
convection reaction, vol. 60, Birkhäuser, 2012.

[54] G. H. GOLUB AND C. F. VAN LOAN, Matrix computations, vol. 3, JHU Press,
2012.

[55] Y. GUO, Y. ZHAO, S. A. BILLINGS, D. COCA, R. I. RISTIC, AND L. DEMATOS,
Identification ofexcitable media using a scalar coupled mapped lattice model,
International Journal of Bifurcation and Chaos, 20 (2010), pp. 2137–2150.

190



BIBLIOGRAPHY

[56] S. HASTINGS, On the existence of homoclinic and periodic orbits for the
FitzHugh-Nagumo equations, The Quarterly Journal of Mathematics, 27
(1976), pp. 123–134.

[57] S. P. HASTINGS, Single and multiple pulse waves for the FitzHugh-Nagumo,
SIAM Journal on Applied Mathematics, 42 (1982), pp. 247–260.

[58] A. HILL, Excitation and accommodation in nerve, Proceedings of the Royal
Society of London. Series B, Biological Sciences, 119 (1936), pp. 305–355.

[59] R. HINCH, An analytical study of the physiology and pathology of the propa-
gation of cardiac action potentials, Progress in Biophysics and Molecular
Biology, 78 (2002), pp. 45–81.

[60] R. HINCH, Stability of cardiac waves, Bulletin of Mathematical Biology, 66
(2004), pp. 1887–1908.

[61] A. L. HODGKIN AND A. F. HUXLEY, A quantitative description of membrane
current and its application to conduction and excitation in nerve, The Journal
of Physiology, 117 (1952), pp. 500–544.

[62] A. HOFFMAN AND J. MALLET-PARET, Universality of crystallographic pinning,
Journal of Dynamics and Differential Equations, 22 (2010), pp. 79–119.

[63] M. HOLT, Numerical methods in fluid dynamics, Springer Science & Business
Media, 2012.

[64] K. J. HUGHES, J. BRINDLEY, AND A. C. MCINTOSH, Initiation and propagation
of combustion waves with competitive reactions and water evaporation, in
Proc. R. Soc. A, vol. 469, The Royal Society, 2013, p. 20130506.

[65] H. HUPKES, D. PELINOVSKY, AND B. SANDSTEDE, Propagation failure in the
discrete Nagumo equation, Proceedings of the American Mathematical So-
ciety, 139 (2011), pp. 3537–3551.

[66] I. IDRIS, Initiation Of Excitation Waves, PhD thesis, 2008.

[67] I. IDRIS AND V. BIKTASHEV, Critical fronts in initiation of excitation waves, Phys-
ical Review E, 76 (2007), p. 021906.

191



BIBLIOGRAPHY

[68] I. IDRIS AND V. N. BIKTASHEV, An analytical approach to initiation of propagat-
ing fronts, Physical Review Letters, 101 (2008), p. 244101.

[69] C. K. JONES, Stability of the travelling wave solution of the FitzHugh-Nagumo
system, Transactions of the American Mathematical Society, 286 (1984),
pp. 431–469.

[70] E. R. KANDEL, J. H. SCHWARTZ, T. M. JESSELL, S. A. SIEGELBAUM, AND

A. HUDSPETH, Principles of neural science, vol. 4, McGraw-Hill New York,
2000.

[71] D. T. KAPLAN, J. R. CLAY, T. MANNING, L. GLASS, M. R. GUEVARA, AND

A. SHRIER, Subthreshold dynamics in periodically stimulated squid giant
axons, Physical Review Letters, 76 (1996), pp. 4074–4077.

[72] J. P. KEENER, Propagation and its failure in coupled systems of discrete ex-
citable cells, SIAM Journal on Applied Mathematics, 47 (1987), pp. 556–
572.

[73] J. P. KEENER, The dynamics of excitability, April 2016.

[74] J. P. KEENER AND J. SNEYD, Mathematical physiology, vol. 1, Springer, 1998.

