College of Engineering, Mathematics and Physical Sciences

UNIVERSITY OF

EXETER

Mathematical and Computational
Study of Markovian Models of lon
Channels in Cardiac Excitation

Submitted by

Tomas Stary

to the University of Exeter as a thesis for the degree of Doctor of
Philosophy in Mathematics.

June 2016

This thesis is available for Library use on the understanding that it is copyright
material and that no quotation from the thesis may be published without proper
acknowledgement.

| certify that all material in this thesis which is not my own work has been
identified and that no material has previously been submitted and approved for the
award of a degree by this or any other University.

Tomas Stary

Abstract

This thesis studies numerical methods for integrating the master equations describ-
ing Markov chain models of cardiac ion channels. Such models describe the time
evolution of the probability that ion channels are in a particular state. Numerical
simulations of such models are often computationally demanding because many
solvers require relatively small time steps to ensure numerical stability. The aim of
this project is to analyse selected Markov chains and develop more efficient and
accurate solvers.

We separate a Markov chain model into fast and slow time-scales based on
the speed of transitions between states. Eliminating the fast transitions, we find an
asymptotic reduction of zeroth-order and first-order in a small parameter describing
the time-scales separation. We apply the theory to a Markov chain model of the fast
sodium channel Iv,. We consider several variants for classifying some transitions
as fast in order to find reduced systems that yield a good accuracy. However, the
time step size is still restricted by numerical instabilities.

We adapt the Rush-Larsen technique originally developed for gate models.
Assuming that a transition matrix can be considered constant during each time
step, we solve the Markov chain model analytically. The solution provides a recipe
for a stable exponential solver, which we call “Matrix Rush-Larsen” (MRL). Using
operator splitting we design an even more flexible “hybrid” method that combines
the MRL with other solvers. The resulting improvement in stability allows a large
increase in the time step size. In some models, we obtain reasonably accurate
results 27 times faster using a hybrid method than with the forward Euler method,
even with the maximal time step allowed by the stability constraint.

Finally, we extend the cardiac simulation package BeatBox by the developed
exponential solvers. We upgrade a format of “ionic” modules which describe a
cardiac cell, in order to allow for a specific definition of Markov chain models. We
also modify a particular integrator for ionic modules to include the MRL and the
hybrid method. To test the functionality of the code, we have converted a number
of cellular models into the ionic format. The documented code is available in the
official BeatBox package distribution.

Acknowledgement

This thesis would not have been possible without the continuous support | received
from many people.

Firstly, | would like to express my deep gratitude to my supervisor Prof Vadim
N. Biktashev for his excellent scientific supervision of my work. His expertise,
understanding, guidance and constructive criticism were truly essential for the
development of this inspiring project. Thank you, Vadim, for your assistance, time
and patience.

Secondly, | extend my thanks to my colleagues at Exeter University for inter-
esting discussions, tips on computer use, and explanation of various mathemat-
ical problems, especially to Paul Ritchie, Burhan Bezekci, lldar Sadrev, Arjaree
Saengsathien, Pierre Aumjaud, Thomas Mendlik, Ummu Atigah Mohd Roslan,
Clare Perryman, Damian Smug, Abdullah Aldurayhim, Saad Almuaddi, and to
Stefan Siegert, Courtney Quinn, Adam Peddle, Lewis Watson, and lan Wooley for
proofreading of selected chapters of my thesis.

| would like to acknowledge the College of Engineering, Mathematics and
Physical Sciences for the financial support which enabled me to undertake this
project.

This thesis was developed based on freely licensed computer programs namely
GNU, Linux, Emacs, LaTeX, Python, BeatBox, and others. | thank all the con-
tributors for allowing anyone to use, study, modify and share the product of their
work.

Finally, | would like to thank all my friends who made my life during this time
even more enjoyable. | owe a great debt of gratitude to my parents, my sister, and
the whole family for their lasting support and encouragement.

Publications

e T. Stary and V. N. Biktashev. Exponential integrators for a Markov chain
model of the fast sodium channel of cardiomyocytes. |[EEE Trans. BME
arXiv:1411.6204.

* Tomas$ Stary, Vadim Biktashev. Evaluating Exponential Integrators for
Markov Chain lon Channel Models. /[EEE Computing in Cardiology Pro-
ceedings. 2015 42:885-888.

¢ Mario Antonioletti, Vadim N. Biktashev Adrian Jackson, Sanjay R. Kharche,
Tomas Stary, Irina V. Biktasheva. BeatBox— HPC Environment for Bio-
physically and Anatomically Realistic Cardiac Simulations. Submitted
to PLoS ONE arXiv:1605.06015.

¢ The BeatBox Cardiac Simulation Software: A User’s Guide, modifica-
tions in rushlarsen device, ionic format and ionic modules, BeatBox Home
Page

Presentations

e Tomas Stary*, Vadim Biktashev. Analysis of Numerical Methods for
Markov Chain Models of lonic Channels. British Applied Mathematics
Colloquium, Oxford, April 2016

e Tomas Stary*, Vadim Biktashev. Evaluating Exponential Integrators for
Markov Chain lon Channel Models. Computing in Cardiology. Nice,
September 2015

e Toma$s Stary, Vadim Biktashev*. Evaluating Exponential Integrators for
Markov Chain lon Channel Models. Dynamics Days. Exeter, September
2015

e Tomas Stary*, Vadim Biktashev. Practical methods of solving Markov
chain type ion current models. BioDynamics workshop. Exeter, June
2014

e Tomas Stary, Vadim Biktashev*. Dynamical Properties of Markov Chain
Cardiac lon Channel. Computational Cardiac Electrophysiology workshop.
Imperial College, May 2014

e Tomas Stary*, Vadim Biktashev. Practical methods of solving Markov
chain type ion current models. British Applied Mathematics Colloquium.
Cardiff, April 2014

* presenting author

https://arxiv.org/abs/1411.6204
http://www.cinc.org/archives/2015/pdf/0885.pdf
https://arxiv.org/abs/1605.06015
http://empslocal.ex.ac.uk/people/staff/vnb262/software/BeatBox/
http://empslocal.ex.ac.uk/people/staff/vnb262/software/BeatBox/

Contents

9

1__Introductionl 19
|2 Cellular Electrophysiology| 23
2.1 The Hodgkin-Huxley Moael 23
1.1 ModelotaCell 23

212 TonicCurrentsl. 25

[2.1.3 Summary of the Hodgkin-Huxley Model| 29

2.2 rdiac Excitation Models|o L. 31
[2.2.1 Development of Cardiac Models| 31

2.2.2 lclum Buffers Kineticsl. 33

22.3 lonChannels| 34

2.3 lon ChannelModels| 37
[2.3.1 Exposing the Limitations of Gate Model| 37

[2.3.2 Deriving Markov Chain Models|. 38

2.3.3 Conversion from Markov chain to a Gate Model 40

[2.3.4 Conversion of Hodgkin-Huxley /x., and Ik |

to Markov Chains|. 42

[2.4 Popular Markov Chain lon Channel Moadels| 44
[2.4.1 Fast Sodium Current Ino|. 44

2.4.2 L-type Calcium Current Jeopy - - - - - o o oo oo oL 46

[2.4.3 Calcium Current of the Sarcoplasmic Reticulum 7. 49

[2.4.4 Calcium Dynamics in Faber et al. (2007) Model[. 51

3 Asymptotic and Numerical Methods| 55
(3.1 Asymptotic methods| 55
[3.1.1 Toy Example of Dimensionality Reduction| 55

[3.1.2 Classical Formulations of Singular Perturbation Theory| . . 59

[3.1.3 Leading-Order Reduction for Linear Systems| 61

Contents

[3.1.4 First-Order Correction Term for General Systems|

1.5 First-Order Correction Term for Markov Chains|

(3.2 Numerical Integration Methods|
[3.2.1 Order of Approximation|
[3.2.2 EXxplicit Methods — Forward Euler|
[3.2.3 Rush-Larsen Technique for a Gate Model|

4 Dimensionality Reduction of [y, Markov Chain|
4.1 Analysis of Ix, Markov Chainf
[4.1.1 Formulation of Iy, Markov Chain|
4.1.2 Embeddings of Iy, Markovchainf
4.2 Leading-Order O P-Reduction in Iy, Markov Chain|
[4.2.1 Embeddingof OP States|
4.2.2 Choice of Eigenvectors|

4.3 Leading-Order ST'U-Reduction in Iy, Markov Chain|
4.3.1 Embedding of STU States|
4.3.2 Choice of Eigenvectors|
4.3.3 Reduction of States S, 7" and U to One State M|

4.4 Leading-Order R()-Reduction in the ST'U-Reduced Iy, Model| . .
4.4.1 Embedding of RQ) States|
4.4.2 Choice of Eigenvectors|
[4.4.3 Reduction of states Rand Q by One State 1|

(5 Exponential Solvers for Markov Chain Models|
0.1 Applicationto Iy, Moqdel|
[0.1.1 Operator Splitting for In, Modelf
[>.1.2 Hybrid Method tor Ix, moqQell
[5.1.3 Matrix Rush-Larsen for Iy, Modell

0.2 Application to RyR and Ic,;) Models|.
2.1 llularmodel

6.2.2 RyR Markov ChainModel|
0.2.3 Icar) Markov ChainModel
(0.2.4 Conclusions for RyR and Ic.;) Case Study|

(5.3 Accuracy of Numerical Methods for Markov Chain|

10

83
83
83
85
93
93
94
95
98
104
104
105
106
108
108
110
110
112
112
114
115

Contents

[5.3.1 Order of Approximation| 140
0.3.2 Forward Eulermethod 142
©.3.3 Matrix Rush-Larsen| 142
[5.3.4 Operator Splitting for Linear Systems| 142
[5.3.5 Truncation Error of Lie Splitting| 143

B.4 Conclusionsl. 145
[6 Exponential Solvers for Markov Chain Models in Beat Box| 147
6.1 Definition of a Reaction System|. 148
6.2 Solution of Reaction System| 149
2.1 Tabulationl. 149

6.2.2 Forward Euler Method 151
[6.2.3 Exponential Integration for Hodgkin-Huxley Type Gates| . . 151
[6.2.4 Exponential Integration for Markov Chains|. 152

6.3 Running BeatBox Simulation| 153
6.4 Definition of Reaction System in BeatBox| 154
6.41 rhsModules| 155
6.42 ionicModulesl L. 155

4.3 Extension of ionic M lesl. 156

6.5 Solution of Reaction Systemin BeatBox| 156
651 eulerDevicel 156
[6.5.2 rushlarsenDevicel. 158

6.6 Specification of ionic Modules| 161
6.6.1 Data Structures|. 161
[6.6.2 C-Functions and lemplate Macros| 166

6.7 Testing of BeatBox ionic Modules with Markov Chains|. 170
[6.7.1 Hodgkin-Huxley Minimalist Model. 171
6.7.2 lenlusscher-Panfilov (2006) Modell 172
[6.7.3 Faberetal (2007) model 173
nclusions|. 175
I7__Conclusions| 177
[/1 MainResults| 177
/.2 Limitations| 179
(/.3 FurtherWorkl 180
efinition of Clancy-Rudy ode 183
B Eigenvalue Computation| 193
B.1 Overview of Subroutines for Finding Eigenvalues| 193
[B.2 Linear Algebra Package LAPACK| 194
B.2.1 verview of LAPACK] 194

11

Contents

B.2.2 Standalone LAPACK Code for Eigenvalue Computation| . . 194

B.3 GNU Scientific Library (GSL)[. 198
B31 Overviewof GSIJ 198

B.3.2 Standalone GSL Codel 198

B.4 Including GSLto BeatBox| 204
IC_rushlarsen Source Codel 207
1 r fionic.Bl. 207

2 r f channel . W 209

IC.3 Source Code of rushlarsen.d 209

[D Tmplementation of Cellular Models| 225
D.1_Standalone Codel. L 225
[D.1.1 Hodgkin-Huxley Squid Model| 225

D.2 Implementation as BeatBox Modules| 228
D.2.1 Enumeration of Variables| 228

[D.2.2 Implementation of Markov Chains| 230

[D.2.3 Including Modules into BeatBox|. 231

[D.3 Hodgkin-Huxley Squid Model 232
[D.3.1 Code Listings of Hodgkin-Huxley Model as rhs Module] . . 232

[D.3.2 Code Listings of Hodgkin-Huxley Model as ionic |

Module with Models of lon Channels|. 235

[D.3.3 Code Listings of Hodgkin-Huxley Model as ionic Module |

| with Markov Chain Modelsl. 240
D.4 TenTusscher-Panfilov (2006) Model. 245
[D.4.1 Calcium Dynamics| 245

[D.4.2 Calcium Computation in the Ienlusscher-Pantilov Model . 246

[D.4.3 Difterential Equations for Calcium|. 247

[D.4.4 Comparison of Algorithms for Computation of Calcium Dy- |

[NAMICS] o e e e e e 248

12

[D.4.5 Implementation of TenTusscher-Panfilov in ionic Formatf . 250

List of Figures

2.1 Electric diagram of cellular membrane| 24
[2.2 Characteristic times, steady-state and transition rates of /x gate |
[model 27
[2.3 lTransition rates of Hodgkin-Huxley gate models.| 29
[2.4 Characteristic time and steady-state of Hodgkin-Huxley gate models.| 30
[2.5 Hodgkin and Huxley action potential and currents|. 30
2.6 Diagram of calciumdynamics| 35
[2.7 Experimental data of /y, channel activation and inactivation| 37
2.8 Diagram of a simple gate model and its Markov chain equivalent . 39
2.9 Simple Markov chain model diagram| 41
[2.10 Diagram of the Hodgkin-Huxley /x model as Markov chain|. 43
[2.11 Diagram of the Hodgkin-Huxley model for Iy, as a Markov chain| . 44
[2.12 Diagram of the Iy, Markov chain model by Clancy and Rudy (2002)] 44
i2.13 Markov chain model of Jcop)| - . -o 47
[2.14 State diagram of RyR Markov chainmodel|. 50

(3.1 Phase portrait of a simple example to illustrate the of dimensionality |

[reduction. e e 57
4.1 Characteristics of Iy, Markov chain mogdel[. 86
4.2 Eigenvalues and eigenvectors of Iy, model| 87
4.3 State occupancy of Iy, system with one pair of transition rates |

[embedded. e e e e e e 90
4.4 State occupancy of /Iy, system with one pair of transition rates |

| embedded (detall of first 1 ms)| 91
4.5 State occupancy of [y, system with two pairs of transition rates |

[embedded|. e e e e e 92

List of Figures

4.6 State occupancy of Iy, system with three or more pairs of transition |

[rates embedded| 93
4.7 Diagram of the Iy, Markov chain with O P-reduction.| 97
4.8 Comparison of state occupancy of Iy, In original model and with |

| OP-embedding and OP-reduction| 98
4.9 Occupancy of state NV tor the O P-reduction and O P-embedding In |

| leading-order and first-orderof e 101

4.10 Order of approximation in ¢ for the leading-order and first-order |

4.11 Occupancy of states In the Iy, model for the O P-reduction and |

O P-embedding In leading-order and first-orderofel 103

4.12 Transition rates in ST'U-reduced model and Markov chain diagrams.| 108
4.13 Comparison of state occupancy of embeddings in S7'U-reduction|. 109
4.14 Comparison of state occupancy of reductions in I, Markov chain| 112

4.15 Dependence of the action potential on the initial conditions| 113
4.16 Dependence of Iy, on the Initial conditions| 114
4.17 Stability of the solution at different values of the time step.| 115
5.1 Comparison of numerical methods for Iy, Markov chain solver| . . 129
(5.2 Transition rates in the Markov chain modelof RyR| 132
5.3 Numerical instability caused by RyR model using forward Euler |
| Integration.| 133
(5.4 Comparison of integrating methods in RyR model.| 135

0.5 New terminology of simplified /c,;) model. Correspondence be- |

tween the old and new states (left), simplified diagram of the Markov |

| chain(right). 136
5.6 Numerical instability caused by /¢,y model using forward Euler |

| Integration and hybrid method for RyR channel.|. 137
./ ransitionrates in /¢,y modell 0oL 138
5.8 Comparison of integrating methods in /c, ;) model 139
(0.9 Numerical instability due to intracellular ionic concentrations|. . . . 140
6.1 Conceptual “ring of devices” In BeatBox| 154

2 D r res in rushlarsendevicel. 162
6.3 _Construction of the transition matrixJ 169
6.4 Simulation results and absolute error of the Hodgkin-Huxley squid |

| modelin BeatBox|. 171
6.5 Comparison of the simulation methods of the Markov chain models |

[for ITPmodell. 173
6.6 Comparison of simulations with exponential methods using Faber |

| etal. (2007) modell 174

14

List of Figures

[D.1 Comparison of the autnor’s and reformulated algorithm for compu-

tation of calcium dynamics|. 248
[D.2 Convergence of the solution in time-step (top row) and voltage-step |
In tabulation (bottom row) for tenTusscher-Pantilov (2006) model| . 251

15

List of Tables

2.1 Dynamical states of the Hodgkin and Huxley model.| 32
2.2 Definitionsofcurrents. L Lo 32
2.3 Opening («) and closing (5) transitionrates.| 32
2.4 Constantparameters.| 32

4.1 Norms [|[N — N, | as dependence on parameter ¢ for leading-order |

O(£") and first-order O(¢) approximations.| 103
5.1 Computational cost of Clancy, Rudy model| 130
(6.2 Computational cost of integration of Faber et al. model[. 140
6.1 Parameters to set up euler device Inbbs script| 157
6.2 Parameters to set up rushlarsen device in bbs Script|. 159
6.3 Elements of a data structure subchain stxf 163
6.4 Elements of data structure channel str| 164
6.5 Elements of data structure ionic str of an ionic module| 164
6.6 Elements of data structures of rushlarsen devicel. 165
6.7 Arguments of the C-function to initialise an ionic module| 167

6.8 Arguments of the C-function computing the kinetics In ionic module/167
6.9 Arguments of the C-function for transition rates of gating variables| 168
16.10 Arguments of a C-function computing transition rates of Markov chains(168

[6.11 Computational cost in Faber et al. In BeatBox| 175
B.1 Numerical libraries for solving eigenvalue problem| 193
[D.1 Examples of included files with function-like macros.| 230

17

Chapter 1

Introduction

The area of application of this thesis is cardiac electrophysiology, specifically
mathematical models of ion channels, that use master equations of continuous
Markov chains. A Markov chain model of an ion channel consists of a finite
number of states that correspond to conformations of the channel, which are either
permissive or non-permissive for an ionic flow. These models are systems of linear
ordinary differential equations (ODEs). Dynamic variables of the ODEs represent
the probability that the channel resides in a particular state. Coefficients of the
ODEs are the probabilities of transitions from one state to another, the coefficients
are contained in a transition matrix.

Time evolution of dynamic variables is found using numerical solvers, however,
many popular solvers, such as the simplest forward Euler, suffers from so-called
numerical instabilities. The numerical instabilities appear as the time step size
increases and cause the simulation to fail. Systems with fast processes, as is often
the case for Markov chain models of ion channels, only provide numericaly stable
results using very small time steps. The solution then requires a large number of
arithmetic operations, hence, the computational cost of the solution increases. In
this work we aim to tackle the issue of the numerical instability in certain Markov
chain models to design more efficient, accurate solvers.

The thesis is divided into seven chapters. After this Introduction which describes
the contents of the thesis, Chapter [2|gives some background information about the
field of electrophysiology. We describe the full Hodgkin and Huxley cellular model,
with an emphasis on the ion channels. Hodgkin and Huxley used so-called gate
model, which is still a popular ion channel model, but sometimes fails to reproduce
experimental data. Markov chain models address some of these limitations. We
present equivalent Markov chain models to gate models and provide a description

19

Chapter 1. Introduction

of a few modern cardiac Markov chain models, which will be used in subsequent
chapters.

Chapter [3| describes the numerical solvers and asymptotic methods relevant
to the project. Section introduces the numerical solvers based on discreti-
sation in the time domain. The system is then integrated by approximating the
evolution of the dynamic variables at the discrete points in time. We describe
the simplest forward Euler solver and the Rush-Larsen (1978) solver, which is
designed specifically for gate models. The Rush-Larsen method is more accurate
and stable, however, it cannot be applied to the Markov chains directly. Section
describes asymptotic methods for a reduction of the dimensionality of a generic
Markov chain model in which some transition rates are much faster than others.
The asymptotic reduction gives an approximation in terms of an order of a small pa-
rameter that characterises the time-scale separation. We use the approximation in
a zeroth-order (also called leading-order) and a first-order in the small parameter.

Chapter 4| applies the dimensionality reduction described in Chapter [3[to a
Markov chain of sodium channel Iy, by Clancy and Rudy (2002). To find processes
for elimination we use a procedure called “transition rates embedding”. We select
several variants for classifying some of the Iy, transition rates as fast and other as
slow, and reduce the dimensionality by a zeroth-order, and in one case we also
include the first-order correction. However, the test simulations of reduced Iy.
model showed numerical instabilities at the same value of the time step as the
original model. Hence, the dimensionality reduction failed to provide a significant
speed-up of the computation in this case.

Chapter 5 describes the development of exponential integration methods and
their application to Markov chain ion channel models. We apply those methods to
an example of a stiff Markov chain of Iy, channel developed by Clancy and Rudy
(2002) [2]. Using operator splitting methods we split Iy, into three subsystems.
The first contains the fast transition rates at high voltages, the second contains
fast transition rates at low voltages and the third contains uniformly slow transition
rates. Both fast subsystems are coupled in a way that allows an analytical solution
if we “freeze” (consider constant) the transition rates at their initial value, for the
duration of the time step. The analytical solution provides a recipe for exponential
integration. In a “hybrid” approach we build a numerical solver combining the
exponential integration for fast subsystems and the forward Euler method for the
slow subsystem.

In Chapter[5 we describe one further method called Matrix Rush-Larsen (MRL).
The MRL “freezes” the transition rates matrix for the duration of the time step,
analogously to the fast subsystems in the “hybrid” method, and integrate the
whole Markov chain model, which gives a solution with a matrix exponential. We
exponentiate the diagonal matrix found by an eigenvalue decomposition. Before

20

the simulation starts we precompute the exponential operator for a particular time
step and save it into a look-up table. During the computation we refer to the values
in the look-up tables.

In Section we apply the methods to two examples of Markov chain models
in the Faber et al. (2007), which are known to require very small time steps in
the forward Euler solver used in the authors’ implementation of the model. In
Section we provide the formulas to analyse the accuracy of the numerical
integration methods.

Chapter [6|describes the implementation of the exponential integration methods
into a cardiac simulation package BeatBox. This task requires a modification of
the BeatBox framework for cellular models — the so-called ionic format. Before
our modifications, the ionic format used to distinguish between three types of
dynamical variables: gating variables dependent on membrane voltage, gating
variables dependent on other variables, and “other” variables. We extended the
ionic format by a fourth type: Markov chain variables. We implemented the
hybrid methods with the MRL for integration of Markov chains. We also include
specific functions and macros for definition of Markov chain models into ionic
models, which describe the cardiac cells, and modify the data structure of ionic
modules, which contain the variables and parameters of the simulation. We test the
functionality on ionic models and include Markov chain ion channels. The code
and the documentation are made available along with the BeatBox distribution.

Finally, we conclude by discussing the main results, limitations and interesting
directions for further work in Chapter 7|

Appendix |Al defines the cellular model that was used in the study by Clancy
and Rudy (2002) [2] together with the Iy, Markov chain. Appendix [B]discusses the
computation of eigenvalues and presents the C-code for the computation using
GSL and LAPACK libraries. It also describes the extraction of required functions
for the purposes of implementating the MRL into BeatBox. Appendix [C] presents
the updated files in BeatBox distribution. Appendix [D] describes an implementation
of some cellular modules into BeatBox.

21

Chapter 2

Cellular Electrophysiology

This chapter gives a brief introduction to cellular electrophysiology. Section 2.1
reviews the pioneering work of Hodgkin and Huxley (1952). Section introduces
cardiac models and describes some differences from the Hodgkin and Huxley work.
Section [2.3|focuses on the description of the limitations of the Hodgkin-Huxley
type gate models of ion channels and introduces the so-called Markov chain
models that generalise the gate models and so allow to simulate more complex
phenomena. Detailed description of the conversion from a gate model to a Markov
chain model is shown using the gate models of Hodgkin and Huxley. Section 2.4
describes a few examples of popular Markov chain models.

2.1 The Hodgkin-Huxley Model

2.1.1 Model of a Cell

Electrophysiology is based on the study of excitable cells. The cells are bounded
by a cellular membrane that separates the intra- and extracellular environments.
Those environments contain an electrolyte, which is a water solution of electrically
charged particles, such as ions of sodium and potassium. The ionic concentrations
in intra- and extracellular space of the cell differ, which causes polarisation of the
membrane.

Under certain conditions the membrane becomes permeable for certain types
of ions, which then diffuse between the environments down the concentration and
electric gradient. The permeability of the membrane to specific ions is determined
by dynamical processes which enable flow of ions through the membrane. These
ion flows constitute electric currents. Due to the changing amount of specific
current an electric excitation called action potential is observed.

23

Chapter 2. Cellular Electrophysiology

A breakthrough theory was introduced in 1952 by Hodgkin and Huxley who
suggested a mathematical model for the electric processes in cells [3]. Although,
there are more advanced models, we describe the Hodgkin-Huxley model here,
as is a straightforward and simple model which shows the fundamental principles
which are also present in modern cellular models.

Hodgkin and Huxley expressed the cellular membrane by a diagram as shown
in Figure[2.1] The cellular membrane is a lipid layer that is not conductive and in an
electric field acts as a capacitor. The permeability of the membrane is expressed
as an electrical conductance specific for every kind of ion.

The membrane currents have to obey Kirchhoff’s law. Treating the cell mem-
brane as a node in an electrical circuit, Kirchhoff’s law gives the relation

Y I, =0, (2.1)

where I, represent the currents corresponding to the capacitor /-, sodium Iy,
potassium Ik and a small leakage current I; due to chloride and other ions.

The relation of the capacitive current is obtained from the equation of the
capacitor

dVi
—c—n

Ic(t) T

(2.2)

where V,, is the membrane voltage corresponding to the potential difference
between the intra- and extracellular environment. The expressions for sodium,
potassium and leakage currents depend on the conductance of the membrane
and the driving force for the type of ions, which is expressed in terms of Ohm’s law
as

Ix(t) =gk () (Vi — Ex), (2.3a)

Intracellular
O

‘ 9Na 9K g1

\ ENa i_——_ Ex T—__— E, T—__—

Extracoellular
Figure 2.1: Electric diagram of the cellular membrane [3]. Each branch of the

diagram represents a specific process in the cell. From the left to right it is the
capacitance of the membrane, the sodium, the potassium and the leakage current.

24

2.1. The Hodgkin-Huxley Model

Ina(t) =gna(t)(Vin — Ena), (2.3b)
Li(t) =q:(Vin — E1) (2.3¢)

where gk and gn. and g; quantify the permeability of the membrane, and E,
Exn. and E; are equilibrium potentials depending on the concentrations of particular
ions. The equilibrium potentials are considered constant in the Hodgkin-Huxley
model.

The equation for the membrane then gets the form

dVi, 1
W = —6 ([Na+[K+[l). (24)

2.1.2 lonic Currents

The conductance of the membrane to specific ions cannot be derived from first
principles. Instead, a theoretical model aims to describe the empirically observed
phenomena in a neural cell. Hodgkin and Huxley performed experiments to
measure ionic currents due to sodium and potassium ions through the membrane
of a giant squid axons.

The conductance of potassium and sodium ions in equations and
change in time. The conductance of potassium is described by

gk (t) = grn(t)", (2.5)

where gk is the maximum conductance and n is a dynamical variable, that takes
values between 0 and 1.

The permeability of the ionic membrane for currents is due to large protein
molecules residing in the cellular membrane, which has been discovered some
time after Hodgkin and Huxley developed that model. However, as it simplifies the
description of a cellular model and it is more realistic, we will use a notion of ion
channel model, which is known as a gate model.

The gate model assumes that the conformation of the channel molecule can
be expressed by a finite number of gates, that can be either open or closed. When
all gates are open, the channel allows ions to pass through. The number and type
of gates differs in each type of channel. The potassium channel contains one type
of gate. The probability that a gate is open is given by the dynamic variable n. In a
single potassium channel there are four gates, hence the probability of all gates
being open is n* (assuming independence between gates). The time evolution of
n is described by the differential equation

dn ne—n

25

Chapter 2. Cellular Electrophysiology

where n., represents steady-state value of the variable n and 7, is a characteristic
time of potassium channel n, which in some literature called “time constant”, in
the context of voltage-clamp experiments. However, in the context of dynamical
system, this term is not appropriate, as it depends on the membrane voltage V.,
which itself is a dynamical variable as given by equation (2.4).

In the Hodgkin-Huxley model the characteristic times and steady-states were
found experimentally using so-called voltage-clamp procedure. In this procedure,
two electrodes are attached to the intracellular and extracellular environment of the
axon. Then a current is applied to the cell such that the membrane voltage remains
at a constant testing value. The time evolution of the current is recorded. The
measurements are repeated to determine steady-state values and characteristic
times for a range of membrane voltages.

The solution of (2.6) has to satisfy the initial condition n(0) = ny which gives

N = Ne — (Moo — No) €XP (—t) : (2.7)

n

The relation with the experimental results is given by combining equation (2.7)
with equation (2.5) as

N

gx = [(gKoo) — ((gko0) = (gK0)7) exp (—Ti)r (2.8)

where gko corresponds to the initial value of conductance and gk., and steady-
state conductance. Then the characteristic time and steady-state can be defined
as

1
= 2.9a
™ an + B (.92)

(6
o = 2, 2.9b
"t B (2.95)

and using these expressions the equation (2.6) gets the form
dn

i an(l —n) — Bun. (2.10)

The «,, and (,, can now be interpreted as transition rates of the gate model, which
determine the probability per a unit of time that the gate n opens («,,) or closes
(8n)- Finally, the transition rates are found as

a, =12 (2.11a)
Tn
g, =L =Moo (2.11b)
Tn

26

2.1. The Hodgkin-Huxley Model

1 . 6 1.2
08 | oo™ 45 1 G
Tn Bn_
14 0.8}
0.6 ~
{3 =2 7 o6t
8 04} g 0
S 12 — £ o4t
0.2 1 {1 € 0.2 }
0 T E— 0 0 S —
25 0 25 50 75 100 25 0 25 50 75 100
(a) (b)

Figure 2.2: Characteristic time, steady-state and transition rates of I gate model.
Panel (a) shows the steady-state n., (blue line, left ticks) and characteristic time
7. (yellow line, right ticks). Panel (b) shows the opening transition rate «,, (green
line) and closing transition rate 5,, (purple line).

Using the determined transition rates for the whole range of experimental
voltages, Hodgkin and Huxley found that the curves which best fit the transition
rates of the potassium channel are given by

~0.01(=Vi, + 10)

Qp = ; 2.12a
exp (7\/‘1110“0) _1 ()
B, =0.125 ex “Vu (2.12b)

Figure shows the characteristic times and steady-states in panel (a), and
transition rates in panel (b) from the Hodgkin-Huxley model. Those traces were
fitted to the data obtained experimentally.

The situation is a bit more complicated in the case of the sodium current (2.3b).
The conductance for sodium is described by the equation

INa = gnam’h, (2.13)

where gy, is the maximum conductance. This equation can be interpreted using
a similar notion of a gate model, as we described in the case of potassium
current. The model for sodium has three independent activation gates m and one
inactivation gate h. The channel is only open when all activation and inactivation
gates are open. The time evolution of the gates are described by the first-order
differential equations

W 1= m) — B, (2.142)
(:1? :Oéh<1 — h) - th, (214b)

27

Chapter 2. Cellular Electrophysiology

where «,,, and (,, are transition rates of the activation gate m, and «;, and 3, are
transition rates of the inactivation gate h.

The solution of these equations have to satisfy the initial conditions m(0) = my
and h(0) = hg, which gives

M =Moo — (Moo — Mg) EXP (—t) , (2.15a)

m

h —hae — (heo — ho) exp (—t> , (2.15b)

Th

where the initial state and characteristic times are given by

me :M, (2.16a)

T :W, (2.16b)

ho :O%;‘_F’“’ﬁm), (2.16¢)
1

= (2.16d)

Unlike the potassium model there are two types of gates with different behaviour,
which need to be found, to describe the behaviour of the channel as observed in
experimental data. This is done using the assumption that the sodium conductance
of the activation gate is very small for values below V,, = 30 mV and therefore m,
can be set to zero for small values of the membrane voltage. For values above
V. = —30 mV the inactivation gate is fully inactivated and so &, is ignored for
high values of the membrane voltage. Then equation gets the form

m =meu {1 — exp <—;>} , (2.17a)
h =hy exp (-t) . (2.17b)
Th

This approximation is substituted into equation (2.13), which yields

3
JNa = gﬁamioho {1 — exp (—t)] exp (—t)) (2.18)
Tm

Th
Then the values of the characteristic time are estimated from the experimental
data.

Hodgkin and Huxley found the values of the transition rates from the voltage-
clamp experiments to be

0.1(— Vi + 25)

_)
exp <7V'1“0+ 25) —1

(2.19)

Ay =

28

2.1. The Hodgkin-Huxley Model

10 T T T T T 100 T T
Bm
1k 10 |]
_ ~ B Br—
7 0.1F I 1L
‘m . ré)
E oo1f S o1}
S 0001} = oo1l
00001 1 1 1 1 1 0001 1 1 1 1 1
25 0 25 50 75 100 25 0 25 50 75 100
Vi (mV) Vi (mV)

(a) (b)

Figure 2.3: Transition rates of Hodgkin-Huxley gate models as function of mem-
brane voltage V,,: (a) opening transition rate «; (b) closing transition rate 3. Yellow
lines represent gate m, green represent gate h, cyan represent gate n. The rates
are shown in logarithmic scale.

—Va
Pm =4 exp (18)) (2.20)
~V,,
ap =0.07 exp (20) , (2.21)
B = ! (2.22)

exp (fv,f0+30) + 1

The transition rates of both Ik and Iy, model suggested by Hodkin and Huxley
are shown in Figure [2.3]

2.1.3 Summary of the Hodgkin-Huxley Model

This section summarises the equations describing the giant squid axon in the
Hodgkin-Huxley model. We implemented this model in the C programming lan-
guage as listed in Appendix D] The complete definition of the model is sumarised
in Tables 2.1H2.4

Figure shows the characteristic times in panel (a), and steady-state values
panel (b), for both potassium and sodium channel’s gates n, m, h. The inverse of
the characteristic time can be understood as the speed, in which the corresponding
variable approaches the steady-state, i.e. lower value of the characteristic time,
the faster it will approach to the steady-state.

The reproduction of the action potential and ionic currents using the Hodgkin-
Huxley squid axon model is shown in Figure 2.5 Panel (a) shows the membrane
voltage and sodium and potassium currents (the leakage current is not shown).
Panel (b) shows the activation gate m and inactivation gate h during the same
action potential and the corresponding current Iy,. Panel (c) shows the activation
gate n and the corresponding current Ix.

29

Chapter 2. Cellular Electrophysiology

9 1
8| o 09
7| 0.8
6 | \E/ 0.7
~ 5[v 0.6
2} w® 05
g 4 = 04
8 L 03
&2t 5 02
1} S 01
0 1 1 1 i n ey 0 1 I 1 1
-25 0 25 50 75 100 " 25 0 25 50 75 100
Vi (mV) Vi (mV)
(a) (b)

Figure 2.4: (a) Characteristic times and (b) steady-states of Hodgkin-Huxley gate
models as a function of membrane voltage V,,. Yellow lines represent gate m,
green represent gate h, cyan represent gate n.

120 : : : 900
100 Vin — 600 g
—~ T JR—
> 80 4300 2
E 60 K 0o 2
40
i o]
§ 20 300 z
0 4-600 .
220 ' ' ' 900 X
7 8 9 10
(a)
0 ~ T 1 1000 0.8
&] i N
= 200 ﬁ\ [. “ 800 0.7
L < 2 600} 0.6
< -400 s« S
2 g 2 400 | 0.5
g -600 200 F 0.4
-800 0 L L 0.3
0 2 4 6 8 10
t (ms) t (ms)

(b) ()

Figure 2.5: Hodgkin and Huxley action potential and currents (a), In. current and
gates m, h (b), Ik currents and n-gate (c).

30

2.2. Cardiac Excitation Models

The initial conditions of the gates were set to the steady-state values. The
action potential was initiated by setting the initial conditions of the membrane
potential V,, above a threshold value which initiates the excitation. At the resting
state, which is at the voltages around the value of V,, = 0 mV, the activation
gates n and m gates are closed, while the inactivation gate % is open as can be
seen from Figure [2.4] Applying an external stimulation, the membrane voltage
is increased, i.e. the membrane depolarises. As a result, the activation gate m,
which has a small characteristic time, i.e. is fast, opens and allows the influx of
sodium ions. This causes further increase of membrane voltage up to values
about V,, = 100 mV. At those values, the inactivation gate ~ which restricts the
sodium influx. While the membrane potential was increasing, the potassium gate n,
started gradually opening. At the peak of the membrane voltage, the characteristic
time of depolarisation ,, is small, so the potassium channels are opening faster.
This allows the flow of potassium outside of the cell, that causes a decrease of
membrane voltage back to the resting values.

2.2 Cardiac Excitation Models

2.2.1 Development of Cardiac Models

The Hodgkin and Huxley model was introduced as the first electrophysiological
model. The same ideas are to a certain degree repeated and improved in the
modern biophysically detailed models of cardiac cells. Those models contain
many differential equations, e.g. the Bondarenko (2014) model contains over
one hundred dynamical variables [4]. In this subsection we describe the main
differences between modern cardiac models and the Hodgkin-Huxley model.

Structurally, the Hodgkin-Huxley model has only one intracellular compartment
and assumes that intra- and extracellular concentrations of ions are fixed. The
modern models introduce further dynamical equations for the concentrations of
Na®, K+, Ca*" which are based on the laws for the conservation of mass within
the compartments. Using the values of intra- and extracellular concentrations, the
electrochemical equilibrium is determined from the Nernst equation. For instance,
the Nernst equation for the electrochemical equilibrium potential of potassium is
given by

_RT (K,
Ex = ln<[K+]i> (2.23)

where R is the gas constant, T is the temperature, F' is Faraday’s constant,
and [K*]; and [K*], are potassium intracellular and extracellular concentrations,
respectively.

31

Chapter 2. Cellular Electrophysiology

Modern models use a more detailed structure of the cell. The interior of the
cell is further divided into compartments constituting different functional elements.
From the electrophysiological point of view, the most interesting compartment is
the sarcoplasmic reticulum which contributes to dynamics of calcium in the cell.
Figure shows a simplified diagram of calcium dynamics. The sarcoplasmic
reticulum acts as a store of calcium ions.

The release of the calcium ions from the sarcoplasmic reticulum is controlled
by so-called ryanodine receptor (RyR). The release of calcium into the intracellular
environment causes biochemical processes that trigger the mechanical contraction
of the cell. More detailed description of the functionality of RyR is provided in
Subsection 2.4.3]

Table 2.1: Dynamical states of the Hodgkin and Huxley model.

var. description init. val. units definition

V. membrane voltage 7.0 mV dV,/dt = —(Ina+ Ik + 1)/C
n K™ activation gate 0.3177 prob. dn/dt = a,,(1 —n) — Sn

m Na' act. gate 0.0530 prob. dm/dt = a,,(1 —m) — B.m
h Na' inact. gate 0.5960 prob. dh/dt = ay(1 —h) — Byh

Table 2.2: Definitions of currents.

variable description units definition

Ina sodium current pAlem? In, = gnam®h(Viy — Exa)
Ik potassium current pA/cm? Ik = gxn* (Vi — Fk)

I leakage current pAlem? I = (Vi — E))

Table 2.3: Opening («) and closing (3) transition rates.

n-gate m-gate h-gate
0.01(=V, + 10 0.1(=Vy, + 25 -V
o, = (+10) Ay, = (=Vin +25) ah—007exp<)
exp (V‘“HO) 1 exp (Vm+25) 1 20
-V —Vi 1
Bn —0125exp< m) Bm = 4exp<) B, =
Table 2.4: Constant parameters.
variable description value units
C membrane capacitance 1 uF/ecm?
JNa maximum conductance of Iy, current 120 mS/cm?
Exa reversal potential of sodium ions 115 mV
JK maximum conductance of I current 36 mS/cm?
Ex reversal potential of potassium ions -12 mV
a1 conductance of current I; (constant) 0.3 mS/cm?
E; reversal potential of leak ions 10.613 mV

32

2.2. Cardiac Excitation Models

2.2.2 Calcium Buffers Kinetics

The cell can be understood in terms of a number of separated compartments, with
specific ionic concentration in each. The calcium dynamics are defined in terms of
events involving a single compartment (diffusion of calcium ions, reactions which
produce or bind the free calcium) and the flow of calcium between two different
compartments.

In certain conditions the membrane separating the compartments becomes
permeable and allows the calcium to flow from one compartment of the cell to
another, which can be described by an equation

d[Ca™?
dt

= f([Ca'?,...) (2.24)

where f([Ca™],...) is a function defined within a particular cell model. The
definition of the function f([Ca™],...) takes into account the fluxes from and into
the particular compartment, and the volumes of the compartments.

The calcium molecules then diffuse within the compartment to achieve homo-
geneous calcium concentration. Additionally, calcium is a subject to a reaction with
molecules called buffers, i.e. proteins which bind the calcium such that it becomes
inaccessible to other reactions or flow between the compartments.

The Ca*? binding to the Ca™ specific buffer is described by the chemical
reaction

[Ca+2]f + Bf = [Ca+2]b

where [Ca™]; is the concentration of free Ca®*; B; is the concentration of free
buffer and [Ca™?], is the concentration of complexes of Ca®* bound to the buffer
By [B]. The total concentration of calcium [Ca™], and buffer molecules B; is given
as

[Ca*?], = [Ca™®]; + [Ca*?], (2.25)
B, = By + [Ca™?,. (2.26)

From equation (2.25) we derive the relation for the buffered calcium concentration
as By = B, — [Ca*?],. Knowing the rate of binding k., and unbinding k.x we can
write down the differential equation [5]

d[Ca™?],

= ken[Ca)y (B — [Ca™],) — kor[Ca ™). (2.27)

If the diffusion happens in a fast time scale, the whole compartment would
have homogeneous Ca™ concentration very rapidly. In that case Ca™ binding to

33

Chapter 2. Cellular Electrophysiology

the buffer can be approximated to its steady-state by setting d[Ca™?],/dt = 0 giving
0 =kon[Ca®®; (B, — [Ca™?],) — ko[Ca™)s, (2.28)

which can be rewritten to give a formula for buffered calcium concentration

Bt [Ca+2]f

C+2 —
[Ca™ls [Ca™], + k'

(2.29)
where k = ko /kon-
Substituting the result (2.29) into the relation for the total Ca™ concentration

(2.25) yields

Bt [Ca+2]f

Cat?), = [Cat?, + A2 11
[a]t [a]f+[ca+2}f+k

(2.30)

Considering that the calcium concentration change in time as the calcium flow
enters and exits the membrane we can derive the rate of change by deriving both
sides of the previous equation as

d[Ca*?), Bik d[Ca™?];
i = (1 e) (&3

as the rate of change of total calcium concentration change with the amount of
current entering the cell as d[Ca™?],/dt = I,,;, the previous equation implies

d[Cat?); Bk !
e <1 " {ca ¥ k>2> for (292

2.2.3 lon Channels

As mentioned along with the description of the Hodgkin-Huxley model in Sec-
tion[2.1], it was discovered that the conductance of the membrane is controlled by
large molecules residing in the cellular membrane [6]. Such molecules are called
ion channels and are fundamental elements of electric excitation of the cell.

There are different mechanisms giving rise to the channel permeability. In
the simplest view the conformation of the subunits comprising the ion channel
allows forming a small pore through the membrane. The pore then lets the ions
pass from one side of the membrane to the other. There are various types of ion
channels. Some are specific to a particular kind of ions and others allow passage
of a few different ionic species (the most important for electric excitation are ions
are sodium, potassium and calcium and chlorine).

The channels can be further divided according to the force that drives the
transport of the ions into two groups known as passive and active channels.

34

2.2. Cardiac Excitation Models

I pCa

bulk cytosolic space

.
...................................

sub-membrane space

Figure 2.6: Diagram of a cardiac cell that illustrates the calcium dynamics. The
calcium within the cell is stored inside the Sarcoplasmic reticulum, from where it is
released through the ryanodine receptor (RyR) to the junctional cleft. From the
junctional cleft it difuse into sub-membrane space and bulk cytosolic space. From
where it is uptaken by I,,,. Further detail on the kinetics of calcium is described
Section .

The passive channels are the simplest. The ionic flow is driven by the concen-
tration gradient on the two sides of the cellular membrane. Two representatives
of the passive channels were described in Section 2.] First, Iy, is responsible
for inward sodium current which causes increase of membrane voltage from the
resting potential and leads to the excitation of the cell. Second, I allows outward
potassium current that restores the resting potential. If the cell had only passive
channels, the excitation pulses would alter the physiological concentrations of ions
and lead to a pathological situation. To keep the concentrations in the physiologi-
cal range, the currents caused by passive channels have to be coupled with the
reverse movement driven by active channels.

The active channels use energy to act against the concentration gradient.
The primary active transport is ensured by so-called pumps. The pumps are
driven by the chemical energy released during the dephosporylation of adenosine
triphosphate (ATP) to adenosine diphosphate (ADP). The most prominent example
of primary active transport is the sodium-potassium pump which moves one sodium
ion out of the cell and one potassium ion inside the cell, i.e. both ionic species
move against their concentration gradient.

The secondary active transport is mediated by so-called exchangers. In the
exchangers one species moves along the electrochemical gradient, while the
other moves against it. For instance the sodium-calcium exchanger swaps three
sodium ions for one calcium ion. The sodium-calcium exchanger can act in both
directions, i.e. in some conditions produce inward and in others outward current.

35

Chapter 2. Cellular Electrophysiology

This functionality helps to restore restore normal concentration of calcium inside
the cell.

The ionic flux constitutes an electric current. In Section we described
the traditional method called voltage-clamp method, which allows to measure
membrane voltage and currents through all channels present in the membrane. To
measure specific kind of channels all the other channels have to be deactivated by
specific chemical agents. Alternatively, we can measure specific kind of channels
on genetically engineered cells which form a single type of ion channels.

A similar method to voltage-clamp has been developed for a measurement of
the current through a small number of ion channels or even a single channel —
so-called patch-clamp technique. Unlike the voltage-clamp method, where a glass
pipette containing the measurement electrode is connected with the internal space
of the cell, the patch-clamp method seals the end of the glass pipette on a minute
patch of membrane. Then the measurements record only the channels contained
in the minute patch. As the channels under the patch undergo transitions from
non-conductive to conductive state, discrete “flips” between zero and non-zero
values of can be observed in the current recording. Those flips are driven by
thermal noise, which causes the ion channel molecule to change the conformation
in a way that allows the flux of ions [7].

The kinetics of the channel can be modelled using a state model, where the
states corresponds to different conformations of the channel. The probability that
the channel changes to another state is called transition rate. The probabilistic
nature of the transition rate is due to the thermal noise. The usual assumption is
that the transition rates do not depend on how the channel reached the state it is in.
This is known as a Markov property, which means that the system is “memoryless”.

Simulations of a small population of ion channels by a stochastic state model
(also known as a Markov chain) results in traces that are one realisation of such
model. Due to the stochasticity, the realisations are not identical in general
case. However, the results resamble the experimental traces from patch clamp
experiments. As the number of simulated channels increases, the effect of noise
averages out and the simulated traces look like a voltage clamp experimental
traces on a whole cell. The Markov chain model can be used to derive a master
equation corresponding to a situation when the number of channels goes to infinity.
Such model is a deterministic system of ODEs.

One possible interpretation of the traditional gate models is that the closing
and opening of the channel is controlled by a number of gates. A limiting factor of
this approach is, that the movement of different gates (corresponding to different
subunits of the molecule) is assumed to be independent. However, because
the subunits are linked by atomic forces, this assumption cannot be generally
valid. In contrast with the gate models the Markov chains do not necessarily

36

2.3. lon Channel Models

1.51
P o peakofl
— 0 mvV
o
(c:) 1 -OOOO . CP
b= o -80 mV
g
= © 5
O @]
s 0.5
k= © o
O o 5
O 1
0 2 6 8

4
CP duration (ms)

Figure 2.7: Experimental data of Iy, channel inactivation (shown by circles) as
a function of duration of conditioning pulse (CP) to —35 mV. The CP duration is
shown on the horizontal axis. The envelope through the circles corresponds to the
inactivation of h-gate. Data for this plot were digitalised from Fig. 3. in [8].

assume the independence of different processes in the channel. Although, an
equivalent representation of a gate model is possible using Markov chains, the
Markov chains also enable a way of representing more generic situations, which
cannot be expressed by gate models. The experimental evidence suggests that
more generic models are required to better describe some measurement data (e.qg.
Figure[2.7). For that reason the Markov chain models have become a popular
method of simulation of cardiac ion channel.

In the following section we look into an example, where the gate model fails
to reproduce experimental data. Then we introduce the Markov chain model
through a conversion between a simple gate model and Markov chain model, and
finally we convert the Hodgkin-Huxley models for Iy, and Ik to their Markov chain
equivalents.

2.3 lon Channel Models

2.3.1 Exposing the Limitations of Gate Model

The sodium current Iy, is responsible for the initiation of the action potential.
The model used by Hodgkin and Huxley contains three activation gates m and
one inactivation gate h which are assumed to be independent (as described in
subsection[2.1.2). However, Armstrong and Bezanilla (1977) [8, [9] have shown
experimental data which cannot be satisfactorily reproduced by a gate model. They
performed several voltage-clamp experiments which support this discovery. We
discuss the second one of the three they presented in their paper [8] and highlight
the main results in Figure [2.7] First, we describe the experimental protocol, then

37

Chapter 2. Cellular Electrophysiology

the theoretical results, and finally explain the discrepancy between the experiments
and the theory.

The voltage-clamp experimental protocol is depicted in the inset of the figure
and is as follows. First, the “holding” membrane voltage was set to 15, = —80 mV.
Then, a conditioning pulse (CP) was applied for a variable duration up to 8 ms.
The duration of the conditioning pulse is represented on the horizontal axis in the
figure. The value of the voltage at the CP was Vp = —35 mV. After the CP a
“testing” pulse to Vit = 0 mV was applied.

According to the Hodgkin-Huxley model, the channel has two types of gates.
The activation m-gate that is closed at low voltages but opens quickly when the
voltage increases due to small characteristic time (as can be seen in Figure 2.4]
note that the values of voltage in the testing protocol is offset as compared to
Hodgkin and Huxley by about —80 mV). The h-gate responsible for inactivation is
opened at low voltages, and closes with increasing membrane voltage. Because
of relatively large characteristic time, the action of the h-gate is slow.

At the beginning of the experiment, the h-gates are opened h.,(V4,) ~ 1 and
m-gates are closed m.. (V1) ~ 0. Because of fast characteristic time of of m-gate,
the m-gates quickly attain to values m..(Vcp), when the conditioning pulse (CP) is
applied. The time evolution of h-gate is slow so the ratio of open h-gates depends
on the duration of CP tcp as h(tcp).

So the relation for the current after the onset of testing potential Vi is

-[Na - g&amw<VCP)3h(tCP)(‘/;est - ENa)~ (233)

The inactivation is determined by comparing the current after the onset of testing
potential in two different experiments. This is because, the h(tcp) is the only
variable, that is different in these two experiments.

The current is depicted in the figure by circles. The envelope through the circles
in the figure represents the time evolution of the inactivation gate h(tcp).

The inactivation in the gate model follows the exponential function as described
by equations (2.15b). However, the evolution of experimental results show clearly
sigmoid curve of the inactivation. Hence, the gate model is not able to represent
the data realistically.

A modification of gate models in order to reproduce such experimental data is
not possible. Hence, so-called Markov chain models were suggested in order to
address the limitations of gate models.

2.3.2 Deriving Markov Chain Models

The ionic current is derived from an Ohm’s law, where the conductance of a
particular group of ion channels depends on a ratio between opened and closed

38

2.3. lon Channel Models

(1—s)=s C%O

Figure 2.8: Diagram of a simple gate model and its Markov chain equivalent. The
gate model (a) is determined by its open probabilility s, its closing probability 1 — s,
and the transition probabilities per unit of time («a, for a closed channel to open, 3,
for an open channel to close). The Markov Chain model (b) can reside in an open
and closed state, where O and C are the probabilities of the channel to be in the
corresponding state.

channels of that group as
gs = g_spopen(t) (234)

where the g, is the maximal conductance, which is achieved when all channels
are open. The ratio between opened and closed channels, also called an open
probability of a channel, is

Popen<t) - H Sz(t) (235)

where s;(t) represents the open probability of each of the N gates in a channel
calculated from equations of the form

jj =ay(l —s) — fss (2.36)
where «; is the transition probability of an open gate to close, and 3, is the
transition probability of a closed gate to open per unit of time.

As the first example we consider a gate model of a channel with one gate
so that N = 1, so the open probability of the channel is P,,., = s. The model
assumes that a channel is either open or closed, sO P.,ca = 1 — s. Then the
transition between the states can be expressed as in Figure [2.8|a). Considering
the situation with a closed gate as one conformational state of the channel with
probability of being “occupied” C' = 1 — s and the situation with open gate as
another conformational states with probabilty O = s, we can convert the model
into the form as in Figure [2.8(b). The model can be described by a system of
differential equations

dO

— =0:C = 8.0, (2.37a)
C;f =3,0 — a,C, (2.37b)

39

Chapter 2. Cellular Electrophysiology

where the first is obtained by replacing the open and closed state in equation (2.36),
and the second by replacing an equation describing a change in complementary
probabilities (not shown). Defining a vector of dynamical variables and a coefficient
(transition) matrix

O
C

U=

Bs —0

, A;:[_BS as] (2.38)

we can obtain a general system of linear differential equations describing a Markov
chain model as

o Aa (2.39)

where u represents the states of the Markov chain and A is the transition matrix.

The states of the Markov chain correspond to the probability that the channel
ocupies a particular conformational state. In other words it is the ratio between the
number of channels in the particular conformational state and the total number of
channels. In biological cells, the total number of channels is a large, but a finite
number. However, for practical purposes we assume the number of the channel
goes to the limit of infinity, such that the probability is a real number between 0 and
1.

The Markov chain model satisfies the state conservation law, according to
which the sum of all states is equal to one. This also implies that the sum of the
transition rates in the columns of the transition matrix is zero. Using the state
conservation law, we can always reduce the dimensionality of the Markov chain
model by one.

The ion channel manifests its behaviour only through the change of conduc-
tance, which causes measurable ionic currents. For practical purposes, any model
whose behaviour reproduces the experimental evidence is equivalent even when
it is mathematially different. In the Markov chain model the conductance is pro-
portional to the sum of probabilities of open states (if there is more than one open
state). The closed states affect the conductance indirectly through the transitions
to open states.

2.3.3 Conversion from Markov chain to a Gate Model

The conversion between the Markov chain to gate model can be made only in
special cases, when the Markov chain has a particular symmetry. An example of
such a Markov chain is the model shown in Figure 2.9 with four states and identical
transition rates in the horizontal and vertical directions on the diagram.

Here we demonstrate the conversion from the model in Figure [2.9to a gate
model. The probabilities that the model resides in closed C, inactivated I, closed

40

2.3. lon Channel Models

aq
IC — |

Ba

!

Qaq
C — O

Ba

Figure 2.9: Simple Markov chain model diagram. C denotes closed state, O
denotes open state, IC denotes inactivated closed state and I denotes inactivated
state. Greek letters denote transition rates.

inactivated IC and open O states are computed by a system of equations

dC

7 =B1C + B0 — (aa+ ay)C, (2.40a)
0(13 =Bl + aqC — (ay + £4)0, (2.40b)
O =04lC + 0,0 — (Ba+ By (2.400)

CX Bl 40,0 — (0 + B)IC (2.40d)

where «, corresponds to the transition probability from left to right (i.e., from C to
O or from IC to I), and 5, corresponds to the transition probability from right to
left, while oy corresponds to the transition probability from bottom to top (i.e., from
C'to IC or from O to I), and j3; corresponds to the transition probability from top to
bottom.

Using the definition of the Markov chain model (2.39), we can write the transition
matrix and the state vector as

—(aatay) B 0 B c

a—| @ Tlath) b 0 i— 9. (241)
0 ay —(Ba + By) Qg 7
af 0 Ba — (g + By) IC

The equivalent gate model is obtained by assuming the existence of two gates:
gate d with open probability d and close probability (1 — d), and gate f with open
probability f and closed probability (1 — f) . Combining the open and closed gates
(the order does not matter) leads to four states: C' = f(1 —d), O =df, I =d(1— f)
and IC = (1 — d)(1 — a).

Introducing these new variables we can add (2.40a) to (2.40b) to get

(:1{ =ay(1—f)—Bsf (2.42)

41

Chapter 2. Cellular Electrophysiology

and adding (2.40b) to (2.40c) we obtain

(j;l —ay(1 — d) — Bad (2.43)

which has a familiar form of a gate model. In particular it describes an ion channel
with one activation gate d and one inactivation gate f which corresponds to a slow
inward current I, [10].

Markov chains can describe behaviour which would not be possible to simulate
with a gate model. For instance the transition rates between the states IC and C
in Figure [2.9] could be replaced by different values and such a model could not be
reduced to a gate model. This comes at the expense of higher computational
cost due to larger number of dynamical variables, but often offers an advantage of
more realistic reproduction of experimental data.

Finally, we mention that the transition rates of a Markov chain models of ion
channels are usually expressed in an exponential form as

Vo F
o —ay exp (za =) | (2.44)
Vo, F
B =y exp <_Zﬁ T) (2.45)

where o and 3, (ms) are the transition rates at membrane voltage V,, = 0 mV and
2, and zg are the equivalent charge movements during the state transition. The
parameters «y, [y, z, and zz are typically estimated to fit the experimental data.

2.3.4 Conversion of Hodgkin-Huxley /Iy, and /i
to Markov Chains

In this subsection we describe the conversion of the Ik and Iy, gate models from
Hodgkin and Huxley model to an equivalent Markov chain model. A combination
of gate states for each channel correspond to one state of the resulting Markov
chain model.

For the Ix model, the open probability is given by n*, i.e. a product of open
probabilities of four identical gates n. Each gate can be in two states: either open
or closed state. The probability of an open state is n and its complement, the
probability of a closed state is (1 — n). To avoid confusion in the terminology, we
call the states n and (1 — n) gate states, while the states of the Markov chain are
called channel states.

We consider two different approaches to convert the gate model into a Markov
chain model based on the principles from combinatorics. The first approach is
applied if the order, in which the individual gates close, matters. Then each
channel state is one of the possible variations (in the combinatorial sense) of the

42

2.3. lon Channel Models

4oy, 3an 20y, Qn
04\:‘03#02\:‘01\:‘0}(
Bn 20n 36n 4Bn

Figure 2.10: Diagram of the Hodgkin-Huxley Ix model as Markov chain. Ok = Cj
and C; is a channel state corresponding to i gates in closed, i.e. in (1 — n) gate
state.

two gate states, e.g. channel state n,n,n, (1 — n) is different from (1 — n), n,n, n.
So there are 2* = 16 channel states. Each channel state constitutes a vertex
of a four-dimensional hypercube, and is connected to four other channel states.
The transition rate at each connection corresponds to exactly one transition of the
gates.

For our purposes, the only state which is ultimately important is the state when
all the gates are open. So we do not need to consider states in which any of the
gates closes, e.g. channel state n,n,n, (1 — n) is identical to (1 — n),n,n,n . Each
of the channel states is one of the possible combinations (in the combinatorial
sense) of gate states. Thus, the number of channel states is 5 and the Markov
chain can be visualised in a simple linear structure as in Figure

Unlike in the “variation” case (where order matters), in this case, each transition
could be done by any of the gates in the same gate state. So, when all four gates
have been closed and the channel resides in Cy, the transition «,, is multiplied by
4 as it is four times more likely per unit of time, that any of the four gates opens,
than in a case of a single gate.

In general, the transition rates «,, between two channel states are multiplied by
a number ¢, which corresponds to the number of states on the left in the diagram
(¢ corresponds to the number of closed gates). The 3, between two states are
multiplied by 4 — < where i corresponds to the number the channel state on the
right in the diagram (then 4 — 7 is the number of open gates).

The initial conditions of the channel states are determined from the initial
conditions n, of the gates. The initial condition of the gate is multiplied by the
coefficients found from binomial expansion. The cases when all the channels
are open or closed correspond to the power of four of the corresponding initial
condition (Cy(ty) = (1 — no)?*, and Ok (to) = ngj respectively). The states when one
gate is open or closed have to be multiplied by 4 because it can be any of the
four combinations that have one gate open or closed (Cs(ty) = 4(1 — ng)>ng, and
Ci(tg) = 4n3(1 — no) respectively). The state with two open and two closed gates
is found as Cy = 6n3(1 — ng)?.

The open probability of the Hodgkin-Huxley Iy, model is given by a product
of the open probability of a combination of three activation gates m and the open
probability of one inactivation gate h as Ox. = m3h. All the activation gates are
independent. So the activation part of the channel m? can be described by a

43

Chapter 2. Cellular Electrophysiology

3am ’ 2am ’
3Na ‘_ CQNa ﬁ ClNa \ﬁ_ CON&

3am 2«

m Qm,
[C3na = [Cona = ICina = [CpNa
Bm 2Bm 3Bm

Bhuah ﬁh”a ﬂh”ah Bhuah

3am 204'm OC
—

Csna = Cona = Cina = Ona
Bm 2Bm 3Bm

(b)

Figure 2.11: Diagram of the Hodgkin-Huxley model for Iy, as a Markov chain. (a)
considering only activation gates, where Ciy, corresponds to state with i gates
closed. Transition rates «,,, 3,, are related to the opening and closing of the m
gates. (b) shows equivalent Markov chain to Iy, model. C;y, states correspond to
the states of with open inactivated gate h and states 1C;y, correspond to the same
with closed inactivation gate h.

ICg ICQ _\ IM2
B11 B12
sl] X\
a11 12
Cs Cs
P11 B12

Figure 2.12: Diagram of the Iy, Markov chain model by Clancy and Rudy (2002)
[2]

Markov chain in Figure [2.11] In the case of Iy,, the activation part has only four
states, which are derived analogously to the Ik model.

The diagram of activation has to combine with the inactivation described by
gate h. The inactivation part of the channel corresponds to only one gate and
therefore has only two states — open i and the complementary closed case (1 — h).
The combination of activation gates m? and the inactivation gate % gives us the
diagram shown in Figure [2.11|b).

2.4 Popular Markov Chain lon Channel Models

2.4.1 Fast Sodium Current Iy,

Figure shows the Clancy and Rudy (2002) Iy, model. This model improves a
previously published model by the same authors (1999), and was widely cited in
the literature. This model includes 3 closed states: (s, C5, C4; 5 inactivated states:

44

2.4. Popular Markov Chain lon Channel Models

closed inactivated - ICs, IC,, fast inactivated - IF and slow inactivated - IM; and
IM,; and one open state: O. The open state O contributes to the calculation of
the fast sodium current according to

[Na = gl:TaO(vm - ENa)a

(2.46)

where gn. is the maximal conductance when all the channels are open, and Exy. is
reverse potential for sodium calculated from Nernst equation (similarly to (2.23)).

The system is described by the following ODEs:

dO

— =301 + BolF — (f13 + a2) O,

dt
acy

dt
aC,

dt
e}

dt
dICs

dt
dIC,

dt
dIF

dt
dIM,

dt
d IM,

dt

=a1205 + $130 + a3lF — (B2 + f3 + ai3)Ch,

=anCs + aslCs + B12C) — (Bu + ona2 + B5)Ca,

=(11Cs + a3ICs — (a1 + f3)Cs,

=03C5 + SulCa — (a1 + a3)1C3,

=a111C3 + B3C + B1olF — (P11 + ag + ai2)1Cs,

=a121Cy + B4IM; + B30 + 20 — (Br2 + o + P2 + a3)IF,
=aulF + B5IMy — (B4 + a5)IMy,

:Oé5IM1 — 5511\/.[2

where the transition rates are

Cg-)Cg
02—>01

01—>O

ICg — ICQ

ICQ — IF

CQ—>03
01—>02
O—)Ol

B 3.802
M= 01027e=V/170 1 0.20 exp (— Vi /150)
B 3.802
M2 =0 1027 exp (— Vi /15.0) + 0.23 exp (— Vo /150)
B 3.802
3 =0.1027 exp (— Vi /12.0) + 0.25 exp (—Vyn/150)”
B 3.802
M= 01027 exp (— Vi /17.0) + 0.20 exp (— Vi /150)”
3.802
a2

T 0.1027 exp (— Vi /15.0) + 0.23 exp (—Vyn/150)’

B11 =0.1917 exp (— V1, /20.3) ,
Bi2 =0.20 exp (—(Vim — 5)/20.3)
B13 =0.22 exp (— (Vi — 10)/20.3),

(2.47a)
(2.470)
(2.47c)
(2.47d)
(2.47¢)
(2.47)
(2.479)
(2.47h)

(2.47i)

(2.48a)
(2.48b)

(2.48c)

(2.48d)

(2.48e)

(2.48f)
(2.489)
(2.48h)

45

Chapter 2. Cellular Electrophysiology

IF — C, g =3.7933 - 10" exp (— Vi /7.7), (2.48i)
ICy — Cy a3 =3.7933 - 10~ " exp (—Vpn/7.7), (2.48))
IC3 — Cs a3 =3.7933 - 10" exp (—Vpn/7.7), (2.48K)
C, —IF P33 =84-10"2+2-107°V,,, (2.48l)
Cy — 1C, B3 =84-10"2+2-107°V,, (2.48m)
Cs — 1C3 B3 =8.4-107%+2-107°V,, (2.48n)
O —IF oy =9.178 exp (V1 /29.68) (2.480)
IF — O By =202 (2.48p)
B13fs
IF — IMl Oy :a2/100, (248q)
IM1 — IF 54 =Qs3, (248r)
IM; — IM, as =y /(9.5 - 10%), (2.48s)
IMy — IM; 65 2043/50. (248t)

2.4.2 L-type Calcium Current I, ;)

The calcium current I, plays a crucial role in forming the action potential
morphology and duration in cardiac cells. lts importance is increased by providing
negative feedback to control the intracellular Ca*" concentration [11]. The channel
is opened by the movement of four voltage-sensitive subunits and can inactivate
due to voltage-dependent inactivation.

In this channel another type of inactivation due to ionic binding to the channel is
observed in the presence of calcium ions Ca?*. In the case of calcium binding, no
current can flow through the channel, however, the movement of the voltage sensor
remains unaffected. This calcium inactivation was discovered in experiments with
barium ions Ba®", which behave similarly to calcium, however, as they do not bind
to the channel, this type of inactivation is not observed.

A Markovian model that includes calcium-dependent inactivation was proposed
by Imredy and Yue [12]. This model was improved to reflect the molecular structure
proposed by Jafri et al. (2008) [13]. They define a normal mode, and a Ca-mode
when the channel is inactivated by Ca*2. Each mode contains five closed states
with possible Ca*? dependent transitions between the Ca-mode and the V,,,-mode;
and one open state. The transition rates between the Ca-mode to the V,,-mode
were assumed to be very slow.

46

2.4. Popular Markov Chain lon Channel Models

Figure 2.13: Markov chain model of Ic,) [1]

In the model proposed by Faber et al. [1] the Ic,.;) can operate in two modes
as shown in Figure The states shown in the bottom are states of the channel
with Ca dependent inactivation, the states in the top corresponds to states without
Ca*" inactivation, i.e. in V,,-mode. The only conductive state is the state O. The
channel I¢,) allows flow of calcium, sodium and potassium ions. The currents
are proportional to the open probability according to

Ica(ry =Ica(...)O, (2.49a)
]Ca,Na :jCa,Na(- .)O, (249b)
ICa,K :jCa,K(' .)O, (2490)

where Ica(...), lcana(...) and Ic, k(. ..) are function of other dynamical variables
such as ionic concentrations in the subspace and membrane voltage, and O is the
open state of /¢,y Markov chain model.

The states of the model are described by the following system of ODEs [1]

dC
T; =0Coca + BoC1 — (0 +) Co, (2.50a)
dC
ditl =0C1ca + £1C2 + agCo — (0 + Py + aq)CY, (2.50b)
dC
dij =0Csca + 5203 + anCy — (0 + f1 + a2)Cy, (2.50c)

47

Chapter 2. Cellular Electrophysiology

where the parameters are

48

aCy
dt

a0
dt
Iy

dt
dlys

dt
dCOCa

dt
dClCa

dt
dCQCa

dt
dCSCa

dt

dlca

dt
dlvsca
dt
drf VsCa

dt

:7503 + gbsO + WstVf + QIVsCa -

:0[Ca + 05303 + >\fIVf +)\s[Vs - ((5 + 63 + ¢f + ¢8)O7

:’)/ng + §Z§f0 + wstVs + efvfca — (OJf + Wrs + /\f + 5)Ivf,

=0Cy + BoCica — (0 +) Cocas
=0C + [1Caca + aoCoca — (0 + Bo + a1)Cica,

=0C5 + (2030 + a1C10a — (0 4 51 + a2)Caca,

=00 4 a3C50a + Aflvica + Aslvsca — (0 + B3 + ¢5 + bs)Icas
=7$Csca + 05O + wsplvyca + 01y — (W +wps + Ap + 0)Iysca,

:7303Ca + ¢SO + wstVfCa + (SIVs - (Ws + Wsf +)\s + Q)IVsCa

a =0.925 exp(V,,/30),
B =0.39 exp(—V,/40),
oy =4a,
a1 =3a,
Qo =2a,
a3 =a,
Bo =P,
B =28,
P2 =30,
B3 =4P,
v =0.245 exp(V,,/10),
vs =0.005 exp(—V,,/40),
67 =0.02 exp(Vy/500),
¢s =0.03 exp(—V,,/280),
As =0.035 exp(—Vin /300),
As =0.0011 exp(V/500),

(Ws + st + /\s + 5)]\/57

=0C50, + 030 + aaCy + wilys + wslys — (0 + P2 + as + 75 + 75)Cs,

(2.50d)
(2.50€)

(2.50f)
(2.500)
(2.50h)

(2.50i)

(2.50j)

=0C5 + B3lca + a2Coca + wilvy + wslys — (0 + B2 + as + v + 7¥5)Cica,

(2.50k)
(2.501)

(2.50m)

(2.50n)

2.51a
2.51b
2.51c
2.51d
2.51e
(2.51f
(2.51¢g
(2.51h
(2.51i
(2.51]
(2.51k
(2.511
(2.51Tm
(2.51n
(2.510
(2.51p

~ A~ o~~~

—_— — — — — D D s O~

2.4. Popular Markov Chain lon Channel Models

wi =(BsAvr)/(azdy), (2.51q)
ws =(B3As7s)/ (a3ds), (2.51r)
wsp =(Asdp)/As, (2.51s)
Wis =0, (2.511)
T irorn 1/[10a2+]ss’ (2.51u)
6 —0.01. (2.51v)

2.4.3 Calcium Current of the Sarcoplasmic Reticulum [,

The calcium dynamics control the mechanical activity of the cardiac cell. The cell
is divided into four compartments as shown in Figure [2.6] Those compartments
are junctional cleft — a disk space by the cellular membrane and sarcoplasmic
reticulum; sub-membrane space — a narrow compartment close to the cellular
membrane; a sarcoplasmic reticulum — intracellular organelle; bulk cytosolic space
— the remaining intracellular space.

The Sarcoplasmic reticulum acts as a storage of Ca®" ions inside of the cell.
Ryanodine receptor (RyR) is an ion channel in the membrane of the intracellular
organelle called sarcoplasmic reticulum. The flux of calcium from the sarcoplasmic
reticulum is triggered by increasing calcium concentration in the junctional cleft
or inside the sarcoplasmic reticulum. The release of calcium due to increased
concentration in the junctional cleft is known as calcium-induced calcium release
(CICR). If the sarcoplasmic calcium concentration [Cat?]sg increases above a
threshold, the calcium is released. This mechanism may cause arrhythmogenic
phenomena called early after depolarisation.

The calcium release from sarcoplasmic reticulum into the subspace is given by
the formula

]rel - Grel ' Oryr : ([Ca]JSR - [Ca]ss)a (252)

where [Cal;sgr and [Cals are the calcium concentration in junctional sarcoplasmic
reticulum (JSR), and in subspace respectively, O,,, is open probability of RyR
model that is described below, and conductance is given by

Gt = 250 - (%el 4 Srel) (2.53)
Vrel
where
20 + Ica !
Vrel = (1 +exp <+6C(L)>> — 0.034445, (2.54a)
0.015- Ica + 1.25
e =1 s 2.54b
Yrl =1+ €XP (0.75) (2.54D)

49

Chapter 2. Cellular Electrophysiology

QiR Q2R Q3R Q4R
I I, I3 1 I
B1r B2r B3r Bar

51RJ[71R 52RJ[“{2R 53RJ[73R 54RJ[74R 55RJ[75R

Q1R Q2R Q3R Q4R
Ch & Cs Cy Oy

Bir B2r B3r Bar

Figure 2.14: State diagram of RyR Markov chain model [1].

where I, is defined in (2.49a) and I, is maximal calcium current through Tcan)
channel.

The variable S, is omitted in the model equations in the paper, however in the
author’s code is defined as a dynamical variable dependent on time and calcium
concentration in JSR ([Cal;sgr)-

Figure [2.14] shows the Markov chain diagram of the RyR by Faber et al. (2007).
This model contains 10 interconnected states located in 2 rows — corresponding to
inactivated and activated states. The state O, is the only conductive state. The
release of Ca>" from the RyR is measured in mM, unlike in membrane currents,
where the current is measured in A /uF.

According to Faber et al. (2007) [1] the RyR model is described by the following
system of ordinary differential equations (ODESs)

(ﬁl = AirCo+ 0irh = (1r +) Ch, (2.55a)
ddCt’Z = a1rCY + BorC3 + 0ol — (B1r + 2r + Y2r)Ca, (2.55b)
ddC: = aprCy + B3rCy + d3pl3 — (Bar + azr + 73r)Cs, (2.55¢)
(ﬁl = B4rO + a3rCs + darly — (Bar + aar +74r) Cl, (2.55d)
(11(; = aurCy + 0s5rls — (y5m + Par)O, (2.55€)
CLI; = 1rC1 + Birly — (61r + a1r) 11, (2.55f)
(illtg = vrCo + cqply + Parls — (02r + ik + car)lo, (2.554)
(Z[f = v3rCs + aorls + Psrly — (03r + Par + asr)1s, (2.55h)
ddI: = YrCys + aspls + Bapls — (0ap + Psr + cur)ly, (2.55i)
CLI; = 580 + aurly — (0sr + Bar) 15 (2.55))

where the transition rates are described by functions dependent on two calcium
concentrations as

arr = 1750[Ca* 1], (2.56a)

50

2.4. Popular Markov Chain lon Channel Models

aor = 5600[Ca®t], (2.56b)
asp = 5600[Ca’t], (2.56¢)
aur = 5600[Ca* 1], (2.56d)
Bir =5, (2.56€)
Bor = 2.62, (2.56f)
63}? -]-7 (2569)
Par = 6.25, (2.56h)
Y1r = 0.4[Ca*"], (2.564i)
YorR = 1.2[Ca2+]ss, (256])
vsr = 2.8[Ca’*"], (2.56K)
Yar = 5.2[Ca®], (2.56l)
5 = 8.4[Ca’], (2.56m)
01
O1p = 007SCSQN g5 (2.56n)
1+ (“5oe)
.001
WL (2550
1+ (5o
.0001
O3 = OOSSSSQN 5 (2.56p)
1+ (“Gon)
.00001
i = — (2.560)
1+ (“Gn)
Osr = 022825; 5 (2.56r)
1+ (“Gn)

where [Ca®'] is the calcium concentration in the subspace and CSQN is calse-
questrin buffered calcium concentration in junctional space, and CSQN = 10 mM
is the maximal amount of calcium that can be buffered by calsequestrin.

2.4.4 Calcium Dynamics in Faber et al. (2007) Model

In the Faber et al. (2007) model the cell is divided into compartments. The intra-
cellular space contains the sarcoplasmic reticulum which stores the calcium, and
intracellular space. The sarcoplasmic reticulum is further divided into two compart-
ments called junctional sarcoplasmic reticulum (JSR) and network sarcoplasmic
reticulum (NSR).

The calcium channels controlling the current 1,1y from the extracellular space
are concentrated in so-called T-tubules, which increase the surface area to allow
a quick pathway for entry of calcium. The JSR membrane is located close to the
T-tubules from the inside of the cellular membrane in so-called subspace which
comprises 2% of the myocyte.

51

Chapter 2. Cellular Electrophysiology

The RyR receptors lead to the subspace and sense the increase in the calcium
concentration and react by releasing the calcium from the sarcoplasmic reticulum.
This process is known as calcium induced calcium release (CICR). The calcium
concentration in the subspace is much greater than those observed in bulk my-
oplasm, and so diffuses into the myoplasm where it affects intracellular calcium
concentration.

The calcium in the intracellular subspace binds to buffer molecules of troponin
and calmodulin. The calcium in JSR binds to buffer mollecules of calsequestrin.
Only free calcium is available for the current through the calcium channels.

The calcium is then removed from the intracellular to extracellular space by
calcium pump and sodium-calcium exchanger.

The concentration corresponding to the junctional space of sarcoplasmic retic-
ulum (JSR) is given as

d[Ca]JSR

dt :BJSR : (Itr — Irel)y (257)

where I, is a current from NSR into JSR defined as

I — [Ca]nsr — [CE%]JSR7 (2.58)

Ttr

where 7, = 120 ms is a time constant of calcium transfer from NSR to JSR, I, is
given by (2.52) and coefficient

[W] : Km,csqn)2> 7 (2.59)

BJSR ((Km,csqn + [Ca]JSR

where [csqn] = 10 mM is total concentration of calsequestrin in the SR and
K esqn = 0.8 mM is equilibrium constant for calsequestrin.
The calcium concentration in the subspace and is given by

d[Calss
dt

Acap . VISR
2.V F TV

=— B ((fca(L) — 2 INaCass) + Idiff,Ca) (2.60)
where F'is Faraday constant, A.., = 1.534 - 10~* cm? is the capacitive membrane
area, Vi, = 7.602-10"7 puL and Vigg = 1.824-10~7 L are the volumes of sub-space
and JSR respectively. The Ic,q,) was defined in (2.49a). The Iyacass is sodium-
calcium exchanger in the subspace. The diffusion between the subspace and bulk
intracellular space (myoplasm) is defined as

[Calgs — [Cal;

Tdiff

Laigr,ca = (2.61)

where 74;¢ = 0.1 ms is a time constant of ion transfer from subspace to myoplasm,
and [Cal; is myoplasmic calcium concentration. The coefficient in (2.60) is defined

52

2.4. Popular Markov Chain lon Channel Models

as

— (1 BSR - Km,BSR BSL - Km,BSL !
/BSS - ()2 ’

N N 2.62
Km,BSR + [Ca]ss)2 (Km,BSL + [Ca]ss ()

where BSR = 0.047 mM, K,, gsg = 0.00087 mM, BSL = 2.124 mM, and K, gs1, =
0.127 mM.
The calcium concentration in the NSR space of SR is
d[Ca]nsr Visr

T — Tioate — Tu-2% 2.
dt P leak t VNSR (63)

where Visg = 2.098 - 1079 uL and the currents

0.00875
o [Calnsg, (2.64a)

[Cal; —
S }
" =[Cali + Koy ™ (2.64b)

leak —

where K,,,, = 0.00092 mM is half-saturation concentration of I,,,, and I, =
0.017325 mM/ms is maximal current through I, channel.
The calcium concentration in bulk myoplasm is given by

d[C&]i Aca
= —Mmyo]oa a_[ca 2[aa557p 2.
q Brny ((total,C lca T 21NaCa,)meoZCaF (2.65)
VNsr Vs
Iu - Iea — — 1 i ay,
+(Lup leak) Viro diff,C me0>

where Vo = 2.584 - 1075 ul is the volume of myoplasm, zc, = 2 is valence of
calcium ions, Ii.ta1.ca total calcium ion flow, and coefficient

6 — (1 ([trpn]Km,trpn) [Cmdn]Km,cmdn -
e (Km,trpn + [Ca]i)Q (Km,cmdn + [Ca]i)2

(2.66)
where [cmdn| = 0.050 mM, and [trpn] = 0.070 mM are maximal calcium concen-
trations buffered in calmodulin and troponin respectively, K, cman = 0.00238 mM,
and K, pn = 0.0005 mM are equilibrium constants of buffering for calmodulin and
troponin respectively.

53

Chapter 3

Asymptotic and Numerical Methods

This chapter introduces numerical and asymptotic methods which are used in this
thesis. Section discusses asymptotic methods and describes the reduction
of dimensionality of a system based on the division into fast and slow subsystems.
The theory follows the ideas described in Tikhonov (1952) [14], Fenichel (1979) [15]
and Biktashev (2003) [16]. The section is divided into dimensionality reduction for
the leading-order of linear non-autonomous system, then a theory for developing a
first-order correction term which aims to improve the accuracy of the leading-order
approximation. The last part develops theory for application of the dimensionality
reduction on a Markov chain.

Section presents numerical integration methods for systems of ordinary
differential equations (ODEs) and analysis of the order of numerical errors which
arise.

3.1 Asymptotic methods

3.1.1 Toy Example of Dimensionality Reduction

This subsection introduces the of dimensionality reduction that will later be applied
to the Markov chains on a simple toy model of two dimensions. This model reads
as

dﬂfl . 2e 2e
dt——(l—i‘3>$1+<2—3)1’2, (31)
dx, € €

55

Chapter 3. Asymptotic and Numerical Methods

which has a form

4T Ay +ean 7, (3.3)
d
where
-1 2 1(—-2 -2 T
Ay = , A =1 , po | 3.4

First, we consider a case where ¢ = 0 then the system (3.3) writes as

dxl

W o tam, (3.50)
dz
d7t2 - xl - 2.%2. (3'5b)

The matrix A, has eigenvalues \; = 0, A, = —3 and corresponding right
and left (adjoint) eigenvectors wj, (for k = 1,2) as

2 1[1
g — ni _ — 3.6
1 1] 9 w1 3 1]) (a)
1 1[-1
Uy = , by = = 3.6b
V2 1] Wa - 9] ()

Then the system has a solution

=1 2 exp(Aat) 1 1| |cgexp(—3t)

f(t)zfjcwkexpww:[ﬁllﬁz}{ o]:F _1” -] (3.7)

where c1, ¢, are constants determined by solving the initial value problem for the
initial point P = [z1(0), 22(0)].

This can be characterised by the phase portrait shown in Figure 3.1fa). So
the system can be explicitly described as a superposition of two modes, one of
which decays with time. The matrix has one zero eigenvalue, i.e. it is degenerate.
The eigenvector corresponding to the zero eigenvalue v; determines the centre
manifold. The other eigenvector v, corresponds to the negative eigenvalue which
means that the solution decays with time and approaches the central manifold.

Now we to obtain a equivalent system in its orthogonal basis. We transform the
original system to the new system by multiplying by a transpose of adjoint
eigenvalue matrix W’ = [, |,]", which satisfies W' A, = WA, where A
contains the eigenvalues on its diagonal (\; = 0, A\ = —3), so we have eigenvector

56

3.1. Asymptotic methods

X2

X2

N

-J\‘
N

rd

Uy

N

*‘\

‘}F_

15

1
‘F\
-

N,
\,
\,
\,
.
\,
\,
\,
\,
\,
.
N,
N,
N\,
\,
\,
\,

Figure 3.1: Phase portrait of the system defined by and (3.5). The axis z;
and z, are the original coordinates of the system. The axis u; and uy correspond
to the new coordinates of the system. The vectors v} and v, correspond to the
eigenvectors of the system. The green lines represent the flow. Given initial
conditions of a point P the trajectory will be represented by the red line. Panel
(a) shows the situation when the ¢ = 0 as shown in and panel (b) shows
situation when ¢ # 0 as described in (3.15).

and eigenvalue matrices as

2 —1 111 1 0 0
V= , wt=— : A= . (3.8)
1 1 31-1 2 0 -3
Then from the eigenvalue identity, we obtain
rdZ T A = T
w i WA =AWW' 7. (3.9)

We define a transformation from old to new state variables and the other way
round as

=Wz, Z=Vi. (3.10)
which gives us the system
du "
i A, (3.11)
which expands as
du1
et 12
T 0, (3.12a)
du

57

Chapter 3. Asymptotic and Numerical Methods

The solution of this system is given by

at) = “ , 3.13
Q lcg exp(—St)] ()

where @ = [uy, uy)”. This system has one zero eigenvalue, which is reflected by a
zero derivative of u;. This means that there is no flow around the corresponding
axis. From this relation we see, that at the limit ¢ — oo the @ — [c;,0]7 and the
transformation rewrites as

C1

f: Ulul = |:261] . (3.14)

The equations describing the system are uncoupled and from the equation
we see, that u; remains constant. The evolution of the u, variable can
be characterised as a decay to the line given by the eigenvector u,. This is the
simplest case of the reduction which allows us to reduce the dimensionality of the
system.

More interesting behaviour can be observed for ¢ # 0 in (3.3). Then we obtain

a system

d T -1 2 e -2 =2 T

— = + - : 3.15
Using the same approach as in the first example, we pre-multiply by the eigenvector

matrix W7 and transform the variables according to (3.70) to get

.
di; = (WTAV +WTA V)17, (3.16a)

the first term on the RHS is equivalent to (3.9). The second term is computed as

11 1]1[=2 =2][2 =1] [¢ o
WTAV =¢_ - = : 3.17
c V=3 [—1 2] 3 {—1 —1] [1 1] [0 0] (3.17)

collecting these two terms together yields a system

du
ditl =EUuq, (3188.)
du
dTQ = — 3uy. (3.18b)

That is exactly equivalent to the original system (3.15).

Again as in (3.12), the equations describing the system are uncoupled. Unlike
the system now, u; varies slowly for a small . This can be better char-
acterised by a reformulation of the using a slow-time variable 7' = <t as

58

3.1. Asymptotic methods

du1
dUQ

The systems (3.18) and (3.19) are equivalent to each other for ¢ > 0. Considering
the limit ¢ — 0in (3.19) we obtain

du1 .
ﬁ =Uuz, (3203)

In other words, if the parameter ¢ is small, the dynamics of the u, compared to
uy Will be much faster, and will decay with time. Hence, the variable u, can be
neglected in the time-scale of u; and instead of the original system we get a single
dynamical equation (3.20a). The transformation to the original coordinates is done

using (3.14).

3.1.2 Classical Formulations of Singular Perturbation Theory

The ideas illustrated on the toy model in the previous section and which will be used
throughout this and the following chapter are based on singular perturbation theory.
These methods have been traditionally used to eliminate the complexity in chemical
reaction by quasi-stationary approximation, in physics as adiabatic elimination,
and other areas as celestial mechanics. Tikhonov (1952) has systematised the
procedures and introduced them as a mathematical theory. Below we give a brief
exposition of his results [14].

Tikhonov introduced a system similar to (3.19), which he called a full system,
as

E:f(f,z(l),...,z<m>,1t), (G=1,2,...,m), (3.21a)
~dz0) o
“U)dzt = Fa)(g, 20, .. 2™ 1), (3.21b)

The main interest of the paper was to study the solutions of the initial value problem
in a case when p; — 0. (The u; corresponds to ¢ in the previous subsection.)

In the simplest case Tikhonov considered and a system with one parameter i,
at its zero limit. From (3.21b) we solve ﬁ(:f, Z,t) = 0 for Z, which defines manifold of
equilibria, and let the root to be z = q?(f, t). This leads to the following degenerate
system

dz - | " S
E = f(xv Z7t)7 [E(to) = X0, (322a)
59

Chapter 3. Asymptotic and Numerical Methods

7= ¢(T,1). (3.22b)

The degenerate system has an attached system which is considered in a fast time
T=t/uas
jj = F(&,7,1), (3.23)
where ¥ and t are considered as parameters.
Assuming that all functions are continuous and differential equations have
unique solutions, Tikhonov has proven that the solution of the full system ap-
proaches the solutions of the degenerate system for p; — 0, if

—

1. the root 2’ = ¢(&, t) is a stable root of the attached system;

2. the initial conditions Z, are within the basin of attraction of the root z = ¢(,)
at the initial values 7, and t,.

The implication of this result is that for a small enough values of ., the full
system can be replaced by the degenerate system which has fewer dimensions.
Hence the procedure of solving the system simplifies.

The simplification is most useful in cases, when the full system cannot be
solved analytically and the degenerate system has an analytical solution. Other
convenient application is when the computational time spend for solving the system
numerically is lower for the degenerate system than for the full system.

In our application to the Markov chain we hypothesise that the numerical
solution of the full system is more time consuming than a numerical solution of
some particular degenerate system. In the text in the following chapter, we call the
degenerate system of a Markov chain a “reduced” model.

Tikhonov also considers a situation with more than one parameter 1.;, however,
this is not discussed here, as we did not consider such case in the following text.

The limitation of the Tikhonov approach is that the system can be only degen-
erate along one of the axis of the system, i.e. variables 7). This was addressed
in the paper by Fenichel (1979) [13], where the flow can have Tikhonov structure
locally around manifold in properly chosen coordinate system. Also, Fenichel
discusses higher order terms, which improve asymptotic accuracy. The Fenichel’'s
paper is not directly used in this text, however, we refer to it for completeness,
as a relevant prominent work in the area of singular perturbation theory. For our
purposes we will follow the convention used by Biktashev (2003) [16] as it depends
on fewer technical details and presents a simpler notation.

In the case of the Markov chain, the Tikhonov approach has to be modified
because Markov chains do not have Tikhonov structure as the fast and slow
variables are both present within each dynamical equation. An attempt of a direct
application of this theory would lead to a violation of a conservation law observed
in Markov chain models. The conservation law constrains the sum of the states to

60

3.1. Asymptotic methods

be equal to one. This also implies that the sum of the right hand sides must be
zero in order to maintain the conservation law for the time evolution of the system.

Perturbing dynamical equations of a Markov chain in the Tikhonov manner,
destroys the balance as the sum of the right hand sides cease to be equal to zero.
Therefore, the perturbed system violates the conservation law.

To address this issue, we transform the system in the base of eigenvectors.
This is done by selecting specific fast transition rates in the original system. Then
the resulting system can be divided into a part that varies in a slow time scale and
part that corresponds to the selected fast transition rates. The differential equations
of the transformed system allow direct perturbation according to Tikhonov.

In the following text we reproduce some of the ideas from the cited papers.
However, for the readers convenience we present the derivation of the formulas in
a such way that no further knowledge of the cited papers is required.

In Section(3.1.3|we describe a derivation of leading-order formulas for a system
of linear non-homogeneous differential equations. In this case we think of a part of
a Markov chain model, that contains fast transition rates. The homogeneous part
of the model corresponds to the dynamical variables linked with the fast transition
rates. The non-homogeneous part correspond to the connections of those states
to the adjacent states in the topology of the model. The fast subsystem is then
replaced by a single differential equation.

In Section we present a generalised approach to develop higher-order
terms, to improve the asymptotic accuracy of the solution. In that section we use
the notation as introduced by Biktashev (2003) [16].

The Section presents the application of the theory developed in the
previous Section [3.1.4]to a general Markov chain model. Unlike Section [3.1.3]
Section [3.1.5|develops equations up to first-order of the small parameter «.

3.1.3 Leading-Order Reduction for Linear Systems

Definition of the System

Consider a linear non-homogeneous system of n ordinary differential equations

—

X — — — —
ddt = A(t,e)X(t)+ H(t), X(t),H(t) € R" A(t,e) € R™" (3.24)
where X (t) is the vector of dynamical variables, A(t,) is a matrix of coefficients,
H is a vector of non-homogeneous terms accounting for contribution from variables
not included in X, and ¢ is a small parameter. This parameter characterises the

separation between the slow and the fast time scales.

61

Chapter 3. Asymptotic and Numerical Methods

Division to Time Scales

To analyse the fast behaviour of this system in the vicinity of time point ¢y, we
introduce fast time variable r such that ¢ = t; + 7, where ¢ — 0 is a small
parameter. Now the dynamical variable X (¢) is expanded using slow and fast time
as X(t) = Y(t,(t —ty)/e) = Y (t,7) where Y (¢, 7) € RY.
The system (3.24) is reformulated in terms of parameter ¢ using the chain
derivative rule as
oY 18Y . .
— 4+ —— | =cA(t,e)Y (¢ H(t). 3.25
8(8t+58t) eA(t,e)Y (t,7) +cH(t) (3.29)
The coefficient matrix A(t,) and dynamical variable Y (¢, 7) are expanded as a
power series in € as

At,e) =) e"TA () = i (Ao(t) +eA(t) + 2 As(t) + ..) : (3.26a)
¢

Y(t,7) =Y eVt 1) = Yo(t,7) + Yi(t, 1) + e2Valt, 1) + ... (3.26b)
J4

where each matrix A,(t) describes the behaviour of the system in a time scale
e'~1t. The expansion of A starts from O(e~!) to account for fast processes. After

substitution of (3.26) into (3.25) we obtain

oY, oY, oY
et —r te—r =

ot ot ot
—Ag()Yo(t,7) + e AL ()Y (t,7) + cAg()Yi(t, 7) + eH(t) + O(?). (3.27)

Collecting the terms according to orders of ¢ gives us

O ng = A (t)Yy(t,7), (3.28a)
ICOE a;f#‘?f —A,()Y(t,7) + Ag()Yi(t,7) + H(t), (3.28b)
0O(e?)

where the O(£°) defines the model in the fast time scale 7, and O(&') in the slow
time scale ¢.

Selection of Eigenvectors and Eigenvalues

For the solution of our system we will need to find the eigenvalues of the matrix
Ay. The eigenvectors and eigenvalues of matrix A, have to satisfy the condition

Ao () (t) = Ak(t) (1), Ay(t) € R iy (t) € R, AL()R, (3.29)

62

3.1. Asymptotic methods

where)\ are the eigenvalues and v, are the eigenvectors.

We assume that the eigenvalues of the matrix A, are real (as will be proven
below). We also assume that one zero eigenvalue A = 0, and all the remaining
eigenvalues are negative.

A Markov chain has always at least one zero eigenvalue due to the structure
of the transition matrix which satisfies the state conservation law, i.e. the sum of
entries in each column is zero. The state conservation law is expressed as

AT; =0, (3.30)

where 7 is a unit vector with 1 in all entries. This means that A\, = 0 must be an
eigenvalue of the system because the A, and its transpose A have the same
set of eigenvalues. We assign an index j = 0 to the zero eigenvalue \y(t) = 0.
Further, we assume that the multiplicity of all eigenvalues is m = 1.

The equation for a single dynamical state can be expressed in the following
form [18]

dt‘ =D (ajiwj — ayzy), (3.31)

where oj; = Aj; and the sum is over all indices j, when j # 7.

A detailed balance conditions state that in an equilibrium & = 7(¢? each of the
elementary sums in (3.31) is equal to zero. This can be also expressed as

O./jiléeq) = OéijZL'Z(eq). (332)

Assuming that the detailed balance condition is satisfied, we can rescale the
transition rates matrix as

(eq)

S E— (3.33)
xl(eq) xgeQ)

QT

S

1

which means that the the rescaled eigenvalue matrix is symmetric and hence has
real eigenvalues. Now, it remains to prove, that the eigenvalues of the rescaled
matrix A are identical to the original matrix A.

The eigenvalue problem of the rescaled transition matrix A is defined as

> Ay = M (3.34)
i

63

Chapter 3. Asymptotic and Numerical Methods

Rescaling the eigenvectors as v; = v;/4/ x§eq> and substituting the A from (3.33) to

(3.34) we get
(3.35)

(eq) -
(eq) 7’

RHS: 1211’7: j
zj: 37V %:\/mEQQ)I§eQ) \/x§e<ﬂ i\

(3.36)

LHS: M = A2
(eq)

xT;

Dividing both sides by \/:rl(»e‘” we get the eigenvalue problem of the matrix A, and
therefore both matrices A and A have the same set of eigenvalues, and hence

also entries of A are real.

Having found all n eigenvalues and eigenvectors of the A,, we can write the

diagonal eigenvalue matrix as

M) 0 0
| 0 A 0
(t) = _ : (3.37)
0 0 ... MO

(3.38)

where the corresponding eigenvalues and eigenvectors are represented by the
same indices. We can then write A,(t)P(t) = P(t)A(t).

We find the inverse matrix of P(t) which corresponds to the adjoint vectors
to the eigenvectors. The rows of such a matrix are denoted dual basis & (t) of

eigenvectors u;(t) as

A0 (3.39)

P~ (t)P(t) = I where I is identity matrix. Then
(3.40)

ST ()(t) = o

are the entries of matrix I which satisfy é,, =1and 6;, =0Vj # k

64

3.1. Asymptotic methods

The eigenvector corresponding to a specific eigenvalue A\, can be chosen
arbitrarily from a space of vectors with the same direction

T (t) = s (t)ix(t) (3.41)

Ao(t)sk(t) _»k(t) :/\k (t)Sk(t) _’k<t), (3423.)
Ao (8)Uk(t) =Mk ()T (2). (3.42b)

Using the normalisation factor s, (¢) we can also scale the dual basis as () =
sy (D) (2).