[75] H. KOKUBU, Y. NISHIURA, AND H. OKA, Heteroclinic and homoclinic bifurca-
tions in bistable reaction diffusion systems, Journal of Differential Equations,
86 (1990), pp. 260–341.

[76] A. KOLMOGOROV, I. PETROVSKY, AND N. PISKUNOV, Investigation of the equa-
tion of diffusion combined with increasing of the substance and its applica-
tion to a biology problem, Bull. Moscow State Univ. Ser. A: Math. Mech, 1
(1937), pp. 1–25.

[77] A. N. KOLMOGOROV, I. PETROVSKY, AND N. PISKUNOV, Etude de l’équation de
la diffusion avec croissance de la quantité de matiere et son applicationa un
probleme biologique, Moscow Univ. Math. Bull, 1 (1937), pp. 1–25.

[78] Y. KURAMOTO, Instability and turbulence of wavefronts in reaction-diffusion sys-
tems, Progress of Theoretical Physics, 63 (1980), pp. 1885–1903.

192



BIBLIOGRAPHY

[79] L. LAPICQUE, Recherches quantitatives sur l’excitation électrique des nerfs
traitée comme une polarisation, J. Physiol. Pathol. Gen, 9 (1907), pp. 620–
635.

[80] R. B. LEHOUCQ AND D. C. SORENSEN, Deflation techniques for an implicitly
restarted Arnoldi iteration, SIAM Journal on Matrix Analysis and Applica-
tions, 17 (1996), pp. 789–821.

[81] R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPACK users’ guide: so-
lution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods, vol. 6, Siam, 1998.

[82] K. LEVENBERG, A method for the solution of certain non-linear problems in
least squares, Quarterly of Applied Mathematics, 2 (1944), pp. 164–168.

[83] C. LUKE AND P. COX, Soil carbon and climate change: from the Jenkinson
effect to the compost-bomb instability, European Journal of Soil Science,
62 (2011), pp. 5–12.

[84] K. MAGINU, Stability of periodic travelling wave solutions of a nerve conduction
equation, Journal of Mathematical Biology, 6 (1978), pp. 49–57.

[85] K. MAGINU, Existence and stability of periodic travelling wave solutions to
Nagumo’s nerve equation, Journal of Mathematical Biology, 10 (1980),
pp. 133–153.

[86] D. W. MARQUARDT, An algorithm for least-squares estimation of nonlinear para-
meters, Journal of the Society for Industrial and Applied Mathematics, 11
(1963), pp. 431–441.

[87] W. D. MCCORMICK, Z. NOSZTICZIUS, AND H. L. SWINNEY, Interrupted sepa-
ratrix excitability in a chemical system, The Journal of Chemical Physics, 94
(1991), pp. 2159–2167.

[88] H. MCKEAN AND V. MOLL, A threshold for a caricature of the nerve equation,
Bulletin of the American Mathematical Society, 12 (1985), pp. 255–259.

[89] H. P. MCKEAN, Nagumo’s equation, Advances in Mathematics, 4 (1970),
pp. 209–223.

193



BIBLIOGRAPHY

[90] H. P. MCKEAN AND V. MOLL, Stabilization to the standing wave in a simple car-
icature of the nerve equation, Communications on Pure and Applied Mathe-
matics, 39 (1986), pp. 485–529.

[91] R. MISES AND H. POLLACZEK-GEIRINGER, Praktische verfahren der gle-
ichungsauflösung., ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik, 9 (1929), pp. 152–
164.

[92] C. B. MOLER, Numerical computing with MATLAB, Siam, 2004.

[93] V. MOLL AND S. ROSENCRANS, Calculation of the threshold surface for nerve
equations, SIAM Journal on Applied Mathematics, 50 (1990), pp. 1419–
1441.

[94] A. M. MONNIER AND L. LAPICQUE, L’excitation électrique des tissus: essai
d’interprétation physique, Hermann & Cie, (1934).

[95] O. A. MORNEV, On the conditions of excitation of one-dimensional autowave
media, Institute of Applied Physics of the USSR Academy of Sciences,
Gorky, 1981, pp. 92–98.