It is convenient to choose the eigenvectors such that they satisfy the condi-
tion of so-called dynamical orthogonality. This means that the derivative of the
eigenvectors is orthogonal to the corresponding adjoint vector as

do,

w;fd—: = & = 0. (3.43)

Using the chain rule for the derivation of v, we find

. - d da d
(Z;k: _ 8k() p o AU O dske &,f(t)% + s,;l(t)ﬁ. (3.44)

su(t) " Qe sp(t) dt t

0 =} ()

This can be satisfied if we can find s, (t) # 0 which is defined and differentiable in
the interval t € I = [0, 00)

1
/ — ds(t) = — / ST ()i (1) (3.45)
Sk
Then s, (t) has solution

slt) = o~ J EF (i (). (3.46)

Solution of Leading-Order Term — O(1)

The equation (3.28a) gives the solution in O(£°) as

Yo(t,7) =Y ap(t) Ty (t)eM O, (3.47)
k

For now we assume that a(t) is an arbitrary constant, and A\ (¢) and v (t) are the
eigenvalues and eigenvectors of matrix Ay(t).

65

Chapter 3. Asymptotic and Numerical Methods

To find the solution in the slow time scale ¢ we let it go to the limit in the slow
time 7 — oo to get

lim Yo(t, 7) = ao(t)v(t). (3.48)

T—00

We rewrite (3.28b) in a non-homogeneous form

oY, . .
where the term

F(t,7) =A,(t)Yo(t, 7) — a(;? + H(1). (3.50)

Using the solution for Y, given in equation (3.47) we expand

Fit:r) =X [4000 - iilo) - () G -
- ak(t)ﬁk(t)dd);kr] MO L H (1), (3.51)

The solution of the system of equations (3.49) is obtained by using the method

of diagonalisation. Multiplying the system from the left by P! gives
o7 _ .
Fr AW Z(t,)+ G(t,T) (3.52)

where A(t) is eigenvalue matrix as defined in (3.37) and

Z(t,7) =P~ (t)Y(t, 7), (3.53a)

G(t,7) =P ' (t)F(t,), (3.53b)
which can be written by elements as

z(t,7) =] (Y7 (t,7), (3.54a)

g;(t,7) =w] (t)F(t, 7). (3.54b)

Substituting (3.57) into (3.54b) and using the orthogonality (3.40) and dynamical
orthogonality (3.43) properties for eigenvectors, we obtain

g5(t,7) =3 [} (1) A (0)ar (1) (1) — Eran()] MO

Clday AN or
ldt +a;(t) T] NOT 1 () (3.55)

66

3.1. Asymptotic methods

where h;(t) = @} (t)H(t).

The system (3.52) is uncoupled, and each individual equation can be written in
a form

0z

5, (02t 7) +g5(t,7). (3.56)

Using the integrating factor method we get the solution
2(t,7) =eMOT / e MO g (¢, 7)d7 (3.57)
that, using g; from the equation (3.55), rewrites as
zi(t,7) = ekj(t%{ l T(t) AL (t)a; da]} /dT /rdr+ (3.58)
+hi(t) [e Omar 4 37 (@ (0 Ar(Oar(t)5(t) — Grar(t)] [0 TdT}

ki

For the integration we have to consider the structure of the eigenvalues of our
system. That is, there are no multiple eigenvalues, and j = 0 corresponds to a
zero eigenvalue. For zero eigenvalue j = 0 we get the result

Zo(t, 7') = |fl7§(t)A1(t>CLO(t)770(t) - ddat() —+ ho()1 T+
Ar(t)r
+ Igo[()ax(17(r) — Govar(r)] SRR (3.59)

where K(t) is an integration constant in 7 that is found using given initial values.

As 7 — oo the terms in the sum of equation (3.59) decay to 0 because of the
assumption that all the eigenvalues are non-positive. Therefore, we can write
(3.59) in a form

dao

We know that X (¢) is bounded, so Y, (¢, 7) is bounded as well, and hence the
solution z;(¢, 7) must be bounded (i.e. z;(¢,7) # £oo,Vr € [0,00)). This means
that the coefficient of the first term containing = must be zero, which yields the
following differential equation

d;f —ag (t)dig (1) A (£)To(t) + g () H(t). (3.61)

This equation defines a point on invariant manifold of the system (3.28a). The
relation to the original variables Y;(¢) and the initial conditions are calculated from

67

Chapter 3. Asymptotic and Numerical Methods

(3.48) at the limit 7 — oo giving
Yo =ty (t)ao(t), (3.62)
which implies

aolt) =@ (£)Ya(1). (3.63)

3.1.4 First-Order Correction Term for General Systems

Definition of the System

In this section we describe the perturbation theory for autonomous systems. Al-
though Markov chains are non-autonomous, they can be converted to autonomous
as will be described in Section [3.1.5

The dynamical behaviour of autonomous systems is described by a system of
ODEs

— =f(@) + eh(q), (3.64)

—

where @, (@), h(@) € R, We define @ as
@ =U(at)) +ev(t), (3.65)

where the state of the system is given by a combination of a solution on an invariant
attracting manifold with coordinates U (@(t)) € R"*! and a small perturbation #(t) €
R, which is called first-order correction term. Vector d(t) € R™" . m < n+1,
denotes the coordinates on the invariant manifold such that f(U(a@(t))) = 0.

Eigenvalues of the Jacobian Matrix

To analyse the system (3.64) we have to find the Jacobian matrix

The eigenvectors V;(@) and corresponding adjoint vectors I/I7T(c7,) of the Jacobian
F (@) are found according to the following relation

F(a(1)Vi(@) =AiVi(a), (3.66a)
WT,(@)F(a(t)) =AWT,(a), (3.66b)

where A, =0fork <m+1and A; #0forj >m+ 1.

68

3.1. Asymptotic methods

We require that () is always orthogonal to U (@) at the point @(t), which means
that

WT(a)d(t) =0 (3.67)
fork=0,1,...,m.

From the definition of @ we find that 80 (@) = dii — c0u(t) that gives OU (a@) ~ i
as ¢ — 0 which leads to

of(U(@) of(U@@)ol@ of(U(a)aoU(a) _,oU(a)
= pry = — F .
day o0 (d@) Oax gi a7, (5.68)
We choose V, such that
Vi, = L (3.69)
Oak

for k = 0,...,m are the eigenvectors corresponding to zero eigenvalues A, = 0.
The eigenvalues in this section are no longer for only the fast part of the system as
in the previous section. However, as the conservation law is still satisfied, so we
assume an existence of at least one zero eigenvalue. The eigenvalues are also
assumed to be real and non-positive. The assumption of the multiplicity m = 1 for
the eigenvalues, no longer applies here, however we assume, that the system has
a complete set of eigenvectors.

In the subsection(3.1.3|we show a way to choose the left and right eigenvectors
corresponding to the same eigenvalue, such that they satisfy the requirement of
dynamical orthogonality.

The multiplication of the left and right eigenvalue matrix gives a Kronecker delta
function W7,V; = 4,; as defined in (3:40), which is a constant and therefore its
derivative is

0y _ =p OVi(1) OWT,

— YU _ T. (a
0 Fa, WT, b+ dar V;(a(t)). (3.70)

We define

L V@) OWT, 4
o= w2 - (@(t)). 71
Ky = =W 008 = St () (3.71)

When K, = 0 the eigenvectors W7, and V; are dynamically orthogonal with
respect to a,. This was already established for ; = k by a particular choice of
eigenvectors, as described in (3.43). The variable K is used for i = 0,...,m and
j=m+1,...,nfrom different sets, while % is only defined for £ = 0,...,m. This

69

Chapter 3. Asymptotic and Numerical Methods

was shown to be true for the cases we will consider in the next chapter, but we
have not found a proof for the general case.

Expansion of the First-Order Correction Term

We expand the first-order correction term in the basis of eigenvectors as
n
d(t) = 30 Vila(n)b (1), (3.72)

where Vj(a(t)) are the eigenvectors of the Jacobian F'(d(t)) and b; € R.
We define a notation for the flow on the invariant manifold as

for k =0,...,m. This is substituted into expression (3.72) to find the derivative of
the first-order correction term,
da db,

n —
i eArb; + j:%jﬂ V}(a(t))g. (3.74)

Taylor Expansion in Multiple Variables

—

We recall the Taylor series expansion of function f(«) in multiple variables which
is done around the point U = [Uj, ..., U,] as

11=0 in=0 .
- " Of(Us,...,U,
it)+ 3 e Ol
7=0 J
1 L 82 _’(UO7' 7U77)
+ 5 U; —Up)+
N2 G (U= U
1 .. 63f(Uo,. 7U77)
32 2 2 Dy U e = U =)
. noo non
_fU+Zf](u]_Uj)+ZZijk<uJ_Uj)(uk_Uk>+
j=0 j=0k=0
/A
+3 D> fVsneuy = Up) (ug, = Up)(wy = Up) + ... (3.75)
7=0k=01=0

—

The Taylor coefficients of the function f(u,...,u,) at point U are

— -

fU=fU,...,Uy,), (3.76a)

70

3.1. Asymptotic methods

= Of(Us,....Uy)

U —
U, 5 , (3.76b)
- 1 02f(Us, ..., U,)
fV =5 DD . (3.76¢)
- 13 f(U,,...,U,
FUse = (U W, (3.76d)

3! Ouj0uOuy

Analogously we do Taylor expansion of function k(@) with the coefficients
RY,hY; and hY ;.
For our purposes we need only two derivatives of fU and one derivative of .

Hence, we assume that those functions have the required number of continuous
derivatives.

Expanding the System around the Invariant Manifold

We substitute (3.63) into (3.64) and rewrite the left hand side as

di dU = dv @ 0U day, | dv

E‘E+ & Za dt T
dv
db oMoV
—&?ZVk Ak+€ Z V (7 Z Z]Ak (377)
g=m+1 j=m+1 k= 0

and right hand side by using Taylor expansion (3.75) as

f(@) + eh(@) = f(U(a(t)) + v(t)) + eh(U(a(t)) + v(t)) = (3.78)
:f?f+€if7]jv] —i—»sQZZf vt)+5hU+5zth ;i (t) + O(e).

Here, v; denotes j-th coordinate of the correction vector ¢, and the function
F(U(a(t))) on the invariant manifold is fU=o.

Putting (3.77) and (3.78) together we obtain

mo_ n m
ZVJ A,ﬁZVJ + ZZW’Akb—
k=0 j=m+1 j=m+1 k= 0
n
—3 /U —l—eZZf vt)+hU—|—5Zh vi(t) + O(e). (3.79)
Jj=0 7=0 k=0

We are going to pre-multiply this system by an adjoint vector W7, to the
eigenvector V; of the Jacobian. For that we simplify the first term on the right hand

71

Chapter 3. Asymptotic and Numerical Methods

side as
WS 70,0 =,y PO,) v i -
=0 = Oy
J J
— n —
=NWT0(t) = AW, Vi(d(e)by(t) = Asbi(t) (3.80)
=0
and define
H(t) = WT,hU. (3.81)
We do the multiplication of (3.79) to get
db n n n
— =N\gbi(t) + H; — A —1—8{2 T+ S Y [KijkAkbj(tH
de j=0 j=m+1k=0
+WT U vt } (3.82)

where subscripts of v, denote the entries of the correction vector (3.72), and K
was defined in (3.71).
We write the system as
db; S

5 =Abi(t) + Hi— A+ eFi(b, A) + O(), (3.83)

—,

with the new variable F;(b, A) collecting the terms of order O(¢) as

n

Fib,A) =3 > WTihl;Viy(@ Z ZKkak

7=0k=m+1 j=m+1 k=0

> Z W2 Vi @) Vir @by () (3.84)

Solution of the Reduced General System

We impose the condition of orthogonality (3.67) which says that b; = 0 for j =
0,...,m. We also recall that the flow A; is only defined for for j = 0,1,...m. Then
we split the system (3.64) into two setsfori <m +1andi>m+1 as

A =H; + e Fi(b, A) + O(?) fori =0,1,...,m, and (3.85a)
(g;i =A;bi(t) + H; + O(e) fori=m+1,m+2...,n. (3.85b)

To solve A; up to order O(g?), it is sufficient to solve b; only up to order O(e). This is
because the term b; in equation (3.85a) is only present in terms which are already
multiplied by the parameter ¢.

72

3.1. Asymptotic methods

To find b; we use an integrating factor with a limit ¢ and an arbitrary chosen limit
r as

exp (= [Aute)ae) (3.86)

that multiplies the equation (3.85b) to get

bi(t):/ exp (/ A dg) (7)dr + Dit) + O(e), (3.87)

where s; is an arbitrary chosen limit (which will vanish in later calculations),

Di(t) = Cresp ([Auf€)ae) (3.88)

and C; is an arbitrary constant.
In order to obtain the result we will now expand the terms in the integrand of

equation (3.87) to
Ai(€) =A(t7) + O(e), (3.892)
H;(1) =H;(t") + O(e). (3.89b)
This is substituted into (3.87) and after integration yields the following formula,

bi(t) = — f((f)) {1 — exp [A () (1 — si)]} D)+ 0(E). (3.90)

The integrating factor in (3.88) is valid for any C. For convenience we choose

H;(t*)

“T A

(3.91)
such that the exponentials in (3.90) cancel out. Then the final equation for the
coordinates across the invariant manifold has the form

W, hU (¢)
Ai(D)

L O(%e) = — +0(e). (3.92)

To find the flow on the invariant manifold we substitute the result (3.92) into
(3.85a), and using the da;/dt = ¢ A; we obtain

dai g =
T eWT,hU+
) noom WL (¢) WT. hU()
€ {—Z :zmj T.hU Vi (@)7/\;&) j%:-&-lkz:OKZ]kW WhU (1) —2L— A
W), W)
W, U Vis(@ V(@) 2" WL o, 3.93
2B @ }* 69

73

Chapter 3. Asymptotic and Numerical Methods

3.1.5 First-Order Correction Term for Markov Chains

Autonomisation of Markov Chains

Here we apply the dimensionality reduction using the first-order correction term
for a Markov chain model, i.e. a system of linear ordinary differential equations.
The Markov chain models of ion channels are normally non-autonomous as they
depend explicitly on membrane voltage V,,(¢) which is not part of the Markov
chain model. As the theory was developed for autonomous system of ODEs, we
autonomise the Markov chain using an additional variable o as

dr 1 .

4 = |7A0(0) + (o) 7, (3.94a)
do

) (3.94b)

with vectors Z, H € R"; matrices Ay(c), A;(c) € R"™"; parameters o,c € R; e — 0
is a small number. The assumption of the number of smooth and continuous
derivatives introduced earlier is automatically satisfied here, because the system
is linear, as long as the entries of A, and A, satisfy that requirement as well.

Time is re-scaled as analogously to (3.25) by introducing fast time 7 = ¢/¢.

L ~[A(0) +2 A0, (3.952)
jfo . (3.95b)

We group the terms according to orders of . This allows us to rewrite the system
in a form of (3.64), in which

fl@) = {Aog’)f] : h(d@) = [Ala")f] ,and = H . (3.96)

The solution in the leading-order lies on the invariant m-dimensional manifold
such that f(U) = 0. This condition is satisfied for a vector U which lies on the
manifold. This vector is found as a linear combination of the vectors projected to a
zero vector by matrix Aq(o) (i.e. kernel of A,). We have proven the existence of an
eigenvector from the state conservation law in equation which corresponds

to the zero eigenvalue \;(c) = 0.

We have ordered those eigenvalues as \,(c) =0fork =1,...,m, and \;(o) #
0forj=m+1,...,n, where m denotes the multiplicity of the zero eigenvalue of
the matrix A,. The eigenvalue of the dimension liked with time has an index zero.

The solution can be written in a form equivalent to equation (3.47) that gives
the transformation from the coordinates of the new system ¢ to the coordinates of

74

3.1. Asymptotic methods

the original system # in the O(1) as

Then coordinates of the system on the invariant manifold (3.97) can be used to
write down the coordinates for the extended phase space (including the time-like
variable) as

—

U=

zg%@@l (3.98)

g

Including the first-order which is orthogonal to the invariant manifold, we get an
expression for the original (non-extended) phase space as

i arUk(o | e > U;(at))b;(t). (3.99)

—

The Jacobian F (%) of the function f(&) from (3.96) evaluated at @ = U is

@) | 2(Ao(0)T) Z(Ao(0)Z o(o) 2Aola) gt
F@:ag>:aA%<m %MJ>1:1A5) 5], (3.100)

Eigenvalues and Eigenvectors

We find the eigenvalues and eigenvectors according to equation (3.66a). We look
for eigenvectors in a form

(3.101)

/iz"

7 € R" is the component of eigenvector V; corresponding to the space #, and
1 € R corresponds to the extended space o.

The eigenvalues are obtained solving the following system of equations,

Ao(0)R; + d“;‘;(%) i =Nifs, (3.102a)

If x; = 0 then we are solving the eigenvalue problem for the matrix Aq(c), which
results in

Ui(")] , A= A, (3.103)

75

Chapter 3. Asymptotic and Numerical Methods

where i = 1,...,n. This way we obtain n solutions. Because the system was
extended by the variable o, the dimension of the Jacobian and its eigenspace is 7.

It is necessary to find one more linearly independent solution, which corre-
sponds to the extended space when . # 0. Then equation (3.102b) implies A, =0
(we let the index for this solution to be k£ = 0). For Ay = 0 equation (3.102a) gets
the form

A
Ag(0)ii + dO(")g:% =0, (3.104)
g

and expanding # according to its definition (3.99) we get

We know that Ay(0)vk(0) = 0 is satisfied because of the zero eigenvalues
A =0fork=1,...,m, therefore -1 (Ay(0)v,) = 0. Then, by differentiating it with
respect to o, we see that according to the product rule we obtain the following
relation

dAo(o) ., \ dv (o)
e k(o) = —Ap(0) e (3.106)
Equation (3.105) then yields
m dUk
Ao (3):0, (3.107)

we choose a specific vector that satisfies this relation as

. " du(o
Ro= 110y ax 5((7), (3.108)

For convenience we choose 1o = 1 in order to get the remaining eigenvector of
F (o) for eigenvalue Ay = 0 as

—

Vo = (3.109)

Ekz La kdvk()
. .

The adjoint vectors are defined according to equation (3.66b) and satisfy the
Kronecker delta function as I/I7Tj‘7;- = 0;;. Hence, we find the adjoint vectors for the

eigenvectors (3.103) and (3.109) to be

WTo=lo, 1], (3.110a)
Wi =[a;, —¥r, ad35], (3.110b)

76

3.1. Asymptotic methods

wherei=1,...,n.

Term K, defined by (3.71) is found by substituting the adjoint vectors and
eigenvectors. The possible combinations are then Ky, = Kojo = 0 (because W
is a constant vector), and

2 OV, AW,

= WL :
Kijo W Bag oy (3.111a)
. OV OWT,
I ¥ Ve A iy
K W Dar ar (3.111b)
wherei=1,...,m,j=m+1,...,nandk=1,...,m.
Taylor Coefficients
The Taylor coefficients for the function (i) are
. U v 2 (A(0)
W, _OnT 0 1 AW(0)T| _ |5, (Ai(0)7) 7 (3.112)
an 8Uj 1 0
- 2pU 2 7 o — (Ai(0)T
hU), = 9°h _ 9 A (0)7 _ Bujduk(1(0)7) . (3.113)
Ou;0u, Ouj;Ouy 1 0
The Taylor coefficients for the function fﬁ(ﬁ) are
5 _OfU |5 (Ag(0)7)
U ="t = |9 114
1Y ou, [0 : (3.114a)
- R [52(Ao(0)T)
Uik = = | Qw0 114b
f jk anaUk [0) (3)
, 0* fu g (Ag(0)T)
v - J | 0Ou0u . 114
Solution of the Reduced Markov Chain
Now we substitute into (3.93) for : = 0 to get
dao_ 21 —f]
a o
non L WT,.hU(t n o om L L WT.RU(+
+ted=> > TohUijj(@)ki() - > ZKOjkWTkhU(t)Ji()Jr
j=0 k=m+1 A (t) Jj=m+1 k=0 Aj(t)
U U L. . WTéh_U(t) _WT hﬁ(t))
+ TofU . Vi(@)— V(@) —L 2V + 02 =1. (3.115)
PRIl v R WO R B

77

Chapter 3. Asymptotic and Numerical Methods

Then we substitute the terms for i # 0 into (3.93). Using expression (3.99)
(notice that O(e) vanishes to higher order terms) this eventually gives

da; (0 o\ V(@) Li(o)
=L;(0) + e — W, ((A (U)x)> ZRINT) R
dt { ;) k:%:ﬂ Ou, 1 Ax(?)
iU iU 0? Vi (@) Li(0) Vi (@) Ly (o)
+ W Ay(0)x]] 4 K + O(e?),
j,%:jozq:zn:wﬂ 8uj(9uk(0(2)7) Ao(t) Ay(2) ()
(3.116)
where the variable for the leading-order term is
j=1

We denote the j-th column of the matrices A, and A, as A} and AJ. The
derivative % (A;(0)Z) is split for u; when j = 0,...,n — 1. In this case u; = ;.
For j =1, u,, = 0. We obtain the relation

5 (A(0)7) —Al(0), forj=0,....,n—1, (3.118a)
J
B, L OA,
5. (A1(0)7) 2371” (3.118b)
n

Accordingly, we obtain the relation for the second derivatives as

2 1
au?auk (Ag(0)7) :?)u: =0, forj,k=0,....,n—1, (3.119a)
J
0 8 [9A DA _
S (A(0)T) =5 — | 7| = —— for j—=0,....n—1 11
3u]-(9u,7< 0(0)) u, \ 0o :1:) 9 orj=0,...,n , (3.119Db)
2 2
s (a(o)) =50 (3.119¢)

67,72(0(

da; _ o i Ve (@Li(o)
dr LZ(U)“{_FMZ%“”'Al” nO
i - V}WIC_L)LkO'
"2 i) i
L 92A)(0) Vigl@)Li(0) V(@) Ly(o)
i Z,q:zn;—i-l ' 9o? Ao(t) Ay(t)
U0 0A V(@) (o) Viel@) Ly(0)
Pl 2 U TRD A

78

3.2. Numerical Integration Methods

! aAO] 0) Vn(@) Ly(0 2
RS Waﬁfﬂ/gé<%+0@) (3.120)

Jj=0¢,g=m+1
According to equation (3.103) that defines the value of the n-th entry of eigenvector,
V; is V}, = 0. The other entries of the eigenvectors correspond to the components
of the eigenvectors of A, (i.e. Vj; = vy, for j =1,...,n —1). Using those values
we obtain

dai

§=0 k=m-+1 Ar(t)

which substitutes into system (3.94). To convert the coordinates on the invariant
manifold to the original coordinate system, we use equation (3.99).

3.2 Numerical Integration Methods

3.2.1 Order of Approximation

An analytic solution of a system is not always possible. In such cases we can
approximate the solution by solving the system numerically. In this section we
introduce methods used for the numerical approximation.

The numerical simulations imply an error which rises from the approximation of
the solution. In this subsection we describe how to find the order of approximation
of a numerical method.

A generic form of an ODE system is given as

S Fa)) (3.122)

where f, 7 € RP.

Using the Taylor series expansion we can represent the function in a vicinity
of time point ¢, with initial conditions z(t,) = %, as a sum of an infinite number of
terms according to

f@@:iﬁ%ﬁ@mj (3.123)

where At =t — t, is the time step, and the coefficients are found as

df

@)
f (t(] Y xO) dt]

(3.124)

=to

79

Chapter 3. Asymptotic and Numerical Methods

The consecutive terms of the series become smaller due to the division of an
increasing factorial of j. The series can be written as

Z to’ O)Aﬁ +O(AP) (3.125)
7=0
where O(At*) are terms of order k.

The Taylor expansion is a useful tool to estimate the accuracy of a numerical
method. For this purpose we find a local truncation error by comparing equation
with the formula of the numerical method. Then the highest order of At
used in the formula is called the local order of the method (O(At%)).

To estimate the global accuracy for a fixed time interval I = [t,, tx], We realise
that the number of steps to achieve the solutionis N = (ty — ty)/At, i.e. inversely
proportional of the time step. The order of global truncation error is then found as

O(1/AHO(AF) = O(AtFY), (3.126)

3.2.2 Explicit Methods — Forward Euler

The explicit methods are used to calculate the future state of the system from
the state at current time. The simplest and most widely used explicit method
is the forward Euler method. This method can be derived from the first-order
approximation of the Taylor series of the system which gives an iterative
scheme

Fnp1 = T+ [(tn,) AL, Ty = wo(to). (3.127)

The numerical solution 7, ; =~ #(t,+1) converges to the exact solution as
At — 0, i.e. the smaller the time step is, the more accurate the result it provides.
On the other hand, small time steps require calculating the state of the system
more often. So, the computational demands of forward Euler method are inversly
proportional to the selected time step size At.

Increasing the time step size allows to obtain the solution faster. However,
the maximal time step is limited by so-called numerical instability. The numerical
instability is an artefact observed as oscillations around the exact solution. Those
oscillations often cause the simulation to crash.

3.2.3 Rush-Larsen Technique for a Gate Model

Dynamical equations describing the evolution of a gate model are often the most
stiff parts of the cellular model, i.e. contain relatively fast processes. For that
reason a small time step is required to conserve numerical stability.

80

3.2. Numerical Integration Methods

The Rush-Larsen technique is an algorithm for an efficient solution of the gate
model [17]. The gating variables are described by an equation in a form

dw

T a(Vn()(1 —w) — B(Vu(t))w (3.128)

where o and [are transition rates, as in previously defined equations for
and (2.14b), and w(t) is a gating variable. Assuming that the membrane voltage
V., does not change much during a short time step At, we can approximate the
transition rates as

a(Vi(t) = a(Vu(tn)) = an, (3.129a)
B(Vi(t)) = B(Vi(tn)) = Ba- (3.129b)

Then the equation (3.128) gives a solution

w(t) = ano_‘:ﬁn — (an(ﬁﬁn -~ w(tn)> exp (= (t—tn)(on + B,)) (3.130)

that is more convenient to write in a form

A
W41 = Woo,n — (woo,n - wn) exXp <_ ! > (3131)

Tw,n
where At = t,,1 — t, is the time step, the solution w,, = w(t,),

Qp

Woo,n =

is a steady-state solution which is obtained from (3.128)) by setting dw/dt = 0, and

1
Can+ B

Tw.n (3.133)
is a time constant.

The Rush-Larsen algorithm [17] adjusts the time step size according to the
rate of change of the other variables (e.g. V,,). The algorithm monitors the value
of the slope of the potential dV,,/dt and adapts the time step size (At). During
the stimulus or if |dV,,/d¢t| > 5 mV/ms the At = 0.01 ms, otherwise the step
At =0.01-[5/(dVy/dt)].

81

Chapter 4

Dimensionality Reduction of Iy,
Markov Chain

In this chapter, we are going to apply the asymptotic methods described in Sec-
tion of the previous chapter. These methods were developed for the reduction
of dimensionality of Markov chains by elimination of fast processes. Our target
for the reduction is a Markov chain model of sodium current Iy, which has been
chosen for two main reasons. First, the Iy, is an important current from the
electrophysiological point of view. It is responsible for the course of the cellular de-
polarisation, which initiates the cellular excitation called action potential. Second,
the Markov chain definition of the channel contains fast processes. As a result, a
numerical solution by forward Euler method requires relatively small values of time
steps which leads to a high computational cost.

4.1 Analysis of Iy, Markov Chain

4.1.1 Formulation of Iy, Markov Chain

A Markov chain of Iy, channel published by Clancy and Rudy [2] was introduced
in Section 2.3.1l For convenience we reformulate the notation of the states and
transition rates. The new states are denoted by single letters from O to W. The
name of the O state remains unchanged. The other states are denoted clock-wise
by the letters in alphabetical order starting from the state O (Figure [4.1.1b)). The
transition rates are now consistently marked as «;; for transition from state j to
state k, e.g. app denotes transition probability from state O to state P per unit of
time.

83

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

The system of ordinary differential equations with the new notation is

(11? =apol + ayolU — (aop + aov)O, (4.12)
Clif =agpQ + aypU + appO — (apg + apy + apo)P, (4.1b)
(jicf =apoR + argT + apgP — (agr + agr + agp)Q, (4.1c)
O — s +agr@ — (ans +ang) R, (4.1d)
Y —arsT + sk — (asy +asw)S, (4.1¢)
((ijf =agr@ + asrS + ayrU — (arg + ars + ary)T, (4.11)
(il[t] =aryT + apy P + ayvyV + aorO — (ayr + ayp + ayo + apy)U, (4.19)
O —auyU + awy W — (avy +avw)V; (4.1h)
d;l/ =aywV — awyW. (4.10)

The advantage of this type of notation is that we can readily check that

+ Positive transition «;; has a corresponding negative transition «y; in the
same equation,

* A certain transition appearing in one equation will also appear in another
one with negative sign, which follows from the conservation law, and

 The transition rates (e.g. «;;) are multiplied by a state corresponding to the
first index (here state j).

The transition rates are redefined according to the new notation as

QRrQ =011, agr =P, (4.2a)
agp =012, apQ =2, (4-2b)
apo =013, aop =p3, (4.2¢)
asT =011, ars =P, (4.2d)
ary =Q12, ayr =12, (4.2e)
aup =Qs, apy =Ps, (4-2f)
arg =03, agr =33, (4.29)
Qsgr =g, ars =03, (4.2h)
Qoy =Qa, apgo =, (4-2i)

84

4.1. Analysis of Iy, Markov Chain

Quy =0y, ayvy =fu, (4-21)

Qyw =0as, awy =0s. (4-2k)

Notice that in the old notation some transition rates were present in more than
one place on the diagram. Using the new notation each transition rate presents a
specific transition between two states, but some of them are identical.

Figure a) shows the dependence of the transition rates of the system
on the membrane voltage. The transition rates can be divided according to their
speeds, fast transition rates (top panel) and slow transition rates (bottom panel).

The sum of transition rates in both directions (e.g. arg + agr) determines the
probability of transitioning between two states, given that the state occupancy of
both states is identical. The inverse of this sum is also called a time constant.
The time constant can be used to determine how fast the system varies in time.
Figure shows the dependency of the speed of transition rates as a function
of membrane voltage — panel (c) shows the dependency for the whole range of the
membrane voltage, while panel (d) shows the fastest pairs of the transition rates in
more detail at the minimum sum of their values. In our system the fastest transitions
are found between states RQ, ST, QP, TU, and PO. Using the perturbation theory
from the previous chapter, we will “speed-up” the transition rates in between those
states. This procedure is also known as transition rates embedding. We will show
the results of the system with transition rates embeddings in Section and an
example of the procedure of transition rates embedding in Section 4.2.1

Figure shows the eigenvalues and eigenvectors of the transition matrix at
a fixed value of membrane voltage V,, = —30 mV, which allows for analysing the
dynamic properties of the system. We see that all the eigenvalues are non-positive
with one zero eigenvalue, which agrees with our assumptions. The zero eigenvalue
appears due to the conservation law that the Markov chain models satisfy.

4.1.2 Embeddings of I\, Markov chain

Section contains a demonstration of a dimensionality reduction on a simple
toy model. In the example presented there, the system contains a small parameter
e, see equation (3.19). The small parameter divides the system into fast and slow
time scale. Considering the case where ¢ — 0 the dynamic behaviour of the
system can be simplified. The fast variables decay almost instantaneously and we
obtain a simpler system characterised by the slow variables. Such system then
contains fewer dynamical variables.

The complication in Markov chain models is the lack of dependence on param-
eters, as they only contain transition rates determined experimentally. To apply
the singular perturbation theory in such system we have to introduce the small

85

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

QRQ, AsT
QQR, TS
agQp, ATU
apq, Qur
apo
Qop
Qou

asg, arQ, Qyp
QRs, aQr, Opy,Qvy

-80-60-40-20 0 20 4

Vi (mV)
(@)
asT aru
S T U
ars ayr
OéRsHQSR OéQT‘H{O&TQ OépUAH(
R ARQ Q aQp P
QQR apQ
(b)
100 L
T 107t A g
2 1072 - -
1073 4 L
1074 -
1075 T T T T T T

—80—-60—40—-20 0 20 4
Vi (mV)
(c)

ayw
Awy
Quo
ayy
ayv ayw
\% w
avy awy
QUO
ayp
aoU
apo
=— O
aop
4 ! ! !
3.95 - L
- 3.9 A L
’é? 3.85 1 -
~— 3.8 - -
3.75 1 L
3~7 T T T
—-50 —45 —40 =35 =30
Vi (mV)

(d)

Figure 4.1: Characteristics of Iy, Markov chain model: (a) individual transition
rates for the range of membrane voltages (transitions between two states are
denoted by the same colour); (b) a diagram of the model (new notation); (c,d) sum
of pairs of transition rates between two states for the range of membrane voltages
(as denoted in the legend on the right from the panels), (d) shows detail of the
sum of the pairs in both directions as shown in panel (c).

86

4.1. Analysis of Iy, Markov Chain

A-1 B-1
O |||||||| T T T T T T T T

g a o :

SRE

> S =

ofT ||

s Ul]

2 o =
W—l T TR N T B Co 0 0 0 1] T S T NN T N TR N
A-2 B-2
Oi ||||||||] T T T

o P 1 F

Q9 Q 4 L

S - L

o TF . .

S Ul 1 F

® Vi L
W—l L L L L L 1-_£ L Il Il 11 Il Il 1 |
A-3 B-3
02fe {1 1

N | F&sse
~< P ¥ o‘f’
] : 4
© Kol
§ & g
ki
0 2 4 6 8

Figure 4.2: Eigenvalues and eigenvectors of Iy, model. First two rows show the
entries in the matrices of left (15* row) and right (2°¢ row) eigenvectors, and the
bottom row shows the absolute value of the eigenvalues (3¢ row) in the Iy, model
under constant voltage of V,, = —80 mV — blue (column A), V,, = —30 mV — yellow
(column B), and V,, = 40 mV — red (column C). The brighter colour denotes higher
absolute value of corresponding entry in the eigenvector matrix. The ordering of
the eigenvalues corresponds to the ordering of to the eigenvectors. The number
above each box corresponds to the eigenvalue.

parameters artificially. This procedure known as parametric embedding can be
formalised as described in the following quotation from [19].
We will call a system

dzx

. d
P F(x,¢), reR (4.3)

a parametric embedding of

i‘f = f(a), z € RY (4.4)
if F(z,1) = f(z) forallz € RY. . ..

The typical use of this procedure has the form of a replacement of a
small constant with a small parameter. If a system contains a dimen-
sionless constant a which is “much smaller than 17, then replacement

87

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

of a with ea constitutes a parametric embedding; and then the limit
e — 0 can be considered. In practice, constant a would more often be
replaced with parameter « but in the context of ca and a = const this, of
course, does not make any difference from ca.

In the case of a Markov chain we do parametric embedding for a transition
rates between two states i and j. If those transition rates fast, we can formally
write that o,;; — 00, a;; — oo, then the transition between those states happens
almost instantaneously. To stress that those transition rates are big quantities, we
can replace them by «;;/c and by «;;/c respectively. This way the model extends
to a whole family of models a different parameter <. In the subsequent text, we will
call such system ij-embedded model as we always consider particular value of «.

Because our interest concentrates on the asymptotic behaviour of the system,
we can change the value of ¢, in order to analyse the behaviour of the system after
the initial transient. The embedding is “good”, if the quantitative features of the
original model are approximated satisfactorily after the initial transient. Then the
model reduced according to the singular perturbation theory will provide a good
approximation to the original model.

Setting the parameter ¢ — 0 means, that both embedded transition rates be-
tween the two states are speed-up at the same time. Our hypothesis is that we
obtain a “good” embedding, if the transition rates are already fast. However, we
cannot assume it to be always true when using complex models, such as Markov
chains. This way we can test many different combinations of transition rates
embeddings numerically, and save the time required for the manual derivation of
the formulas for each possible reduction as the embeddings that fail to provide a
satisfactory approximation are no longer considered for a reduction. Instead, we
only do the reduction is for the embeddings that seem to lead to a good approxi-
mation. In other words, the transition rates embedding is an experimental tool that
helps us to speed up the analysis of the system and identify the combination of
transition rates, that are appropriate candidates for the reduction.

In general a Markov chain is described by a linear system of ODEs of a form
(i;; = M (t)u, (4.5)
using the parameter embedding procedure, we replace the matrix M with a matrix
with transition rates embedding as

Alt,e) = iﬁlo(t) + AL, (4.6)

where the 210 contains transition rates are selected for the embedding. The
contribution from thematrix A, in the system then satisfies the conservation law.

88

4.1. Analysis of Iy, Markov Chain

For ¢ = 1 the system satisfies the relation M (t) = A(t,1) = Ay(t) + A;(¢) which
is consistent with the definition of embedding.

To ensure, that such embedding will result in a good approximation, we have
to choose at least one pair of transition rates, that are fast. This is done after
an analysis of the Iy, Markov chain (see Figure [4.1.9). The fast transition rates
are likely to give a satisfactory embedding and hence are good candidate for the
reduction. We verify such combinations of the transition rates embeddings by
numerical simulations. For practical purposes we use = 0.1 which means that
the corresponding transition rates are sped up by a factor of ten.

In the embeddings we have considered in this chapter the matrix A, for the full
system is sparse. For convenience we reformulate the system such that all the
embedded elements are in a dense part of the matrix, for instance

. [0
AO_[O O]. (4.7)

This way we can consider only low dimensional problem of the matrix A, for the
diagonalisation. The remaining parts of the system (with zero entries) are trivial to
solve, as the eigenvalues are all zeros and we choose the part of the eigenvector
matrix corresponding to the trivial system as having entries equal to 1 on the
diagonal.

As an example of an embedding, the transition rates between the states O
and P are multiplied by 1/¢, i.e. apo(t) and app(t) in system (4.1). We write the
O P-embedding as

= Laro()P + avo®U — (Zaor(t) + aou(t)) O, (4.82)
dP

= OéQp(t)Q + i()éop(t)O + OéUp(t)U - (i()épo<t) + OépU(t) + OépQ(Zf)) P.
(4.8b)

At

The rest of the system does not have any transition rates embedded and reads as

c(lff =aroR + arT + apgP — (agr + agr + agp)Q, (4.92)
(iif =agpS + agr@ — (ars + arg)R, (4.9b)
Y —arsT + ansR — (st + asg)S, (4.9¢)
C(g =agrQ + asrS + ayrU — (arg + ars + ary)T, (4.9d)
Cjiltj =aryT + apyP + ayvyV + aovO — (aur + avp + avo + ayy)U, (4.9e)
G}i‘t/ =apvU + awvW — (ayy + avw)V, (4.9f)

89

Chapter 4.

Dimensionality Reduction of Iy, Markov Chain

O P Q
0.3 st 0.4 g.g PN
0.2 L 0.3 98 04 -
0.1 J‘\ o1 1 03 I
o 1A ol - 01 71 [
R S T

1 L 0.4 4——rrl i 0.1 \ L
08 -1 - 03] orig. MC -"-' 'r_ 008 n TU ——-— B
0.6 - 09 | 2 L 0.06 4 oU -
0.4 4\ - Y QP [0.04 4 -
0.2 4 L 0.1 T 0.02 4y -

0 = T T 0 N T T - 0 == MR | T T =

U 1% %%

1 . L 1 L 0.09 et i
08 T f\\ B 0'8 n / r 008 - /"/ -
0.6 4!\ - 06 4/ + 0.07 4 -
04 4] \ - 04 4/ F 0.06 - St
0.3 -}' 1 0.(2) - / T 8382 _ i

100 10! 102 100 10! 102 100 10! 102
(ms) (ms) (ms)

Figure 4.3: State occupancy of Iy, system with one pair of transition rates em-
bedded with ¢ = 0.1 as described by (4.6). The state occupancy of states from O
to W is shown from the top left to the bottom right the panel. The legend to the
lines on all panels is shown on panels S and T'. The horizontal axis denotes time
(in milliseconds) shown in a logarithmic scale. The vertical axis denotes the state
occupancy, i.e. the probability that the channel resides a particular state. The
embedded Iy, models were driven by a simulated recording of action potential
initiated at t; = 1. All the traces overlap after an initial transient of about 1 ms.

dWw

T (4.99)

IO(va — Oéwvw

For brevity we call “embedding” also a system with embedded transition rates.

Analogously, we embed other combinations of transition rates. Figure
shows the states occupancy under an action potential. We recorded the action
potential from model of the whole cell by Clancy, Rudy (2002). The recorded
traces of action potential then drived the extracted Iy, model. The definition of the
cellular model can be found in Appendix [AL

We used embeddings of the transition rates with the highest sum in both direc-
tions (between states RQ, ST, QP, TU, PO, and OU) as shown in Figure [4.1.1]
Although the solution of those embeddings provide a good approximation for
the long term evolution of the system, the accuracy during the initial phase that
corresponds to the action potential onset varies largely in different embeddings.
Accurate simulation of the action potential onset is crucial because the Iy, current
effectively controls the depolarisation of the cell, which causes the action potential.

90

4.1. Analysis of Iy, Markov Chain

o) P Q
03 1 ‘| 1 04 1 1 1 8(53 1 1 1
0.3 4 L 0.9 -
0.2 4 A i 04 Ji i
N 02 4 77N L 03 4 B
0.1 4 B \ 0.1 4 By \ L 0.2 4/ RN o
0 T T T 0 T T T 0 T | E—
R S T
1 1 1 1 02 1 1 1 01 N 1 1 1
¥ | |
6 4\ - N 06 4 > -
04 &\ L O g [0.04 4 7 N -
0.2 {4 > g N 0.02 4/~~~ N i
0 T = T 0 |.\ \Ii T 0 a T |\>_"I" —
U Vv w
1 1 1 1 02 1 1 1 005 1 1 1
08 _ /';"/"Q""_ orig. MC -"-' TU ———
0.6 1 g I i S o0
0.4 - / - QP /
0.2 - A - e e
0 S E— T 0 T — 0.04 T T T
1 1.25 15 1.75 2 1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2
(ms) (ms) (ms)

Figure 4.4: State occupancy of Iy, system with one pair of transition rates embed-
ded with e = 0.1 as described by (4.6). The figure shows the detail of the first 1 ms
after the initiation of action potential. The legend to the lines on all panels is shown
in panels V and . The horizontal axis denotes time (in milliseconds) shown in a
linear scale. The vertical axis denotes the state occupancy, i.e. the probability that
the channel resides in a particular state. The embedded Iy, models were driven
by a simulated recording of action potential initiated at ¢, = 1.

Figure shows the first millisecond of the states occupancy under the action
potential. The figure provides a detail of the part of the action potential which is
affected by the transition rates embedding, so it is straightforward to compare the
quality of the transition rates embeddings to each other.

In comparing the results for different embeddings, we have to focus mainly
on the traces for the occupancy in the state O. This is because the model of Iy,
ion channel is coupled with the remaining parts of the cellular model through the
open probability given by the occupancy of state O. The occupancy of the rest of
the states affects the remaining parts of the cellular model only indirectly via their
transitions to the open state.

The detailed view shows that the solution of embeddings PO, RQ, QP and
OU have an important deviation from the original model especially for the state O.
The solution of embeddings T'U and ST visually overlap with the occupancy of the
state O. These embeddings affect some closed states, but this should not have a
significant effect on the Ix,.

We perform double embeddings of the pairs of transition rates between two
states (ST +TU, RQ+QP, ST+ RQ, TU + @QP) to find the next suitable reduction.

91

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

0 p 0]
03 1 1 — 1 1 05 L—\I 1 1 04 1 1 1 1
0.2 - 77\ | 0477 N T 0.3 T i
s 03 4/, . - 4 > \ N
,// K \\“\ O 2 n / —,.’ Aé\\ | 0.2 3 // \\ \
0.1 + /,//////' \\\\ o 01 _I///’/,/' \{;\ 0.1 _i,/,//-\\\\ “\\ |
0 l /—I."’ T T A T 0 — T |\\ f 0 T — |\\ T
R S T
1 1 1 1 1 02 1 1 1 1 01 1 1 1 1
0:6 I\ ‘ 006 - ‘
0.4 § ™o | 01 "-.\\ ©0.04 _//_ N\ .
0.2 4\ " Rk L 0.03 LSRN i
0 \I\ —= T | ---- T T T T — “l\ T
U %4 w
0 é 1 1 1 1 02 1 1 1 1 005 1 1 1 1
8 77T orig. MO "7
06 - /S A SR
041 # i /
2 ___/f'/" - /' .]
0 '_—-‘:’I-;:/—’I T T O T |—/{f T 004 T T T T
1 12141618 2 1 12141618 2 1 12141618 2
(ms) (ms) (ms)

Figure 4.5: State occupancy of Iy, system with two pairs of transition rates
embedded with £ = 0.1 as described by (4.6). The figure shows the detail of the
first 1 ms after the initiation of action potential. The legend to the lines on all panels
is shown in 1. The horizontal axis denotes time (in milliseconds) shown in a linear
scale. The vertical axis denotes the state occupancy, i.e. the probability that the
channel resides a particular state. The embedded Iy, models were driven by a
simulated recording of action potential initiated at ¢, = 1.

Figure shows the first millisecond of the states occupancy under the action
potential. The best approximation is given by the embedding ST + T'U which give
a good results for most of the states, including state O, but not for the states T
and U. The embeddings ST + RQ and TU + QP provide similar results in most
states except the S and T' states. However, both of them overshoot the open
probability O. The embedding RQ + QP provides the least accurate results of the
of two-pairs of transition rates embeddings shown in the figure. It is also possible
to perform other combinations of embeddings, but the ones in the figure are the
most accurate.

To reduce the system further we do an embedding of more than two pairs of
transition rates as shown in Figure[4.6] The best result is achieved by the reduction
of transition rates between states ST + TU + RQ.

92

4.2. Leading-Order O P-Reduction in Iy, Markov Chain

orig. MC -0 ST +TU + RQ +QP ———-
ST +TU A+ QP 7777 ST+TU+ RQ+ QP+ OP ~° ~°
RQ +TU + PO — —- ST +TU + RQ + QP + OP + OU
ST + TU + RQ
9) P Q
04 1 1 1 0.6 1 1 1 0.6]]]
031 7 4 © 04 4 L 0.4 A I
0.2 4 ~ /\ i e t\ M TN
0 //'/':::"I‘/ e 0 "///hr—'\.l \‘\\.\'\F 0 £ T \\\kl > T
R S T
]_ 1 1 1 02 1 1 1 016 1 1 1
0.8 4\ - 0.12 - i
0.6 9\ T o014 L 0.08 - i
0.4 4\ \«\ o Vo 0.04 AL ez e)
02 {1 ™ I 04 57000 .
0 \\'T\ \I T 0 \\'f‘ T T 0 T \‘\I_ T
U %4 w
1 1 1 — 1 02 1 1 1 005 1 1 1
.6 A . -
0.4 - ik L 0.1+ P
0.2 - _,;/,.//f'/' - P]
0 — SR T 0 T |:/ T 0.04 T T T
1 1.25 15 1.75 2 1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2
(ms) (ms) (ms)

Figure 4.6: State occupancy of Iy, system with three or more pairs of transition
rates embedded with ¢ = 0.1 as described by (4.6). The figure shows the detail of
the first 1 ms after the initiation of action potential. The legend to the lines on all
panels is shown above the figure. The horizontal axis denotes time (in milliseconds)
shown in a linear scale. The vertical axis denotes the state occupancy, i.e. the
probability that the channel resides a particular state. The embedded Iy, models
were driven by a simulated recording of action potential initiated at ¢, = 1.

4.2 Leading-Order OP-Reductionin Iy, Markov Chain

4.2.1 Embedding of OP States

In this section we apply the perturbation theory to the Iy, channel as described by
(4.1). According to (3.24) we write the parameters of the system (4.8) as

Lo
I(t) = (1) (4.10a)
) = [awo)U | (4.10b)
aor(t)Q() + avp(t)U(2)
A) :i (Ao(t) + e AL (1), (4.100)
_ 1 |—aop(t) aprolt)
Aolt) = [aop(t) _apo(t)}, (4.10d)

93

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

—CYOU(t) O

AO= 0 an(® + aro(®)|

(4.10e)

Now we have all the ingredients to follow the procedure of dimensionality
reduction according to Section|3.1.3

4.2.2 Choice of Eigenvectors

To obtain the solution in form (3.61) we have to identify the eigenvalues of A(t)
such that Aq(t)ux(t) = A\ (t)uk(t). Let kK = 1 be the index of the zero eigenvalue of
the matrix A,. We also find the other required components and compile the full list
as

A (t) =0,

)\2(t> = —(apo(t) +Oéop(t)) (4113.)