[96] J. D. MURRAY, Mathematical biology I: an introduction, vol. 17 of Interdisci-
plinary Applied Mathematics, Springer, 2002.

[97] J. D. MURRAY, Mathematical biology II: spatial models and biomedical applica-
tions, vol. 18 of Interdisciplinary Applied Mathematics, Springer, 2003.

[98] J. NAGUMO, S. ARIMOTO, AND S. YOSHIZAWA, An active pulse transmission
line simulating nerve axon, Proceedings of the IRE, 50 (1962), pp. 2061–
2070.

[99] J. NAGUMO, S. YOSHIZAWA, AND S. ARIMOTO, Bistable transmission lines,
IEEE Transactions on Communication Technology, 12 (1965), pp. 400–412.

[100] W. NERNST, Zur theorie des elektrischen reizes, Pflügers Archiv European
Journal of Physiology, 122 (1908), pp. 275–314.

[101] J. C. NEU, R. S. PREISSIG, AND W. KRASSOWSKA, Initiation of propagation
in a one-dimensional excitable medium, Physica D: Nonlinear Phenomena,
102 (1997), pp. 285–299.

194



BIBLIOGRAPHY

[102] A. C. NEWELL AND J. A. WHITEHEAD, Finite bandwidth, finite amplitude con-
vection, Journal of Fluid Mechanics, 38 (1969), pp. 279–303.

[103] D. NOBLE, The relation of Rushton’s ‘liminal length’ for excitation to the resting
and active conductances of excitable cells, The Journal of Physiology, 226
(1972), pp. 573–591.

[104] D. NOBLE AND R. B. STEIN, The threshold conditions for initiation of action
potentials by excitable cells, The Journal of Physiology, 187 (1966), pp. 129–
162.

[105] J. R. PORTER, J. S. BURG, P. J. ESPENSHADE, AND P. A. IGLESIAS, Identifying
a static nonlinear structure in a biological system using noisy, sparse data,
Journal of Theoretical Biology, 300 (2012), pp. 232–241.

[106] A. PUMIR, A. ARUTUNYAN, V. KRINSKY, AND N. SARVAZYAN, Genesis of ec-
topic waves: role of coupling, automaticity, and heterogeneity, Biophysical
Journal, 89 (2005), pp. 2332–2349.

[107] R. J. RADKE, A MATLAB implementation of the implicitly restarted Arnoldi
method for solving large-scale eigenvalue problems, Master’s thesis, Rice
University, 1996.

[108] N. RASHEVSKY, Outline of a physico-mathematical theory of excitation and in-
hibition, Protoplasma, 20 (1933), pp. 42–56.

[109] F. RATTAY, L. PAREDES, AND R. LEAO, Strength–duration relationship for intra-
versus extracellular stimulation with microelectrodes, Neuroscience, 214
(2012), pp. 1–13.

[110] J. N. REDDY, An introduction to the finite element method, vol. 2, McGraw-Hill
New York, 1993.

[111] J. RINZEL AND J. B. KELLER, Traveling wave solutions of a nerve conduction
equation, Biophysical Journal, 13 (1973), pp. 1313–1337.

[112] C. ROCCSOREANU, A. GEORGESCU, AND N. GIURGICTEANU, Dynamic bifur-
cation for the FitzHugh-Nagumo model, Springer, 2000, pp. 97–148.

195



BIBLIOGRAPHY

[113] M. ROTH, The association of clinical and neurological findings and its bearing
on the classification and aetiology of Alzheimer’s disease, British Medical
Bulletin, 42 (1986), pp. 42–50.

[114] Y. RUCONG, A two-step shape-preserving advection scheme, Advances in At-
mospheric Sciences, 11 (1994), pp. 479–490.

[115] W. RUSHTON, Initiation of the propagated disturbance, Proceedings of the
Royal Society of London. Series B, Biological Sciences, 124 (1937),
pp. 210–243.

[116] Y. SAAD, Variations on Arnoldi’s method for computing eigenelements of
large unsymmetric matrices, Linear Algebra and its Applications, 34 (1980),
pp. 269–295.