N _OéPo(t)

Ul(t) - _Oéop(t)]

o (t) = _11] , (4.11b)

; _ L

@i (t) = (apo(t) + aop(t)) 1] 7

(Ijg(t) = (O./po(t) + Oéop(t))_l _CYOP(t):| , (41 1C)
i Cl{po(t)

~ . Oépo(t) —1

Pt = Lop(t) 1] ’

P—l(t) = (Oépo(t) + Oéop(t))_l |:_a(jp(t) apcl)(t)] . (41 1d)

The eigenvectors i (t) have to be normalised to satisfy the requirement of diagonal
orthogonality. The normalisation coefficients were found according to (3.46) as

Sl(t) = exp (— /(Oépo(t) + OéOP(t))_l {1 1} (?t ([ZZ?EE;]) dt)

=exp (= In(apo + aop)) = (apo(t) + aop(t)) ™, (4.12a)
s2(t) =exp (— /(@Po(t) + app(t)) ™ {—Oéop(t) OéPO@)} (i ([_11]) dt) =L
(4.12b)

94

4.2. Leading-Order O P-Reduction in Iy, Markov Chain

Using the values of s; and s, and multiplying with the “trial eigenvectors” matrices
(4.11d) we obtain the new eigenvectors matrix and its inverse as

p(y = | ro®larold) +aor(®)™ '_1], (4.13a)

Laop(t)(apo(t) + aop(t)) ™ 1

—aop(t)(apo(t) + aor(t)) ™" aro(t)(apo(t) + aor(t))™

Pl(t) = ! ! l (4.13b)

So the new eigenvectors and their adjoint vectors are

7(t) = apo(t)(apo(t) + O‘OP(t)):ll ’ (4.14a)
or(t)aro(t) + aor(t)”

1

B = | (4.14b)
@ =[1 1], (4.140)
Wa(t) =(apo(t) + aop(t) ™ [~aop(t) aro(t)], (4.14d)

A1 =0, (4.14¢)
)\2(t> = — (apo(t> + Oéop(t)). (414f)

We have now found the eigenvalues and eigenvectors and scaled them to
satisfy the condition of dynamical orthogonality. In the following subsection we will
describe the reduction of the states O and P.

4.2.3 Reduction of States O and P to One State NV

We reformulate the general equations and specifically for our system.
This leads to a system with fewer dynamical variables than in the original system.
The original system contains the variables and the reduced system variables a
as follows

fT

[0, P,Q,R,S,T,U, V,WJ, (4.15a)
i’ =[N,Q,R,S,T,U,V,W]. (4.15b)

So, the dynamical variable N embraces both old variables O and P in the orig-
inal system. This means, that the new state NV can be explicitly written as a
superposition of two modes, one of which decays with time. For the reduction
we use an assumption, that the decay is fast, hence the corresponding direction
of the dynamical variable can be neglected. A simple example is considered in
Section

95

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

The remaining variables (@, ..., W) remain in the reduced model, although
their dynamics slightly change, as a result of the reduction.

Using a new state variable N(t) = aq(t) we get

Ogtv — N (1) () A (0) (£) + @ () H (2), (4.16a)
o Oépo(t)

Ot) =— O N (), (4.16b)

Py =——orl) oy (4.16¢)

apo(t) + aop(t)

where the new state includes the two old states as N(t) = O(t) + P(t).

Having obtained normalised eigenvalues and eigenvectors we can expand both
the non-homogeneous term and the coefficient of N(¢) in (4.16a) to

W (8 H () =(avo(t) + aup(t)U(t) + agr(t)Q(1), (4.17a)
. o _aou(t)apo(t) + apg(t)aop(t) + apu(t)aor(t)
W (1) A ()vh(t) = arolD) + aor(d . (4.17Db)

The differential equation for the new variable is

dN
dt

In the system (4.1) equations (4.1c) and (4.1g) are dependent on states O(t) and
P(t) which can be reformulated using (4.16b) and (4.16c) as

aOUaPO+aPUaOP+ apQop)N. (4.18)

ayp + ayo)U + « <
=lavp +avo) arl - apo + aop apo + aop

d@ apQQop
— = R T+ ——"N — 4.19a
3 —orel +arT + o oo (agr + agr + agp)Q, ()
dU +
=aryl + ayyV + dovro aPUaOPN — (awr + aup + avo + ayy)U.
dt apo + aop
(4.19Db)
We define new transition rates
ayn =ayp + apo, (4.20a)
agn =aqgp, (420b)
any :aOUaPO + apylop (4200)
apo + aop
apQop
ayg =—————, 4.20d
e apo + aop ()
which are substituted into equations (4.18) and (4.19) to give
dN
Fn =aynU + agn@ — (any + ang) N, (4.21a)
dcf :aRQR + O&TQT + aNQN — (OéQR + OéQT + OéQp)Q, (421 b)

96

4.2. Leading-Order O P-Reduction in Iy, Markov Chain

ast ary aygy ayw
S T U %4 w
ars ayT ayvu awv
aRs || @sr QT || aTQ anvu (| aun
aRQ Q aQN
R N
AQR aANQ

Figure 4.7: Diagram of the Iy, Markov chain with O P-reduction by state N. Com-
pare with the original chain in Figure b).

dU
' =aryT + ayyV + anuN — (aur + aun + agy)U. (4.21c)

Equation (4.27a) substitutes both equations (4.1a) and (4.1b). Equations
(4.21b) and (4.21c) replace (4.1c) and respectively. The reduced model is

described by the following system of equations

dN

' =aynU + agn@ — (avu + ang)N, (4.222)
(;Cf =aroR + arT + angN — (agr + agr + agn)Q, (4.22b)
if; =agrS + agr@ — (ags + aro)R, (4.22¢)
‘;f —arsT + ansR — (asr + asg)S. (4.220)
O(lif =agrQ + asrS + ayrU — (arg + ars + ary)T, (4.22e)
(Z(Z =aryT + axuN + ayyV — (aur + aun + apv)U, (4.22f)
‘g —apvU + awy W — (ave + ayw)V, (4.229)
O vV — a0 (4.22h)

The diagram of the model is shown in Figure 4.7]

Figure shows the first 1 ms of simulated states occupancies of Markov
chain Iy, driven by the membrane voltage, which is obtained from simulation of
Clancy and Rudy (2002) model [2]. The reduced model shows the same qualitative
behaviour as the corresponding embeddings. The largest difference between the
original and reduced model is observed in the occupancy of the reduced states O
and P. Although, the state U is directly connected with both of these states, only
a minimal deviation is observed. This is because the transition rates of both O
and P to U are slow. Moreover, the discrepancy from O is compensated by the
opposite discrepancy caused by P.

97

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

0 P 0
03 1 (I 1 03 1 1 1 04 1 1 1
0.2 - L 0.2 | R L 039 i
R 0.2 1 ,\ i
0.1 - - 0.1 A P ~ 0.1 4 \ L
0 = T . T 3= 0 += T | - 0 T —
R S T
1 S 0.15 S 0.08 S
04 - o1 - oo [|
06 1 P [0.04 - ; .
0.2 L 0.02 -
0 T T T 0 T T T 0 T T T
U Vv w
1 1 1 ,I 02 1 1 1 005 1 1 1
08 1 T / cnlbcdd(i);iggi(r)m; '--'-
8461 : : 0.1 ,v;”,(; - reduction OP
0.2 A .
0 R — T 0 T e 0.04 T T T
1 1.25 15 1.75 2 1 1.25 1.5 1.75 2 1 1.25 1.5 1.75 2
(ms) (ms) (ms)

Figure 4.8: Comparison of state occupancy of Iy, in original model as described
by equation (green lines), and with O P-embedding (4.8), and where ¢ = 0.1
(blue lines) and OP-reduction (orange lines) system (4.2). The figure shows
the detail of the first 1 ms after the initiation of action potential. The legend to
the lines on all panels is shown in panel W. The horizontal axis denotes time
(in milliseconds) shown in a linear scale. The vertical axis denotes the state
occupancy, i.e. the probability that the channel resides a particular state. The Iy,
models were driven by a simulated recording of action potential initiated at ¢, = 1.

4.2.4 Solution of OP-Reduction with a First-Order Term

The general equation for Markov chain model reduction was developed
in Section [3.1.5] By substituting the variables found for our system in equation
we can include the first-order term. The variables found in equation
are found for the non-trivial part of the system. These variables are sufficient to
find the leading-order approximation. However, besides the leading-order we also
need to include the first-order term. In general the first-order term for the other
differential equations in the O P-reduction is

- - Ly(o,t)
O(E) . - 1 — - 2 — 2 9
CP = — (Wi A} (0)va (@) + ;A3 (0)v2(@)) WOR (4.23)
where the first and the second columns of the matrix are
0 0O 0 00 0 0 !
A, = | oV @ou . (4.24)
0 —(()épU—l-OépQ) apQ 0 00 apy 0 0

98

4.2. Leading-Order O P-Reduction in Iy, Markov Chain

As usual, the dynamical variables depend on the time ¢. We have introduced a new
dynamical variable o during the autonomisation (as described in section (3.1.5).
The so-called “time-like” variable o is linked with time, however it is now one of the
coordinates (dynamical variables) on the slow manifold. Due to the autonomisation
of the system, the parameters do not depend on time ¢ directly, but are functions
of time-like variable . In the following text, we omit the explicit dependence, i.e.
notation for transition rates o« implies a(o) and for state variable e.g. N implies
N(t).

Then we find the first-order terms. The variables which contain a non-zero
first-order are only for the states N, U and . Those read as

L
A S — apy — 4.2
Co P (aou — apy — apg), (4.25a)
L
7= —2 (apy— 4.2
Cy aro + Gop (apy — aou), (4.25b)
L
Co¥ = —2 —apg, (4.25¢)

where

:OéOPOéPo(OéOU — apy — apg) N

Ly N
(apo + aop)?
Lﬁ‘;‘) aop — OéPoLégP N4 POt
(apo + aop)? (apo + aop)
apoQup — XopQyo (4.26)

(apo + aop)

We calculate 9222 and 92ee py the chain rule derivative as

dOéop . aaop de

do 0V, do’ (4.273)
dozpo (90po d\/m
= 4.27
do OV, do’ (b)

where we use dV,,/do which is assumed to be identical to dV,,/dt as computed
by the cellular model. According to the new notation (4.2c), the transition rates are

apo = apz and app = (3. Using the definition of a3 (2.48c) and ;3 (2.48h) we
find

804130 _80613 . 0 < 3.802 > .
OV OV OV \0.1027eVm/120 4 (.25¢~Vm/150)
3.802 (0.1027/12.06*%/120 - 0.25/1506*Vm/150) 48
= (0.102767\/“‘/12‘0 + 0‘25€7Vm/150)2) (.)
aaop 8513 a _ _ 2.2 _ _
— — 0.22 (Vm—10)/20.3) _ _ “% —(Vm 10)/20.3. 4.29
oV, oV, = av, (022)= 3¢ (429

99

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

The first-order terms are substituted into reduced model found in equations
(4.22). The complete reduced model including the first-order terms is as follows
(4.25)

dN
a —cunU+ agn® — (anv + ang) N+
Lo
+e—m" — — , 4.30a
EOéPo ¥ aop (OéOU apy OéPQ) ()
d@
g ZQRQR + OéTQT + CYNQN — (O./QR + agr + OzQN)Q
Lo
+e—m— , 4.30b
goépo + aop “re ()
dR
s =agrS + agr@Q — (ars + arg)R, (4.30c)
ds
s =apsT + agsR — (agr + asg)S, (4.30d)
dT
’n =agrQ@ + asrS + ayrU — (arg + ars + ary)T, (4.30e)
dU
n =aryT + ayuN + avyV — (apr + avn + ayy)U
Lo
+e—m— — , 4.30f
€Otpo T aop (apy — aov) ()
dV
s =ayyU + awyW — (avy + ayw)V, (4.30g)
d
o =avwV — oy W, (4.30h)
do
- 1. 4.30i
& ()

The new variable N can be transformed to the original variables O and P. The
transformation is found using the equation (3.65). In Section [4.2.3|we have found
the equations and which correspond to the transformation onto the
stable manifold (i.e. leading-order term U in (3.65)). This transformation can be
made more accurate using a correction term corresponding to the coordinates
orthogonal to the stable manifold ¢. This term is a first order as O(e) and is
obtained using the equation (3.99). For our system we get

7 =No,(0) + et (@(t))ba(t). (4.31)

We substitute b(t), that was identified in (3.92), by its equivalent definition using
the (3.117) as b, = Lo/ \,, where L, corresponds to (4.26)), to get a corrected set
of coordinates as

L
O :&N = 572, (4.32a)
apo + app apo + aop

100

4.2. Leading-Order O P-Reduction in Iy, Markov Chain

Orig. e = 1.0 OP red. O(e =0.2) — —-

OP emb. e =0.2 -~~~ OP red. O(e = 1.0)
OP red. O(e =0) "
N=0+P
0.6 . | | |
05 - _
z
& 04 I
=
3
s 03 i
=
© 0.2 I
2 01 _
0

(ms)

Figure 4.9: Occupancy of state N for the OP-reduction (OP red.) and OP-
embedding (OP emb.) in leading-order and first-order of . The original model
corresponds to embedded « = 1 (red line). The O P-embedded model is shown
also at values of ¢ = 0.2 (green line). The OP-reduced model with a first-order
term dependent on ¢ is shown in a leading order ¢ = 0 (blue line), e = 0.2 (magenta
line) and € = 1 (yellow-green line).

aop Ly
P=—"9" N4 2
apo + aop apo + aop

(4.32b)

Figure [4.9]and Figure [4.11] show the simulation results of the Iy, model. The
model was “driven” by membrane voltage V,,(¢) from whole cell simulations of
Clancy’s model recorded every 0.01 ms. A linear interpolation was used to obtain
corresponding value of membrane voltage at intermediate points in time. The size
of the time step of the simulations was set to At = 0.001 ms. The figures shows
the detail of the first 1 ms after the initiation of the action potential.

The simulation results of reduced and O P-embedded models are presented
for corresponding variables. In case of the variable N, which is not present in
the O P-embedded model, a formula N = O + P was used. On the other hand,
the variables for states O and P corresponding to the new state N in the reduced
model were reconstructed from the variable N according to (4.32).

Figure shows the simulation results for the a new state N. The original
model corresponds to the O P-embedded model for e = 1. The OP-reduced model
was developed with a first-order correction term, which is dependent on . The
leading-order and first-order approximation are identical for e = 0. One can see
that the results of the O P-embedded model closely approximates the results of
OP-reduced model as ¢ — 0 (see ¢ = 0.2 in the figure), which confirms that the
derived formulas for a reduced model in the leading order are reasonable.

101

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

IN — Nee. |

OFRLNW,AUUITO N
'

1072 107 10°

(a) (b)

Figure 4.10: Order of approximation in ¢ for the leading-order reduced model
(green crosses), first-order reduced model (yellow squares). The magenta line
represents a function of 7.7 - € to show first-order error in ¢, cyan line represents a
function of 6.9 - €2 to show second-order dependence on <. Panel (a) shows the
results on a linear scale, panel (b) shows the same data on double logarithmic
scale.

The results for the O P-reduced and O P-embedded model for of ¢ = 0.2 improve
the approximation towards the results of the original model, as expected. However,
as we increase to the value of ¢ = 1 in the reduced model, we observe much larger
discrepancy with the original model towards the other direction.

Figure and Table depict how the first-order term in the O P-reduced
model affects the accuracy of the results. Both the figure and the table show the
same set of data. The simulations were done for the time step At = 10~* ms in all
cases. The norm was computed according to the formula

Tmax.

IN — Nyt | = J > (N(ti,) — Neet.(t5,€))? (4.33)
=0

where i,,.,. corresponds to ¢,... = 2 ms of time evolution. The N,y = O+ P

represents the simulation using the O P-embedded model at values of £ as shown

on the vertical axis.

The results are shown for the leading-order model N (t,0), i.e. fixed e = 0 (green
Crosses) which is equivalent to (4.22), and first-order model, i.e. variable ¢
(yellow squares) in (4.30), for = as shown on vertical axis. The results are fitted to
theoretical linear (magenta line) and quadratic functions (cyan line) to show the
first-order and second-order error convergence. The formulas for the leading-order
do not take into account terms of O(¢e). The formulas in the first-order do not take
into account terms above O(£?). This means that the formulas are zeroth-order
and first-order accurate. As can be seen, the results confirm the expected error of
convergence for each of those models.

102

4.2. Leading-Order O P-Reduction in Iy, Markov Chain

Table 4.1: Norms |N — N, | as dependence on parameter ¢ for leading-order

O(%) and first-order O(¢) approximations.

5 O(eY) O(eh)

0.005 0.0495959 0.000219967
0.01 0.0976841 0.00219661
0.05 0.487114 0.0232822
0.1 0.959138 0.0902871
0.25 2.28563 0.53558

0.5 4.26603 1.96515

0.75 6.04319 4.10341

1.0 7.66945 6.86856

Orig. e = 1.0

OP emb. e =0.2 ~~ "~
OP red. O(e =0)

1 1.251.51.75 2
(ms)

OP red. O(e = 0.2)
OP red. O(e = 1.0)

1 1.251.51.75 2
(mns)

Q

0.4

0.2 4/

cooo

oo O

O = OO
1

0.05

0.04

1 1.251.51.75 2

(mms)

Figure 4.11: Occupancy of states in the Iy, model for the O P-reduction and O P-
embedding in leading-order and first-order of . The legend and line colours are
identical as in Figure 4.9} The states O and P in the reduced model that contains
N variable instead were reconstructed using (4.32).

103

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

Figure shows the time evolution states occupancy for all states and the
simulations set-up was identical as for the data shown in Figure The states O
and P in the reduced model were reconstructed from the state /V using equations
which include the first order correction term. The proximity of the OP-
embedded model and the reconstruction of the states O and P suggests that the
formulas for the reconstruction are reasonable.

The reconstruction including the first-order correction shows that in the state
O the occupancy goes below zero. As the asymptotic series were built without
reference to the physical restrictions, i.e. bounding the values of probabilities in the
interval between (and including) 0 and 1, this result is not entirely unexpectable.
However, we should emphasize, that the violation of those important physical
constraints renders this model unusable for our purposes. Hence, we did not
approach the derivation of higher-order formulas.

4.3 Leading-Order STU-Reduction in Iy, Markov Chain

4.3.1 Embedding of STU States

Figure shows that the embedding of transition rates between the states 5,
T and U provides a good approximation for the open state occupancy O in the
original system. In this section we aim to reduce the states S, 7', and U by
replacing them with a new state M using the theory from Section[3.1.3]

First, we define the embedded system of states S, T, and U analogously to
Section[4.2] This means the transition rates between the states 7' <+ S and S <> U
in system of equations should be multiplied by 1/¢ (for e — 0). This yields
the embedded system

dO

E =apoP + ayolU — (aop + OéOU)O, (4348.)

dP

s =agp@ + aypU + appO — (apg + apy + apo)P, (4.34b)

d

dcf :O./RQR + O./TQT + (IPQP — (CMQR + aQr + Opr)Q, (434C)

dR

E :OéSRS =+ aQRQ — (CYRS + OéRQ)R, (434d)

ds 1 1

— =—arsT + apsR — (OéST + aSR) S, (4.34e)

dt ¢ €

dT 1 1 1 1

— =agrQ + —agrS + —ayrU — (aTQ + —apg + aTU) T, (4.34f)

dt € € € €

dU 1 1

s :gaTUT +apyP + ayyV + aorO — <605UT +ayp + ayo + OéUV> U,
(4.349)

dVv

a =ayvU + awyW — (avy + ayw)V, (4.34h)

104

4.3. Leading-Order STU-Reduction in Iy, Markov Chain

dW

E :O./vwv — OéW\/W (434|)

For convenience we will only write the entries corresponding to states S, 7"and U.
We put together the terms which contain the coefficient 1/¢ as

—asT ars 0
Ay=| asr —(ars+ary) aur (4.35)
0 ar —QuT
and and the rest as
—OSR 0 0
A = 0 —arg 0 . (4.36)
0 0 —(ayp + avo + ayy)

The non-homogeneous term and dynamical variables vector for this system
are

S OéRsR
i=|T|, H= aorQ . (4.37)
U apyP + avyV + appO

Simlarly to the O P-reduction, we ignore the differential equations without transition
rates embedding, as their solution is trivial.

4.3.2 Choice of Eigenvectors

First, we need to find eigenvalues and eigenvectors of matrix in (4.35). The roots
of its characteristic equation, i.e. det(A, — AI) where 1 is the identity matrix, are
found through

X — XN(ayr + asr + ary + ars) — Masrayr + arsayr + aryasr) = 0.

(4.38)

As expected one of the roots of the characteristic matrix is 0, which corresponds
to the zero eigenvalue A\, = 0. We find that the eigenvector corresponding to this
eigenvalue is

’27:1: ayrdasrt| - (439)

105

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

The adjoint vector &, of the eigenvector u; is

1
&y =(avrars + ayrasr + asrary) |1 (4.40)
1

The scaling factor (3.46) to satisfy the condition of dynamical orthogonality is
s1 = (ayrars + aprasr + asrory) (4.41)
which gives us the required eigenvectors

ayToTs 1
— —1 —
U1 = (aurars + ayrasr + asrary) ayrasr| wy = |1 . (4.42)
1

aryagT

The remaining eigenvalues are not required at this stage as long as they
satisfy the requirements for the solution to be bounded, i.e. Re{)s3} < 0. To find
eigenvalues)\, ; we find the remaining roots of the characteristic polynomial. We
redefine as * + A+~ =0, where

p =ayr + asr + ary + ars, (4.43a)

Y =asroyr + QrsQyr + QryosT. (4.43b)

Because the transition rates are always positive, the discriminant must be positive
as well, as is shown in the following formula

A= 52 — 4y = [(aUT - OZTS) + (OéTU - OéST)]2 + 4apyars > 0, (4-44)

then \ € R. The eigenvalues can be found as

)\273 _ . (445)

For the solution to be bounded the eigenvalues have to be negative. We get the
requirement /(32 — 4y < 3 from (4.45). This is satisfied because the transition
rates are always positive, and therefore 3,~ > 0.

4.3.3 Reduction of States S, 7" and U to One State M/

We reduce the states S, T'and U according to (3.61), where the eigenvalues are
given by equation (4.45). The new state variable ay = M = S + T + U satisfies the

106

4.3. Leading-Order STU-Reduction in Iy, Markov Chain

following differential equation

dM

o =agrsR + agr@ + apy P + ayyV + aorO—

aspayrars + argayrast + (app + aov + auy)asrary

_ M. (4.46)

aurars + QurasT + asTaTy

The relation between the new and old states occupancy is found from equation

(3.63) as

S = Wrars M, (4.472)
ayrars + ayrast + asrary

T = urtst M, (4.47b)
aurars + QurasT + agTary

U= AsTATY M. (4.47¢)

aurars + Qurast + agrary

We define new transition rates

ayro
Qs = UreTs : (4.48a)
aurars + QurasT + asTary
ayro
ayrars + ayrast + asrary
QagrQy
apy = STTTY : (4.48c)
aurars + QurasT + agrary
ORpp —ORS, (448d)
QM =0QT, (4486)
appyn =Apy, (448f)
ayy =ayy, (4.489)
Qopn =CQoy, (448h)
QuoasTO .
o = Lo ST , (4.48i)
ayrars + aurdst + asToTy
QupasTaTy .
app =) (4.48))
ayrars + ayrdst + asrary
aToyT
g = TRQTUTZ ST , (4.48K)
aurars + QurasT + QgTaTy
QgpOyTo
o — SROUTATS ’ (4.48))
aurars + Qyrast + agrary
ayy oSt
any = o (4.48m)

)
aurars + QurasT + agrary

which allow to reformulate the system of differential equations (4.34) as

dO

I =apoP + ayoM — (aop + aon)O, (4.49a)
dP

T =agpQ + anpM + aopO — (apg + apy + apo)P, (4.49Db)
d

dcf :OéRQR+OéMQM—|-CYpQP— (aQR+aQM —|-OéQp)Q, (4490)

107

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

QRM apMv ayw

102 L L L L L L w

RQ —_— AMR v awv
1 -1 PM —— N
10] Q]\[— QQR "‘RQ apyr || amp o
100 J [QP —_— MQ aom
PO
R (i [OM
2 MR ———
E107? B VIV —— ()
VM ——
1073 E amy avw
4 avm awv
107% A L
5 74 “N
10 ° T T T T T T ML
—80 —60 —40 —20 0 20 40
Vi (mV) —

(@) (c)

Figure 4.12: (a) Sum of the transition rates between two states in the STU-reduced
model. The legend on the right of the panel denotes the corresponding states. (b)
Diagram of the ST'U-reduction model as described by equation (4.49). (c) Diagram
of RQ-reduction in the STU-reduced model as described by equation (4.57). The
diagram of the original chain can be found in Figure [4.1.1|b).

dR
a :OJMRM + C(QRQ — (OéRM + OdRQ)R, (449d)
dV
s =anv M + awyW — (avur + avw)V, (4.49¢)
dM
o =aomO + apy P + agu@Q + ary R+ ayyV—

— (ano + anp + ang + anr + anv) M, (4.49f)
d
(E/ :aVWV — ()éWvI/V. (4499)

Figure [4.12(b) shows the diagram of the structure of the STU-reduced Markov
chain model. Figure [4.14] shows the detail of the first millisecond of the simulated
traces of Markov chain Iy, channel driven by the recorded action potential from
simulation in the original cellular model. The figure shows that the STU-reduction
affects only the states S, 7" and U, which were reduced to one state. All the re-
maining states overlap. The state O in the reduced model is a good approximation
of the original model.

4.4 Leading-Order R(Q)-Reduction in the STU-Reduced
Ix. Model

4.4.1 Embedding of R() States

The STU-reduced model shows a good approximation of the open state O which
is needed to compute the conductance of the Iy, channel.

108

4.4. Leading-Order RQ-Reduction in the STU-Reduced Iy, Model

0.3
0.2
0.1

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

orig. MC
reduced S, T, U
red. emb. RQ — ~— °

red. emb. QP
red. emb. OP
orig. emb. ST + TU + RQ

O P Q
' ' ' 0.4 0.6 ! ! !
A 0.3 : [
- A - 7N C04 4 o
/AR 0.2 N - |
] /// \“i‘\ T 0.1 A 0.2 + / AN
«ff»// T/, < I \\‘&\:‘2 O - ~ O | |\§\¢ :
R S T
' ' ' 0.2 0.08 ! ! !
g - 0.06 -
1 [0.1 - 0.04 77
1N i 0.02 4 \ i
T — \I\ T 0 +— T T T 0 T \|-';7_—
U |4 w
1 1 1 0.2 1 1 1 0.05 1 1 1
- ///7/M_
V7
] //jl/ i /{/
N /:; Z
. o - /f L —]
T . T T O T T — T 0'04 T T T
1 125 15 1.75 2 1 125 15 1.75 2 1 125 15 1.75 2

(ms) (ms) (ms)

Figure 4.13: Comparison of state occupancy in STU-reduced Iy, Markov chain
model with further embeddings. Green lines show original model described
by equation (4.1), blue lines show STU-reduced model as described by (4.49),
magenta lines show RQ-embedding states, yellow lines show @ P-embedding,
brown lines show OP-embedding. All the embeddings are done on the STU-
reduced model with e = 0.1. Gray lines show embedding of original model with
transition rates between states ST, TU and RQ with ¢ = 0.1. The figure shows the
detail of the first 1 ms after the initiation of action potential.

Figure shows the detail of the first millisecond of the states occupancy
driven by the action potential. The embedding R(Q of the reduced model and
embeddings ST, TU, RQ in original model affect the same transition rates, but
the state occupancy is different in some states (R, S, T, U). The simulated traces
of open states O in the STU-reduced model and the RQ-embedding of the STU-
reduced model overlap with each other. This suggests that the RQ-reduction
would provide a good approximation of the model. We define the RQ-embedding

of the system (4.49) as
dO
T =apoP + ayoM — (aop + aown)O, (4.50a)
dP
n =agp® + anpM + aopO — (apg + apy + apo) P, (4.50b)
dQ 1 1
E :gOéRQR + aMQM + OépQP — <€OéQR + agm + OéQp) Q, (450C)

109

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

dR 1 1
— =ayrM + —agrQ — (aRM + aRQ) R, (4.50d)
dt € €
dM
E :OéOMO + OépMP + OéQMQ + OéRMR + OéVMV—
— (OéMO+OéMp—|—OéMQ+OéMR—|—OéMv)M, (4509)
dV
E :CYM\/M + aWVW — (OéVM + Oévw)v, (450f)
d
(E/ =aywV — ayyW. (4509)

We put together the terms that contain the parameter £ and write the transition
rates matrices and non-homogeneous terms for the states

R
T= (4.51)
Q@
that we aim to reduce to a new state L. For the reduction we compute
I e (4.52a)
i QRQ —QQR
— 0
A, = | OBM , (4.52b)
.0 —(agm + agp)
Lo M
A=| MR , (4.52¢)
_OéMQM + OéPQP

which will be used to find the RQ-reduction in the STU-reduced model.

4.4.2 Choice of Eigenvectors

The scaled eigenvector for the zero eigenvalue and its corresponding adjoint vector
are found to be

1
0 = (agr + arg) ™ [ZQR] : wh = [] : (4.53)
RQ

4.4.3 Reduction of states R and) by One State L

We substitute the states R and @ of the STU-reduced system (4.49) by a single
state L = R + . The relation between old and new dynamical variables is given

by (3.63) as

SO (4.54a)
QR + QRQ

—Ger g (4.54D)
QQR + QRrQ

110

4.4. Leading-Order RQ-Reduction in the STU-Reduced Iy, Model

which yields the following system

dL aQPORQ AQMOARQ + ORMOQR
dt (CYMR OCMQ) arQ <OJQR + agrg QQR 1+ QRQ
(4.55a)
dM
—— =aonO + apy P + GQu g T CEMAQR ayvuV—
dt agr + QRrg
— (o + amp + (g + amr) + any)M, (4.55D)
dP
ar _ aQPOCRQ L 4 Oé]\/[PM + aOPO _ (aPQ —+ apy —+ ngo)P. (4550)
dt OQR + QRQ
We define new transition rates as
aLp ——QPARQ (4.56a)
QR + QRQ
apL =0pQ + QMR, (4.56Db)
apr =apo, (4.56¢)
oLy _deMARQ + QRMQQR. (4.56d)
QQRr 1+ QRrQ
The system can then be written as
dL
e =ayM + aprP — (aLp + apm)L, (4.57a)
dM
a =aomO + apuP + apy L + ayyV — (apo + app + o + oy) M,
(4.57b)
dO
& =apoP + ayoM — (aop + aon)O, (4.57¢)
dP
n =appLl + apypM + aopO — (app + apy + apo) P, (4.57d)
dv
E =ayvM + apyvW — (CYVM + avw)v, (4576)
dWw
E :avwv — &va (457f)

The diagram of the RQ-STU-reduced Markov chain model is shown in Fig-
ure[4.12(c). Figure [4.14] shows the detail of the first millisecond of the simulations
of the Markov chain Iy, channel driven by recorded action potential onset ob-
tained from simulation with original Markov chain model from [2]. As pointed
out previously, the STU-reduction is a very close approximation in state O. The
RQ-STU-reduction shows larger deviation from the original model, however the
simulated traces are closer than in the O P-reduction.

111

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

0 P 9
03 1 HI 1 04 1 1 1 08 1 1 1
0.2 4 S 0.3 - - 0.6 - I
01 v \ 0.2 4 N - 0.4 A ey -
=1 N - 014 7 \ - 0.2 4 AN -
0 |/ T xtﬁ" 0 /II \l\\ 0 T |\. T
R S T
Oé 1 1 1 015 y 1 1 1 008 1 1 1
0 1 - 0.06 { o= .
0.6 4\ L 0.1 4 C 004 1<
0.4 A ‘\\ - 0.05 - h e h // ~\‘ “‘-‘ B
02 1 S e 0.02 4/ N & I
0 T T T 0 T T T 0 T \l" TE==
U %4 w
1 1 1 1 02 1 1 1 005 1 1 1
08 - //" e I ’ ol-igigz;i {N(ii -"-'
82 : / : 0.1 - l’/'"/_ STU-red. —-—
0:2] (.:’// i // RQ-STU-red.
0+ 0 — 0.04 —F—
1 125 15 1.75 2 1 125 1.5 1.75 2 1 1.25 1.5 1.75 2
(ms) (ms) (ms)

Figure 4.14: Comparison of states occupancy of Iy, in driven by recorded action
potential. The figure shows the detail of the first 1 ms after the initiation of action
potential. Green lines show the original model equation (4.1), blue lines show the
OP-reduced model (4.22), magenta lines the STU-reduced model (4.49), yellow
lines show RQ-STU-reduced model (4.57).

4.5 Testing of the Reduced Models within a Cell Model

4.5.1 Choice of the Cellular Model

The Iy, Markov chain model was reproduced from the Clancy and Rudy (2002),
who used it for a simulation study within an environment of a whole cell [2].
The authors did not publish the code along with the article, however Colleen
Clancy from University of California, Davis, has kindly provided her version of the
source code on request. The complete definition of the cellular model is given in
Appendix [Al

The embeddings and development of the code was done using the Markov
chain model of the Iy, channel extracted from the cellular model. The model was
driven by an action potential which we recorded from the simulations with the
cellular model.

The authors’ model was not an autonomous model due to a time dependent
stimulation current. We autonomised the model by removing the stimulation.
Instead, the action potential is initialised by setting an appropriate initial value of
membrane voltage to a value above —50 mV.

112

4.5. Testing of the Reduced Models within a Cell Model

A B
40 Mpkovehain fvg TUIII b A T T -
—~ Refiuceii O, p
Z 01 PRENSTY - -
240 B -
oE - -
-80 A T —_F i L
C D
40 4 T I e T~ -
/>\ | | \ i _:" i
d 0 | ‘
(-0 “\ 1 .
-80 A 1= 4 _
10° 10! 102 10° 10! 102

time (ms) time (ms)

Figure 4.15: Dependence of the action potential (V,,) on the initial conditions
of a ventricular cell [2] in the original Markov chain model of Iy, (green), OP-
embedding (blue), O P-reduction (magenta), STU-embedding (cyan), and STU-
reduction (grey) of the Markov chain. The green, cyan, and grey lines overlap.
A:V,o=-65mV,B:V,,=-50mV, C: Vo =-35mV,D: V,,0 = —20 mV. The
simulation was initiated at t, = 1 ms. The horizontal axis has a logarithmic scale.

The action potential was simulated using the original Markov chain formulation
of the Iy, channel, the Markov chain model with transition rates embedding of app
and apo, and the reduced Markov chain model. The initial conditions of Iy, were
obtained from simulations of 5 pulses of action potential with a cycle length of 1 s
using the original Markov chain model. The same initial conditions were used in
the embedded and reduced models. The initial state of the new variable in the
reduced model was set as N = O + P inthe OP-reductionandto M = R+ S+ T
in the RST-reduction.

The forward Euler integration method of the original and the reduced models
used the time step size At = 0.01 ms. The embedded model used a time step
lower by factor of ten, i.e. At = 0.001 ms. This value was chosen because some of
the processes were sped up by factor of ten due to the ¢ = 0.1.

The authors code uses adaptative time step size of value At = 0.005 ms during
the action potential onset and At = 0.01 ms otherwise. This approach allows
saving of computational time when the change in membrane voltage is slow. The
adaptative time step can be only applied in single cell simulations. In spatial
models of cardiac tissue the action potential happens at different moments of time,
therefore the time step has to be of the minimal value at all times.

Figure shows the time evolution of the membrane voltage at four different
initial conditions for voltage V,,o = {—65, —50, —35, —20} mV. Panel A shows the

113

Chapter 4.

Dimensionality Reduction of Iy, Markov Chain

A
103 Ll sl _— il P | L
— Markov chain Iy, ~=""""""=- 3 1 &N 3
& 0 Embedding O, P - 00 I 1. \ I
i 10Y A . Reduced O, P |
17" Enibedding S, T, U ———~—~ 3 [r
< .3 1 "Redived 5, T, U .] g :
3 1 0 7 _‘ - T Iy A
—6] L] L
TZ 1077 - i 1 \ i
\,
] L] \. L
1079 T T T AL | T T T T T '\"T"l T
C D
103 P | PR | s — P | PR | s
= \ 3 &) 3
= 100 4 & -4 -
S S -
21073 N - - ™ Wb
— . A . N
s] N &l] AN il
=109 - /] -
T 1 \ / [] \ [
] \] \ _
109 —— . .
10° 101 10? 10° 101 102

time (ms) time (ms)

Figure 4.16: Dependence of Iy, on the initial conditions in a ventricular cell [2]
of Ina, in the original Markov chain model of Iy, (green), O P-embedding (blue),
O P-reduction (magenta), STU-embedding (cyan), and STU-reduction (grey) of
the Markov chain. The green, cyan, and grey lines overlap. A: V,,, = —65 mV, B:
Vo = =50 mV, C: V.o = =35 mV, D: V,,, = —20 mV. The simulation was initiated
at to = 1 ms. The horizontal axis has a logarithmic scale.

sub-threshold potential. The potential in this case is insufficient to trigger the
excitation. Panels B, C and D show simulation where the initial voltage was set
above the threshold which causes excitation and the influx of the sodium current
into the cell. The higher is the initial value of membrane voltage, the faster is the
onset of action potential.

Figure [4.16] shows the the time evolution of the Iy, current corresponding to the
action potential. The onset of the Iy, current is earlier in the O P-embedded and
O P-reduced model with respect to the original model. The most remarkable differ-
ence is observed in panel B which correspond to the initiation by the membrane
voltage of V,, = —50 mV, where the difference is about 0.1 ms. The deviation in
long term behaviour of the action potential is insignificant and cannot be perceived
in the figure.

4.5.2 Stiffness of the Model

We measure the stiffness of the model by the maximum time step size At,,.. which
provides a stable solution using the forward Euler solver for the isolated Iy, model
driven by a recorded action potential. The stiffness of a model can be measured
in terms of the maximal time step At,,.. it allows.

114

4.6. Conclusions

A B C

time step h [ms] i

o
00

S
(=]
|
T
|
T
|
T

<
~
1

o
b
1

o
[\]
1

Open State Occupancy (O)
o
N o
1 1
T
1
T
1
T

o
(@)
1
T
1
T
1
T

o
o¢]
|
T
|
T
|
T

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

time (ms) time (ms) time (ms)

Figure 4.17: Stability of the solution for Iy, Markov chain model at different values
of the time step. A: original 9-states model; B: reduced (O, P) 8-states ; C: reduced
(S, T, U) 7-states In, Markov chain model. Green line shows a solution with small
time step At = 0.001 ms; blue line shows the largest time step which provides
stable solution — At = 0.04 ms; magenta line show unstable solution with the time
step At = 0.05 ms. The action potential was initiated at t, = 1 ms. The lines for
At = 0.001 (green) and At = 0.04 (blue) overlap.

The simulation step At = 0.04 ms provides stable results. The traces are
slightly deviated from the solution at the step size At = 0.001 in both original and
reduced Iy, model. All three models lose stability around At, .. =~ 0.044 ms.

When the threshold of stability At,,.. is reached, the numerical solution starts
to oscillate around the true solution. In a cellular model, this error propagates to
other components of the model causing large inaccuracies. Thus, the solution
becomes unrealistic and often cause an overflow of the numerical precision in the
floating point variables and the simulation fails.

Figure shows the detail of the simulated traces during the first 4 ms of
the simulation for three reduced models. The characteristics of the instabilities
observed are very similar in all of those cases.

4.6 Conclusions

In this chapter we tested the reduction of the dimensionality of the Iy, Markov
chain model. Initially, we sped up selected transition rates between the states
by using a transition rates embedding. This allowed us to identify fast processes
whose elimination should provide a good approximation to the original model. We

115

Chapter 4. Dimensionality Reduction of Iy, Markov Chain

selected a few embedded models and proceeded to apply the reduction according
to the procedures described in Chapter 3

We performed several combinations of dimensionality reductions. Simulated
traces using all the selected reductions seem identical after an initial transient.
First, we did the reduction of the states O and P. The leading-order approximation
of the states O and P are substituted by a new state V. Using the O P-reduction
we have to calculate the occupancy of the state O because it contributes to the
In. current. The occupancy of the state O is a voltage dependent proportion of
the state NV computed from an algebraic formula. Because the state O contributes
to the formation of the action potential, a good approximation for O is crucial
for an accurate solution of the action potential. To improve the accuracy in the
O P-reduction, we included a first-order correction term, in addition to the leading-
order. Second, we did the reduction of states S, 7" and U. The leading-order
approximation for the states .S, T'and U substitutes those states by a new state
M. In this case deviation from the solution for the state O of the reduced model
from the original model is small. Therefore, the course of the Iy, current and
time evolution of action potential remains unaffected. Hence, in the STU-reduced
model we further reduced the combination of states R and Q.

Although derived reduced models gave reasonably accurate results, they
failed to achieve the main objective, which was to address the issue of numerical
instability of explicit solvers. The instabilities in the reduced models were still
present at roughly the same values of time steps as in the original model. So,
similarly to the original model, the numerical integration step was restricted to a
relatively small time step size, hence a large number of algebraic operations had to
be carried out. As a result the computational cost was still as high as when using
original model (because of roughly the same number of algebraic operations).
Therefore, the methods were unsatisfactory in providing any practical benefit for
the simulations of Iy, Markov chain model.

Our hypothesis was that the reduced models were less stiff than the original
due to the elimination of the fast transition rates. This would allow the solver
to have a larger time step size without the loss of stability, which would lead to
a reduced computational cost. However, as suggested by the test simulations
with embedded models we performed in Section[4.1.2] the elimination of all fast
processes would lead to inaccurate simulations of the open state O as compared
to the original model. So, in this system we can or have a good accuracy or
improve the stability on the cost of very inacurate results. .

Finally, we comment on the type of models where the dimensionality reduction
method might help to address instability issues. The restriction on the maximal
time step size in the Iy, model was due to fast processes adjacent (in the topology
of the Markov chain) to the open state O (which contributes to computation of

116

4.6. Conclusions

the ionic current). It might be that in some other Markov chain models the fast
processes lie between closed states, which are associated with the computation
of the ionic current only indirectly, through their transitions to the open state. In
such Markov chains the elimination of fast processes might affect the open state
occupancy only slightly. This could provide a good approximation and permit the
use of larger time steps. However, none of the Markov chain models we analysed
satisfy this requirement.

117

Chapter 5

Exponential Solvers for Markov
Chain Models

This chapter describes the development and application of exponential integration
methods. A hybrid method is based on operator splitting and integration for a fixed
time step is done analogicaly with “frozen” transition rates. This can be achieved
due to the specific coupling between the states of the system. Another method is
the so-called matrix Rush-Larsen method. It is an extension of the Rush-Larsen
method to Markov chain models. Both methods are applied to the Iy, model by
Clancy and Rudy (2002) in order to address the instability of explicit solvers and to
allow larger time steps.

The following section applies these methods to the RyR and Ic,) model
by Faber et al. (2007), which is known to be particularly stiff. The exponential
integration methods for this model require further adaptation because of the
dependence of the Markov chains on multiple variables.

Finally, we perform a theoretical analysis of the numerical truncation error which
inevitably happens due to numerical integration and operator splitting methods.

5.1 Application to /y, Model

5.1.1 Operator Splitting for Iy, Model

In this section we continue our work with the Iy, channel developed by Clancy and
Rudy (2002) [2]. This model was described in Subsection In this section
we use the notation corresponding to the reformulation introduced in Subsection

4.1.1], which is shown in Figure b).

119

Chapter 5. Exponential Solvers for Markov Chain Models

We recall that the Markov chain is described by a system of equations in a form

A, (5.1)

where the entries of u represent the probability that the channel occupies a
particular state (also called states occupancy) and the A(¢) is a transition matrix.
In case of the I, model the transition matrix A(V.,(¢)) depends on the membrane
voltage.

In the previous chapter we have introduced embeddings of pairs of transition
rates between two states, and different combinations of embeddings of those pairs.
This approach leads to a reduction according to perturbation theory.

Here we introduce an approach where even a single transition rate can be
embedded, i.e. multiplied by 1/c. The choice of the transition rates is made
depending on their speed, i.e. the probability of the transition from one state to
another per unit of time. We use Figure [4.1.1fa) which shows the transition rates
at the range of physiological voltages as observed during the action potential
between -85 mV and +40 mV.

The numerical instabilities are due to the parts of the model which cause fast
variation in the solution. Such elements in the Markov chain model are the fast
transition rates. So we aim to treat the fast transition rates in a different way than
the rest of the model. We divide the fast transition rates into two groups according
to their speed at high and low values of voltages: the first group contains transition
rates which are fast at high membrane voltages and slow at low membrane
voltages, the second group contains fast transition rates at low membrane voltages
and slow at high membrane voltages. This split can be formulated as

A=Ag+ A, + A (5.2)

where the first matrix contains fast transition rates at high voltage as

a0y aro O 0 0 0O 0 0 0
0 —apo agp O 0 0 00 0
0 0 —agp oro O 0 00 0
0 0 0 —apg O 0 00 0
Ag=| 0 0 0 0 —asr 0 0 0 Of, (5.3)
0 0 0 0 asp —apy 0 0 0
aoy 0 0 0 0 amp 000
0 0 0 0 0 0 00 0
0 0 0 0 0 0 00 0

120

5.1. Application to I, Model

the second matrix contains fast transition rates at low voltage as

—app 0 0 00 0 0 00
aop —apg 0 0 0 0 0 00
0 apg —agr 0 0 0O 0 00
0 0 agr 00 0 0 00
A =| 0 0 0 00 aps 0 0 0f, (5.4)
0 0 0 00 —aps agr 0 0
0 0 0 00 0 —aygr 00
0 0 0 00 0 0 00
0 0 0 00 0 0 0 0

and the third matrix contains uniformly slow transition rates at both high and low
voltages as

0 0 0 0 0 0 apo 0 0 |

0 —apy 0 0 0 0 app 0 0

0 0 -aor O 0 arg O 0 0

0 0 0 —QRs QSR 0 0 0 0
Ay =0 0 0 Qps —OQSR 0 0 0 0

0 0 agr O 0 —arg O 0 0

0 apy 0 0 0 Ay avy 0

0 0 0 0 0 0 agpy —(wov+avw) awy

0 0 0 0 0 0 0 ayw —awy |

) (5.5)

where A,y = —(aup + avo + auy).

Depending on the membrane voltage one of the fast subsystems A, and A, is
sped up, i.e. multiplied by 1 /. At the high value of membrane voltage the transition
matrix A, is fast and so it becomes the leading order term as

du

1 _
= LA+ (A + A (5.6)

while at the low values of the voltage the A, is slow and so it is considered as a
higher-order term, while the transition matrix A, is fast and is therefore leading
order as in the equation

T 1
99 pgut LAy vt (5.7)
dt €

The matrix A, is always slow and therefore is a higher-order term.

121

Chapter 5. Exponential Solvers for Markov Chain Models

This section was dedicated for the analysis and division of the ODEs describing
In, model. In the following subsection we suggest a hybrid method to solve this
system.

5.1.2 Hybrid Method for /y, model

Solution for Leading Order System at High Voltage

Substituting the A, from (5.3) to (5.6) the leading order system at high voltages
reads as

C;? =apoP — OéOUO, (588.)
dpP

E :OCQPQ — OJPOP, (58b)
d

dcf :OZRQR - OCQPQ, (58C)
dR

ds

E = — OéSTS, (589)
dT

a :CBSTS — OéTUT, (58f)
dU

E :OZTUT + OCOUO, (589)
dV

B .8h
i 0, (5.8h)
dW ,
& =0. (5.8i)

We use an assumption that the transition rates do not change much during one
time step and can be “frozen”, i.e. considered constant. Then, due to the specific
coupling of those equations, we can obtain an analytic solution as follows. First,
we notice that the equations for states R, S, V and W are decoupled and can be
solved directly. This solution is then substituted into equations and
which are now in a closed form so we obtain the solution of 7" and (). The solution
for @ is substituted into and the solution of 7" into and we solve P and
U. Finally, we solve the expression for O after we have substituted the solution of
P. So, we get the solution as

On+1/3 =Onpiov + PoKpo + QnKgo + RoKro (5.9a)
P13 =Papupo + QnKgp + R, Krp (5.9b)
Qnr1/3 =Qnpigp + RnKrq (5.9¢)
Rny1/3 =Ruirg (5.9d)

122

1. Application to Iy, Model

Sn+1/3 :SnNST
Tov173 =Tupirv + SnKst

(5.9e)
(5.9f)

Un+1/3 :Un + Tn[l - ,UTU] + SnKS'U + On[l - HOU] + PnKPU + QnKQU + RnKRU

where (1, = exp(—o;At), and

_apo(fpo — Hou)

~ aou — apo

Koo = OéPoOéQP(MQP - ,UOU) - OéPOOéQP(MPo - ,UOU)
(aPO - aQP)(aOU - QQP) (OéPO - aQP)(aOU - OéPO)

aApoQPQRQ (MQP - ,UOU)

Kpo

Kro = — +
(agp — arg)(apo — agr)(aov — agp)
OéPOOéQPOéRQ(MPO - MOU)
+ +
(agr — arg)(apo — agp)(aov — apo)
X apoaqQprarq(HrQ — Hou) _
(agr — arg)(apo — arg)(aov — arq)
B apoaqQprarq(firo — Hou)
(aqp — arg)(apo — arq)(aou — apo)
K _&QP(MQP — Kro)
QP =
apo — QQp
_ agrorg(Hor — kro) aQParQ(1rQ — 1PO)
KRP = — +
(agp — arg)(apo — agp) (agr — arg)(aro — arq)
Ko — OéRQ(MQP - MRQ)
RQ = —
aQprp — XRQ
Qag — Ks
Kop = — T(,UTU 1% T)
ary — asrt
« — o
Koy =1+ STHTU TUMST
ary — Qgr
Kpp =1 — QouMUpPO — Xpolou
Qou — Qpo
apo (QouHQpr — OéQPMOU)
Kou = 1— —
apo — Qqgp Qou — aqgp
B agp (1 _ Qoulpo — OéPOMOU)
apo — QQp oy — Apo
(0% (6% (6% —
Kny = — POCRQ (1 _ QoulQp QPHOU 4
(OéQP - OéRQ)(OéPo - OéQP Qou — aqQp

aQpPQORQ Qou PO — polou

1 -

|

(Q/QP - aRQ) apo — aQP Qou — Apo

)
i)

Apoaqp (1 QOUHMRQ — aRQNOU) _
i)

(agp — arg)(apo — arg) aou — ORQ

AQPORQ 1— QoupPo — CXpoHoU

(OéQP - OéRQ) apo — OéRQ oy — Apo

(5.99)

(5.10a)

(5.10b)

(5.10c)
(5.10d)
(5.10e)
(5.10f)

(5.109)
(5.10h)

(5.10i)

(5.10j)

(5.10k)

123

Chapter 5. Exponential Solvers for Markov Chain Models

that can be written as
6n+1/3 :Tl (t, At)?j»,“ (51 1)

where the operator matrix is

Hou Kpo Kgo Kro 0 0 000

0 uro Kop —Krp 0 0 000

0 wor —Kro 0 0 000

0 wro 0 0 000

T, (t,At) = 0 0 HsT 0 00 0f.

0 0 —Ksp pru 0 0 0

1 —pov] Kpv Kou Kry Ksy [1—pgu] 1 0 0

0 0 0 0 0 0 010

I 0 0 0 0 0 0 0 0 1_

(5.12)

Solution for Leading Order System at Low Voltage

Substituting the A; from (5.4) to (5.7) the leading order system at low voltages
reads as

do
o= aopO, (5.13a)
P
G}ﬂ —aorO — apgP, (5.13b)
G —raP — agn. (5.13¢)
dR
7 —Oor@, (5.13d)
ds
- =arsT, (5.13¢)
((if; =ayrU — arsT, (5.13f)
dU
g = — OéUTU, (5139)
dv
- =0, (5.13h)
dw .
=0 (5.13i)

Again, using the specific coupling of the equations we can solve this system of
equations. First, we get solution for O, U, V and W which are already in the closed
form. Then, we can substitute the solution for U into and the solution for
O into which gets in the closed form, so we obtain solutions for 7" and P.
Substituting 7" also and P into we can solve S and Q. Finally, we

124

5.1. Application to Iy, Model

substitute @ into (5.13d) to get R. The result can be written as

On+2/3 :On+1/3M0P

Poy2/3 =0pni1/3Lop + Payaysiipg

Qni2/3 =0ny173L0og + Pry1/3Lpg + Qni1/31QR

Ryi2/3 =Ont1/3Lor + Pati1/sLpr + Qui1/s[l — pior] + Ratays
Snt2/3 =Unt1/3Lus + Thyay3[l — prs] 4 Snyi/s

Tovos3 =Uny13Lur + Tayisiirs

Un+2/3 =Unt1/stur

Vita/s =Vayi/s

Wiia3 =Whniy3

where

I _OéOP(MOP — 1pQ)
OoP —

apg — Qop

apoaopr(for — figr) ap@or(irq — HQR)
apg — aop)(agr — aop) (apq — aop)(agr — apq)
1. _are(trq — Hor)

PQ =

QR — apQ

_ apg(aorligr — agrior) aop(apgior — QQRIPQ)
Lor =1+ -

(apq — aop)(agr — aop) (apq — aop)(agr — apq)
ApQHQR — AQRMPQ

QR — APQ
QuriTs — QArspuT

Lpr =1+

Lys =1+
ars — aur
I _OéUT(MUT — pirs)
Uur =
ars — ayr

that can be written as

ﬁn+2/3 :TQ (ta At>ﬁn+1/3a

(5.15a)
(5.15b)
(5.15¢)

(5.15d)
(5.15¢)
(5.15f)

(5.159)

(5.16)

125

Chapter 5. Exponential Solvers for Markov Chain Models

where the operator matrix is

[iop 0 0 00 0 0 0 0
Lop pipg 0 0 0 0 0 0 0
Loo Lro por 0 0 0 0 0 0
Lor Lpg [1—pgr] 1 0 0 0 0 0
To(t,At)=| 0 0 0 0 1 [1—prs] Lus 0 0. (5.17)
0 0 0 00 Lyr prs 00
0 0 0 00 jur 0 0
0 0 0 0 0 0 0 10
00 0 0 0 0 0 0 1]

Solution for Uniformly Slow System

So far, we have solved the leading order term at high voltage with A, equation
and at low voltage A, from equation (5.7). The complement to these sys-
tems remains to be solved. The complementary system contains uniformly slow
transition rates at both high and low voltages, and has the form

A (5.18)

The complementary first-order term contains only uniformly slow transition
rates (both at high and low voltages). Substituting (5.5) into (5.18) the complemen-
tary system reads as

dO

90 ool (5.19a)
P

(ihf :(XUPU — (IPUP, (519b)

Y T~ ar@ (5.19)

d

oS — ansh, (5.19d)

if =apsR — aSRS, (5196)
T

O —0rQ — argT, (5.191)

dU

n =apyP + avyV — (ayp + avo + auy)U, (5.199)

dVv

’ry =agyU + awyW — (avy + ayw)V, (5.19h)

o —avwV — a0 (5.19)

Because this system contains only slow transition rates, it is less stiff and the
maximal value of the time step size for a stable solution is high. So, instead of

126

5.1. Application to I, Model

finding exponential routine, which is not straightforward by an analytic solution of
the system, we approximate the solution using the forward Euler method as

Ons1 =Onsays + avoUnsajsAl, (5.20a)
Poy1 =Poios3 + (aUPUn—i-Q/B — OéPUPn+2/3) At, (5.20b)
Qnt1 =Qny2/3 + (aTQTn+2/3 - OéQTQn+2/3) At (5.20c)
Ryy1 =Ryi0/3 + (OéSRSn+2/3 - OéRsRn+2/3) At, (5.20d)
Sp+1 =Sn+2/3 + (aRSRn+2/3 - @SRSnJrZ/?)) At (5.20e)
Toir =Tnyzss + (0QrQnizss — arqTaiays) At (5.20f)

Uni1 =Unyoss + (OéPUPn+2/3 + avyVagas — (aup + apo + OéUv)Un+2/3> At,

(5.209)

Vi1 = n+2/3 T (aUVUn—l-Q/S + aWVWn+2/3 - (OéVU + OéVW)Vn+2/3) At, (5.20h)

Wi1 =Whga3 + (OéVWVn+2/3 - OéWVWn+2/3) At, (5.20i)
that can be also written as

Upg1 =Uny2/3 + At As(t,)l 42/3. (5.21)

Summary of Hybrid Method

Then the equations (5.11), (5.16), and (5.21) constitute the computational algo-
rithm. This algorithm can be reformulated as

Unyos3 =T (t, At)i,, (5.22a)
Upt1 =Uny2/3 + At Ag(tn)Unio/3, (5.22b)

where T'(t, At) = Ty(t, At)T(t, At) that combines both and (5.17). In
order to speed up the computation, the algorithm uses tabulation of the matrix
T(t, At), which contains several exponential functions that are computationally
demanding. The details about the tabulation are given in Subsection [6.2.1]

5.1.3 Matrix Rush-Larsen for Iy, Model

The Rush-Larsen method is a numerical method for gate models. The details of
the method were described in Subsection by equation (3.131). The basic
idea is that the transition rates are assumed to be constant for the duration of one
time step. Such an equation is then solved analytically. The analytical solution is
then used in an iterative integration scheme, where the transition rates are updated
for the new values at the beginning of each time step. The Rush-Larsen method is

127

Chapter 5. Exponential Solvers for Markov Chain Models

not directly applicable to Markov chain models. Here we generalise the idea for a
Markov chain models.
For the purposes of the Ix, model it can be written as

ey = oxp (A(tn)At> i(t,),. (5.23)
For practical reasons we can write it in the form
Un1 =T (t,)i(tn) = V (t,) exp (A(tn) At) WE(t,)i(tn), (5.24)

in which we use eigenvalue decomposition A = VAWT where the right eigen-
vectors are concatenated in the columns of matrix V', and left eigenvectors are
concatenated in the columns of matrix W. The order of the eigenvectors corre-
sponds to the same order in which are sorted the eigenvalues in the eigenvalue
matrix A.

The motivation to introduce the eigenvalue decomposition is because the
computation of the exponential of diagonal eigenvalue matrix is straightforward as

MAE 0 ... 0 exp(A1At) 0
0 XAt ... 0 0 exp(AgAt)
exp . .) . = . .
0 0 ... ANAt 0 0 ... exp(ANAY)

(5.25)

That assumes that the transition rates matrix is diagonalisable.

5.1.4 Simulation in a Cellular Model

The two previous subsections described two algorithms for the computation of
the In, model. In this subsection we apply the algorithm within a cellular model.
For this purpose we have implemented the hybrid algorithm and the Matrix
Rush-Larsen into a single cell model by Clancy and Rudy (2002) [2]. The
details of the cellular model can be found in Appendix [Al

Figure shows the results of the simulations. In the simulation with the
forward Euler method the system becomes unstable at values of the time step
above At = 0.05, so the results are only shown for time step At = 0.01 and 0.04 ms.
The results for the matrix Rush-Larsen and hybrid methods are shown for time
steps At = 0.01,0.04, and 0.10 ms. Those methods are unconditionally stable.
This is because all the eigenvalues of the system are non-positive and real, which
means that the time evolution of the solution will approach its steady-state.

A generic property of any Markov chain is a state conservation law, which
implies that the sum of the occupancies of all states of a Markov chain is equal

128

5.1. Application to Iy, Model

50 " O — T ,
: 2 / "X 100 I S 50 oo
£ 9 / < —200 \/ <25 ;
E / S _300 _f o k. .4 A“ P
=~ =25 = = AL AV T
I_- 1 IN _400 L I-/ | 3 0 L 1 |
0.24+ a 024l /\\\ 0.3} /'/»'—Q.
L 016 /\ ~ 0.16) \ o 0.2 /
0.08 \ 0.08} " 0.1}
0.00l —7 % ool ~ N — ool ! S oo
0.16 |
0.75F \ 0121 \ 0.06f =
~ 0.50} - 0.081 .. 0.04} // \
0.25F 0.04} 0.02} .
0.0l ~——— 000l ~——— 0.00L ! e
1.00; 0.20; P hb 46— MAC 100
4;‘.\ o I y ' PRI
oreol 4 015 S |
¥ 02 // " oos)] /2y
ol Sedl | o} e
0.00_ I__' 1 | 0.00_ I_-——_——I/ | \E/ I_. 1 |
1.0 15 2.0 1.0 15 2.0 1.0 15 2
t (ms) t (ms) t (ms)

Figure 5.1: Action potential (V,,), In. current, error from conservation law, and Iy,
Markov chain states occupancy (zoom to first 1 ms). The algorithm combines the
forward Euler solution of the slow subsystem with the analytical solution of the fast
subsystem at low and high voltage (hyb); matrix Rush-Larsen (hyb); and forward
Euler solution (FE). The solution was obtained at time step At = 0.01,0.04 and
0.10 ms (except for FE, which is unstable at 0.01).

to 1. We use the deviation from the state conservation law as an indicator of the
accuracy of the computation.

Another consideration is the accuracy of the methods. As is discussed in more
detail in Section[5.3] the accuracy is inversely proportional to the time step size.
So, when we further increase the time step we obtain significant inaccuracies,
e.g. at At = 2 ms there is 30 mV overshoot in the action potential as compared
with the value at At = 0.01 ms. Increasing the time step even further, we observe
unphysical values of concentration at about At = 2 ms in the hybrid method. The
MRL method allows the time step to be increased up to 7.5 ms. At this time step
the model becomes unstable due to other components than Markov chains.

The figure shows that about 90% of the channels occupy the states R and S
before the initiation of the action potential. After the initiation, the channels transit
rapidly towards the open state O, and within about 0.7 us almost all channels

129

Chapter 5. Exponential Solvers for Markov Chain Models

Table 5.1: Computational time [s] of 100 pulses with cycle length of 1000 ms. The
first column specifies the method used for computation as forward Euler (“FE”),
matrix Rush-Larsen (“MRL”), hybrid operator spliting (“hybrid”). The method with
tabulation of transition rates or transtion rates matrices are denoted by “(tab.)”. The
columns denoted by “Iy.” show accumulated computational time for simulation of
Ina Markov chain only, while columns denoted by “Total” show time spend by the
simulation of the whole cell (with output disabled). The simulation for At = 0.10 ms
in FE method cannot be done due to numerical instability.

At =0.01 At =0.04 At =0.10
In. Model Ina Total | Iy, Total | Iy, Total

FE 544 24.01|1.29 6.02
FE (tab) | 274 21.38|0.69 5.36
MRL (tab.) | 4.79 24.36|1.23 6.23 | 0.54 245
hybrid 9.51 2813|222 7.04 |0.79 2.83
hybrid (tab.) | 2.89 21.71 | 0.77 5.49 | 0.37 2.21

reside in the state U. Then the channels slowly transit to the state VV where they
stay until the resting potential is recovered (not shown).

The results for the time step At = 0.01 ms are consistent in all panels. The
FE is still stable at At = 0.40 ms, but compared to the MRL and hybrid solution
we observe a larger peak and faster decay in the open state occupancy. This
suggests that the exponential integrators can be used to improve accuracy of the
solution even in situations when the instability is not a concern.

Table [5.1] shows the elapsed CPU time during the simulations in the cell model.
The simulations were performed for 100 pulses of CL 1000 ms. To obtain only
the results of the computations, the program did not generate any output. The C
language source code was compiled using the GNU compiler collection (version
4.7.2) and the simulations were performed on Intel Core i5-3470 CPU with clock
frequency 3.20 GHz under the GNU/Linux operating system. Five consecutive
runs were performed and the minimum necessary time is shown in the table. Each
action potential was initiated by simulating an external potassium current raising
the membrane voltage to V,, = —35 mV. The time step of the simulations was
At = 0.01, 0.04 for the forward Euler method, because the model becomes unstable
for time steps above 0.05 ms. The hybrid and MRL method were also used in
simulations with a time step of At = 0.10 ms.

The MRL method was simulated using tabulated eigenvalues and eigenvectors
as computed for the transition rates matrices using the mathematical software
Sage [20]. The hybrid method was simulated with and without tabulation. The
table of pre-calculated values was created for values of voltage ranging from —100
to 70 mV with grid step of 0.01 mV.

130

5.2. Application to RyR and I,y Models

Comparing the computational cost of the methods with tabulations, the forward
Euler is the most efficient. However, the most important benefit of hybrid and MRL
methods is the possibility of using larger time steps without the loss of stability.

5.2 Application to RyR and /., ;) Models

5.2.1 Cellular model

The cardiac myocyte model published by Faber et al. (2007) [1] is an example of a
numerically stiff model. That means that the numerical integration using explicit
solvers requires very small step size to avoid instability.

We obtained the C source code of the Faber model from the Rudy Laboratory
website [21]. In the model all of the gate ion channels are implemented using
the Rush-Larsen method, which always yields a stable solution. The Markov
chain models are used for Ryanodine receptor (RyR) and Ic,). The models
use the forward Euler scheme, which is also employed for the integration of
ionic concentrations ([Ca**];, [Na*];, [K*];) and the membrane voltage V.. The
suggested time step in the source code is At = 1 us and increasing the time step
above At = 6 us results in instabilities causing significant deviation from the true
solution, and above At = 9 us the simulation fails in the overflow in the double
floating point values.

In this section we describe an application of hybrid method combining Matrix
Rush-Larsen and forward Euler to the RyR and /¢, channels. This achieves a
stable solution of such stiff models, and allows larger time steps and substantially
reduces computational cost. In our case, we achieved to increase the time step,
while obtaining a stable solution from 6 us to 180 us. This leads to savings of
computational cost of about 96%.

5.2.2 RyR Markov Chain Model

The RyR model of Faber et al. (2007) was described in the subsection The
diagram of the Markov chain model of RyR is shown in Figure [2.14] The Figure[5.2]
shows transition rates, i.e. the probability of the transitions per millisecond, given
that the channel resides in a specific state.

Transition rates between the states in the top row (horizontal transition rates
in Figure are identical in both rows, i.e. a transition rate in the top row
corresponds to the transition rate at the same location in the bottom row. The
transition rates [are given constants not depending on any other variables. The
transition rates a depend on calcium concentration [Ca®*],,. The values of those
transition rates in the physiological conditions, when [Ca®*],, is between 10~ and
0.06 mM, range from 10~2 to about 10? ms™1.

131

Chapter 5. Exponential Solvers for Markov Chain Models

Q1R B3r V3R d2r
Q2R, 3R, 4R Bar---- V4R SR~
1R MR~~~ Y5R 4R

B2r V2R~ Op O5R

Figure 5.2: Transition rates in the Markov chain model of RyR (diagram in Fig-
ure [2.14). Panel (a) shows transition rates as function of [Ca**]. Panel (b) shows
the transition rates during the action potential. The plots are in logarithmic scale.

The transitions between the top and the bottom row on the diagram (vertical
transition rates in Figure are uniformly slow. Their maximum value only
reaches 1 ms~!. The transition rates ~ (transitions from the top to the bottom
on the diagram) depend only on the subspace calcium concentration [Ca®*t],
while the transitions § (transitions in the opposite direction) are functions of two
calcium concentrations. The first is the calcium concentration in the subspace
[Ca®*], like in the other transition rates, and second is the calcium concentration
in the junctional space of sarcoplasmic reticulum (JSR) [Ca®*];sr. Because of
the dependence on two variables, these transition rates have been shown only in
panel (b) in Figure 5.2

To study the numerical properties of the cellular model, we performed a number
of simulations with different time step sizes. Figure shows the result of the
simulations. The observed numerical instability first occurred in state O; at At =
6.7 us. We also start observing instabilities in the calcium concentration in the
subspace [Ca’t], at time step size At = 7.0 us, which is because the state O, is
directly connected with the calcium release from the sarcoplasmic reticulum.

The membrane voltage V,, and other dynamical variables do not present
instability until the time-step size reaches values of At > 9.0016 us. Below this
value, the amplitude of the instability oscillations in the calcium concentration grow
larger as we increase the time step. Then, the calcium concentration drifts to
values close to zero, however, it still remains in the physiologically plausible range.
As we increase the time step even further, the calcium concentration reaches
physically impossible negative values, and this error propagates to other variables
in the model, which causes the simulation to fail (not shown).

Comparing the form of the speed of the transition rates under the action
potential Figure [5.2pb with Figure 5.3 we observe a clear correspondence between

132

5.2. Application to RyR and I,y Models

60

1.2

0.07

T
a0 b7 4 i i | 007 ‘
. 1 006 - | 0.06 - B
20 - N B - i 005" b
. | \ 0.8 = 0.05 | It 0.04 ¢ E
= ol \ i) il o003 1
g |l \ — 06 [o 0.04 - Hl0.02
Z 20| : S & I oot
E / | T 003 - Il OF Voopoopgom
a0 i 04 | & . —
o0 5 0.02 |- ; M 4.8 5 525.45.65.87
N - At = 6.4 us -1 7 0.2 = oot | li ty
80 | At =7.0 pus \ 4 ’ N
At =9.0016 ps--------] 0 - 0 et T e
,100 1 | | Il 1
1 10 100 1000 1 10 100 1000 1 100 1000
t (ms) t (ms) t (ms)

(a)

Figure 5.3: Numerical instability caused by RyR model using forward Euler inte-
gration.

the time point when the instability occurs, and the time when the fastest transition
rates (aar = asr = ayr) reach their maximum. This confirms that the instability in
the forward Euler solver occurs due to the fast transition rates.

To address the instability we suggest employing the matrix Rush-Larsen solver
as described in Subsection [5.3.3 together with tabulating the coefficients of the
exponential operator matrix (see Subsection for details about tabulation).
However, the implementation of the algorithm for RyR channel is more challenging,
because of the dependence of the transition rates on more than one dynamical
variable. Tabulation on a multivariable grid is possible, but more demanding in
terms of memory and computational resources. Hence, we employ the idea of
operator splitting.

The RyR model can be split into subsystems according to the speeds of the
transition rates. The first subsystem contains « and 3, which are fast. The second
subsystem contains ¢ and -, which are uniformly slow. Then the subsystem with
the slow transition rates can be readily solved using forward Euler solver. After the
splitting, the system can be written in the form

M ([Ca®t]g, CSQN) = (%%) +G

where the first matrix is split into two identical matrices F', due to the particular
topology of the RyR where the transition rates in both rows of the model are
identical. The F = F([Ca®"](t)) represents the “horizontal” transition rates in the
diagram as

(5.26)

—Bir QIR 0 0 0 |
Bir —(air + Bar) Q2R 0 0
F=10 Bar —(a2r + Bsr) Q3R 0 |, (5.27)
0 0 B3R —(asr + Bar) aur
0 0 0 Bir —OuR|

133

Chapter 5. Exponential Solvers for Markov Chain Models

and |G(...)| < 1ms™! represents the “vertical” transition rates as

—MR 0 0 0 0
0 —ywr O 0 0 0 dp O 0
0 0 —mr O 0
0 0 0 —vr 0O 0 0 0 e
0 0 0 0 —7V5R 0 0 0 0 Os5R
YR 0 0 0 0 —01Rr 0 0 0 0
V2R 0 0 0 0 —dhr O 0 0
0 0 —03R 0 0
0 0 0 —04R 0
0 0 0 0 —dsr]
(5.28)

o o o o
o
o
2
ay)
o

Hence, for this Markov chain we use a mix of Matrix Rush-Larsen and forward
Euler according to Lie style operator splitting (as will be described in Section [5.3.4)
as

17n+1/2 = exXp (AtF(tn)) ’Em (5293.)
Why1/2 = exp (AL F(ty,)) Wy, (5.29b)
ﬁn—&—l - ﬁn+1/2 + At G(tn) l_l:n+1/2, (5290)

where
17 = [[la IQa 137 [47 IS]T

contains the states of the top row in Figure 2.14} and
117 = [Cla 027 C?)a 047 OI]T

contains the states of the bottom row in the figure. Then the state vector including
all the states can be written as

i= H | (5.30)

Before we start with the computation, we create a look-up table of eigenvalues
and eigenvectors of F for a range of values of control variable [Ca®'],. The
transition rates in G are not tabulated as the tabulation does not offer a major
speed-up for the forward Euler method which will be used for the integration of this
slow subsystem.

The tabulation variable for the F' remains [Ca®t]. Since [Ca®*] ranges over
five orders of magnitude, the tabulation for a regular grid of sufficient precision
would be computationally and memory expensive. Therefore, we consider the

134

5.2. Application to RyR and I,y Models

60 10 102
07 N T 00N . 104
L] i — / —— -
oy \ 2 102 = 1 S0tf ey
0 1 g P Y
Z i \ = 10t/ | 1 Ko | .
= 20y \ 1z / \
/ i E 100 \ 1 —~10"F 1
> -40 - | T — s { | ~ 12
b o - L \ - 92}
60 | | 1 £t T 1072 - R
60 FE At =1 us | 7 3
80 | Hyb. At =10 ps L 4 10710 E 10714 WM
-100 Hyb. At \: 35 ps o 10°12 1 1 10718 1 1
1 10 100 1000 1 10 100 1000 1 10 100 1000
t (ms) t (ms) t (ms)
(a) (b) (c)
1 0.09 ‘ 0.1 0.45 e 07 A
09 | N 0.08 - - 0.09 - I 04| /o AN i
0.8 - [0.07 - L 0.08 - [0.35 - /1 05 L AN i
07 I 0.06 [o 0.07 - [03| /A : \
0.6 foA | o 0.06 - oA | /0 04+ | A i
= 05} [~ 0.05 I © .05 - A <~ 025 /o o ' |
~ ok 0T ooaf 1 T ooal /1 T o2k /14 T sl -
03 | . 0.08 - i\ 0.03 | /1 oS] 02 | A
02 F DA 0.02 - /o 0.02 /oA 01 - . | |
01k J— 001 F 4 00t F, /A 005 F / - 01 i 1
0 ! e 0 il i 0 A’ ! 0 scd Y 0 Sl I
110 100 1000 110 100 1000 110 100 1000 110 100 1000 110 100 1000
t (ms) t (ms) t (ms) t (ms) t (ms)
(d) (e) () () (h)
0.9 p=rrron 0.14 : 0.12 : 0.16 : 0.9 :
08 1 012 | i 01l | | 014 1 | g 08 | g
07 1 4 T 01l ¢ i t 012 | - 0.7 - i B
06 | | H ' i 0.08 |- E 01 b i 06 i E
~ 05 | H o 008§ 1 o < o0 — 05 i g
O o4t i ';7 [6) 0067/; | O 0.06 | | B o 008 B Q ogal I |
| - | | L i : i
03 g 004 L /1 i 0.04 | E 0.06 03 |} E
L i 04 -7 i 0.04 - g Lo |
0.2 { «l /4 0.02 | /i 4 0.2 AN
01 ! /4 0.02 < | 7 - I 0.02 - i, N A 01k | N i
0 bl Wt 0 bl L =4 b o 0 bt TR 0 Lol ail
110 100 1000 110 100 1000 110 100 1000 110 100 1000 110 100 1000
t (ms) t (ms) t (ms) t (ms) t (ms)
@)) (k) M (m)

Figure 5.4: Comparison of integrators (forward Euler and hybrid) for RyR Markov
chain model: (a) action potential; (b) I..; (c) deviation from states conservation
law; (d-m) states occupancy in RyR MC model.

rates as functions of 7 = In([Ca*?]) and use a regular grid in 7 (as described in
Subsection [6.2.7).

Using the suggested hybrid method, the instability observed previously at
the time step values At > 6.7 us has disappeared (not shown). The instability
reappears at time steps larger than At > 37 us due to the Ic,(;) Markov chain
model. In order to eliminate this instability, we have implemented an exponential
solver for Ic,(1), as described in the subsequent subsection.

5.2.3 Ic,) Markov Chain Model

The RyR Markov chain was the primary factor limiting the step size. The Faber
et al. (2006) model contains another stiff Markov chain model of membrane
calcium current Ic,(z). Having applied the hybrid method for the RyR channel as
described in the previous section, the stiffness of the I¢,;) model is the next cause
of instability, which is observed as we increase the time step to higher values.
The detailed description of the Ic.(;) model was given in Section[2.4.2] The
diagram of the model is shown in Figure 2.13] The Ic..) model operates in two
modes: the Ca-mode (bottom layer of the diagram) and the V,,-mode (top layer of

135

Chapter 5. Exponential Solvers for Markov Chain Models

new state old state M
G Co + Coca i
H C1 4 Cica e
o [e%1 [e D) asg Wrs
I Cy 4+ Coca G oo I L = Ocar) ¢
L Cs + Csca Bo B B2 B3 sf
Oca(r) O + Ica A
M [Vs + [VsCa “r \
N]Vf + IVfCa N

Figure 5.5: New terminology of simplified /¢,y model. Correspondence between
the old and new states (left), simplified diagram of the Markov chain (right).

the diagram), where the transition rate 6 determines the probability of transition to
V,-mode and transition rate § back to Ca-mode. The conductive state O is present
only in the V,,-mode, and all the states in the Ca-mode are non-conductive.

The transitions between the modes are calcium dependent, while the transitions
within the modes are voltage dependent. The states and transition rates within
both modes correspond to each other, i.e. given that the location within the mode
is the same, the probability of transitions to the neighbouring states is identical in
both modes. This allows factoring out the Ca®* dependent inactivation as a gate
model. This gate model is then multiplied with an open probability of a simplified
Markov chain. The simplified Markov chain has a form of a single layer of any
of the modes. The states occupancies in the simplified model correspond to the
sum of the corresponding state occupancies in both modes. The diagram of the
simplified Markov chain is shown in Figure (right hand side). The table on
the left in the figure shows the correspondence between the new notation and
the states of the authors’ model. The idea of factoring out the calcium dependent
transition is also used in the authors’ code [21], however the equations in the paper
are presented in the long form with 14 rather than 7 states [1].

This factorisation procedure gives the following system of ODEs

dg

T =§(1 — q) — bq, (5.31a)
dif .
5 =DPVu(t)) (5.31b)

where the gate ¢ controlls the calcium dependent switching between the modes
The Markov chain states are

i =[G,H,I,L,Ocur), N,M|", (5.32)

136

5.2. Application to RyR and I,y Models

15 4 007 :
007 2 [N ’ 0014 (AN T T]
or oI 1 & ofF ~ 006 0.012 |- \ —
0.05 \ S 001 [% i
5r 9.04 13 2r 1 E°5f | o008 | V\]
0.03 < L\ 1 = L 0.006 F O A
G Jj 0.02 - =2 -4 \ » 0.04 0.004 \ -
001 P N 1 7 oo3f 0.002 |- 14
0 Il Il Il Il 2 - & [O o L e e
5L s 101212161 = 8F 1 "= o002 | [8 101214 16
At = 3R.86 s S0 - 1 2 ook A
10 At = 38.00 s b el | : | \\
At = 37.00 ps-------- ob—r T
-15 L L -14 L L L .
1 10 100 1000 1 10 100 1000 1 10 100 1000

Figure 5.6: Numerical instability caused by I,y model using forward Euler
integration and hybrid method for RyR channel.

and D is the transition matrix of the simplified Markov chain. The transition matrix
reads as

—Qp Bo 0
%) (a1 + o) o
0 1 (b1 +a2) B2 O
D=1|0 0 Qo Dy, B3 wy ws|, (5.33)
0 0 as Do Ap g
0 0 0 v @¢r Dy wer
i 0 0 Vs Ps Wrs DM_

where the diagonal entries are

— (v + s + az + Ba), (5.34a)
— (5 + ¢s + B3), (5.34b)
Dy =— (wy+ A+ wys), (5.34c¢)
Dy = — (ws + As + wsy). (5.34d)

The transition matrix is dependent only on voltage, which simplifies the tabulation
of its eigenvectors and eigenvalues. For the purposes of tabulation we use values
of V,, ranging from —100 mV to 70 mV with a time-step of 0.01 mV.

Figure shows the instability caused by the I,y model using the forward
Euler solver. The largest time step that allows a stable solution is At = 37 us. The
state L is the first one to become unstable, which happens at the value of time step
of At = 38 us. This instability can hardly be observed in other variables because
of only a minor influence of the state L on the I, current. However, we observe
a wide oscillations around the exact solution at time steps At = 38.86 us. These
oscillations propagate to Ic,) and cause a drift in [Ca**],. Using even higher
time steps leads to a propagation of fatal numerical errors causing the simulation
to fail.

137

Chapter 5. Exponential Solvers for Markov Chain Models

Figure 5.7: Transition rates in Ic,(;) model. (a) as functions of membrane voltage
(Vw); (b) during action potential.

There is no clear separation between the speed of the transition rates of the
Ica(z) model (as shown in Figure [5.7). Similarly to the RyR model, the instability
occurs at the same point in time as the fastest transition rate (v;) reaches its
maximum.

To address the instability we use Rush-Larsen method for the gate model and
matrix Rush-Larsen for the Markov chain as

))
Il =570~ (5 0 qn> exp (—(0 + 0)At), (5.35a)
Ups1 =exp (DAL) i,. (5.35b)

The open probability is obtained as a product of the open state O¢, () and the
gate g as Popen = Oca(1)q-

Figure shows results of the integration of the whole cell model using the
suggested methods for RyR and I,z channels. The states of the model visually
overlap except in panels (g), (i), and (k).

5.2.4 Conclusions for RyR and I, Case Study

The MRL method for I,y combined with hybrid method for RyR allow larger
time steps (up to 190 us). The causes of the instability at larger time step sizes
are the intracellular sodium [Na*]; and potassium [K*]; concentrations that are
calculated using the forward Euler method (Figure [5.9). Because those variables
are coupled with other dynamical variables of the cellular model (ion currents) and
are non-linear, we cannot directly apply the MRL methods.

138

5.2. Application to RyR and I,y Models

60 0y — 102
40 ’:\'K RN 7 ar | 1 104 b .
| 1 @ oLt | -
o —“» \ By -2 \ f $ 10° el
] 4 3L e/ i e
: O \ sol AR |
- 2y 1‘ 1 =41 b /] I 10
40 | 4 a5k W/ e
60 - “ 4 Sef \n} { B10®
J\TFEE ﬁt = g S - 7 ° 14
R ARL. At = 35 us . 7+ 4 10
80 MRL. At = 100 ps-------- -~ 7
-100 1 1 -8 1 1 10-16 AT
1 10 100 1000 1 10 100 1000
t (ms) t (ms)
(a) (b) (c)
1 0.45 0.4 0.16
””””” |
0.9 - [0.4 11 b 0.35 —]‘} b 0.14 *“ 7
08 fr b 035 f E 03 L | 012 1 |
o707 o 03 ff .]J I
06 f - I 025 i g 0.1 —l: g
| 0.25 I B { h
© oosp B I 1 =~ o2 ﬂ 4 =~ oosf: g
04 I P o i] 0.15 w . 0.06 H X g
03 1 . i 0.1 K . 004 fl N S
o2 | L 01 i T i [
0. j\ - 0.05 -} [— 0.05 7 L 0.02 | LA
0 \ | o L J o s L ol \ Lh
1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
t (ms) t (ms) t (ms) t (ms)
(d) (e) ®) ()
05 07 0.9 —
045 [\ T 08 AT 4 ,
{0\ 06 it E)
04 f 1 \/\ 07 - ,,"/ b : 7
0.35 - | \ . 05 \ i 06 | /. - [
~ L | \ B [. / | [
S 08 \ 04l N 1 o o5t /R R /
< 025 \ 4 =] = / | 2 o [A
O { \ 0.3 i \ i 04 | / | 4 < {
S o2f] \ g ST /) % 0. oA
0.15 || \ E 02 1 \ f 03 / Lo - [
0.1 | \ 4 ’ \\ 02 | / 3 4 i / i
0.05 1 N o1 \] o1t/ - ‘ FA
| | 0 | | N 0 Ll | 05 AN I
1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000
t (ms) t (ms) t (ms) t (ms)
(h) @) @) (k)

Figure 5.8: Comparison of integrators for I,y Markov chain model: (a) action
potential; (b) Ica(z); (C) deviation from states conservation law; (d-j) states occu-
pancy in I,y MC model; (k) the gating variable ¢ controlling transition between
Mode-Ca and Mode-V,,,.

The computational cost is shown in Table The simulation was performed
for 100 beats with a cycle length of 1000 ms. During this computation the output of
the variables was omitted.

The main benefit of applying the suggested methods is the possibility of in-
creasing the time step size. This leads to a reduction of the computational cost
without running the risk that the solution becomes unstable. Our results show it
is possible to increase the time step from At = 6 us, which was the limit for the
stable solution in the forward Euler method, by using matrix Rush-Larsen methods
for the RyR and I,y models. This permits an increase in the time step size up to
At = 180 us without the loss of stability.

139

Chapter 5. Exponential Solvers for Markov Chain Models

25 ‘ ‘ 138.2 0.9
08 |
20 | g 138 |- - P
. __o7f
= 15 S 1s78} = o6 N
é B Y \E/ ~ 05} / \
= 10} L . Mt IEPE N /
+c§ T :;»s ! /
25 i 1374 & osf
At =197 ps — 02 |
OF At—195 18 187.2 - o1l
At =190 pis - A
-5 ‘ 1 137 1 0 L L
1 10 100 1000 1 10 100 1000 1 10 100 1000

t (ms) t (ms)

(b) (c)

Figure 5.9: Numerical instability caused by computation of intracellular ionic
concentrations of (a) sodium [Na*];; (b) potassium [K*];; and (c) calcium [Ca®*];

Table 5.2: Computational cost in forward Euler (FE), hybrid (hyb.) and matrix
Rush-Larsen (MRL) methods during 100 beats with cycle length 1000 ms.

At [ps] |1 6 15 35 100 180
RyR FE 2244 3.90
hyb. | 3880 650 261 1.14 0.38 0.23
I FE 68.17 11.33 451 1.90
Ca(l) MRL | 80.35 13.39 542 224 0.72 0.47
FE | 323.02 54.08
total hyb. | 337.64 57.21 22.69 9.83
MRL | 354.86 59.14 23.60 10.13 3.56 2.00

5.3 Accuracy of Numerical Methods for Markov Chain

5.3.1 Order of Approximation

The solution of a Markov chain system (5.1) is approximated using fixed-point
iterations [22] as

tn+AL

(¢ A(T)d® (7)dr.

ln

which converges to the exact solution as ¢ — oo. For the zeroth iteration (¢ = 0) we
use the state of the system at the time point t,, as @")(t,,,) = (t,) which gives
the solution of the consequent iterations as

1@(t) =it + ([Aar)aten) = (14 [Aar) e, (6372

tn+AL

A(m) /t A A(TQ)dTQdﬁ> ii(t)
(5.37b)

tn+AL
03 (thyy) = <I + /t A(T)dr +

tn

140

5.3. Accuracy of Numerical Methods for Markov Chain

and for the iteration #(¢ + 1) we can follow the scheme

et tn LAt tnt At ptpdAt
) (¢41) _<1+ /t A(ryar + | /t A(n)A(m)dndn+ (5.38)

tnt+AL

tn+AL

+...+ . / A(m)A(r) - A(rp)dTy .. .dngﬁ)ﬁ(tn).
tn tn

The precision increases with larger ¢ such that each consecutive iteration gives

one order of better approximation. The accuracy of the solution for /¢ iteration is

then O(AtY).

To find the solution accurate up to the order O(At?) we use the formula (5.37b).
First we use Taylor expansion to rewrite the matrix A(r) around a point 7 = t,, as

A(r) = A, + B o), (5.39)
dt
where A,, = A(t,) and dA,,/dt is derivative of A(t) evaluated at t = tS5t,,.
To find the result we need to integrate
tn+AL tn+AL
/ A(T)dr = (An d4, (7'2)> dr =

tn tn dt
1dA,
5 d r + O(A?) (5.40)

and

tn+AL tn+At
/ / 7—2) dTQ dTl
tn tn

tan+ At pla+A A
/ / (1) (n d nTQ) drpdr + O(AY) =
tn tn Sdt dt

tnt At ptntAt dA,, dA,, dA, ?
/tn /t lA2+A T Ty + T A, + (dt) 7’27'1](17'2(17'14‘

3

+O(AtY) = fAQ At + O(A).

Then equation (5.37b) rewrites as

03 (thyr) = [I+A At (dA)M i(t,) + O(AL?), (5.41)

d

which is used for the estimation of the the order of accuracy of forward Euler and
MRL methods. The developed methods are compared to the solution (5.41), as
for the purposes of assessing the accuracy of the methods, this equation provide
a sufficient number of terms.

141

Chapter 5. Exponential Solvers for Markov Chain Models

5.3.2 Forward Euler method

The solution of the system (5.1)) according to the forward Euler method is

Comparing this value with (5.41) we obtain the local truncation error of forward
Euler as

dVi
dt

dA,
dVi

B = [u(tu1) = e = 507 (] +|

) +O(AF?) (5.43)

where |-|| denotes the norm of a matrix.

5.3.3 Matrix Rush-Larsen

In order to find the truncation error of the Matrix Rush-Larsen method, we expand
(5.23) using Taylor expansion as

1
Rt = |1+ A, At + QAiAtQ} u(ty) + O(AF). (5.44)

Comparing this result with (5.41) we find the truncation error

1

dA,
Eygr = |u(tns1) — umpLo| = = H

dt

5 AL+ O(ALY). (5.45)

If A, = A(Vw(t,)), the chain rule for the derivation of dV,,/d¢ allows us to
rewrite this expression in the form

dA,
dVi

dVy,
dt

1
Enry, = §At2 (H

) + O(A). (5.46)

So, the difference in error of forward Euler from the MRL method is

Erg — Engr, = ;AtQ |42| +o(ar), (5.47)

5.3.4 Operator Splitting for Linear Systems

The hybrid methods use the operator splitting technique for the transition matrix of
the Markov chain. The simplest method of operator splitting is called Lie splitting.
In this method the transition matrix is split as

A=A + Ayt ...+ A, (5.48)

142

5.3. Accuracy of Numerical Methods for Markov Chain

where we use the assumption that the A can be approximated by a constant for
the duration of the time step.
Then the system (5.1) becomes

(:;:Aﬁ:(A1+A2+...+Ak)6. (5.49)
From the solution of this system we derive the following iterative scheme
Upr1 = exp (A1AL + A At + ... + ARAL) U,. (5.50)

However, sometimes it is convenient to use an approximation to the solution in
substeps as

Un1 = exp (A1 At) exp (AAt) ... exp (ARAL) U, (5.51)

which rewrites as

Uiny1/k = exp (A1 AL) 1, (5.52a)
Uny2/k = eXP (A2AL) Uy 1/k, (5.52b)
/l,_[n+1 =exp (AkAt) ﬁn—‘,—(k—l)/k- (5520)

This approximate method called Lie splitting allows us to substitute specific steps
by an alternative methods, if the solution obtained using equation (5.50) is too
costly. Hence, we call the approximate method in (5.51)) the hybrid method.

5.3.5 Truncation Error of Lie Splitting

Double Splitting

Here we analyse the truncation error for double splitting in Lie splitting, i.e. when
k = 2 in (5.48). This section is inspired by [23]. The exponential in the exact
solution in this case is

At?
exp (A1 + Ap)At) =T+ At(A; + Ay) + 5 (A7 + A4, + AA, + A)) +

At?
+ ?(Af +ATA; + AJAA + AAS + AyAT + Ay AL Ay + ASA + A+
+ O(Ath). (5.53)

The operator splitting method rewrites as
Uni1 = exp (A1 At) exp (A At) i, (5.54)

143

Chapter 5. Exponential Solvers for Markov Chain Models

Each exponential expands according to
AV 3
exp(A;At) =1+ AtA; + TAJ‘ + O(AY), (5.55)
and we multiply two exponentials for j = 0,1 to get
AtE A, 5
I+ AtA; + 7A1 I+ AtA; + 7A2 + O(At°) =
Atz 2 2 3
=I+ At(A; + A,) + 7(A1 +2A, A, + Aj) + O(At?) (5.56)

the local truncation error is found after subtracting the (5.56) from (5.53), which by
orders of At gives

O(A%) I-1=0, (5.57a)
1
O(AF) -5 ((AT+ A1 Az + A2 A, + A3) — (AT + 24,4, + A))) =

1
= §(AQAl —AA). (5.57¢)
So, that the error of double splitting is
1
Eoss = §At2 I[As, Ai]| + O(AL?) (5.58)

where we define the commutator [A,, A;] = A A, — A, A, which will become
more useful in the case of triple splitting. We notice, that the commutator is small
as long as the terms of either of the two matrices are small.

Triple Splitting

Here we analyse the truncation error for triple splitting in Lie splitting, i.e. when
k = 3in (5.48). The exponential in the exact solution in this case is

exp (A1 + Ay + Ag)At) =T+ At (Ay + Ay + Ag) +

At?
+ = (Af + A4 A2+ A Ay + AsA + AL A+ AsA + Ay A+ A3A2)
+ O(A). (5.59)

The operator splitting method rewrites as
Unt1 = exp (A1 At) exp (A2 At) exp (AsAt) U, (5.60)

144

5.4. Conclusions

we multiply all three terms expanded as (5.55) and using (5.56)) to get

2

At? At
(I + At(A; + Ay) + 7(Ai +2A,A, + A§)> <I + AtA;z + 2A§> + O(AP) =

=1+ At(A; + Ay + A3) + AP (AT + A5+ AL +2A Ay + 2A, A3 + 2A,A3)

(5.61)
And the local truncation error is then
OAt) I-1=0 (5.62)
1
O(A?) 5 [(Af + AJAy+ A A+ AyA + A2+ Ay A+ Aj A+ AyAy + A2)

—(A}+ AJ+ A+ 24,4, + 24, A5 + 24, 45)| =

1
= —[(A2A; — A1 Ay) + (A3A) — A1 A3) + (AsAy — Ay A3)). (5.64)
2
So, we find the error of triple splitting as

Foss ;M ([As, Ai] + [As, Ay] + [As, Ao][) + O(AE). (5.65)

5.4 Conclusions

This chapter described the application of exponential integration to Markov chain
models. Exponential integrators are able to increase the accuracy of the solution
and prevent numerical instabilities which appear in the forward Euler model at
relatively small step sizes due to the stiffness inherent to Markov chain models.
The solution using exponential solvers then allows larger time steps without the
loss of stability, leaving the accuracy considerations to be the only factor limiting
the time step size.

We have also estimated the order of accuracy of the forward Euler and MRL
methods, which showed first-order accuracy of both methods. The comparison
of the error estimate revealed that MRL is more accurate then the forward Euler.
However, the main advantage of the MRL method is the possibility of increasing
the time step size without the instability issues. This allows to further improve the
accuracy by developing higher order accuracy methods, for example an extension
of Perego-Veneziani (2009) [24], and Sundnes et al. (2009) [25] methods to
Markov chains, or conversion of higher-order methods (e.g. Runge-Kutta) into an
exponential scheme.

The implementation of the MRL as presented in this chapter remains a largely
manual procedure which requires a number of steps to be taken care of. To

145

Chapter 5. Exponential Solvers for Markov Chain Models

simplify this process, we have implemented the methods into the cardiac simulation
package BeatBox as described in the following chapter.

146

Chapter 6

Exponential Solvers for Markov
Chain Models in BeatBox

In the previous chapter we have developed exponential integration methods, which
address the instability issues and provide more efficient solution for Markov chain
ion channel. In order to avoid separate implementation of the solver for each ion
channel, we have implemented the exponential integration methods into a cardiac
simulation package BeatBox. This chapter describes the usage of those methods
as well as the format of specific C-functions.

BeatBox is aimed for simulations of the heart. Mathematically we can describe
the heart by means of equations characterising the reactions in individual cells,
combined with the characteristics of the diffusion through the cellular tissue. Hence,
this system is called reaction-diffusion system. Section[6.1]gives a formal definition
of the reaction system and its division into subsystems according to the form of
ordinary differential equations (ODEs) to the extent necessary to understand
the description of cellular models in BeatBox. Section describes numerical
methods used for solving of the cellular modules in BeatBox.

Section gives a brief overview of the usage of the BeatBox package. A
detailed description can be found in the BeatBox documentation [26] and in the
McFarlane’s (2010) thesis [27]. Section describes the implementation of the
reaction system into BeatBox in two different ways — as so-called rhs (right-hand
side) modules and ionic modules. Section[6.5] describes the procedures within
the euler and the rushlarsen devices used for the solution of rhs and ionic
modules respectively. Section specifies the format of structures in the ionic
modules as used by so-called rushlarsen “device” by the matrix Rush-Larsen
method (a definition of “device” can be found on page [153). Section shows
some of the results of the simulations using the extended version of BeatBox.

147

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

The path in the filenames in this section is given relative to the BeatBox
repository.

In order to be able to describe the implementation we need to describe the
pre-existing state of BeatBox. This text provides the minimal context sufficient to
explain the new contributions. The modifications of the old code and newly created
parts of BeatBox package are marked with a * sign in the text of this chapter.

6.1 Definition of a Reaction System

The cardiac cells are described by a systems of ODEs in a form

du -

—

where f(#) is a function that describes the kinetics of the system. The vector 4
contains the dynamical variables of the system.

The dynamical variables can be divided according to their role and form as
i = |v,7,7,

where v represents Hodgkin-Huxley type gating variables of ion channels, i repre-
sents non-gating “other” variables such as membrane voltage V., ionic concentra-
tions etc., and 2 represents Markov chain variables describing the ion channels.

We divide the Hodgkin-Huxley type gating variables v into two groups according
to the dynamical variable which the gates depend on, as

v=[a,7|,

where « represent gates dependent on the membrane voltage V,,, and 7 represent
gates dependent on “other” variables y except voltage.