[117] J. J. SAKURAI AND J. NAPOLITANO, Modern quantum mechanics, Addison-
Wesley, 2011.

[118] M. B. SCHIFFER, Advances in archaeological method and theory, New York:
Academic Press, 1985.

[119] F. SCHLÖGL, Chemical reaction models for non-equilibrium phase transitions,
Zeitschrift für Physik, 253 (1972), pp. 147–161.

[120] A. SCOTT ET AL., Encyclopedia of nonlinear science, Routledge, 2006.

[121] S. K. SCOTT AND K. SHOWALTER, Simple and complex propagating reaction-
diffusion fronts, The Journal of Physical Chemistry, 96 (1992), pp. 8702–
8711.

[122] L. A. SEGEL, Distant side-walls cause slow amplitude modulation of cellular
convection, Journal of Fluid Mechanics, 38 (1969), pp. 203–224.

[123] G. SEIDEN AND S. CURLAND, The tongue as an excitable medium, New Journal
of Physics, 17 (2015), p. 033049.

[124] D. SHARMA, R. JIWARI, AND S. KUMAR, Galerkin-finite element method for the
numerical solution of advection-diffusion equation, International Journal of
Pure and Applied Mathematics, 70 (2011), pp. 389–399.

196



BIBLIOGRAPHY

[125] R. SIMITEV AND V. BIKTASHEV, Asymptotics of conduction velocity restitution in
models of electrical excitation in the heart, Bulletin of Mathematical Biology,
73 (2011), pp. 72–115.

[126] C. F. STARMER, Initiation of excitation waves.
http://www.scholarpedia.org/article/Initiation_of_excitation_waves.

[127] J. C. STRIKWERDA, Finite difference schemes and partial differential equations,
Siam, 2004.

[128] V. THOMÉE, Galerkin finite element methods for parabolic equations, 25 of
Springer Series in Computational Mathematics, (1997).

[129] P. TURCHIN, L. OKSANEN, P. EKERHOLM, T. OKSANEN, AND H. HENTTONEN,
Are lemmings prey or predators?, Nature, 405 (2000), pp. 562–565.

[130] A. M. TURING, The chemical basis of morphogenesis, Philosophical Transac-
tions of the Royal Society of London B: Biological Sciences, 237 (1952),
pp. 37–72.

[131] J. J. TYSON AND J. P. KEENER, Singular perturbation theory of traveling waves
in excitable media (a review), Physica D: Nonlinear Phenomena, 32 (1988),
pp. 327–361.

[132] B. VAN DER POL AND J. VAN DER MARK, The heartbeat considered as a relax-
ation oscillation, and an electrical model of the heart, Philosophical Maga-
zine and Journal of Science, 6 (1928), pp. 763–775.

[133] M. VAN DYKE, Perturbation methods in fluid mechanics, Parabolic Press, 1975.

[134] J. WEICKERT, B. T. H. ROMENY, AND M. A. VIERGEVER, Efficient and reliable
schemes for nonlinear diffusion filtering, IEEE Transactions on Image Pro-
cessing, 7 (1998), pp. 398–410.

[135] G. WEISS, Sur la possibilite de rendre comparables entre eux les appareils
servant a l’excitation electrique, Archives Italiennes de Biologie, 35 (1990),
pp. 413–445.

[136] U. WINDHORST AND H. JOHANSSON, Modern techniques in neuroscience re-
search, Springer, 1999.

197

http://www.scholarpedia.org/article/Initiation_of_excitation_waves


BIBLIOGRAPHY

[137] S. YOUSEF, Iterative methods for sparse linear systems, Siam, 2003.

[138] Y. B. ZEL’DOVICH AND D. FRANK-KAMENETSKY, Towards the theory of uni-
formly propagating flames, in Doklady AN SSSR, vol. 19, 1938, pp. 693–
697.

[139] J. ZELDOWITSCH AND D. FRANK-KAMENETZKI, A theory of thermal propagation
of flame, Acta Physicochimica IJRSS, 9 (1938), pp. 341–350.