If the cellular model has more than one Markov chain, the variable ' is com-
posed of the individual Markov chain variables as

Z=2,2,..., 2],

9

where each z* corresponds to one ion channel.
The ODEs of the whole reaction system (6.1) is reformulated in terms of specific
type of equations for each of the groups as

U = (V) (1~) — B (Vi (6.23)
W @)~ P, (6.20)

148

6.2. Solution of Reaction System

dg _ T = = o -

e o(W, Z, 7, 2), (6.2c)
dz o ok
el 7 2
= A, (6.2

where « and 3 represent opening and closing transition rates of Hodgkin-Huxley
type gating variables respectively. We denote the gates dependent on voltage
by a superscript i = 1,2,..., N, and gates dependent on other variables by a
superscript j = 1,2, ..., N,.. Matrices A"(j) contain transition rates of the Markov
chain k = 1,2,..., N,,. The function ¢ represents the kinetics of the non-gating
“other” dynamical variables.

The methods for solving each of the individual groups of the system (6.2) were
described in different parts of the thesis. For the readers’ convenience we present
the formulas once more in the following section.

6.2 Solution of Reaction System

6.2.1 Tabulation

The cellular models involve functions in a form «(r(¢)) dependent on a dynamical
variable r. An example of this type of functions are the transition rates of gating
variables a(V,(t)) and 5(V(t)). The value of these functions have to be found
multiple times during the simulation. In many cases, these computations are done
for the same, or a very similar value of the input variable r.

To avoid such computationally expensive calculations at each time step we use
a process known as tabulation. This means that we prepare a look-up table of
functional values of x(r) for a grid of the “control” variable r before starting the
simulation. During the simulation we fetch an approximated functional value from
a specific entry in the look-up table as will be described below.

Before discussing the tabulation in more detail, we choose a scaling function,
which maps the control variable on the tabulation scale 7 = ¢ (r), for example an
identity function in the simplest case, or a more complicated logarithmic function
¢ = In. The tabulation is done for a regular grid defined as 7; = Tyin + JAT for
table entries j = 1,2, ..., k. Constant 7., is a lower limit of tabulation. The tables
are filled up with the corresponding values of functions x; = x(7;).

Assuming a sufficient detail of the grid and the continuity of the tabulated
function, we approximate the functional value at time step number n by the value
in a table entry with index ¢(n) as x(t,) ~ x¢™ where the index is found as

o T(tn> - 7;nin
¢(n) = round (AT) .

149

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

In the simplest case the scaling function is an identity function » = 7 and the
grid of the control variable is linear. This is used in the case of voltage-dependent
functions x(V.,(t)) where the control variable corresponds to the tabulation variable
T=r=V,.

If the control variable r is an ionic concentration it is sometimes more convenient
to use a tabulation on a logarithmic grid. This means that the scaling function is a
logarithm and the tabulation variable 7 = In(r).

Minimal and maximal limits of tabulation on the logarithmic scale are deter-
mined as Tnin = In(rmim) and Th.x = In(rnay). The appropriate table increment
AT given on the logarithmic grid is found from desired number k of entries in the
tableas

1
AT = %ln (Tmax) s

Tmin

and the table index is obtained as

= o (D) [L ()]

The entries of the transition matrix of a Markov chain are functions of dynamical
variables. Normally, they depend on a single variable, in which case the tabulation
described above is a straightforward task. However, some transition rate matrices
depend on multiple variables, for example voltage and calcium concentration as
in A*(V,,, [Ca®"];). The tabulation of such transition rates matrices as a whole is
possible, but expensive on computational time and memory resources, which are
required to fill multi-dimensional tables (in our example two dimensional).

An alternative approach is to use an operator splitting method and split the
transition matrix into a sum of a number of “submatrices” depending on a single
control variable. If, in our example, the transition matrix has a sum form as

A (Viy, [Ca™];) = AT (Vi) + A5([Ca®"];) (6.3)

then the “submatrices” A*(V,,) and A%([Ca*"];) can be tabulated independently.
This way we get the voltage-dependent “submatrices” as A¥(V,.5™) ~ A% (Vyu(t,))
on a linear grid of voltage V.., and A%([Ca2"],"") ~ A%([Ca®";(t,)) on a logarith-
mic grid of calcium concentration [Ca®*];.

The operator splitting method is not universal, because it is not guaranteed
that the transition matrix can be split into a sum of “submatrices” dependent on a
single control variable, for a general case, however, it could be done in the cases
we have considered. The operator splitting technique for Markov chain model was
described in Section5.3.4]

150

6.2. Solution of Reaction System

6.2.2 Forward Euler Method

The simplest time stepping method is known as forward Euler. The forward Euler
method is based on the time discretisation At = t,,.; — t,,. The forward Euler
method for the system (6.1) reads as

—

Up g1 = Uy + At f (1) (6.4)

where w1 ~ u(t,11) is @ numerical solution at time points t,, = t, + nAt with a
small time step At. The iterations start from a given initial state of the system
u(to).

The forward Euler method can be applied to all of the groups of the divided
system described by equations (6.2). The particular time-stepping scheme is
obtained by substituting the f(@) in equation with the right-hand side of the
corresponding equations for each of the groups as

Wiy = W+ At [0 (V) (1= w)) = B (V)] (6.52)
Thor = o+ At [(5,) (1 — a3) — B ()] |, (6.5b)
Gt = G + O [$(W, Fny s 20)] (6.5¢)
=2 At AN (6.50)

The accuracy of the forward Euler method is of O(At). As the At — 0 the solu-
tion converges to an exact solution. The cost of convergence is the computational
time required for the solution, so a trade-off between the accuracy and the speed
of the computations has to be found.

6.2.3 Exponential Integration for Hodgkin-Huxley Type Gates

Exponential integration methods for the Hodgkin-Huxley type gate model were
proposed by Rush-Larsen [17]. Their scheme assumes that the transition rates
« and [vary slowly and can be “frozen” during one time step, i.e. assumed to
be a constant. This approximate system system can be solved analytically. The
analytic solution of the equation was described in detail in Section [3.2.3] with the
final result in equation (3.131).

This result can be used to deduce an iterative numerical method, here pre-
sented for gating variable v* which corresponds to any of the Hodgkin-Huxley
gates. Recall that v = [#, w], and the kinetics of the system are described by the
equations and respectively. The exponential integration scheme then

151

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

reads as

Q _ al(gn) . &Z(gn) —Ui ex o Oéi — i/ —
o = T~ | e~ el

where o'(3,) and 3¢(y,) are the values of the transition rates “frozen”, i.e. consid-
ered constant at their values at the beginning of the time step. We can include the
exponentials into the definition of the coefficients as

(1= exp [~ (0’ (@) + B'(F.)AL)) (6.7a)

)
+ (7)) At (6.7b)
The integration method for the two groups of gating variables (6.2b), (6.2a) is

Wiy = a' (V™ At) — BV, S, Aty (6.82)
2y = & (§, At) — U (§,, At)zi, (6.8b)

where the o' and b’ for gates w* are tabulated, and o’ and ¥’ for gates 27 are
computed on-the-fly, i.e. during the simulations.

6.2.4 Exponential Integration for Markov Chains

We have suggested and described an exponential integration scheme for Markov
chains called matrix Rush-Larsen (MRL) in the section[5.3.3|(final equation (5.24)).
Briefly, we assume that the transition matrix of the Markov chains can be “frozen”
for the duration of one time step. This yields a linear system of ODEs with constant
coefficients which can be solved analytically. The analytic solution can be used to
develop an iterative integration scheme. This scheme for our system A*(7,) as
defined in equations reads as

oy =exp (AM(F)AL) 2 (6.9)
The exponential operator matrix can be transformed to
T* (7, At) = exp (A*(F,)At) = VE(G,) exp [A*(7) At WT' (), (6.10)

where A* = VFA*WT" is an eigenvalue decomposition of the transition matrix.
The A" is a diagonal eigenvalue matrix (with the eigenvalues on the diagonal).
The V* is the right eigenvector matrix (the columns contain the corresponding
right eigenvectors in the same order as the eigenvalue matrix) and W* is the left

152

6.3. Running BeatBox Simulation

eigenvector matrix (the columns contain corresponding left eigenvectors). The
eigenvectors are scaled to give an identity matrix I = VEWT",

For the transition rates matrices dependent on a multiple variables such as in
the formula (6.3), the iterative scheme uses operator splitting method as

ESH/Q =exp (A’f(\/mf(n))At> P

n’

(6.11a)
anH =exp (Ag([Ca“]ﬁ("))At) Eﬁ—i—l/? (6.11b)

Before the simulation starts we create look-up tables for the eigenvalues and
eigenvector matrices of A* and A%. The tables are then used in the numerical
scheme similarly to (6.10).

If the tabulation is unusable due to the complicated dependence on multiple
variables, as discussed before, we can still do the eigenvalue decomposition on-
the-fly. This might be beneficial when the system is stiff and the forward Euler
method leads to numerical instability, because the possible increase in time step
size might outweigh the cost of eigenvalue decomposition at each time step.

6.3 Running BeatBox Simulation

BeatBox is a simulation environment for biophysically and anatomically realistic
simulations of reaction-diffusion systems such as cardiac tissue. BeatBox is
implemented in C language and the source code is freely available [28]. The
distribution of the package is allowed under the conditions of GNU GPLv2 license,
which guarantee the freedom to share and adapt the software.

BeatBox combines numerical methods and models to simulate cardiac exci-
tation in a single cell and as its’ spatial propagation. The spatial models include
regular 1D thread, 2D sheet, and 3D box or even anatomically detailed geometry
provided from experimental data.

The design of BeatBox follows a modular paradigm which allows the construc-
tion of a simulation protocol according to specific requirements. The numerical
methods for a specific purpose are implemented within modules called “devices”.
For instance a device can serve for a numerical integration of a reaction system,
a computation of the diffusion within the tissue, or a data output of a particular
dynamical variable into a text file.

The BeatBox simulation is launched from a command line interface by call-
ing the BeatBox executable. The BeatBox executable requires a command line
argument <bbs-script> which is a plain text bbs script file. The bbs script is a con-
figuration script in a specific format. BeatBox reads the bbs script and constructs
the simulation according to the commands and specific calls of the devices.

153

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

TR

Samp]e

NSV

Figure 6.1: Conceptual “ring of devices”. The ring is constructed from the instruc-
tions provided in the bbs script. Each revolution of the ring corresponds to one
time step.

BeatBox processes the bbs script to set up a “ring of devices”, i.e. a conceptual
arrangement of the devices as shown in Figure[6.1] The devices in the ring are
executed one by one in a loop. Each revolution of the ring corresponds to one
time step in the simulation. The same device can be present in the ring several
times. The criteria for the execution are set in the bbs script independently for
each instance of a device.

The execution of a device can also be conditional to a particular spatial position
of the cell within the tissue, and specific time of the simulation.

Section specifies the parameters of the two most commonly used devices
for the computation of reaction system — euler and rushlarsen. A scripting guide
describing how the bbs script is processed and including details about generic
device parameters can be found in the BeatBox documentation.

6.4 Definition of Reaction System in BeatBox

BeatBox offers a framework to define the reaction system of cellular models in two
different ways — as rhs or ionic modules. Those modules are not to be confused
with BeatBox devices because they do not implement numerical methods for
the simulations. Instead they provide the description of the characteristics of
the reaction system in C-functions. The input and output of the C-functions
implemented within the rhs and ionic modules are understood by the devices
intended for the solution of the reaction system.

Beside the C-functions describing the characteristics of the reaction system,
the rhs and ionic modules implement a C-function for initialisation, which ensures
that all data structures used during the integration are defined properly (for correct
sizes of arrays etc.).

154

6.4. Definition of Reaction System in BeatBox

6.4.1 rhs Modules

The rhs (right-hand side) modules implement the right-hand side of the system
described by equation (6.1), where the kinetics of all dynamical equations are
within one C-function, which returns an increment of all the variables. So, the rhs
modules do not provide any specification of the type of variables.

The rhs format is quite generic and straightforward to implement. However,
the rhs format lacks information about the role of the variables. Therefore, it does
not allow the possibility of exploring “hybrid” integration methods which treat the
variables by a different scheme according to their role and a form. This limitation
is addressed in ionic modules described in the following subsection.

For illustration a minimal working example of a rhs module for the Hodgkin-
Huxley squid axon is listed in the Appendix section[D.3.1]

6.4.2 ionic Modules

An alternative approach for defining the reaction system of cellular models is to
divide the whole system into subsystems according to specific properties and a
form of the equations describing the system.

The division which is used by ionic modules, corresponds to the grouping
as described in (6.2), i.e. tabulated @ and non-tabulated # gating variables,
“other” variables 3, and Markov chains z. To form an ionic module we need to
implement a number of C-functions, whose formal arguments are understood by
an appropriate integration device for ionic modules.

The non-gating “other” variables are implemented in a similar form to rhs
modules as right-hand sides of the subsystem in one C-function. The
same C-function also updates the values of the transition rates o and g* of gates
dependent on “other” variables except voltage (6.20).

The voltage-dependent transition rates of the gating variables specified by
equation are implemented in another C-function within the ionic module.
This can also include other voltage-dependent functions within the cellular model.
This C-function is used before the integration starts to tabulate the values of
the voltage-dependent functions for a grid of membrane voltage as described in
Section

The ionic module does not have to implement formulas to obtain the time
derivative of gating variables explicitly, instead they are implied by the standard
form of the equations and known transition rates for a particular state of dynamical
variables.

A minimal working example of the Hodgkin-Huxley squid axon model as ionic
module is listed in the Appendix section[D.3.2

155

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

6.4.3 Extension of ionic Modules ¥

Previously, no specific C-functions to describe Markov chains were present in
ionic modules. When the user wanted to employ Markov chains in the cell model,
the formulas for the right-hand side of the time derivative had to be implemented
within the C-function for “other” dynamical variables. Then the Markov chains were
solved by explicit methods used within the integration device. However, explicit
methods might suffer from numerical instabilities in stiff models.

We have implemented the exponential solver for Markov chains into BeatBox
by modifying the format of ionic modules. Here we describe the details of the
implementation.

The formal description of an ionic module contains tabulated @ and non-
tabulated 7 gating variables, “other” variables 7, and possibly a number of Markov
chains 7*. Each of these Markov chains in the ionic module (as specified by
the equation (6.2d)) are split into a number of subchains according to the control
variable on which the transition rates depend (as in operator splitting in equation
(6.3)). The ionic module implements a separate C-function of each subchain to
fill the entries of the corresponding transition sub-matrix. In most cases the Markov
chain depends on a single control variable, and therefore such system contains
only a single subchain.

A minimal working example of the Hodgkin-Huxley squid axon model with the
ion channels converted into Markov chain description can be found in the Appendix
Section :

6.5 Solution of Reaction System in BeatBox

The reaction system is defined by the rhs and the ionic modules. BeatBox
can include a number of devices, to solve the modules by specific numerical
methods. In this section we describe a euler device to solve rhs modules and
a rushlarsen device to solve ionic modules. Both devices are described from
the user perspective by describing the parameters of the devices which are called
from the bbs script.

6.5.1 euler Device

Overview of the euler Device

The euler device is the simplest integration device for solving the rhs modules.
Recall that the rhs modules implement formulas for the time derivative of all
dynamical variables into one C-function which follows a certain format. This C-
function is called during the time-stepping by the euler device. Another C-function
is used for the initialisation of the device’s data structures with correct properties.

156

6.5. Solution of Reaction System in BeatBox

Table 6.1: Parameters to set up euler device in bbs script (adapted from [26]
Ths. h).

type name description

real ht time step duration.

str ode name of cellular model in rhs format.

int rest number of steps to approximate initial conditions of the

dynamical variables (resting state). When the value is set
to zero (0), the default initial conditions from the module
are used.

codeblock par model-dependent parameters of rhs module.
The parameter is set by a codeblock in a form
par={<parameter>=<value> ...} separated by blank
spaces if more than one parameter is specified.

The simulation protocol is set up using bbs script. A summary of the relevant
parameters that can be used in a call of the euler device is shown in Table [6.1]

Parameters of the euler Device

The parameter ht defines a duration of one time step used in calculations using
the forward Euler. This corresponds to the At in the equation (6.4).

The parameter ode is a name for the rhs module that implements the cellular
kinetics. This module is used for the simulation. The ode model has to follow the
rhs format.

The parameter rest is used when the device determines the initial conditions of
the dynamical variables. The device runs the simulation with the initial conditions
specified in the module code for the number of steps specified in rest. This aims
to approximate steady-state conditions.

Model dependent parameters of a rhs module are passed to the euler device
through the par bbs script parameter. The assignment has to follow the format
{<parameter>=<value>} (within curly brackets {} as shown). When multiple pa-
rameter are assigned they must be all specified within the same curly brackets and
each assignment of them must be separated by a blank space (such as space, or
newline).

Running euler

The euler device can be included in the “ring of devices” of BeatBox simulation.
An example usage of the euler device can be found in the bbs script listed in
Listing[D.13] The parts relevant for the call of the euler device are:

Listing 6.1: Call of euler device with parameters within bbs script.

def int neqn 4; /* number of layers of state variables */
def real dt 0.01; /* time step */
/* Reaction substep */

157

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

euler v0=0 vli=neqn-1 ht=dt ode=hh par={IV=04;};

This bbs script contains several generic device parameters that specify the op-
tions for the execution of the device. More details on the generic device conditions
can be found in the BeatBox documentation.

6.5.2 rushlarsen Device

Overview of the rushlarsen Device X

The rushlarsen device is an integration device for the ionic models. The. ionic
models do not implement the formulas for the time derivative of all dynamical
variables as rhs, instead they contain a number of C-functions for computation of
voltage-dependent transition rates and functions, computation of time derivative
of non-gating variables and a C-function for initialisation of the device’s data
structures with correct properties. The time derivatives are defined explicitly only
for “other” variables, and in other cases they are implied from a standard form for
the particular type of equations.

The formal parameters the C-functions implementing Markov chain ion channel
models and their functionality are specified in this chapter including the changes
for the implementation of exponential solver of Markov chains. The Markov chain is
divided into subchains according to the control variable of transition rates matrices.
The ionic model was extended by an individual C-function to fill up the transition
matrix corresponding to a subchain of the Markov chain model.

In the rushlarsen device the C-functions calculating the transition rates matri-
ces are used before the simulation starts. After the transition rates matrices are
filled up, an exponential operator T'(y;, At) is tabulated for a particular value of time
step using the eigenvalue decomposition of the transition rates matrices. During
the simulation a particular entry of the tabulated matrix is fetched depending on
the value of a simulated control variable at the particular time step.

The simulation protocol is set up using bbs script. A summary of relevant pa-
rameters that can be used in a call of the rushlarsen device is shown in Table
The horizontal lines separate corresponding parameters to the euler device (as
described in Table from the specific parameters for the rushlarsen device.
The second horizontal line separates new parameters used for the integration of
the Markov chains.

Parameters of rushlarsen Analogous to euler Device

The following parameters of the rushlarsen device are analogous to the euler
device.

The parameter ht defines the duration of one time step used in forward Euler
and Rush-Larsen calculations.

158

6.5. Solution of Reaction System in BeatBox

The model of cellular kinetics is passed to the rushlarsen device through the
string parameter ionic. The module has to follow the ionic format.

Module dependent coefficients in the model equations of the ionic model can
be set using the bbs script parameter par. This assignment is done through a
block of code in a form <parameter>=<value>. The <parameter> is a name of the
coefficient specific to the particular ionic module (specified in ionic). If more
than one parameter is specified all specification must be within the same curly
brackets and each assignment must be separated by a blank space.

The rushlarsen device can approximate the resting state of the variables to
be used as initial conditions. This is done by simulation for the number of steps
specified in the rest parameter.

Table 6.2: Parameters to set up rushlarsen device in bbs script (adapted from
[26] rushlarsen. c).

type name description

Analogous to euler

real ht time step duration.

str ionic name of the cellular model in ionic format.

int rest number of steps to approximate initial conditions of

the dynamical variables (resting state). When the
value is set to zero (0), the default initial conditions
from the module are used.

codeblock par model-dependent parameters of ionic module.
The parameter is set by a codeblock in a form
par={<parameter>=<value>} separated by blank
spaces if more than one parameter is specified.

Specific for rushlarsen

str order the order of execution of substeps: one of tog,
tgo, totg, where the substeps are done consecu-
tively: t stands for table look-up, o stands for “other”
variables and computation non-tabulated gates, g
stands for tabulated gating variables.

str exp_ngate defines the method of computation of non-tabulated
gates: non-zero for exponential (Rush-Larsen); zero
(0 default) for forward Euler method.

real Vmin, Vmax minimal and maximal value of voltage for tabulation.
Default is -200, 200 respectivelly.
real av voltage-step for the tabulation of gating transition

rates. Defaultis 0.01. Value 0.0 disables tabulation.

Specific for rushlarsen, related to Markov chains k

str exp_mc specifies the method of integration of Markov chains:
mcfe forward Euler, tabmrl MRL with tabulation,
ntabmrl MRL without tabulation (MRL only if sub-
chain has a control variable, otherwise uses forward
Euler)

159

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

Specific Parameters of rushlarsen

The following part describes bbs script parameters specific to the rushlarsen
device i.e. parameters which do not have an analogy in the euler device.

The computation of the different groups of dynamical variables (i.e. tabulated
and non-tabulated gates, and “other” variables), is done consecutively. The
particular order in which the computations are performed can be controlled by
the order parameter. The order can be set to the value of one of the following
codes: tog, tgo, or totg. The order of letters in the codes corresponds to the
order in which the particular group is computed. The letter t stands for finding the
reference to a particular entry in a look up table of the tabulated voltage-dependent
gates. The letter g stands for computing of the tabulated gates. The letter o stands
for computing of the remaining variables i.e. non-gating variables followed by
computing of non-tabulated gating variables and Markov chain variables.

For example, when the code totg is specified, the computation will be done in
the following order:

1. tabulated gates, followed by the computation of

2. non-gating, non-tabulated and Markov chain variables, and then
3. tabulated gates again (now for updated values of dynamical variables), and
finally the computation of
4. tabulated gating variables.
This is repeated for each time step during the whole simulation.

The parameter exp_ngate is used to choose the integration algorithm of the
non-tabulated gating variables. The value 0 (default) stands for computation by
forward Euler. If the value is non-zero, the non-tabulated gates are computed
using the Rush-Larsen technique. In cases when the non-tabulated gates are not
the source of numerical instability the forward Euler method is faster, because it
avoids computationally expensive calculation of exponentials.

Three parameters are used to define the tabulation of the transition rates of
the voltage-dependent gate variables. Specifically those parameters set up the
lower and upper limits of the tabulation by Vmin (default -200) and Vmax (default
200) respectively, and the step in the voltage grid by dv (default 0.01).

If the value of dv=0.0, the tabulation is disabled and all transition rates are
computed on-the-fly. If the value of membrane voltage exceeds the limits of
tabulation, the transition rates are found on-the-fly, until the value of voltage is
restored within the limits of the look-up table.

Specific Parameters of rushlarsen Related to Markov Chains

The default method for the integration of Markov chains can be provided in a
bbs script using a parameter exp_mc. The possible values of this parameter are
mcfe for forward Euler, tabmrl for MRL with tabulation, and ntabmrl for MRL

160

6.6. Specification of ionic Modules

without tabulation. However, due to specific properties of a particular subchain, the
method for the integration of the subchain is determined during the computation.
In a standard situation, the subchain is integrated by the default method. If the
subchain depends on multiple variables, then the tabulation cannot be used and
the subchain is computed on-the-fly using forward Euler method.

Running rushlarsen

The rushlarsen device can be run during simulation in BeatBox by setting up a
corresponding line in a bbs script. An example setup of rushlarsen device can be
found in the bbs script listed in Listings [D.19] and [D.23|for a case with and without
Markov chain models. The relevant parts are:

Listing 6.2: Call of rushlarsen device with parameters within bbs script.

def int neqn 4; /* number of layers of state variables x/

def real dt 0.01; /* time step */

/* Reaction substep */

rushlarsen v0=0 vl=neqn-1 ht=dt ionic=hh52 order=tog
exp_mc=ntabmrl par={ht=dt};

6.6 Specification of ionic Modules

The ionic modules split the system of equation describing the kinetics of the
reaction system according to their type and other characteristics as discussed in
section[6.4.2

This section specifies relevant structures and C-functions within the new format
for ionic module. The new ionic format includes a separate definition of Markov
chain models to allow their integration in the rushlarsen device using forward
Euler and exponential methods. This section also specifies some of the features
of the rushlarsen device which is used for the integration of ionic modules.
The rushlarsen device performs the time integration of ionic cellular models
as explained in the previous section. The section is divided into the description
of the data structures and C-functions that operate on the data structures. The
C-functions are implemented within the cellular modules.

A minimalist example of ionic code is shown in Appendix sections [D.3.2]and
D.3.3

6.6.1 Data Structures

The implementation of data structures in BeatBox is hierarchical. A diagram in
Figure [6.2] shows the data structure used by the rushlarsen device. The top
level structure STR contains an element I which refers to an underlying structure
ionic_str. The structure ionic_str points to channel str called channel which
contains Markov chains. Each Markov chain is divided to a number of subchains of

161

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

int whichorder ! IonicFtab* ftab int dimension
ionic_str I IonicFddt* fddt int num_sub

real*x u int no subchain_str * subchain N
real* du int nn

real* nalp int nt

real* nbet int ntab

int nV int V_index T B M
*
real one_o_dV Par p « (block par) .ran's ates a:LLt trans_rates_mat
real* tab Var var lnt11;C9ntro
real tmin
real* adhoc channel_str* channel —1
. real tmax
real ht int nmc :
oS . real tincr
str ionic S5t o
- o int scale
str order

str exp_ngate
real Vmin, Vmax
real dV

int rest

Name exp_mc
real* chains
int which_exp_mc
C

Figure 6.2: Data structures in rushlarsen device. Elements accepted from bbs
script (red font); elements specifying underlying substructures (blue font, with
arrow); new elements introduced for the implementation of Markov chain models
(grey background).

type subchain_str to which the channel str points through the element named
subchain.

Some elements of the rushlarsen data structure STR can be provided through
parameters of bbs script (in red on Figure 6.2). The name of the parameter of
bbs script, which initialises an element of the structure, is normally identical to the
variable name of the element (except p initialised by par parameter). Most of the
parameters are not required in bbs script, and when they are missing the element
adopts its default value.

Detailed information about the elements initialised from bbs script can be found
in Table 6.2l The other elements of the data structures are used to act in internal
tasks of the rushlarsen device and hold intermediate results, look up tables, or a
translation of bbs script variables in a different type.

In this subsection we describe the hierarchical structure from bottom up.

Elements of subchain_str *

The lowest level of the data structure is the subchain_str which describes the
subchains for the operator splitting of a Markov chain. Table describes the
elements of the structure.

The element trans_rates_mat is a pointer to a C-function <ionic>_<subchain>
which computes the transition matrix of the subchain. The functionality of this
C-function is described in the following subsubsection.

162

6.6. Specification of ionic Modules

Table 6.3: Elements of a data structure subchain_str describing subchains of a
Markov chain.

type name description

TransRatesMat* trans_rates_mat C-function computing transition matrix

int i_control index of control variable for tabulation in
u array

real tmin minimal value for tabulation

real tmax maximal value for tabulation

real tincr increment in the tabulation

int scale 0 for regular grid, 1 for logarithmic (must

be reflected in TransRatesMat)

The element i_control is an index of the control variable within the state array
u which controls the transition matrix. For instance, if the transition matrix depends
on the membrane voltage, and the membrane voltage is the first element of the
state array u, than the i_control=0.

A negative value of the i_control is accepted and means that the tabulation
for the subchain should be disabled. In this case the transition matrix is computed
on-the-fly. When the transition matrix depends on more than one variable then the
i_control should be always set to zero, as the tabulation in a multiple variables
grid is not allowed in BeatBox.

The scale of the tabulation variable is determined by the element scale. A
value of 0 means a regular grid and a value of 1 means a logarithmic grid. The
tabulation for the regular grid and the logarithmic grid was described in the Section

The elements tmin and tmax specify limits of the tabulation and the element
tincr is an increment on the tabulation grid for the control variable. The increment
in the table tincr is given on the corresponding scale i.e. on the regular grid for
scale=0 or logarithmic grid for scale=1. The tincr has to be strictly greater than
0.0, otherwise, the tabulation is disabled.

Elements of channel_str *

The subchains are part of a data structure channel str. The maximum number
of channels is set up through a macro MAX_SUBCHAINS within src/channel.h file
and is currently set to 4 subchains. Elements of the channel str data structure
are summarised in the Table 6.4l

The number of the subchains in a Markov chain is specified by the element
num_sub. The element subchain points to the first subchain of the channel. The
element dimensions specifies the dimensionality of the channel. All the subchains
must have the same dimensionality.

163

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

Table 6.4: Elements of data structure channel str of Markov chains.

type name description
int dimension dimensionality of the model
int num_sub number of subchains

subchain_str * subchain subchains of the model

Table 6.5: Elements of data structure ionic_str of an ionic module (adapted
from [26]).

type name description

TonicFtabx ftab C-function of voltage-dependent functions that are
tabulated

IonicFddt* fddt C-function of right-hand sides of non-gating dynami-
cal equations

int no number of non-gating (“other”) variables

int nn number of “non-tabulated” gating variables

int nt number of “tabulated” gating variables

int ntab number of transition rates and voltage-dependent
functions that are tabulated

int V_index index of the voltage in the state vector

Par p vector of model elements

Var var description of dependent elements

Related to Markov chains

channel str * channel structures with definition of Markov chains
int nmc number of the Markov chain models

int nmv number of variables in all Markov chains

Elements of ionic_str

An ionic module can include several Markov chains referred from an ionic_str
data structure. The structure ionic_str contains elements describing characteris-
tics of the ionic module. A specification of the data structure ionic_str is found
in Table 6.5

The element ftab refers to C-functions computing the “tabulated” transition
rates of gating variables. The element £ddt refers to a C-function which computes
the time derivative of non-gating “other” variables and also the transition rates of
“non-tabulated” gating variables.

The number of the dynamical variables in each of the groups is specified by
no, nn, nt for number of “other” variables, “non-tabulated” and “tabulated” gating
variables respectively.

The number of tabulated functions is specified by the element ntab. This
includes the transition rates of “tabulated” gating variables; it can also include other
voltage-dependent variables.

The index of the membrane voltage is specified by V_index.

164

6.6. Specification of ionic Modules

Table 6.6: Elements of data structures of rushlarsen device (adapted from [26]).

type name description

int whichorder numeric code of the order of execution

ionic_str I structure of ionic module

real* u array of dynamical variables

realx du array of the time derivatives of u

realx nalp array of non-tabulated transition rates «

real* nbet array of non-tabulated transition rates

int nV number of rows in the table

real one_o_dV inverse of voltage increment in tabulation

realx* tab look-up table of values of functions

realx* adhoc array of ad hoc values of tabulable functions

Related to Markov chains ¥

realx chains pointer to transition rates matrices of Markov
chains

int which_exp_mc numeric code of integration method for

Markov chains (assigned to enumerated
type 0: mcfe, 1: tabmrl, 2: ntabmrl)

Dependent parameters are given by structure var which contains the conditions
of specific parameters that depend on spatial dimensions of the tissue.

A structure of module dependent coefficients is given by the element p that
refers to a data structure defined within a particular ionic module.

The element nmc specifies a number of Markov chain models in the module.
The element nmv specifies the total number of variables in all Markov chain models.

The element channel is a pointer to the first Markov chain ion channel structure
in the model.

Elements of rushlarsen Data Structure

The ionic_str data structure is an element of rushlarsen data structure STR. This
structure contains elements which help to set up the simulation protocol within
the rushlarsen device and saves intermediate results of the calculations. The
summary of the elements of STR structure is given in Table

The element whichorder contains the translation of the string order accepted
from bbs script into a numerical value. The value is set depending on the parame-
ters of order and exp_ngate in the bbs script for rushlarsen.

The element I refers to a data structure ionic_str which specifies the cellular
module, as was described above.

The array u contains the vector of all dynamic variables of the ionic model. The
array du contains time derivative of “other” non-gating variables. The gating and
Markov chain variables are excluded from the array du, because they are computed

165

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

separately from the “other” and non-gating variables and the corresponding entry
in the vector of dynamical variables u is updated direcily.

The arrays nalp and nbet contain non-tabulated transition rates for opening
and closing transitions respectively.

The array tab contains the table of tabulated transition rates. The element nv
specifies the number of rows in the look-up table. The one_o_dvVv is an inverse of
voltage increment used in the tables. The array adhoc is used for the computa-
tion of tabulated functions when the value of membrane potential exceeds the
precomputed limits.

The array chains contains the tabulated matrices of Markov chains. Depending
on the method used for a particular subchain, it contains either the transition
matrix A for forward Euler computations, or the exponential operator matrix T' =
V exp (AAt) WT for matrix Rush-Larsen integration.

The element which_exp_mc is used to convert the name of the integration
method of the Markov chain models into a numerical code. The value 0 corre-
sponds to computation by forward Euler, value 1 to the computation by matrix
Rush-Larsen with tabulated transition rate matrices, and value 2 corresponds to
matrix Rush-Larsen with computation of transition rate matrices on-the-fly. The
value is determined automatically from the code provided by bbs script in the
parameter exp_mc. If the subchains are not to be tabulated e.g. due to the de-
pendence on multiple variables, then the corresponding submatrix is computed
on-the-fly.

6.6.2 C-Functions and Template Macros

The data structure of the rushlarsen device refers to a number of C-functions
defined within ionic modules. This subsection describes the C-functions to
provide the necessary information for implementation of ionic modules.

The implementation of C-functions used by rushlarsen device is facilitated
by template macros available from src/ionic.h in the BeatBox repository. The
macros are expanded by C preprocessor (cpp) during the compilation of the
BeatBox source code.

The first C-function called by the rushlarsen device is the create_<ionic>
where <ionic> is the name of the model. The create_<ionic> is called only
once and its purpose is to allocate memory of the data structures for a particular
model and assign their entries to values provided from the bbs script or their
default values. The input arguments of create_<ionic> C-function are specified
in Table 6.7

The IONIC_CREATE_HEAD(<ionic>) and IONIC_CREATE_TAIL(<ionic>) macros
define an IonicCreate C-function. Once the macros have been expanded the
name of the C-function becomes create_<ionic>.

166

6.6. Specification of ionic Modules

Table 6.7: Input arguments of the C-function to initialise an ionic module
(IonicCreate create_<ionic>(ionic_str *I,char *w,real **u,int v0))

type name description

ionic_str* I pointer to ionic structure to be initialised
char * W parameters to be assigned from script
real ** u pointer to array of states variables

int v0 number of entries in states array

The C-function fddt_<ionic> is a C-function computing the time derivative of
the non-gating (“other”) variables as defined on the right hand side of the equation
and computing the non-tabulated transition rates of gates corresponding to
o’ and /37 in equation (6.2b). The input arguments of the fddt_<ionic> C-function
are specified in Table 6.8

The macros IONIC_FDDT_HEAD(<ionic>,NV,NTAB,NO,NN) and
IONIC_FDDT_TAIL(<ionic>) define an IonicFddt type C-function. Once the macros
have been expanded the name of the C-function becomes fddt_<ionic>. The
variables in the template of the macro are the numerical values of the total number
of variables NV, the number of voltage-dependent tabulated functions NTAB, the
number of non-gating “other” variables NO, and the number of “non-tabulated”
gating variables NN.

Table 6.8: Input arguments of the C-function computing the kinetics of
non-gating and non-tabulated transition rates of gating variables in an
ionic module (IonicFddt fddt _<ionic>(real *u,int nv,real *values,int
ntab,Par par, Var var,real *du,int no,real *nalp,real *nbet,int nn))

type name description

real * u array of dynamical variables

int nv total number of dynamical variables

real * values array of tabulated transition rates

int ntab number of tabulated transition rates

Par par parameter structure

Var var variable structure

real * du pointer to an array of increments non-gating “other”
variables

int no number of “other” variables

real * nalp array of non-tabulated «

real * nbet array of non-tabulated

int nn number of non-tabulated gates

The second ftab_<model> is a C-function of voltage-dependent tabulated tran-
sition rates of gating variables. The input arguments of the C-function ftab_<ionic>
are specified in Table [6.9]

167

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

The IONIC_FTAB_HEAD(<ionic>) and IONIC_FTAB_TAIL(<ionic>) macros de-
fine IonicFtab C-function. Once the macros have been expanded the name of
the C-function becomes ftab_<ionic>.

Table 6.9: Input arguments of the C-function for computing tabulated transi-
tion rates of gating variables in ionic module (IonicFtab ftab_<ionic>(real
V, real *values, int ntab))

type name description

real v membrane voltage

real * values array to be filled with steady-state coefficients tabulated
transition rates

int ntab number of tabulated variables

Notice that both C-functions ftab_<ionic> and fddt_<ionic> compute the
coefficients of the transition rates of gating variables instead of the time derivative
of gating variables. The dynamical equations of the gating variables have a
standard form, so the time derivative can be inferred from the known form and
given values of transition rates.

Markov Chain Specific %

The src/channel.his a Markov chain specific header file. It contains definitions
of the data structures and template macros for the construction of a Markov chain
model.

The C-function <ionic>_<subchain> computes the transition rates of a sub-
chain of a Markov chain model. The results are calculated on-the-fly during
the simulations and discarded at the end of each time step, or placed to corre-
sponding entries of the transition matrix. The input arguments of the C-function
<ionic>_<subchain> are specified in Table[6.10]

The macro CHANNEL_TR_MATRIX(<ionic> <subchain>) defines a TransRatesMat
C-function. After the macro has been expanded the name of the C-function be-

comes <ionic> <subchain>.

Table 6.10: Input arguments of a C-function computing transition rates of Markov
chains (TransRatesMat <ionic> <subchain>(real * u, real *tr_mat))

type name description

real * u array of dynamical variables
real * tr_mat transition matrix

The input argument u specifies the pointer to the array of dynamical variables.
This serves for the computation of the transition rates functions. The second formal
input argument tr_mat is a pointer to the first element of the array of the transition
matrix.

168

6.6. Specification of ionic Modules

_RATE(from,to,direct,reverse)

direct

Sy =—— from to — S
Tt reverse to
(b)
S1 <channel>_from <channel>_to So
Sy . . 0 0
<channel>_from |[... —(direct+...) reverse 0
<channel>_to 0 direct —(reverse +...)
Sa 0 0

()

Figure 6.3: Construction of the transition matrix: (a) a form of the function-like
macro with arguments; (b) a diagram of the Markov chain (with additional states .S,
and S,) corresponding to the function-like macro; (c) part of the transition matrix
constructed from the function-like macro.

The C-function <ionic>_ <subchain> fills the entries of the matrix by the corre-
sponding transition rates. The filling process can be implemented using template
macro TR_MAT (chan,from, to, direct, reverse). It assumes that the transition
rates are defined by a macro in a form RATE(from,to,direct,reverse) where,
as the name suggests, the first two arguments specify two states from, to between
which the transition rates are defined in direct, and reverse expressions.

Figure illustrates the process of filling the entries of the transition matrix.
Panel (a) shows the form of the function-like macro with arguments (description of
function-like macros can be found on page [228). The arguments are substituted
during the preprocessing phase of the compilation with the names of the states
and the expressions for the transition rates. A diagram of a part of the Markov
chain described by a given function-like macro is shown in panel (b). Panel (c)
shows the corresponding entries in the transition matrix filled with the expressions
for the transition rates.

In the figure, the number of the position of the state is given by <channel> from
and <channel>_to where the from and to are substituted with the arguments of
the function-like macro. To find the correct entries of the transition matrix, we use
an enumeration of variables of the Markov chain. The enumeration starts with 0
for the first state and dimension-1 for the last state of the Markov chain.

The channel.h also provides other macros to assign the elements of the
data structures of the Markov chain models within an ionic module. The el-
ements of the structure subchain_str should be assigned through a template
macro SUBCHAIN(fun_tr, index, min, max, incr, sc). This assigns the tran-

169

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

sition rates function trans_rates_mat, the index of the control (independent)
variable for tabulation i _control, the minimum tmin, and the maximum tmax limits
of the control variable in the table, the tabulation step tincr on the corresponding
tabulation scale and the scale of the tabulation scale. The predefined macro also
calculates the number of subchains (num_sub) automatically.

The macro SUBCHAIN assumes the existence of two pointers: a pointer to the
current channel channel str * ch;, and another one to the current substring
as subchain_str * sbch;. The pointer sbch is incremented within the SUBCHAIN
macro, while the ch must be incremented manually in create_<ionic> function
which is generated from IONIC_CREATE_HEAD block within the ionic module.

A minimalist example of the implementation of an ionic module with the
definitions of two Markov chain models can be found in Appendix Section

6.7 Testing of BeatBox ionic Modules with Markov
Chains

For the sake of implementation and testing of the matrix Rush-Larsen method we
have implemented an ionic module with Markov chains defined according to the
specifications described in the previous section.

In the previous chapter, we have used the Clancy, Rudy (2002) [2] cellular
model including Iy, channel. This model can be implemented as a rhs module,
however not as an ionic module due to (a) the implicit definition of buffered Ca**
concentrations, that are based on the values at the previous time steps, and due
to (b) time-delayed calcium release from the sarcoplasmic reticulum (SR). The
problem (a) can be readily overcome by equivalent reformulation of the relevant
equations, however the problem (b) is not straightforward to address within the
current BeatBox framework.

The simplest case of a Markov chain model is achieved by a transformation of a
gate model. This approach has also an advantage of a straightforward comparison
with the solution of the gate model. We have chosen the Hodgkin-Huxley (1952)
squid axon for its simplicity and the reader’s familiarity with the model, although
use of this model has been surpassed by modern models.

To demonstrate the functionality of the rushlarsen module on the Markov chain,
within a modern biophysically detailed model we have used TenTusscher-Panfilov
(2006) human cardiac cell model with added Markov chain models.

Finally, we have also implemented a physiological model published by Faber
et al. (2007) [1] which is a model of a ventricular cell that includes stiff Markov
chains.

170

6.7. Testing of BeatBox ionic Modules with Markov Chains

#rhs — . ionic —-
rhs ---- ionicyc

120
100 A
80 .7 Y i

60 "
g :
> 40 1

20 |

0.35
0.3
0.25
02 Ak
0.15 E&7 L
0.1
0.05

[
S
N

0.25
0.2

A
0.15 [~

ONa

0.1

[

, O © o ©
= e] o B
o

5N
N

0.05

|
=
o

absolute error

absolute error
Ok

absolute error

-20

=

Q
i
I

o

= L
o

Figure 6.4: Simulation results and absolute error of the Hodgkin-Huxley squid
model in BeatBox: (a) membrane voltage V,,, (b) open probability of Na™ channels
Ona, () open probability of K™ channels Ox. Black solid line shows the “accurate”
simulated traces of rhs model with At = 0.1 us (left axis); the remaining lines
show the difference between the “accurate” simulation and simulations with time
step At =1 pus using rhs model (blue long-dashed lines), ionic model with gate
model of ion channels, ionic model with ion channels converted to equivalent
Markov chain model. lonic models were solved using exponential integration
without tabulation (transition rates computed on-the-fly).

6.7.1 Hodgkin-Huxley Minimalist Model

The code of a minimalist model was implemented in a standalone version, and as
three BeatBox modules - one in rhs format and two in ionic format: the first in the
original form with the Hodgkin-Huxley gate formulation of ion channels, the second
converts the gate models as the equivalent models in a Markov chain framework.

The code of the implementation of the models, details about the conversion of
gate models to Markov chains and code listings can be found in Appendix D]

Figure[6.4]shows the results of the simulations using the three BeatBox versions
of the Hodgkin-Huxley squid model. The membrane voltage and open probability
traces are shown in black. The colour lines show the difference between the
“accurate” simulation using a rhs module with a small time step At = 0.1 us
(denoted as #rhs) compared with the simulations using the rhs module, and both
ionic modules with a larger time step At = 1 us (colour line with scale on right
axis). The transition rates in the ionic models were not tabulated but computed
on-the-fly during the simulations. The gating variables in the first ionic module
and Markov chains in the second were computed using exponential integration
methods.

The difference between the “accurate” simulation and the solution rhs simu-
lation is caused purely by the time step increase, as the other factors remained
identical. The difference in ionic modules beyond the one observed in the rhs is
caused by different order of computation of gating and the Markov chain variables,
and membrane voltage in both cases. The absolute error in both ionic models

171

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

visually overlaps, which suggests that the gate and Markov chain models of ion
channels are equivalent.

The absolute difference of the solutions from both ionic modules remains
below 10! for both open probabilities Oy, and Ok and below 108 for the mem-
brane voltage. This small deviation is caused by the use of different methods —
Rush-Larsen for gate variables and matrix Rush-Larsen for Markov chain vari-
ables (where the exponential is computed using eigenvalue decomposition of the
transition matrix).

The minimalist model described in this subsection is a demonstration of the
functionality of simple cellular modules with Markov chains. To demonstrate the
full capabilities of the rushlarsen device we aim to implement an ionic module
using a modern biophysically detailed cellular model.

6.7.2 TenTusscher-Panfilov (2006) Model

The demonstration of the functionality of the rushlarsen device is done using
TenTusscher-Panfilov (2006) human ventricular model (TTP) [29]. There are no
non-trivial Markov chain models in TTP, therefore we add two such models. The
extended cellular model is not based on physiological measurements and should
not be considered as a realistic model. The inclusion of the Markov chains was
done for the sake of testing of the numerical methods developed into BeatBox. In
Section we have used MRL method for currents of calcium channel I, [1],
Ryanodine Receptor (RyR) [1] and sodium channel Iy, [2] as stand-alone code.
We have decided to implement two of those Markov chain models into a BeatBox
TTP module, namely the I¢,) and Iy, models.

The BeatBox distribution already contained rhs definition of TTP model which
was based on the original authors’ code. Before we proceed to the conversion
to ionic format, we need to replace the implementation of some of the calcium
concentrations which are in a true right hand side format. Based on the authors
implementation, we have reconstructed the definition of calcium concentration as
dynamical equations. The reconstruction is described in detail in Appendix [D.4.1]

We converted TTP rhsmodule present in BeatBox into an ionic module. Fur-
ther details about the conversion from rhs module can be found in Appendix
Section[D.4.5]

Figure shows the simulation results using TTP model. The open proba-
bilities contribute to the computation of Iy, and Ic,.) ionic currents. The gating
variables of Hodgkin-Huxley type gates were computed using the Rush-Larsen
method. The tabulation of voltage-dependent coefficients in the Rush-Larsen
method uses a tabulation step of AV}, s = 0.01 mV. The reference solution
was obtained using the MRL method. The discrepancy of the MRL solution with

172

6.7. Testing of BeatBox ionic Modules with Markov Chains

non-tab MRL (ref.) forward Euler
tab. MRL - At =10 ps ———

10°
10t

Vi, (mV)
OnNa

relative error
oooo_oooo
0000Ckibiknibp®
ONPROOFRNAON
[N T T T 1T T TrTT
relative error

absolute error
Oca(r)
o
N

H%MMFQ

i 10° ‘ <t b ‘ :
0.1 1 10 100 1000 0.1 1 10 100 1000 1 10 100 1000
t (ms) t (ms) t (ms)

(a) (b) (c)

(=)

Figure 6.5: Comparison of the simulation methods of the Markov chain models
for TTP model. Panel (a) shows membrane voltage V,,, panel (b) shows open
probability 7c,(z), and panel (c) shows open probability Iy, currents. Black lines
show the reference solution for the Matrix Rush-Larsen (MRL) method at the
time-step At = 1 us, coloured lines show the relative error of the reference solution
(left axis) with: the MRL method with tabulated transition matrix (blue lines), the
forward Euler solution (red lines), both methods use the same time-step as the
reference solution At = 1 us; cyan lines show the simulations with the same
method as the reference solution with the time-step At = 10 us.

tabulation show a small error comparable with corresponding tabulation inaccuracy
for tabulated gating variables (e.g. in Figure [D.2).

The discrepancy from the forward Euler solution is negligible compared to the
error due to the increase of the time-step size to At = 10 us in the same method
as reference solution (non tabulated MRL). The error due to the time-step increase
will be discussed in detail in the following subsection.

6.7.3 Faber et al. (2007) model

In the previous chapter we have used the Faber et al. (2007) model. Although
the Faber et. al (2007) model was published by the same lab as the Clancy, Rudy
(2002) model, it does not contain time-delayed calcium release. Therefore it can
be implemented in ionic format.

The Faber et. al (2007) model contains two Markov chain models of ¢, 1)
(which we used in the previous subsection within TTP model), and the RyR model.
In the previous chapter we have developed exponential integration of the RyR and
Ica(zy models within the standalone code of Faber et. al (2007). Here we aim to
implement BeatBox ionic module of this model.

The exponential integration of the RyR model was more challenging. Unlike
the I, and I,y models, that contained only voltage-dependent transition rates
in the operator matrix, the transition matrix of the RyR model depends on multiple
variables corresponding to intracellular calcium concentrations. The transition
matrix was split into two submatrices which each represented part of the transitions
of the Markov chain. Briefly, the fast transition rates compose the first operator
matrix computed by MRL method, and the slow transition rates compose the

173

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

At =1 us At =100 us ~ - At =10 us (err.)

At =10 ps —-—- At =1 us (err.) ------ At =100 ps (err.) — -
60 0.5 e T 10° 0.9
[N 1o [
40 - S 045 1 — .0 /N roq10, 8 0.8 | 5
20 = 0.4 = VS, 4 107 B 0.7 |- £
> o ° 3 9%Br ooy q10% S L osfF)
E a0} S % om|[v @joe e z 05EC 4
~ ol 2 S gL i {022 & o4 2
Foob g O o015} ' Vo4 = 03 =
i 2 0.1 - 40y 0.2 - B
-80 < @ 0.05 N F) 01
-100 10° 0 L . L 10 0 - 10°
01 1 10 100 1000 01 1 10 100 1000 01 1 10 100 1000

t (ms) t (ms) t (ms)

(a) (b) (c)

Figure 6.6: Comparison of simulations with exponential methods using Faber et
al. (2007) model. Panel (a) shows membrane voltage V., panel (b) shows open
probability of Ic,z), and panel (c) shows open probability of RyR currents. The
reference solution (not shown) was computed at the time step At = 0.1 us using
the tabulation for the transition rates matrices (tabmrl). The simulation using
tabmrl at the time steps At = 1, 10, 100 us are shown in orange, green and
magenta lines respectively, and relative error of the solution from the reference
are shown in blue, red and cyan lines respectively.

second operator computed by forward Euler. The tabulation in the domain of the
calcium concentration was done in a logarithmic scale. More details about the
division can be found in Section

Figure [6.6] shows the simulation results of the Faber et al. (2007) model using
the MRL method with tabulation (ntabmrl) within BeatBox. The figure shows the
simulated traces (scale on the left axis) and the error of the approximation as
compared with the reference solution (computed with the time step of At = 0.1 us
on the right axis). The error in membrane voltage is shown as absolute (to avoid
large values around zero crossing), while the error in open probability is shown as
relative to the value.

The morphology of the simulated traces is similar in all cases. The measure
of an error using the absolute difference of the simulated traces is inapropriate
for parts of the traces, which change fast in time. This could be understood
by considering a step function where the change happens infinitely fast. If we
compare the difference of two step functions with the same initial and the same
final values and where the only difference is the instant when the functions turn
from the lower to the higher value, then the resulting deviation between the turns
corresponds to the amplitude of the functions. Because the traces of the action
potential has similar characteristics at the fast onset, we consider the apparent
inacuracy being a limitation of the measure of the error.

Table lists the computational cost spend on a simulation of 500 ms of
simulation in Faber et al. (2007) model. The simulation was performed in a
GNU/Linux box with the processor of Intel Core i5-3470 CPU with clock frequency
3.20 GHz. The computational time here shown is the the total time spent by the

174

6.8. Conclusions

Table 6.11: Computational cost [in seconds] spend in a simulation of a duration
of 500 ms using the Faber et al. [1] cellular model. The first column specifies the
integrating method used for the Markov chain models which are set using bbs
script parameter exp_mc, namely: mcfe stands for forward Euler, tabmrl stands for
matrix Rush-Larsen with tabulation, and ntabmrl stands for matrix Rush-Larsen
with the transition rates computed on-the-fly. The following columns show the
computational time at At = 1,10 and 100 us.

expmc | At =1 At=10 At =100 [us]
mcfe 3.6 - -

tabmrl 49 1.9 1.6
ntabmrl 38.0

computation in BeatBox which includes setting up the cellular module, tabulation
of the transition rates and the transition rates matrices, and the simulation itself.

The fastest simulations for a fixed time step size are achieved by the forward
Euler method. Comparing the computational time at the time step of At =1 us
the tabmrl method is slower by 1.3 s which is due to the computation of the
tabulated eigenvalue operator matrices of Ic,r) and fast operator matrix of RyR.
The computation of the exponential integrator on-the-fly is the slowest method,
which is more computationally expensive by ten fold.

The true advantage of the MRL method appears when we increase the time
step. With the increasing time step the computational time reduces proportionally.
However, the forward Euler method is limited by a value of At = 6 us above which
the solution becomes unstable and therefore cannot be used. Meanwhile the MRL
method still provides stable solutions for the Markov chains, so the time step is only
limited by instabilities in other components of the cellular model and the accuracy
consideration of each particular study.

The table shows that at the time step of At = 100 us the computation on-the-fly
is faster than the one with tabulation. This is because the simulation at this value of
the time step requires less computation than precomputing corresponding look-up
tables.

6.8 Conclusions

The exponential solvers for Markov chains were implemented into BeatBox pack-
age for cardiac simulations and made publicly available for wider community use.

To explain the implementation we provided an overview of the reaction system
of the cell and different types of dynamical variables. This includes “gating”
variables, “Markov chain” dynamical variables and “other” variables. Previously,
the “Markov chains” had to be implemented as part of the “other” variables and

175

Chapter 6. Exponential Solvers for Markov Chain Models in BeatBox

solved by a standard solver for a generic dynamical equation. In the format for
Markov chain models we also allow operator splitting into subsystems.

The first task was to redefine a data structure of the ionic format, which is
used to contain the parameters and variables of a cardiac cell. This format now
allows distinction between gating variables (tabulated and non-tabulated), other
variables and now also Markov chain variables.

The ionic modules are solved by a rushlarsen device, which is a module that
sets up the simulation and integrates cellular models defined as ionic modules.
We implemented the “hybrid” MRL methods in the rushlarsen device. This allows
us to split the transition matrix into subsystems, allowing tabulations in cases
where the transition matrix depends on multiple variables. In order to compute the
diagonalisation we include an extract of the GNU Scientific Library into BeatBox
package.

To test the implementation of the newly developed code, we converted three
cellular models with Markov chain models of ion channels into the ionic format as
described in Appendix

Finally, we published the documented code along with the BeatBox distribution.
The modified files are also listed in Appendix [C|

176

Chapter 7

Conclusions

7.1 Main Results

* Development of efficient and accurate numerical methods for integration of
Markov chain models of ion channels:

— asymptotic reduction of a Markov chain model to a system with zeroth-
order and first-order terms in a small parameter which describes the
time-scale separation of transition rates;

— Matrix Rush-Larsen (MRL) method based on exponential integration;

— “hybrid” method combining the MRL and traditional solvers, based on
operator splitting of the transition matrix of a Markov chain;

— theoretical assessment of the accuracy of the MRL and the hybrid
methods.

¢ Application of the asymptotic, the MRL, and the hybrid methods for the
integration of the Markov chain model of sodium channel Iy, developed by
Clancy and Rudy (2002) [2]. In those examples, the asymptotic methods
provided accurate approximations and formally allowed reduction of the
number of dynamical equations. However, these methods did not resolve
the instability issues. As a result, the time step limitations remained largely
the same, and no significant speed-up was achieved with the asymptotic
methods. On the other hand, the MRL and hybrid methods provide stable
and accurate solutions.

¢ Application of the MRL and the hybrid exponential solvers to stiff RyR and
Ica(ry Markov chains in the Faber et al. (2007) [30] cellular model. The
forward Euler method, as implemented by the authors, requires time steps of

177

Chapter 7. Conclusions

6 us in the RyR and of 37 us in the Ic,1) to preserve stability. The exponential
solvers provide a stable solution with reasonable accuracy up to At = 180 us.

178

7.2. Limitations

¢ Implementation of the developed methods into a free cardiac simulation package
BeatBox:

— extension of the format of ionic modules to allow specification of Markov
chain models;

— implementation of the MRL and the hybrid methods into the rushlarsen
solver for exponential integration of ionic modules;

— documentation of the code and testing its functionality based on transla-
tion of popular models into the new ionic format;

— releasing the contributions along with BeatBox distribution.

7.2 Limitations

The MRL method relies on being able to diagonalise the transition matrix. All the
examples we have worked with satisfy that condition, however, in other Markov
chains the diagonalisation might fail. If the transition matrix cannot be diagonalised
for only some values of the dependent variable, then an interpolation of the expo-
nential operator at the specific values of the dependent variable might be sufficient.
If the transition matrix has a specific form that prohibits the diagonalisation, a
Jordan form could be used instead of the diagonal matrix.

We have tested the newly developed methods within a single cell model where
they provide good results. In this situation the morphology of the action potential is
standard, i.e. it exhibits fast upstroke after which the voltage returns to the resting
value. However, in the tissue simulations some cells can exhibit a non-standard
voltage profile where there is no fast upstroke, or where the voltage changes slowly
around certain intermediate values. The accuracy of the results at those values
could be affected, if the truncation error is large. The error in the MRL method
is likely to be small, because it is dependent on the rate of change of voltage,
which in this case varies slowly. However, the error in the operator splitting does
not depend on the rate of change of the voltage. If the errors due to the operator
splitting happen to be large at specific intermediate values of membrane voltage,
the simulation can be unusable.

The efficiency of the hybrid method partially relies on the possibility of pre-
computing diagonalised transition matrices and exponential operators into look-up
tables. The look-up tables are created for a grid of control variables. In the models
we worked with, the transition rates matrices are dependent only on a single
variable, or we are able to find an operator splitting in a way that transition matrices
of the fast subsystems depend on a single variable. As a result, the tabulation was
done only for a single-variable grid. However, if this splitting is impossible for some
other Markov chain model, e.g. due to a specific dependence of the transition

179

Chapter 7. Conclusions

rates on multiple variables, an alternative approach would be required, such as
computation of the diagonalisation on-the-fly, or tabulation on a grid of multiple
variables. However, those approaches are only practical, when higher computa-
tional demands are compensated by savings due to the time step increase, as we
seen in some examples in this thesis.

7.3 Further Work

The time step increase affects accuracy of the solution, but the accuracy require-
ments depend on each particular study. However, the numerical instabilities limit
the time step size absolutely, i.e. an unstable solution is unusable for any purpose.
Having addressed the instability, we can develop higher-order methods to improve
accuracy, say by extending of the methods described by Perego and Veneziani
(2009) [24], or Sundnes et al. (2009) [25] to Markov chains. Then, the same
accuracy of the solution as in the first-order method could be achieved using larger
time steps in higher-order methods.

Computational time is greatly reduced by the numerical methods developed in
this thesis. However, in the single cell simulations, it is feasible to complete the
simulation in an acceptable time frame, despite of the small time steps required
to preserve stability in some Markov chain models. Spatial models of cardiac
tissue contain many cells. Such simulations might take a prohibitive amount of
computational time. This might be overcome if the exponential integration methods
provide accurate and stable results in the spatial models, as promised by the
results of the single cell simulations. Therefore, an application of the exponential
integration within a spatial model would be an interesting direction for a subsequent
study.

The computation of spatial models of cardiac tissue requires solving systems
of PDEs. In principle, the exponential solvers could be generalised in a model with
spatially distributed processes in a single cell in order to provide more accurate
solution for the diffusion within the models [31}132]. Thus, applying such solvers to
spatial models of cardiac tissue would be yet another possibility for future work.

Studies of calcium handling within a single cell are crucial for understanding
the excitation-contraction coupling. Such spatial cell models take into account the
physical distribution of a single cell, and allow simulation of the diffusion within
a spatial model described by partial differential equations (PDEs). Such models
contain clusters of a finite number of /¢,y and RyR channels represented by
stochastic Markov chain models [33, 134, 35]. An adaptation of the exponential
methods for such models would be an appealing direction for future research.

Besides the methods developed as part of this thesis, there are other ap-
proaches which aim to address numerical instability issues, such as implicit

180

7.3. Further Work

methods. Although, generic implicit methods are complicated, several numer-
ical libraries provide such routines using implicit solvers. The investigation of the
accuracy of those methods and their comparison to the methods developed in this
thesis is another possible direction of further work.

A conversion of cellular models from published models into BeatBox format is
laborious. A CellML project contains a large repository of cellular models based
on the XML standard for physiological models. Tools for importing the CellML
models into BeatBox could convert the models automatically to reduce the risk of
manual introduction of errors. This future work would also require an extension of
the CellML format in order to distinguish between the Markov chain, gating, and
other variables.

181

http://www.cellml.org/

Appendix A

Definition of Clancy-Rudy (2002)
Model

This appendix contains the definition of the model of Clancy and Rudy (2002)
[2] according to the author’s code. The format of equations and subsections
corresponds to the papers where those equations were published to facilitate a
straightforward comparison. The differences between the authors code and the
published papers are marked by the sign 7.

The units of measurements are not essential for the context of the thesis and
for practical reasons we do not mention them. We have not done any rescaling so
all units correspond to the published papers.

The units of measurements were omitted as they are not essential in the context
of the thesis. We have work only with the equations as provided by the authors
code. As we did not do any rescaling, the units correspond to the original papers.

Standard ionic concentrations

[Nat]; =7.9 #(initial value of dynamical variable),
[Nat], =140, #
[K*];
[KT), =4.5, #
[Ca®t], =1.8,

(A

(A

147.23 #(initial value of dynamical variable), (A.

] (A

] (A

which differs from the [36] where [Na™], = 150; [KT]; = 145; [Kt], = 5.4; [Na'];, =
10 mmol/L.

183

Appendix A. Definition of Clancy-Rudy (2002) Model

Initial Values of Variables and Parameters

Ty =0 (A.6)

Ty =07 (A7)
V=-095 (A.8)
[Ca®]xsr =1.8 (A.9)
[Ca®*]jsr =1.8 (A.10)
[Ca®*]; =0.00012 (A.11)

b =0.00141379 (A.12)

g =0.98831 (A.13)

d =6.17507-107° (A.14)

f =0.999357 (A.15)

X, =2.14606-107* (A.16)

The values marked by * lack explicit initialisation in the author’s code. This
implies intialisation by the C compiler, which in our version of gcc corresponds to 0.

Physical Constants

R =8314 (A.17)
F =96485 (A.18)
T =310 (A.19)

Cell geometry

L =0.01 (
r =0.0011 (

Ve =3.801-107° (
Ageo =212 + 271 L (
Acap =2AGeo (A.24
Vingo =2.58468:107° (
Visr =Veen0.0552 (
Visr =Veen0.0048 (

184

Na™=K* pump : Ix.x

Ik =15f 1 N LSF (A.28)
NaK TSN 4 (10/[Na) [KH, + 1.5 '
1
aK — , A.29
TN = s exp (0.1 ¥E) + 0.03650 exp((—V F)/(RT)) (A.29)
1 [Nat],
0 =g exp (&3) -1, (A.30)

which is identical to Luo-Rudy model [36].

Ik, the Slow Component of the Delayed Rectifier K™ Current

IKs :Gstslxﬂ(V - EKS)7 (A31)
Fxs =(RT/F)log((4.5 + Pxax150)/([K™]; + Pxax[Natl,)) 7, (A.32)

where the definition of Ex, equation (A.32) differs from the Viswanathan et al.
(1999) [37]. The difference is in the term [K*], = 4.5 and [Na*], = 150, which is
“hard-coded” inconsistent with the equations (A.4) (A.2) where [K*], = 4.5 and
[Na™], = 140.

Pxax =0.01833, (A.33)
Grs =(0.433(1 + 0.6/(1 + (0.000038/[Ca®*];)™*))) - 0.615, (A.34)
Za10o =1/(1 + exp(—(V — 1.5)/16.7)), (A.35)
L5200 =Lsloos (A.36)
7.19-1075(V 4 30) 1.31-1074(V +30)

Tast = (1 — exp(—0.148(V +30)) ' exp(0.0687(V + 30)) — 1) - (A7)
Tes2 =4Tes1, (A.38)

which is identical to Viswanathan et al. (1999) [37].

The gating variables are updated using Rush-Larsen method. In this appendix
we have reconstructed corresponding dynamical equations for the gating variables
as implied by the code. The gating variables for Ik, are

dxsl _Isloo — Ts1

A.
dt Txsl ’ (39)
dzss Tso00 — Ts2
= . A4
dt Trs2 (O)

185

Appendix A. Definition of Clancy-Rudy (2002) Model

Ik, the Fast Component of the Delayed Rectifier K™ Current

Ixr =G X, Ry (V — Exy), (A.41)
Grr =0.026144/[K*],/5.4, (A.42)
Xroo =1/(1 + exp(—(V +21.5)/7.5)), (A.43)
R, =1/(1 + exp((V +9)/22.4)), (A.44)
Ex, =((RT)/F)log([K"]o/[K"]:), (A.45)

Tar = (0'001381 - exp(—v()j2134(‘\2/ +14.2)) * 0‘00061exp(0.14‘g(; :fé98.9)) - 1> ’

(A.46)

which is identical to Zeng et al. (1995) [38]. The original notation for Ry, is R (here
the R is used for the gas constant). The gating variable is

dX, Xy — X,

BT - (A.47)
Time-independent K current: i
I =GxiKlo(V — Exy), (A.48)
Exy =(RT/F)log([K"],/[K]y), (A.49)
Gx1 =0.75 - /([K+],/5.4), (A.50)
a1 =1.02/(1 + exp(0.2385(V — Ex; — 59.215))), (A.51)

~0.49124exp(0.08032(V — Ex; + 5.476)) + exp(0.06175(V — Ex; — 594.31))
B 1+ exp(—0.5143(V — Fx; + 4.753)) ’

K1

(A.52)
which is identical to Luo-Rudy model [36].
The gating variable is described by algebraic relation as
Kloo :aKl/(aKl + 6}(1) (A53)
Plateau K current: I,
Ik, =0.00552K,(V — Ex1), (A.54)
K, =1/(1 + exp((7.488 — V') /5.98)), (A.55)

186

which is equivalent to Luo-Rudy [36] with update from Zeng et al. (1995) [38], and

ix =Ix1 + Ixy. (A.56)
Currents through the L-type Ca' channel I¢,;

Icar =Ica + Icak + Icana, (

Ica :dffCaI_Cay (A58
Icax =df fcalcak, (
(

ICaNa :dffCaI_CaNa,
(VF?) yeulCa®sexp((zcaV F)/(RT)) = Acao[Ca®],

fon =Pt exp((zc.VE)/(RT)) 1 - A8
= o (VF?) waiNaT]iexp((snaVE)/(RT)) — yxa0[Na'],

Teaxa =PrazRa ™ - (e V B JORT)) 1 . (AB2)
= o (VF?) K iexp((2xVEF)/(RT)) — koK' o

Teax =Pz =g exp((zxV F)/(RT)) — 1 ’ (A.63)

Po, =5.4-107* Yeai = 1 Ycao = 0.341, ()
Pra =6.75:1077 Anai = 0.75 Ynao = 0.75, (A.65)
Pg =193107" i, =075 7k, = 0.75, (A.66)
fea =1/(1+ [Ca®"];/ Kpnca), (A.67)
K,nca =0.0006, (A.68)
dos =1/(1 + exp(—(V + 10)/6.24)), (A.69)

74 =dso(1 — exp(—(V +10)/6.24))/(0.035(V + 10)), (A.70)
foo =(1/(1 + exp((V +32)/8))) + (0.6/(1 + exp((50 — V)/20))) #, (A.71)

7r =1/(0.0197 exp(—(0.0337(V + 10)?)) + 0.02), (A.72)

where the (A.71) differs from papers in expression from the code
exp((V +32)/8),

which is
exp((V + 32)/8.6)

in Luo, Rudy (1994) [36]. The remaining equations are exactly the same as in
Luo-Rudy model [36]. The constants are

ZNa :17 (A.73)
o =1, (A.74)
ZCa, :27 (A75)

187

Appendix A. Definition of Clancy-Rudy (2002) Model

and the gating variables are

dd dy —d

FTAR— (A.76)
df fe—f
FT— (A.77)
Ca’* Current Through T-Type Ca*" Channels /¢, [38]
]Ca(T) :éCa(T)bQ.g(V - ECa)v (A78)
Ga(ry =0.05, (A.79)
boo =1/(1 + exp(—(V 4 14)/10.8)), (A.80)
goo =1/(1 + exp((V 4 60)/5.6)), (A.81)
Eca =(RT/(2F))log([Ca*"],/[Ca®t];), (A.82)
T, =3.746.1/(1 + exp((V + 25)/4.5)), (A.83)
7, =—0.875V + 12 for: V < 0;and 7, = 12 for: V' > 0, (A.84)
which is identical to Zeng et al. (1995) [38], and the gating variables are
db b — b
T A— (A.85)
dg g —g
T (A.86)

Na"-Ca™ exchanger: Iy.c.

251074 exp((n — 1)V%) exp(V%)[Naﬂ?[Ca”]o — [Na™t2[Ca?"]; 4

1+ 1104 exp((n — DV z7) (exp(V 7) [Na JF[Ca®*], + [Na3[Ca*"];)
(A.87)

n=0.15 #, (A.88)

NaCa —

where the definition of Iy.c. in the Luo-Rudy model [36] depends on concentra-
tions [Ca®'],, [Na™], only, whereas in this model it depends also on intracellular
concentrations [Na*];, [Ca®*],.

Nonspecific Ca’*-activated current: I,

VF? 0.75[Kt];exp((VF)/(RT)) — 0.75[K"],

RT exp(VF/(RT)) — 1 ’
1

14 (0.0012/[Ca®*];)3’

I =1.75-1077 (A.89)

(A.90)

[nsK :[nsK

188

- LV E? _ 0.75[Na™];exp((VF)/(RT)) — 0.75[Na‘],

=1.75-10" A.91
Tsa 17510750 oxp(VF/(RT)) — 1 - (A9)
_ 1
Ins a :Ins a . A92
N "1+ (0.0012/[CaT];)3, (A.92)
[ns(Ca) =Insk + [nsNaa (A93)
Pos(cay =1.75-1077, (A.94)
which is identical to Luo-Rudy model [36].
Sarcolemmal Ca** pump: I,
[Ca®*];
Lyca) =1.15 , A.95
P(c) 0.0005 + [Ca®*]; (A.99)
which is identical to Luo-Rudy model [36].
Ca'? background current: I¢,;
Icar =0.003016(V — Ecy), (A.96)
Eca =RT/(2F)log([Ca**],/[Ca*'])), (A.97)
which is identical to Luo-Rudy model [36].
Na™ background current: Iy,;
Inay =0.00141(V — Exa), (A.98)
which is identical to Luo-Rudy model [36].
Ca*" uptake and leakage of NSR: /,, and ;..
I, =0.00875[Ca®*];/([Ca**]; + 0.00092), (A.99)
Kjear =0.005/15, (A.100)
Tiear, =Kiear[Ca® nsr, (A.101)

where the definition of I,,, in the Luo, Rudy (1994) [36] is ambiguous. This version
is consistent with one possible understanding.

189

Appendix A. Definition of Clancy-Rudy (2002) Model

Ca™ Fluxes in NSR

d[Ca”]NSR

dt :([up - Ileak - [trVISR/VNSR)

Ca”" Fluxes in Myoplasm

Iica =Ica + Icap + Ip(ca)y — 2INaca + Ica(r)
A[Ca®"]; = = At(((TicaAcap)/ Vingo2F)) + ((Tup = Ticar)Vasr/ Vinyo) =
— (IratVas/ Vinyo))
[Ca®"];,, =TRPN + CMDN + A[Ca*"]; + [Ca*'];
B =0.05 + 0.07 — [Ca®" 5, + 0.0005 + 0.00238
C =(0.00238 - 0.0005) — ([Ca**];on(0.0005 + 0.00238))+
+ (0.07 - 0.00238) 4 (0.05 - 0.0005)
D = —0.0005 - 0.00238[Ca’*];0
Fy, =/ (B2 — 30)
[Ca®t]; =1.5F,; cos(arccos((9BC — 2B* — 27D)/(2(B? — 3C)'%))/3) —

Ca’* Fluxes in JSR

A[Ca2+]JSR :At([tr - [rel)
bysg =10 — CSQN — A[Ca2+]JSR - [Ca2+]JSR + 0.8
CJSR. 20.8(CSQN + A[Caz+]JSR + [Ca2+]JSR)

[Ca*]3sr =(/ (B3sg + 4csr) — busr)/2

Sodium lon Fluxes

ItNa :iNa + INab + [CaNa +]nsNa + 3INaK + 3]NaLCa
d[Na+]Z‘ .
e

- ([tNaACap)/(meoF)

Potassium lon Fluxes

Lix =Tk, + Ixs + ik + Icax + Insk — 2INak + Lto + Lot

d[K*];
A (IikAcap)/ (VinyoF)

190

(A.102)

(A.103)

(A.104)
(A.105)
(A.106)

(A.107)
(A.108)
(A.109)
(

B/3)
(A.110)

A111
A112
A.113

A114

~_~ I~~~
~ ~— ~— ~—

(A.115)

(A.116)

(A.117)

(A.118)

Ca’" buffers in the myoplasm

TRPN =0.07[Ca**];/([Ca®*]; + 0.0005), (A.119)
CMDN =0.05[Ca*"];/([Ca*"]; 4 0.00238), (A.120)

which is identical to Luo-Rudy model [36].

Ca%" buffer in JSR and SCQN

CSQN =10([Ca**]ysr/([Ca**]ssr + 0.8)), (A.121)

which is identical to Luo-Rudy model [36].

CICR From Junctional SR (JSR)

Lret =GretyT ppen TV iose ([Ca* isr — [Ca®T];), (A.122)
Gre =150/ (1 + exp(lica + 5)/0.9), (A.123)
YT ppen, =1/ (1 + exp((—t. +4)/0.5)), (A.124)
YT epse =1 — (1/(1 4 exp((—t. +4)/0.5))), (A.125)

where variables ryr,,,.,, = 1 —ryr,,, €nsure, that the channel is open at the time
interval around 4 ms after the ‘}T‘t/ reaches its maximum (at the upstroke of the
action potential). This is done using additional time variable ¢. which is linked to
the ¢ and is reset to zero at the time when the % reaches significant maximum,
that is greater than 1.

This mathematical description can be interpreted as a delayed release of
calcium in a short time interval at about 4 ms after the onset of action potential,
when the ryr, ., 1yT,s. Paks. In the Viswanathan et al. (1999) [37] and Luo-Rudy
model the delay of calcium release was around 2 ms after the the time of the
maximum 9.

The delay variable ¢. as described in the papers and implemented in the code
causes that the system is not a system of differential equations. For this reason
the implementation into BeatBox as rhs or ionic model is not straightforward, and
has not been done.

Translocation of Ca’" ions from NSR to JSR: I,,

Ly =([Ca® sk — [Ca®"]ysr) /180, (A.126)

191

Appendix A. Definition of Clancy-Rudy (2002) Model

which is identical to Luo-Rudy model [36].

Total time-independent current: [,

I, =INap + INax + Ipca) + Txp + Lcap + Ik, (A.127)

which is identical to Luo-Rudy model [36].

Total Current

[t :[Kr + [Ks + ZK + [CaK + InsK - 2INaK + Z'Na + [Nab + [CaNa + [nsNa + 3[NaK+
3INaCa + [Ca + ICab + [p(Ca) - 2[NaCa + ICa(T) (A1 28)

Membrane Potential

S (A.129)

192

Appendix B

Eigenvalue Computation

B.1 Overview of Subroutines for Finding Eigenval-
ues

Matrix Rush-Larsen method requires to obtain the eigenvalues and eigenvector
of the transition matrix. Text books on numerical analysis recommend to use the
established packages for solution of eigenvalue problem, rather than developing
our version [39].

A large number of libraries provide subroutines to solve eigenvalue problem
[40, 41]. Table shows some examples which satisfy the copyright conditions
of BeatBox GNU GPL license. The prerequisite of all those packages is a library
implementing Basic Linear Algebra Subprograms BLAS and many also require
LAPACK.

Table B.1: Numerical libraries for solving eigenvalue problem (based on [41])

Package Dependencies License Language Size

ARPACK BLAS BSD Fortran 664KB
FEAST LAPACK/BLAS BSL C/Fortran 5.5MB
GSL BLAS GNUGPL C 1.4MB
FILTLAN MATKIT/LAPACK GNU LGPL C/C++ 1.6MB
PRIMME BLAS/LAPACK GNU LGPL C/Fortran 4.5MB
PROPACK BLAS/LAPACK BSD Fortran/Matlab 49MB

193

http://www.caam.rice.edu/software/ARPACK/
http://www.ecs.umass.edu/~polizzi/feast/download.htm
https://www.gnu.org/software/gsl/
http://www-users.cs.umn.edu/~saad/software/filtlan/
http://www.cs.wm.edu/~andreas/software/
http://sun.stanford.edu/~rmunk/PROPACK/

5

Appendix B. Eigenvalue Computation

B.2 Linear Algebra Package LAPACK

B.2.1 Overview of LAPACK

LAPACK is a standard software library containing a large collection of subroutines
for linear algebra — with the eigenvector solution amongst them. The LAPACK is
distributed under the terms of the BSD license, that grants the rights to distribute
the software freely, and even allows the modified version to be redistributed under
different conditions (re-licensed) provided that a proper credit is given to the
authors of LAPACK.

The library is written in Fortran 90. If we program in other languages the
implementation of LAPACK functions is not straightforward due to the differences
between the languages, e.g. structures of data, ways scalar values are passed to
the functions. The C programmes using LAPACK library have to use an interface
which “wraps” the LAPACK functions for C.

A popular LAPACK C interface called lapacke is already included in LAPACK
installation. So, the C code can use LAPACK function through lapacke interface,
and be linked against lapacke precompiled lapacke libraries at the compilation.
However, to install the LAPACK a Fortran compiler is required, which might not be
available on the target system.

The LAPACK library depends on subroutines of Basic Linear Algebra Sub-
programs (BLAS). than a particular software package BLAS refers to a standard
interface for the implementation of those subprograms and there are various BLAS
implementation such as ATLAS, GoToBLAS, CBLAS or the official Netlib BLAS
(often shorten as BLAS).

The Netlib BLAS package comes packed along the LAPACK distribution,
however it should be used only when there is no other implementation of BLAS
on the intended machine. This is because, the preinstalled libraries are normally
more optimised for the particular computer architecture and as the efficiency of
LAPACK depends on the efficiency of BLAS implementation.

B.2.2 Standalone LAPACK Code for Eigenvalue Computation

We have implemented standalone code for eigenvalue computation of Iy, Markov
chain model. For the specification of the transition rates matrices we use the
same macros as described on page and in Figure [6.3] The code of main file
inaEigenLAPACK. c follows

/**

* Copyright 2015 Vadim Biktashev, Tomas Stary
*

* Free software under GNU GPLv3.

* See <http://www.gnu.org/licenses/>.

*/

20

25

30

35

40

45

50

55

60

65

70

75

80

B.2. Linear Algebra Package LAPACK

#include <stdio.h>
#include <lapacke.h>
#include <math.h>
#include "4naEigen.h"

/* dimension of the system x/

#define LDA DIM
#define LDVL DIM
#define LDVR DIM
int
main (int argc, const char * argv[])
{
/* initialize lapack variables x/
/* 1d stands for leading dimension of an array -- for example it
would be 20 for an array (20, 10) */
const int n = DIM, 1lda = LDA, 1dvl = LDVL, 1ldvr = LDVR;
int lapack_exit_status;

/% ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok o ok o ok K ok K ok K ok K ok K ok K ok K ok k /
/* create array and allocate the memory x*/
/* transition rates matrix of INa */
MAKE_ARRAY (double, trans_rates_matrix, DIM*xDIM);
/* real part of eigenvalues */

MAKE_ARRAY (double, eval_real, DIM);

/* imaginary part of eigenvalues x/
MAKE_ARRAY (double, eval_imag, DIM);

/* left eigenvectors */

MAKE_ARRAY (double, evec_left, LDVL*DIM);
/* right eigenvectors */

MAKE_ARRAY (double, evec_right, LDVR*DIM);

/% Kk ok k ok ok ok ok ok ok ok ok ok ok ok ok %/
/* create pointers and open the output files */
/* name of output file */

MAKE_ARRAY (char, filename, 64);

/x file for voltage */

OPEN_FILE(fvolt, FVM, "LAPACK");

/* file for eigenvalues */

OPEN_FILE (feval, FEVINA, "“LAPACK");

/* file for left eigenvectors x*/

OPEN_FILE (fevec_left, FLEVINA, "LAPACK");

/* file for right eigenvectors x/
OPEN_FILE(fevec_right, FREVINA, "LAPACK");
free(filename);

/* membrane potential in mV */

double volt;

/* number of voltage steps */

const int volt_steps_N = ((VMAX - VMIN)/DV);

int il g
for (i = 0;i <= volt_steps_N;i++)
{/* Membrane potential loop */
/* get membrane potential */
volt = VMIN+i*xDV;
/* get transition rates matrix x/
ina_trans_rates_matrix(volt, trans_rates_matrix);
/* calculate the eigenvalues and right and left
eigenvectors */
lapack_exit_status =
LAPACKE _dgeev (LAPACK_ROW_MAJOR, °’V’, °’V’,
n, trans_rates_matrix, lda,
eval_real, eval_imag, evec_left,
1dvl, evec_right, 1ldvr);
/* Check for convergence */
if (lapack_exit_status != 0)
ERROR("Eigenvalue, computation, failed.\n");
/* write results x/
fprintf (fvolt, "/.2f\n", volt);
WRITE_EVAL (feval, n, eval_real, eval_imag);
WRITE_EVEC (fevec_left, n, eval_imag, evec_left);
WRITE_EVEC (fevec_right, n, eval_imag, evec_right);
} /* end of membrane potential loop */

195

85

90

95

20

25

30

35

40

45

50

55

Appendix B. Eigenvalue Computation

/* free memory x*/
free(trans_rates_matrix);
free(eval_imag);
free(evec_left);
free(evec_right);

/* close files */
fclose (fvolt);
fclose(feval);
fclose(fevec_left);
fclose(fevec_right);

return O;

where the header file inaEigen.his

/ * %
* Copyright 2015 Vadim Biktashev, Tomas Stary
*
* Free software under GNU GPLv3.
* See <http://www.gnu.org/licenses/>.

*/

/* voltage range */
#define VMIN -100.0
#define DV 0.01
#define VMAX 70.0

/* file with values of voltage */

#define FVM "dat/vm_INa_Js.dat"

/* file with eigen values */

#define FEVINA "dat/evals_INa_J/s.dat"

/* file with left eigenvectors x/

#define FLEVINA "dat/left_evecs_INa_Js.dat"
/* file with right eigenvectors x*/

#define FREVINA "dat/right_evecs_INa_/s.dat"

#define ERROR(msg){fprintf (stderr ,msg);exit (1);}

#define CALLOC(p,a,b) \
if (0==(p=calloc(a,b)))ERROR("not, enough, ,memory\n")
#define MAKE_ARRAY (type, name, length) \

type * name; CALLOC(name, length, sizeof (type));

fprintf (fileid, "\t")
fprintf (fileid, “\n");

#define OPEN_FILE(fileid, name,suffix)
FILE * fileid;
sprintf (filename ,name ,suffix);
if ((fileid = fopen(filename, "w"”)) == NULL){
fprintf (stderr, "Error, while openning, the, file: %s.\n",
filename) ;
exit (1);}

#define WRITE_EVAL (fileid, dimension, eval_Re, eval_Im) {\
int ii; \
for(ii = 0; ii < dimension; ii++) { \

if (eval_Im[ii] == (double)0.0) { \
fprintf (fileid, ",/%.10e", eval_Rel[ii]); \

} else { \
ERROR ("The, imaginary part, is not zero.\n"); \

} \
/* separators x/ \
(ii < (dimension - 1)) ? \
\

\

\

}
¥
#define WRITE_EVEC(fileid, dimension, eval_Im, evec) {
int ii, jj;
for(jj = 0; jj < dimemsion; jj++) {

ii = 0;
while(ii < dimemnsion) {
if (eval_Im([ii] == (double)0.0) {
fprintf (fileid, "/.10e"”, evec[jj*dimension+iil]);
ii++;
} else {

ERROR("The, imaginary part, is not, zero.\n");

196

P

P A i A G A e

60

65

70

75

80

85

90

95

5

10

B.2. Linear Algebra Package LAPACK

/* separators */ \
((jj * dimension + ii) < (dimension * dimension)) 7 \
fprintf (fileid, "\t") \
fprintf (fileid, "\n"); \
} \
} \
}
/* Enumerate the markov chain states */
enum
{
#define _(n,i) markov_##n,
#include "clancy_markov.h"
#undef
DIM /* total number of Markov variables */
};
void
ina_trans_rates_matrix (double V, double *tr)
{
/* Updates the transition rates matrix of INa Markov chain
model published by Clancy, Rudy (2002) */
/* input variables: V -- membrane voltage; tr -- pointer to
the matrix */
int i;
for (i=0; i<DIM*DIM; i++)
{
/* reset entries x/
tr[i]=0;
}
/* recompute the tr matrix for new value of V */
#define _VFUN(name,expression) double name=expression;
#define _RATE(from,to,direct,reverse) \
tr [markov_##to*xDIM+markov_##from]=direct; \
tr [markov_##from*DIM+markov_##from]-=direct;\
tr [markov_##from*xDIM+markov_##to]l=reverse; \
tr [markov_##tox*xDIM+markov_##to]-=reverse;
#include "clancy_rates.h”
#undef _VFUN
#undef _RATE
}

This section shows the code for computation of eigenvalues and eigenvectors
of In. Markov chain model by Clancy and Rudy (2002).

/* ina mc states */
_(0,4.38587098159465e-08)
_(C1,5.32914708198526e-05)
_(C2,0.010642045025986)
_(C3,0.801808970977337)
_(IC3,0.143555231208206)
_(IC2,0.00190739109198479)
_(IC1,1.11107023501962e-05)
_(IM1,0.000841692031966022)
_(IM2,0.041180223632675)

/* impose state conservation law */
/* _(IM1,1-(0+C1+C2+C3+IC3+IC2+IC1+IM2)) */

/* Transition rates from Clancy, Rudy (2002) x/
/* €C3->C2 (R->Q); IC3->IC2 (S->T) */

_VFUN (alphall ,3.802/(0.1027*exp(-V/17.0)+0.20%exp(-V/150.)))
/* C2->C1 (Q->P); IC2->IF (T->U) x*/

_VFUN (alphal2,3.802/(0.1027*exp(-V/15.0)+0.23%exp(-V/150.)))
/* C1->0 (P->0) */

_VFUN (alphal3,3.802/(0.1027xexp(-V/12.0)+0.25%exp(-V/150.)))
/* C2->C3 (Q->R); C2->C3 (T->S) */

_VFUN(betall ,0.1917*exp(-V/20.3))
/* C1->C2 (P->Q); C1->C2 (U->T) */

_VFUN (betal12,0.20%exp (-(V-5)/20.3))
/x 0->C1 (0->P) */

_VFUN (betal3,0.22%exp (-(V-10)/20.3))
/* IF->C1 (U->P); IC2->C2 (T->Q); IC3->C3 (S->R) x/

197

Appendix B. Eigenvalue Computation

15 _VFUN(alpha3 ,3.7933e-T*exp(-V/7.7))

/* C1->IF (P->U); C2->IC2 (Q->T); C3->IC3 (R->S) x/
_VFUN(beta3 ,8.4e-3+2e-5%V)

/* 0->IF (0->U) */
_VFUN (alpha2,9.178*exp(V/29.68))

20 /* IF->0 (U->0) %/

_VFUN (beta2, (alphal3*alpha2*alpha3)/(betal3*beta3))
/* IF->IM1 (U->V) x*/

_VFUN (alpha4 ,alpha2/100.)
/* IM1->IF (V->U) x/

25 _VFUN(betad,alpha3)

/* IM1->IM2 (V->W) */

_VFUN (alpha5,alpha2/(9.5e4))
/* IM2->IM1 (W->V) */

_VFUN (beta5,alpha3/50.)

30
_RATE(0,C1,betal3,alphalld)
_RATE(C1,C2,betal2,alphal?2)
_RATE(C2,C3,betall ,alphall)
_RATE(C3,IC3,beta3,alphal3)

35 _RATE(IC3,IC2,alphall,betall)
_RATE(IC2,IC1,alphal2,betal2)
_RATE(IC1,IM1,alpha4d, betad)

_RATE (IM1,IM2,alphab,betab)
_RATE(IC2,C2,alpha3,betald)

40 _RATE(IC1,C1,alpha3,beta3)

_RATE(IC1,0,beta2,alpha?2)

B.3 GNU Scientific Library (GSL)

B.3.1 Overview of GSL

GNU Scientific Library is a collection of routines for numerical computing [42].
The GSL is released under GNU GPL license. The GNU GPL contains a copyleft
clause which ensures, that any software using the library must remain under free
license.

B.3.2 Standalone GSL Code

We have implemented the standalone code for the eigenvalue and eigenvector
computations using GSL. This subsection shows the application of this code to Ix.,
Markov chain models. The code of main file inaEigenGSL. c follows

#include <stdio.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_blas.h>

5
/* voltage range */
#define VMIN -100.0
#define DV 0.01
#define VMAX 70.0
10

/* file with values of voltage x/

#define FVM "dat/vm_INa_Js.dat"

/* file with right eigen values */

#define FREVAL "dat/right_evals_INa_/s.dat"
15 /* file with left eigen values */

#define FLEVAL "dat/left_evals_INa_Js.dat"

/* file with left eigenvectors x/

#define FLEVEC "dat/left_evecs_INa_J/s.dat"

/* file with right eigenvectors x*/

198

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

B.3. GNU Scientific Library (GSL)

#define FREVEC "dat/right_evecs_INa_J/s.dat"

#define ERROR (msg){fprintf (stderr ,msg);exit (1);}

#define CALLOC(p,a,b) if (0==(p = calloc(a,b)))ERROR("not, enough, memory\n")

#define MAKE_ARRAY (type, name, length) type * name; CALLOC(name, length,

sizeof (type));

#define OPEN_FILE(fileid, name, suffix);
FILE * fileid;
sprintf (filename ,name,suffix);

if ((fileid = fopen(filename, "w”)) == NULL)
{
fprintf (stderr, "Error while openning, the, file: /s.\n",filename);
exit (1);
}
#define ASSERT_VECTOR_NON_IMAG (vector_gsl); \
{ \
gsl_vector_view vec_imag; \
double min_out, max_out; \
vec_imag = gsl_vector_complex_imag(vector_gsl); \
gsl_vector_minmax (&vec_imag.vector, &min_out, &max_out); \
if (min_out !'= max_out || min_out != (double) 0.0) \
ERROR ("Non-zero, imaginary, part.\n"); \
¥

/* This macro saves only real part of the matrices. */

/* there is not a gsl function for saving only real part of complex
matrices, neither a complex_real conversion function as it is the
case with vectors. */

#define GSL_MATRIX_REAL_FPRINTF (fileid, matrix, format);

{

gsl_vector_complex_view vec_column; /* vector column */

gsl_vector_view vec_column_real; /* real vector column */
for(j = 0; j < matrix->size2; j++)
{

/* get vector number j, ... */
vec_column = gsl_matrix_complex_column (matrix, j);
/* ...convert it to real... %/
vec_column_real = gsl_vector_complex_real(&vec_column.vector);
/* ...and save it. */

gsl_vector_fprintf (fileid, &vec_column_real.vector,format);
/* Assert non-imaginary parts in the matrix */
ASSERT_VECTOR_NON_IMAG (&vec_column.vector);

}
}
#define MULTIPLY_ZGEMM (target, A, B); \
info = gsl_blas_zgemm (CblasNoTrans, CblasNoTrans, alpha, \
A, B, beta, target); \
if (info != 0) ERROR("Erroryingmatriz,multiplication”);
/* Enumerate the markov chain states */
enum
{
#define _(n,i) markov_##n,
#include "clancy_markov.h"
#undef
DIM /* total number of Markov variables */
I3
void
ina_rates_matrix (double V, gsl_matrix * matrix)
{

/* Updates the transition rates matrix of INa Markov chain model
published by Clancy, Rudy (2002) */

/* V -- membrane voltage */

if (matrix->sizel != matrix->size2 || matrix->sizel != DIM)
ERROR ("Transition,rates matriz, is, wrong.");

/* reset the matrix */

gsl_matrix_set_zero (matrix);

/* recompute the tr matrix for new value of V x/

#define _VFUN(name,expression) double name = expression;

#define _RATE(from,to,direct,reverse)
matrix->data[markov_##to*matrix->tda+markov_##from]=direct;
matrix->data[markov_##from*matrix->tda+markov_##from]-=direct;
matrix->data[markov_##from*matrix->tda+markov_##to]l=reverse;

P

P A A AP A A A A v e

-

\

199

Appendix B. Eigenvalue Computation

matrix->datal[markov_##to*matrix->tda+markov_##to]-=reverse;
#include "clancy_rates.h”
#undef _VFUN
#undef _RATE
100 }

void
vector_to_matrix_diagonal (const gsl_vector_complex * vector,
gsl_matrix_complex * matrix)

105 {
/* copy the diagonal vector elements to the diagonal entries of the matrix */
/* assert the sizes of the matrices and vectors correspond */
if ((matrix->sizel != matrix->size2) || (matrix->sizel != vector->size))
{
110 fprintf (stderr, "Theymatriz, must, be,square of, the, size, /d.\n",
(int) vector->size);
exit (1);
}
115 /* initialize elements to zero */
gsl_matrix_complex_set_zero (matrix);
/* copy the elements to the matrix diagonal x*/
unsigned int ij;
for (i = 0; i < 2 * vector->size; i = i + 2)
120 {
matrix->datali * matrix->tda + i] = vector->datali * vector->stridel;
matrix->datal[i * matrix->tda + i + 1] =
vector->datal[i * vector->stride + 1];
}
125 }
void

gsl_matrix_real_complex (gsl_matrix_complex * dest, const gsl_matrix * source)
{
130 /* convert real matrix into complex */
if ((dest->sizel != source->sizel) || (dest->size2 != source->size2))
ERROR ("The,matriz, ,dimensions, must, correspond.\n");
unsigned int i, j;
for (i = 0; i < source->sizel; i++)
135 {
for (j = 0; j < source->size2; j++)
dest->datal[(2 * i) * dest->tda + (2 * j)] =
source->datal[i * source->tda + jl;

140 }

void
eval_scale_identity (gsl_matrix_complex * target,
const gsl_matrix_complex * source)
145 {
/* scale target matrix to give one after a multiplication with the
source matrix. */
/* after this operation on the left_evecs*right_evecs should
approximate identity matrix */
150 gsl_complex scale_factor, scale_factor_inverse;
gsl_vector_complex_view vec_row;
unsigned int ij;

for (i = 0; i < target->sizel; i++)
{
155 /* get the corresponding vectors from matrices */
vec_row = gsl _matrix_complex_row (target, i);

gsl_vector_complex_const_view vec_column =
gsl_matrix_complex_const_column (source, 1i);
/* perform a vector multiplication */
160 gsl_blas_zdotu (&vec_row.vector, &vec_column.vector,
&scale_factor_inverse);
/* assert zero imaginary part */

if (GSL_IMAG (scale_factor_inverse) != (double) 0.0)
ERROR ("Unezpected, non-zero,imaginary,part.\n");
165 /* find scaling factor */
GSL_SET_COMPLEX (&scale_factor, 1.0 / GSL_REAL (scale_factor_inverse),
0.0);

/* scale the target vector x*/
gsl_vector_complex_scale (&vec_row.vector, scale_factor);

170 }

200

B.3. GNU Scientific Library (GSL)

void

assert_vector_relat_diff (comnst gsl_vector * A, const gsl_vector * B,
175 const double tol, const char *object)

{

/* compares vectors A and B by entries and release warning, if the
difference is larger than tolerance tol. Variable object is used
to specify the object for the error message. */

180 if (A->size != B->size)
ERROR ("The,matriz, dimensions, must, correspond.\n");

/* alocate space for the intermediate calculations */
gsl_vector *diff = gsl_vector_alloc (A->size);
185 /* diff = A */
gsl_vector_memcpy (diff, A);
/* diff = A - B %/
gsl_vector_sub (diff, B);
/* diff = (A - B)/B x/
190 /* gsl_vector_div(diff, B); */
/* assert the enries of the diff are small */
unsigned int iij;
double entry;

for (ii = 0; ii < diff->size; ii++)
195 {
entry = diff->datal[ii * diff->stridel;
entry = (entry > 0.0) ? entry : -entry;
if (entry > tol /* && (A->datal[ii*xA->stride])> 1le-10 x*/)
{
200 fprintf (stderr, "Warning:, /s,absolute,diffence”, object);

fprintf (stderr, ", isyZg\tufory(Zg,u%g).\n", entry,
A->data[ii * A->stride], B->datal[ii * B->stridel);

}
}
205 gsl_vector_free (diff);
}
void
assert_reconst_matrix (gsl_matrix_complex * computed, gsl_matrix_complex * W,
210 gsl_vector_complex * lambda, gsl_matrix_complex * V)
{
/* reconstruct original matrix from right_evec*diag(eval)*left_evec
(Wxdiag(lambda)*V) and assert it is a good approximation of
the matrix computed by definition x*/
215
/* assert the dimensions agree x/
if ((W->sizel != W->sizel) || (V->sizel != V->size2)
|| (computed->sizel != computed->size2)
Il (W->sizel != V->sizel) || (W->sizel != computed->sizel)
220 || (V->sizel != lambda->size))

ERROR ("The,dimensions, must, correspond.\n");