[140] D. ZIPES AND J. JALIFE, Cardiac electrophysiology: from cell to bedside, WB
Saunders CO, 2000.

[141] V. S. ZYKOV, Excitable media.
http://www.scholarpedia.org/article/Excitable_media.

198

http://www.scholarpedia.org/article/Excitable_media

	List of Tables
	List of Figures
	Introduction
	Threshold Phenomenon
	An Introduction to Excitable Media
	Problem Statement and Aims
	Thesis Outline

	Literature Review
	Chapter Introduction
	Fundamentals and Definitions
	Reaction-Diffusion Systems
	Action Potential

	Mathematical Models for Excitable Cells
	Hodgkin-Huxley Model
	FitzHugh-Nagumo Model
	Beeler-Reuter Model

	Spatially Extended Excitable Systems
	Traveling Wave Solutions
	Classification of the Traveling Waves
	Models with Traveling Front
	Models with Traveling Pulse

	Mathematical Approaches to Initiation Problem
	An Introduction the Initiation Problem
	A Brief History of the Mathematical Approaches

	Review of Some Essential Numerical Methods
	Finite Difference Method
	Finite Element Method
	Power Iteration
	Arnoldi Iteration
	Levenberg-Marquardt Algorithm
	Piecewise Cubic Hermite Interpolating Polynomial


	Analytical Theory
	Chapter Introduction
	Problem Formulation
	Initiation by Voltage: Strength-Extent Curve
	Linear Approximation
	Quadratic Approximation of the Stable Manifold
	A Priori Bound in the Critical Nucleus Case

	Initiation by Current: Strength-Duration Curve
	Linear Approximation
	Quadratic Approximation of the Stable Manifold
	A Priori Bound in the Critical Nucleus Case

	Chapter Summary

	Numerical Methods
	Chapter Introduction
	Direct Numerical Simulation of the Strength-Extent Curve
	Finite Difference Discretization Formula
	Finite Element Discretization Formula
	Threshold Curve

	Direct Numerical Simulation of the Strength-Duration Curve
	Finite Difference Discretization Formula
	Finite Element Discretization Formula
	Threshold Curve

	Hybrid Approach
	Rationale
	The Case of Critical Nucleus
	The Case of Moving Critical Solution

	Chapter Summary

	One-component Systems
	Chapter Introduction
	Zeldovich-Frank-Kamenetsky Equation
	Hybrid Approach
	Linear Approximation of the Strength-Extent Curve
	Quadratic Approximation of the Strength-Extent Curve
	Linear Approximation of the Strength-Duration Curve
	Quadratic Approximation of the Strength-Duration Curve

	McKean Equation
	Analytical Derivation of the Eigenvalue Problem
	Hybrid Approach
	Linear Approximation of the Strength-Extent Curve
	Quadratic Approximation of the Strength-Extent Curve
	Linear Approximation of the Strength-Duration Curve
	Quadratic Approximation of the Strength-Duration Curve

	Chapter Summary

	Multicomponent systems
	Chapter Introduction
	Biktashev Model
	Hybrid Approach
	Linear Approximation of the Strength-Duration Curve

	FitzHugh-Nagumo System
	Hybrid Approach
	Linear Approximation of the Strength-Extent Curve
	Linear Approximation of the Strength-Duration Curve
	Perturbation Theory Analysis of the Model

	The Modified Beeler-Reuter Model
	Hybrid Approach
	Linear Approximation of the Strength-Extent Curve
	Linear Approximation of the Strength-Duration Curve

	Chapter Summary

	Conclusion and Future Work
	Summary and Main Results
	Research Implications and Limitations
	Future Work

	Finite Element Discretization for the McKean Model
	On "Frozen Nuclei" in the McKean Equation
	Numerical Approaches to the Biktashev Model
	Discretization Formula for the Critical Front
	Discretization Formula for the Linearized Problem
	Discretization Formula for the Adjoint Linearized Problem
	Analytical Eigenfunctions

	Bibliography