/* alocate reconstructed transition rates matrix of INa x/
gsl_matrix_complex *reconst =
225 gsl_matrix_complex_alloc (computed->sizel, computed->size2);
gsl_matrix_complex *intermed =
gsl_matrix_complex_alloc (computed->sizel, computed->size2);

/* allocate diagonal eigenvalue matrix... */
230 gsl_matrix_complex *D =
gsl_matrix_complex_alloc (computed->sizel, computed->size2);
/* ...and fill it up with the eigenvalues on diagonal */
vector_to_matrix_diagonal (lambda, D);

235 /* matrix and vector views */
gsl_vector_complex_view vec_reconst_row, vec_computed_row;
gsl_vector_view vec_reconst_row_real, vec_computed_row_real;

int info; /* variable used for exit status */
240 /* blas input parameters x/
gsl_complex alpha, beta;

GSL_SET_COMPLEX (&alpha, 1.0, 0.0);
GSL_SET_COMPLEX (&beta, 0.0, 0.0);

245
/* matrix multiplication (using blas) */
MULTIPLY_ZGEMM (intermed, W, D);

201

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

Appendix B. Eigenvalue Computation

MULTIPLY_ZGEMM (reconst, intermed, V);

/* assert that the reconstructed matrix approximates the computed */
unsigned int ij;
for (i = 0; i < reconst->sizel; i++)
{
vec_reconst_row = gsl _matrix_complex_row (reconst, i);
vec_computed_row = gsl_matrix_complex_row (computed, i);
/* assert non imag */
ASSERT_VECTOR_NON_IMAG (&vec_reconst_row.vector);
ASSERT_VECTOR_NON_IMAG (&vec_computed_row.vector);
/* ...convert it to real... */
vec_reconst_row_real =
gsl_vector_complex_real (&vec_reconst_row.vector);
vec_computed_row_real =
gsl_vector_complex_real (&vec_computed_row.vector);
/* ... warn if the difference of the entries is large. */
assert_vector_relat_diff (&vec_computed_row_real.vector,
&vec_reconst_row_real .vector, le-5,
"Transition, rates");
}
/* free memory */
gsl_matrix_complex_free (reconst);
gsl_matrix_complex_free (intermed);
gsl_matrix_complex_free (D);
}
int
main (void)
{
/% Kk K K K K K ok kK kK kK K Kk ok ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K Kk kKK K Kk Kk ok ok ok ok ok ok /)
/* create and allocate memory in gsl format structure x/
/* transition rates matrix of INa */
gsl_matrix *rates_matrix = gsl_matrix_alloc (DIM, DIM);
/* transposed transition rates matrix of INa */
gsl_matrix *rates_matrix_transp = gsl_matrix_alloc (DIM, DIM);
/* auxilary matrix for reconstructed transition rates matrix calculation */
gsl_matrix_complex *rates_matrix_complex =
gsl_matrix_complex_alloc (DIM, DIM);
/* right eigenvalues */
gsl_vector_complex *eval_right = gsl_vector_complex_alloc (DIM);
/* left eigenvalues */
gsl_vector_complex *eval_left = gsl_vector_complex_alloc (DIM);
/* right eigenvector matrix */
gsl_matrix_complex *evec_right = gsl_matrix_complex_alloc (DIM, DIM);
/* left eigenvector matrix x*/
gsl_matrix_complex *evec_left = gsl_matrix_complex_alloc (DIM, DIM);
/* workspace for nonsymetric eigenvalue problem */
gsl_eigen_nonsymmv_workspace *workspace = gsl_eigen_nonsymmv_alloc (DIM);
/* view to gsl structures */
gsl_vector_view eval_right_real, eval_left_real; /* real eigenvalues */
/% 3 K ok K K K K K K K K K K K K K Kk ko ok ok ok ok ok ok ok ok ok ok ok ok Kk K K K KK K KK K Kk k /
/* create pointers and open the output files */
MAKE_ARRAY (char, filename, 64); /* name of output file %/
OPEN_FILE (fvolt, FVM, "“GSL"); /* file for voltage */
OPEN_FILE (feval_right, FREVAL, "GSL"); /* file for right eigenvalues x*/
OPEN_FILE (fevec_left, FLEVEC, "GSL"); /* file for left eigenvectors x*/
OPEN_FILE (fevec_right, FREVEC, "GSL"); /* file for right eigenvectors x/
free (filename);
/% 3 5k ok ok ok K K K K K K K K K K K K K K K K KK KKK KKk ok K/
/* COMPUTE AND SAVE THE RESULTS x/
/* number of voltage steps */
const int volt_steps_N = (VMAX - VMIN) / DV;
/* membrane potential in mV */
double volt;
/* loop counters */
int i;
unsigned int j;
for (i = 0; i <= volt_steps_N; i++)

{

% okok ok ok ok sk ok ok kK ok ok ok ok ok ok ok ok ok ok K o ok ok ok ok ok Rk ok kok k% /
/* compute transition rates matrix */

202

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

B.3. GNU Scientific Library (GSL)

/* get the membrane voltage */

volt = VMIN + i x DV;

/* get transition rates matrix for given voltage */
ina_rates_matrix (volt, rates_matrix);

/* get transposed transition rates matrix */

gsl_matrix_transpose_memcpy (rates_matrix_transp, rates_matrix);

/* copy the elements into complex transition rates matrix x*/
gsl_matrix_real_complex (rates_matrix_complex, rates_matrix);

/% ok ok ok sk ok ok ok ok ok sk sk sk ok ok ok sk ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok kok ok k /
/* compute eigenvalues and eigenvectors */
/* get the RIGHT evals and evecs */

gsl_eigen_nonsymmv (rates_matrix, eval_right, evec_right, workspace);

/* get the LEFT evals and evecs */

gsl_eigen_nonsymmv (rates_matrix_transp, eval_left, evec_left,

workspace) ;

/% koK ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok K o koK Kok K Rk ok ok /
/* process eval and evec x/

/* sort the eigenvalues and eigenvectors in descending order */

gsl_eigen_nonsymmv_sort (eval_right, evec_right,
GSL_EIGEN_SORT_ABS_DESC);

gsl_eigen_nonsymmv_sort (eval_left, evec_left, GSL_EIGEN_SORT_ABS_DESC);

/* transpose the left eigenvector matrix in place */
gsl_matrix_complex_transpose (evec_left);

/* scale left_evals to satisfy left_evals*right_evals = Identity x*/

eval_scale_identity (evec_left, evec_right);

/* create a view to real part of eigenvalues... x/
eval_right_real = gsl_vector_complex_real (eval_right);
eval_left_real = gsl_vector_complex_real (eval_left);

/% skokook ok ok ok sk ok ok ok ok ok ok ok ok sk o ok ok o ok ok ok okok ok sk ok Rk ok ok ok ok ok ok ok ok ok ok ok /

/* assert some assumed properties */

/* ... warn if the difference of eigenvalues is large. */

assert_vector_relat_diff (&eval_left_real.vector,
&eval_right_real.vector, 1le-10,
"Eigenvalues");

/* non-imaginary parts in eigenvectors x/

ASSERT_VECTOR_NON_IMAG (eval_right);

ASSERT_VECTOR_NON_IMAG (eval_left);

/* assert the reconstructed matrix is a good approximation */

assert_reconst_matrix (rates_matrix_complex, evec_right, eval_right,

evec_left);

[% KKK KKK KK KKK KKK KKK KKK KKK KKK KK K/
/* Saving results */
/* Save real part of eigenvalues. */

gsl_vector_fprintf (feval_right, &eval_right_real.vector, "/.10g");

/* save real part of eigenvector matrices */
GSL_MATRIX_REAL_FPRINTF (fevec_left, evec_left, "/.10g");
GSL_MATRIX_REAL_FPRINTF (fevec_right, evec_right, "/.10g");
/* save the voltage */

fprintf (fvolt, "/.2f\n", volt);

/% Kok ok okok ok ok ok ok ok x /
/* CLEAN UP */
/* close files x/
fclose (fvolt);
fclose (feval_right);
fclose (fevec_left);
fclose (fevec_right);

/* free memory x*/

gsl_vector_complex_free (eval_right);
gsl_vector_complex_free (eval_left);
gsl_matrix_free (rates_matrix);

gsl_matrix_free (rates_matrix_transp);
gsl_matrix_complex_free (rates_matrix_complex);
gsl_matrix_complex_free (evec_right);
gsl_matrix_complex_free (evec_left);
gsl_eigen_nonsymmv_free (workspace);

return O;

203

Appendix B. Eigenvalue Computation

This code uses inaEigen.h, clancy_markov.h, and clancy_rates.hare shared
with the LAPACK code and were listed in the previous section.

B.4 Including GSL to BeatBox

Both LAPACK and GSL implementation have been successful in diagonalisation
of the matrices of Iy, Markov chain. The computation was done for membrane
voltages from —100, to 70 mV with the grid step of 0.01 mV. The computational time
including saving of the eigenvalues and eigenvector matrices is 1.8 s for the GSL
implementation and 1.5 s for LAPACK implementation.

The license of LAPACK is permissible, and allows including the library even in
non-free (proprietary) software. The GSL. GNU GPL license requires the software
to be free. So both packages could be possibly included into BeatBox, which itself
is released under free GNU GPL license.

We have not compared the the efficiency of the computation of the diagonalisa-
tion of the matrix.

Eventually, we have opted to include the GSL library. Although, the LAPACK
computation seems more efficient, the efficiency of the diagonalisation is not crucial
for the speed of the integration. This is because we normally do not compute
the decomposition on-the-fly, but instead use tabulation of the eigenvalues and
eigenvectors before the main computation starts. Using the LAPACK would imply
the user to have Fortran compiler in addition to the C compiler, which could be
inconvenient for some users.

The complete build of GSL library takes several minutes. However, many of the
function provided by the library, are not required for the diagonalisation. For that
reason, we decided to include only required GSL functions.

The extract of the required functions from GSL was not a trivial step. The main
complication in the process is that many of the files define a great number of
functions, which themselves refer to additional functions, which are sometimes
present in other files. When that happens, the object code for the unnecessary
functions has to be included the binary, although the specific function is actually
never used.

To overcome this problem, we have decided to include only the required
functions and comment out all the irrelevant function. To find out which function
are those, we have developed a script, which would search for all the functions
used within the eigenvalue solver and its called function.

In the end we identify a list of about 60 essential functions and commented
out the remaining part of the files. Also the files, which were not used at all were
removed from the build system. Such extracted GSL library can be compiled within
a few seconds and is included as part of BeatBox distribution.

204

B.4. Including GSL to BeatBox

Similarly to BeatBox source code GSL uses GNU Build system, which is a
name for a set of tools used to compile the source code and allow portability
of the code to machines with different architecture. The standard for the GNU
packages requires to provide configure and Makefsle scripts for the configuration
and installation of a package. This is conveniently done by GNU Autotools, where
GNU Autoconf creates the configuration files, GNU Automake creates Makef7les.
The complete build and installation in the simplest scenario is achieved by a
combination of commands:

./configure
make
make install

BeatBox aims to be self sustained package with a minimal number of depen-
dencies. For that reason it is desirable to include the eigenvalue solver into the
BeatBox distribution, rather than relying on the user to install GSL as a separate
package. This can be done using GNU Autoconf as a “nested” package. This
is done by adding the following line into configure.acin the top directory of the
BeatBox repository.

AC_CONFIG_SUBDIRS ([src/gsl-1.16.extract])

The src/gsl-1.16. extract is the directory containing the GSL library. During
the build, the make will descend to the GSL library and perform the build as needed.
At the linking stage of the BeatBox the compiler will include the functions from
the GSL library into the binary files. For that the Automake file scr/Makefile. am
needs to refer to the path to the GSL libraries as follows:

beatbox_CPPFLAGS += -I$(GSL)
beatbox_SEQ_CPPFLAGS += -I$(GSL)/
beatbox_LDADD += -1gsl -1lgslcblas

205

Appendix C

rushlarsen Source Code

C.1 Source Code of ionic.h

Listing C.1: ionic.h
/**
* Interface with cardiac cell model description,
* describing HH-type gates separately.
* Also modified to describe MC models separaterly.

*/

#ifndef _ionic

#define _ionic

typedef struct { /* description of dependent parameters */
int n;
int *src;
real *xdst;

} Var;

#define IONICFTAB(name) int name(real V, real *values, int ntab)
typedef IONICFTAB(IonicFtab);
#define IONIC_FTAB_HEAD (name) \
IONICFTAB (ftab_##name) {
#define IONIC_FTAB_TAIL (name) \
return 1; \

/* Type of function definining the right-hand side for non-gate variables x/
/* u: vector of dynamic variables */

/* nv: number of elements in v */

/* values: table of tabulated functions x*/

/* ntab: number of rows in the table (number of voltage values) x/

/* Par: the array of parameters of this ionic model %/

/* Var: the array of descriptors of variable parameters of this ionic model */
/* du: vector for the derivatives of dynamic variables (output) */

/* no: the number of "other" variables x/

/* nalp: the array of non-tabulated alpha-rates x*/

/* nbet: the array of non-tabulated beta-rates */

/* nn: the number of non-tabulated gates */

#include "channel.h"”
#define IONICFDDT (name) int name(real *u,int nv,real *values,int ntab,Par par,\
Var var,real *du,int no,real *nalp,real *nbet,int nn)

typedef IONICFDDT (IonicFddt);
/* Header of a standard ionic rhs calculator: */

207

Appendix C. rushlarsen Source Code

/* - nostrify the parameters list, x/
/* - check dimensions of subvectors, *x/
/* - implement parameter substitution if needed. */
45 #define IONIC_FDDT_HEAD (name ,NV,NTAB,NO,NN) \
IONICFDDT (fddt_##name) { \
STR *S = (STR *)par; \
int ivar; \
if (nv!=NV) ABORT("nv=/%d,!=,NV=/d\n",nv,NV); \
50 ASSERT (ntab==NTAB) ; \
ASSERT (no==N0) ; \
ASSERT (nn==NN) ; \

if (var.n) for(ivar=0;ivar<var.n;ivar++) *(var.dst[ivar])=ulvar.srcl[ivar]l];

55 #define IONIC_FDDT_TAIL (name) \
return 1; \

}

/* Solver-independent entities exported by an ionic model description */
60 typedef struct {

IonicFtab *ftab; /* voltage dependent functions that can be tabulated */

int nmc; /* number of Markov chain models */

int nmv; /* total number of Markov chain variables x*/

IonicFddt *fddt; /* right-hand sides of non-gate equations */
65 int no; /* number of non-gate variables */

int nn; /* number of nontab gate variables */

int nt; /* number of tab gate variables */

int ntab; /* number of tabulated functions */

int V_index; /* index of voltage in the state vector x*/
70 Par p; /* vector of model parameters */

Var var; /* description of dependent parameters x*/

channel_str * channel; /* definitions of ion channel */

} ionic_str;

75
#define IONICCREATE (name) int name(ionic_str *I,char *w,real **u,int vO0)
typedef IONICCREATE (IonicCreate);

#define IONIC_CREATE_HEAD (name) \
80 IONICCREATE (create_##name) { \
STR *S = (STR *)Calloc(l,sizeof (STR)); \
char *p=w; \
Var *var=&(I->var); \
int ivar=0; \
85 int ig; /* gates counter */ \
real VO; /* initial voltage */ \
if (!S) ABORT("cannot,create,/s",#name) ; \
for(var->n=0;*p;var->n+=(*(p++)==AT)); \
if (var->n){CALLOC (var->dst ,var->n,sizeof (real *)); \
90 CALLOC (var->src,var->n,sizeof (int));} \
else {var->src=NULL; (var->dst)=NULL;} \
I->V_index=V_index; \
/* Accept the non-cell parameter values by the standard macro x/ \
ACCEPTP (IV,0,RNONE,RNONE) ; /* By default, no stimulation */ \
95 /* Create the vector of initial values of dynamic (state) variables. */\
MALLOC (*u, (long int)NV*sizeof (real));\
int ii; /* TODO: rewrite x*/ \

/* for (ii=0; ii < NMC; ii++) {nmv+=nm[ii]; nme+=nm[iil*nm[ii];} */\
/* allocate the channel structure */ \

100 channel_str * ch; \
subchain_str * sbch; \
CALLOC(I->channel ,NMC,sizeof (channel_str));\
ch = &(I->channel [0]); \
for (ii=0; ii <NMC; ii++) \

105 CALLOC(I->channel[ii].subchain, MAX_SUBCHAINS, sizeof (subchain_str));\

#define IONIC_CREATE_TAIL (name,rc) \
var->n=ivar; \
if (ivar) {REALLOC (var->dst ,1L*xivar*sizeof (real *));\

110 REALLOC(var->src,1L*ivar*sizeof (int));} \
else{FREE (var->dst); FREE(var->src);} \
I->p = S; \
I->no = NO; \
I->nn = NN; \

115 I->nt = NT; \
I->ntab = NTAB; \

I->nmc = NMC; \

208

120

125

130

20

25

30

35

40

5

C.2. Source Code of channel.h

int nmv=0; \
for (ii=0; ii < NMC; ii++){
nmv += I->channel[ii].dimension;
}
I->nmv=nmv;
ASSERT (NV==NO+NN+NT+nmv) ;
return rc;

P

}

#define IONIC_CONST (type,name) type name=S->I.name;
#define IONIC_ARRAY(type,name) type *name=&(S->I.name[0]);

#endif

C.2 Source Code of channel.h

Listing C.2: channel.h

/* maximal number of allowed subchains in a Markov chain models */
#define MAX_SUBCHAINS 4

#define SUBCHAIN(fun_tr, index, min, max, incr, sc) \
sbch->trans_rates_mat = fun_tr; \
sbch->i_control = index; \
sbch->tmin = min; \
sbch->tmax = max; \
if (min > max) { \
URGENT_MESSAGE ("min, >, maz, for, subchain, tabulation of, ,%s", #fun_tr); \
ABORT (""); \
¥
sbch->tincr = incr;
sbch->scale = sc;
ch->num_sub += 1;
sbch+=1;

s

#define TR_MAT (channel,from, to, direct, reverse)
tr_mat [channel##_##toxNM_##channel+channel##_##from]=direct;
tr_mat [channel##_##from*xNM_##channel+channel##_##from]-=direct;
tr_mat [channel##_##from*xNM_##channel+channel##_##to]l=reverse;
tr_mat [channel##_##to*NM_##channel+channel##_##to]-=reverse;

P e

#define CHANNEL_TR_MATRIX (name) int name(real * u, real *tr_mat)
typedef CHANNEL_TR_MATRIX (TransRatesMat);

/* subchannel of Markov chain model */
typedef struct {
TransRatesMat *trans_rates_mat; /* function to get transition rates matrix */

int i_control; /* index of controling dynamical variable */
real tmin; /* minimal value for tabulation */

real tmax; /* maximal value for tabulation */

real tincr; /* increment in the tabulation */

int scale; /* 0 for linar, 1 for logarithmic */

} subchain_str;

/* general structure of ionic channel to embarace Markov chain and gate model */
typedef struct {

int dimension; /* dimensionality of the model */
int num_sub; /* number of subchains */
subchain_str * subchain; /* subchains of the model */

/* TODO: add conservation variable x*/
} channel_str;

C.3 Source Code of rushlarsen.c

Listing C.3: rushlarsen.c
/**
* Rush-Larsen solver for cardiac excitability kinetic models.
* Utilizes a special kinetics format, describing HH-type gates separately.
* It also adds Matrix Rush Larsen solver for Markov chain.

*/

209

Appendix C. rushlarsen Source Code

#include <assert.h>
#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_permutation.h>

#include "system.h"
#include "beatboxz.h"”
#include "device.h”
#include "state.h'"
#include "bikt.h"
#include "donic.h"
#include "gpp.h"

typedef struct {

real ht; /* time step */
Name order; /* text code of the order of execution */
int whichorder; /* numeric code of the order of execution x*/
Name ionic; /* ionic of the ionic cell model */
ionic_str I; /* ionic cell description */
int exp_ngate; /* if nonzero, non-tabulated gates are stepped by RL,
if zero by FE */
Name exp_mc; /* text code of the MC method */
int which_exp_mc; /* numeric code of the MC method */
int rest; /* how many steps to do to find resting values */
real Vmin, Vmax; /* limits of voltage in the table (Vmax is approximate) */
real dV; /* voltage increment in the table */
int equilibrate_gates;/* whether to equilibrate gates in the initial state */
real *u; /* vector of vars for steady state if any */
real *du; /* vector of derivatives x*/
real *nalp; /* vector of nontab alphas x/
real *nbet; /* vector of nontab betas */
int nV; /* number of rows in the table */
real one_o_dV; /* inverse of voltage increment in the table */
real *tab; /* the table of values of functions */
real *adhoc; /* array of ad hoc values of tabulable functions */
real *chains; /* matrix of MC transition rates */
} STR;

/% % % 5k ok ok ok sk ok sk ok %k ok ok ok %k sk ok %k ok %k ok ok ok %k ok %k %k 5k %k ok % sk %k >k %k %k %k %k >k k sk ok k Kk ok k % /

/* Structure of the state vector: */
/* 0 .. no-1: no "other variables" */
/* no .. no+nn-1: nn non-tab gates */
/* no+nn .. no+nn+nt-1=nv-1": nt tab gates */
/* So nv=no+nn+nt */

/% % % 5k %k 5k % sk ok sk ok %k ok % 5k %k sk ok ok %k %k ok %k 5k % 5k %k ok %k ok 3k %k 5k % 5k % 5k %k >k %k %k %k %k 5k % >k % >k % >k % %k %k % >k % >k % >k * k %k % /

/* Structure of the vector of tabulated functions: */
/* 0 .. nt-1 alphas/a-coefficients */
/* nt .. 2*nt-1 betas/b-coefficients */
/* 2%nt .. ntab-1 everything else */
/* NB: the first 2*nt values are dual purpose (alp/bet->a/b) */

/% % % 5k %k 5k % sk ok %k ok %k ok % 5k %k sk %k 5k %k %k ok % 5k % 5k %k 5k % 3k ok %k 5k % >k %k >k % >k ok %k 5k % >k % >k % >k *k k kK k*kk x /

/* Conversion of alpha anb beta into the x/
/* Rush-Larsen linear combination coefficients: */
/* a=alpha/(alpha+beta)*(1-exp(-(alpha+beta)*ht)); */
/* b=exp(-(alpha+beta)*ht). */
/* This is a bit tricky; for debugging might be an idea */
/* to do this in a more straightforward way... */

static inline void calcab (real *a,real *b,real ht) {
/* first a=alp, b=bet */

(*b)+=(*a); /* b=alp+bet */
(xa)/=(*b); /* a=alp/(alp+bet) */
(*b)*=ht; /* b=(alp+bet)*ht) */

(*b)=exp(-(*b)); /* b=exp(-(alp+bet)*ht) */
(¥a)*=(1-(*b)); /x a=alp/(alp+bet)*(l-exp(-(alp+bet)*ht)) */
}
int
memcpy_gsl_matrix_complex_to_real (real *dest, gsl_matrix_complex *src, int n)

210

C.3. Source Code of rushlarsen.c

Convert the gsl format of eigenvector matrices to the format used
85 in Beatbox.

As the eigenvectors come from MC, the complex part should be zero
(asserted in the code) and can be ignored.

90 This function copies the entries of array "src" into array
"dest", both arrays should be of size n*n as we operate on square
matrices of dimension n.

*/
/* assert the gsl_matrix "src" is square of dimension n */

95 ASSERT (src->sizel == n);

ASSERT (src->size2 == n);

/* loop to copy real entries of "src" into "dest" */
int unsigned i, j;
for (i=0; i < n; i++)
100 {
for (j=0; j < n; j++)
{
/* assert imaginary part is zero */
/* the imaginary part has some tolerance */
105 if (fabs(src->datal[2 * (src->tda * i + j)+1]1) != 0)
ABORT ("Error:, Imaginary,part, of eigenvector, matriz, is, ,not, zero, "
"(ityisy%g).\n", fabs(src->datal[2 * (src->tda * i + j)+11));
/* copy real part of "src" to "dest" matrix */
dest[n * i + j] = (real) src->datal[2 * (src->tda * i + j)I;
110 }
}
return 1;

}

115 int

memcpy_gsl_vector_complex_to_real (real *dest, gsl_vector_complex *src, int n)

/ *
Convert the gsl format of eigenvalue vector to the format used
120 in Beatbox.

As the eigenvalues come from MC, the complex part should be zero
(asserted in the code) and can be ignored.

125 This function copies the entries of array "src" into array
"dest", both arrays should be of size n (number of eigenvectors).

*/
/* assert the gsl vector "src" is square of dimension n */
ASSERT (src->size == n);

130 /* loop to copy real entries of
int unsigned i;
for (i=0; i < n; i++)

{

src" into "dest" x/

/* assert imaginary part is zero */
135 /* the imaginary part has some tolerance */
if (fabs(src->datal[2 * src->stride * i + 1]) != 0)
ABORT ("Error:,Imaginary,part of,eigenvalue vector, is, not, zero,"
"(ityisu%9).\n", src->datal[2 * src->stride * i + 1]);
/* copy real part of "src" to "dest" matrix */
140 dest[i] = (real) src->datal[2 * src->stride * il;
}
return 1;

}

145 /* function to obtain matrix Rush-Larsen by eigenvalue decomposition
and exponentiation */
/* it returns the mrl in Beatbox format -- real x/
int
get_matrix_rush_larsen (real *markov_rates, real ht, real *trans_rates, int n)
150 {
unsigned int i, j, k; /* loop counters x/
double factor; /* factor for eigenvector normalization */
/% ok ok ok ok ok ok o oK ok o oK ok o oK oK o oK ok o oK ok K K ok o K ok K oK oK KK ok KK ok KKK KKk KKk R Kk KRk kkk ok /
/* create and allocate memory in gsl format structure */
155 /* right eigenvalues complex */
gsl_vector_complex *eval_right_gsl = gsl_vector_complex_alloc ((size_t) n);
/* left eigenvalues complex */

211

Appendix C. rushlarsen Source Code

gsl_vector_complex *eval_left_gsl = gsl_vector_complex_alloc ((size_t) n);
/* right eigenvector matrix */
160 gsl_matrix_complex *evec_right_gsl =
gsl_matrix_complex_alloc ((size_t) n, (size_t) n);
/* left eigenvector matrix x/
gsl_matrix_complex *evec_left_gsl =
gsl_matrix_complex_alloc ((size_t) n, (size_t) n);
165 /* workspace for nonsymetric eigenvalue problem x/
gsl_eigen_nonsymmv_workspace *workspace =
gsl_eigen_nonsymmv_alloc ((size_t) n);
/* transposed transition rates matrix of INa */
real *tr, *tr_transp;
170 /* to eigenvalues and eigenvectors in simple format */
real *evec_right, *evec_left, *evals;
/* auxilary arrays for MRL computations */
real *exp_evals_ht, *evec_right_eval;

175 /* allocate space to eigenvalues and eigenvectors in Beatbox format x*/
CALLOC(tr_transp, n*n, sizeof (real));
CALLOC(tr, n*n, sizeof (real));
CALLOC (evec_right , n*n, sizeof (real));
CALLOC(evec_left, n*n, sizeof(real));
180 CALLOC(evals, n, sizeof (real));
CALLOC (exp_evals_ht, n, sizeof (real));
CALLOC(evec_right_eval, n*n, sizeof (real));

185 /* view to gsl structures */
gsl_matrix_view rates_matrix =
gsl_matrix_view_array (tr, (size_t) n, (size_t) n);
gsl_matrix_view rates_matrix_transp =
gsl_matrix_view_array (tr_transp, (size_t) n, (size_t) n);

190
/* copy tr and transposed tr matrix (seen by gsl_view rates_matrix_transp)x*/
for (i = 0; i < n; i++)
{
for (j = 0; j < mn; j++)
195 {
tr[n * i + j] = trans_rates[n *x i + jl;
tr_transp[n * i + j] = trans_rates[n * j + il;
}
}
200

/* compute eigenvalues and eigenvectors x*/

/* get the RIGHT evals and evecs x/

gsl_eigen_nonsymmv (4rates_matrix.matrix, eval_right_gsl, evec_right_gsl,
workspace) ;

205 /* get the LEFT evals and evecs x*/
gsl_eigen_nonsymmv (&rates_matrix_transp.matrix, eval_left_gsl, evec_left_gsl,

workspace) ;
K KKK KRRk kKK KKK KKK KR R Rk kR ok ok ok ok ok ok K/
/* process eval and evec x/

210 /* sort the eigenvalues and eigenvectors in descending order */
gsl_eigen_nonsymmv_sort (eval_right_gsl, evec_right_gsl, GSL_EIGEN_SORT_ABS_DESC);
gsl_eigen_nonsymmv_sort (eval_left_gsl, evec_left_gsl, GSL_EIGEN_SORT_ABS_DESC);
/* convert gsl arrays to real */
memcpy_gsl_matrix_complex_to_real (evec_left, evec_left_gsl, n);

215 memcpy_gsl_matrix_complex_to_real (evec_right, evec_right_gsl, n);
memcpy_gsl_vector_complex_to_real (evals, eval_left_gsl, n);

/* reorder eigenvectors in case of multiple (so far only double) eigenvalues */
#define M 2
220 real etal[M*M];
real tmp;
for (i = 0; i < (n - 1); i++)

{
/* the "identical" eigenvalues are computed with some tolerance
225 if (evals[i] = evals[i + 1]) */
if (fabs(evals[i] - evals[i + 1]) < 1e-13)
{
/* check for triple eigenvalues -- this has not been resolved */
if ((i < n - 2) ? (evals[i] == evals[i + 2]) : (0))
230 {

URGENT_MESSAGE ("There,are, three, identical eigenvalues.\n");
ABORT (" ") ;
}

212

C.3. Source Code of rushlarsen.c

/* reset the eta’s x/

235 for (j = 0; j < mn; j++)
etal[j]l] = 0.0;
for (j = 0; j < n; j++)
{
eta[0] += evec_right[n * j + i] * evec_left[n * j + il;
240 eta[1] += evec_right[n * j + i + 1] * evec_left[n * j + il;
eta[2] += evec_right[n * j + i] * evec_left[n * j + i + 1];
eta[3] += evec_right[n * j + i + 1] * evec_left[n * j + i + 1];
}
/* if the eigenvector are in reversed order swap right eigenvectors x/
245 if (eta[0] == 0 && etal[3] == 0)
{
for (j = 0; j < m; j++)
{
tmp = evec_right[n * j + i];
250 evec_right[n * j + il = evec_right[n * j + i + 1];
evec_right[n * j + i + 1] = tmp;
}
}
for (j=0;j<M*M; j++) etaljl = 0.0;
255 for (j = 0; j < nj; j++)
{
eta[0] += evec_right[n * j + i] * evec_left[n * j + il;
eta[1l] += evec_right[n * j + i + 1] * evec_left[n * j + i];
eta[2] += evec_right[n * j + i] * evec_left[n * j + i + 1];
260 eta[3] += evec_right[n * j + i + 1] * evec_left[n * j + i + 1];
}
if (eta[0] == 0 || eta[3] == 0 || eta[1] != 0 || eta[2] != 0)
{

URGENT_MESSAGE ("The,eigenvalues, are, not, biorthogonal.\n");
265 ABORT ("");

}

270 /* scale left eigenvectors such that the multiplication
with right eigenvectors gives identity */

for (i = 0; i < n; i++)
{
factor = 0.0;
275 for (j = 0; j < m; j++)
{
factor += evec_right[n * j + i] * evec_left[n * j + il;
}
factor = 1/factor;
280 for (j = 0; j < mj; j++)
{
evec_right[n * j + i] *= factor;
}
}
285 /* exponentiate eigenvalue and time step */
for (i = 0; i < n; i++)

exp_evals_ht[i] = exp (evals[i] * ht);
/* multiply left eigenvalue and eigenvectors and place to auxilary array x*/

for (i = 0; i < n; i++)
290 {
for (j = 0; j < n; j++)
{
evec_right_evall[n * i + j] = evec_right[n * i + j] * exp_evals_ht[j];
}
295 I
/* multiply auxilary array with right eigenvectors so we get the MRL */
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
300 {
markov_rates[n * i + j] = 0.0;
for (k = 0; k < n; k++)
{
markov_rates[n *x i + j] +=
305 evec_right_evall[n * i + k] * evec_left[n *x j + k];
}
¥
}

213

Appendix C. rushlarsen Source Code

310 /* free gsl memory x/
FREE(tr_transp);
FREE (tr);
FREE (evec_right);
FREE (evec_left);

315 FREE (evals);
FREE (exp_evals_ht);
FREE (evec_right_eval);

gsl_vector_complex_free (eval_right_gsl);
320 gsl_vector_complex_free (eval_left_gsl);
gsl_matrix_complex_free (evec_right_gsl);
gsl_matrix_complex_free (evec_left_gsl);
gsl_eigen_nonsymmv_free (workspace);

325 return 1;

}
/* print matrix -- for debugging purposesx*/
void
330 print_matrix (real *m, int n)
{
/* algorithm to print square matrix m of dimension n */
int i, j;
for (i = 0; i < n; i++)
335 {
for (j = 0; j < n; j++)
{
printf ("%10.2g", m[n * i + j1);
}
340 printf ("\n");
}
printf ("\n");
}
345 /* print matrix -- for debugging purposesx*/
void
print_complex_matrix (real *m, int n)
{

/* algorithm to print square complex matrix m of dimension n */

350 int i, j;

for (i = 0; i < n; i++)
{
for (j = 0; j < 2*n; j=j+2)
{
355 printf (" (%0.2g", m[2*n * i + j1);
printf ("%+0.2gi)\t", m[2*n * i + j + 1 1);
}
printf ("\n");
}
360 printf ("\n");

}
/* Substeps of the algorithm can be done in different order */

3685 /5 sk k ok sk sk ok ok ok k sk ok ok ok k ok ok ok K k ok ok k /
/* TABULATED FUNCTIONS x*/
/* check voltage x*/
#define DOTABLES \

V=u[V_index]; \
370 iV=floor ((V-Vmin)*one_o_dV); \
/* if outside limits or tabulation step dV is zero calculate */ \
/* tabulated values by formulas */ \
if (iv<0 || iV>=nV || S8->dV == 0.0) { \
if (S->dV != 0.0) printf ("V=/g,outside,[4g,%g]luat, t=/ld at point, kd,%d,sd\n",\
375 V,Vmin ,Vmax ,t,x,y,2); \
values=adhoc; \
if (!ftab(V,values,ntab)) \
ABORT ("error,calculating, ftab (/s)yat, t=/1d point, Zdy,kd,/d: ,V=/g\n", ionic ,\
t,x,y,2,V); \
380 for (it=0;it<nt;it++) \
calcab(values+it,values+nt+it,ht); \

/* TODO: report the value of V, to extend the table in the future */ \
} else { \
/* otherwise get them from the table */ \
385 values=tab+iV*ntab; \

214

C.3. Source Code of rushlarsen.c

} /x if iV .. else */

/% % 5 % % % % >k % % % % >k % >k % * *k * *k % % % /
/* tabulated GATES by Rush-Larsen x/
390 #define DOTGATES \
a=values;
b=values+nt;
for (it=0;it<nt;it++) {
gateold=tgate[it];
395 tgate[it]l=al[it]l+b[it]l*gateold; /* this is the RL step */
if (!isfinite(tgatel[it])) {
URGENT_MESSAGE ("\ nNAN, (not -a-number) at t=)1ldyz=/d y=/d 2=/d tab,,gate, fd\n",\

P

t,x,y,2z,it); \
URGENT_MESSAGE("This, happened while ymultiplying 4g9ubyu/sguand adding, Zg\n",\
400 gateold ,b[it],alit]); \
ABORT (") ; \
} /* if !isfinite */ \

} /x for it x/

405 /% % % % sk 5k ok % % % 5k ok %k % %k >k k %k % * >k k % % /
/* equilibrating tabulated GATES x/
#define DOTGATESEQ \
a=values;
b=values+nt;
410 for (it=0;it<nt;it++) {
gateold=tgate[it];
tgate[it]l=alit]/(1-b[it]); /* this is the equilibrium value */
if (!isfinite(tgatel[it])) {
URGENT_MESSAGE ("\ nNAN, (not -a-number) equilibrating, tab,,gate, 4d: a=4g, ,b=4g\n"\

P ara

415 ,it,alit],b[it]); \
ABORT (" "); \
} /* if l'isfinite */ \

} /% for it */

420
/% sk ok ok ok ok ok sk ok ok ok ok sk sk ok K K ok ok ok ok K o ok ok ok K o ok ok ok ok K o ok ok ok ok K o ok ok ok K K ok ok ok ok K K ok ok ok ok K o ok ok ok ok /
/* OTHER VARIABLES by forward Euler x*/
#define DOOTHER \

ulio] += ht*duliol; /* this is the FE step */
if (uliol!=ulio]) {
URGENT_MESSAGE ("\nNAN,, (not -a-number) detected, ot t=}ld z=/d,y=kd,z=}d ,v=/d\n"\
,t,%x,y,2,1i0);
435 URGENT_MESSAGE ("This, happened, while, incrementing,");
for (iv=0;iv<nv;iv++) URGENT_MESSAGE("/c/lg",iv?’,”’:’(’,uliv]);
URGENT_MESSAGE ("), by, Zlg*",ht);
for (jo=0; jo<no; jo++) URGENT_MESSAGE ("%c/%lg",jo?’,’:’(’,duljol);
URGENT_MESSAGE(")\n");
440 ABORT (" ");
} /x if NaN =*/
} /x for io */

if (!fddt(u,nv,values,ntab,p,var,du,no,nalp,nbet,nn)) { \
425 URGENT_MESSAGE ("error,calculating,fddt (4s)yat t=/41ldypoint, Ad,kd,Kd:u=",\
ionic,t,x,y,z); \
for(iv=0;iv<nv;iv++) URGENT_MESSAGE (", %lg",uliv]); \
ABORT ("\n"); \
} /% if 'fddt... */ \
430 for (io=0;io<no;io++) { \
\
\

P

/% ok K ok K ok o ok ok ok ok ok ok oK ok o oK ok o K ok o oK ok K oK ok o oK ok oK ok oK ok ok K ok ok K ok K ok kK ok K Kk kK ok %/
445 /+ NONTAB GATES by Rush-Larsen */
#define DONGATESRL \
for (in=0;in<nn;in++) {
a=nalp+in;
b=nbet+in;
450 calcab(a,b,ht);
gateold=ngate [in];
ngate [in]=(*a)+(*b)*gateold; /* this is the RL step */
if (!isfinite(ngatel[in])) {
URGENT_MESSAGE (\
455 "\nNAN, (not -a-number) at, t=4ld c=/4d,y=kd,z=/d nontab, gate, fd\n" \
)t)X5Y9z:in); \
URGENT_MESSAGE("This, happened while ymultiplying 49ubyusguand adding, ,sg\n",\
gateold ,*b,*a); \
ABORT (" "); \
460 } /* if 'isfinite */ \
} /* for in x/

P

215

Appendix C. rushlarsen Source Code

/% ok ok sk ook ok ok ok ok ok ok ok s ok ok s ok ok o ok ok s ok ok s ok ok s ok ok s ok ok s ok ok ok ok 3 ok ok 3 ok ok ok ok ok ok ok kK ok kK ok %/
465 /* equilibrating NONTAB GATES */
#define DONGATESEQ \
for (in=0;in<nn;in++) {
a=nalp+in;
b=nbet+in;
470 ngate [in]=(*a)/((*xa)+(*b)); /* this is the equilibrium value */
if ('isfinite(ngatel[inl])) {
URGENT_MESSAGE (\
"\nNAN, (not -a-number) equilibrating, nontab,gate, Jd: alp=/g, bet=4g\n",\

P

in,*a,*b); \
475 ABORT(""); \
} /% if !isfinite */ \

} /* for in */

/% ok ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok ok ok ok K K ok kK ok kK ok kK ok %/
480 /x NONTAB GATES by forward Euler */
#define DONGATESFE \

for (in=0;in<nn;in++) { \

a=nalp+in; \

b=nbet+in; \

485 gateold=ngate[in]; \
ngate[in] = gateold+ht*((*a)-((*a)+(*b))*gateold); /* this is the FE step */ \

if (!isfinite(ngatel[inl])) { \

URGENT_MESSAGE (\
"\nNAN, (not —~a-number) ot t=4ld c=/d,y=kd,z=/d, nontab, gate, fd\n",\

490 t,x,y,2,1in); \
URGENT_MESSAGE("This, happened, at, gateold=/g ht=/g, alpha=/g beta=/g\n",\

gateold ,ht ,*b,*a); \

ABORT (""); \

} /% if 'isfinite */ \

495 } /% for in %/

#define DOMARKOV \
for (im =0; im < nmc; im++) {
\
500 subchain = &(channel[im].subchain[0]);\
dimension = channel[im].dimension; \
\
CALLOC(trm, dimension*dimension, sizeof(real)); \
CALLOC(mrl, dimension*dimension, sizeof (real)); \
505 CALLOC (hchain, dimension, sizeof (real)); \
\
for (jm = 0; jm < channel[im].num_sub; jm++) \
{ \
/* limits of the tabulation */ \
510 dvar = subchain[jm].tincr; \
tmax = subchain[jm].tmax; \
tmin = subchain[jm]. tmin; \
\
if (subchain[jm].i_control >= 0) { \
515 /* find out the scale of the trans_rates_mat function */ \
if (subchain[jm].scale == 0){ \
/* linear scale */ \
valscale [0] = ulsubchain[jm].i_control]; \
} \
520 else if (subchain[jm].scale == 1){ \
/* logarithmic scale */ \
valscale [0] = log(ulsubchain[jm].i_controll]); \
} \
else{ \
525 EXPECTED_ERROR ("unknown, tabulation,scale,/d", subchain[jm].scale); \
} \
ch_exp_mc = which_exp_mc; \
\
val=&(valscale [0]); \
530 it=floor ((val[0]-tmin)/dvar); \
if (dvar > 0) \
{ \
nT=ceil ((subchain[jm].tmax - subchain[jm].tmin) / dvar); \
¥ \
535 else \
{ \

216

C.3. Source Code of rushlarsen.c

nT = 0; \
} \
} \
540 else { \
/* for channels without unique controling variable */ \
/* the values will be computed on fly */ \
val = u; \
nT=0; \
545 it = -1; /* places the table index out of range */ \
ch_exp_mc = 0; /* computes using forward Euler x*/ \
} \
\
/* if the index is outside of precomputed range */ \
550 /* find the solution on fly */ \
if ((it < 0 || it >= nT) || ch_exp_mc == ntabmrl) { \
on_fly = 1; \
/* compute transition rates matrix */ \
if (!(channel[im].subchain[jm].trans_rates_mat)(val, trm)) \
555 ABORT ("error,calculating, mtadb (4s), table, for,V=/4g\n",8->ionic,V); \
/* asign matrix for forward Euler calculations */ \
markov_adhoc = trm; \
/* exponential integrator -- matrix_rush_larsen */ \
if (ch_exp_mc){ \
560 if (!get_matrix_rush_larsen (mrl, ht, trm, dimension)) \

URGENT_MESSAGE ("error,calculating, ,mrl (Js), table, for, ,V=/g\n",\
S->ionic,V); /* mention the index of mc */ \

markov_adhoc = mrl; \
} \
565 } \
else { \
on_fly = 0; \
/* pointer to precomputed and tabulated matrix */ \
markov_adhoc = &(curr_chain[it*dimension*dimension]); \
570 ¥ \
\
/* integration method */ \
mat_vec_mult (hchain, markov_adhoc, markov, dimension); \
if (ch_exp_mc) { \
575 /* MRL step */ \
for (ii = 0; ii < dimension; ii++) { \
markov[ii] = hchain[iil; \
} \
¥ \
580 else if (ch_exp_mc == mcfe) { \
/* FE step */ \
for (ii = 0; ii < dimension; ii++) { \
markov[ii] += ht * hchain[ii]; \
} \
585 } \
else { \
EXPECTED_ERROR("The, which_exzp_mc,==,%d, is not supported"”,which_exp_mc); \
¥ \
\
590 /* check if the results are finite and within range */ \
sum = 0.0; \
for (ii = 0; ii < dimemsion; ii++) { \
sum += markov[ii]; \
if (markov[iil]'!=markov[ii]) { \
595 URGENT_MESSAGE (\
"\nNAN, (not -a-number) detected at t=}ldyz=/d y=Xd z=/d v=4d\n" 6\
t,X,y,2,10); \
URGENT_MESSAGE ("This, happened, while, incrementing,"); \
for (iv=0;iv<nv;iv++) URGENT_MESSAGE("/c/lg",iv?’,’:’(’,uliv]); \
600 URGENT_MESSAGE (") by, %1lg*",ht); \
for(jo=0; jo<no;jo++) URGENT_MESSAGE("/c/lg",jo?’,’:’(’,duljol); \
URGENT_MESSAGE(")\n"); \
ABORT (" ") ; \
} /* if NaN =*/ \
605 } \
\
/* increment channel pointers x*/ \
curr_chain += dimension*dimension*nT; \
/* reset auxilary arrays */ \
610 if (on_fly) \
{ \
\

for (ii=0;ii< dimension*dimension;ii++){

217

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

Appendix C. rushlarsen Source Code

trm[ii]=0.0;
mrl[ii]=0.0;
¥
¥

/* reset vector with solution increment */
for (ii=0;ii< dimension;ii++) hchain[ii] =

}

/* increment markov variable pointer */

markov += dimension;

/* free auxilary arrays x*/
FREE (trm) ;

FREE (mrl) ;

FREE (hchain) ;

/* TODO: check if the new u is
rather than in each subunit

enum {
tgo,
tog,
totg,
numorders
} ordertype;

enum {
mcfe,
tabmrl ,
ntabmrl

} mrltype;

/* do matrix vector multiplication of dimension N as dest =

static inline void
mat_vec_mult (real *dest,

{

real * mat,

0.0;

P A A i A A O A

finite at the end of the time step,
calculation */

*/

mat * vect

real * vec, int N)

int im, jm;
for (im = 0; im < N; im++)
{
dest[im] = 0.0; /* reset destination vector x*/
for (jm = 0; jm < N; jm++)
{
dest [im] += mat[im * N + jm] * vec[jm];
¥
}

}

/* compute the rushlarsen step for one cell of the mesh */

/* nv is not used */

static inline int rushlarsen_step(real *u,int nv,STR *S,int x,int y,int z)

{
IONIC_CONST (Par,p);
IONIC_CONST(Var,var);
IONIC_CONST (IonicFddt
IONIC_CONST (IonicFtab
IONIC_CONST (int ,no);

*,fddt);
*,ftab);
/* number

/ *
/%

set of ionic cell parameters */
description of variable parameters */
/* the rhs functions except gates */
/* the tabulated functions calculator */
of non-gate variables in the state vector */

IONIC_CONST (int ,nn); /* num of nontabulated gate variables in the state vector x*/
IONIC_CONST (int ,nt); /* num of tabulated gate variables in the state vector */
IONIC_CONST (int ,ntab); /* number of tabulated functions */
IONIC_CONST (int ,nmc); /* number of Markov chain models */
IONIC_CONST (int ,nmv) ; /* number of Markov chain model

IONIC_ARRAY (channel_str,channel);

IONIC_CONST (int ,V_index);
DEVICE_ARRAY (char ,ionic);
DEVICE_CONST (real ,ht);

DEVICE_CONST (int ,whichorder);
DEVICE_CONST (int ,which_exp_mc);

DEVICE_CONST (int ,nV);
DEVICE_CONST (real,Vmin);
DEVICE_CONST (real,Vmax);
DEVICE_CONST (real ,one_o_dV);

DEVICE_ARRAY (real ,du/*[nol*/);
DEVICE_ARRAY (real,tab/*[ntab*nV]*/);

218

variables */

markov chain structures */

index of V in state vector */

name of the ionic cell model */

the time step */

numeric code of the order of execution */
if nonzero, markov chains

are stepped by MRL,

otherwise FE */

/ *
/%
/%
/%
/%
/ *

/* number of ’rows’ in the table */

/* minimal value of V in the table */

/* maximal value of V in the table */

/* inverse of increment of V in the table */
/* array of right-hand sides for FE part x/

the table of function values */

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

C.3. Source Code of rushlarsen.c

DEVICE_ARRAY (real ,nalp/*[nn]lx*/);
DEVICE_ARRAY (real ,nbet/*[nn]*/);
DEVICE_ARRAY (real,adhoc/*[ntabl*/);

int io, jo, inmn, it,
int iV;

real V;

real *ngate;

real *tgate;

real *values;

itl, iv;

real *a, x*b;

real
real
real

gateold;

*markov ,*markov_cur;
*dmarkov ,*dmarkov_cur;
real markov_entry;

real *mrl;

int im, jm,km;

int ii;

real *curr_chain;
subchain_str * subchain;
int dimension, nT;

int on_fly;

/ *
/%
/ *

/%
/ *
/%
/ *
/%
/ *

array of alphas for the nontab RL part */
array of betas for the nontab RL part */
freshly calculated values

of functions and matrix rush larsen */
vector components counters */

table row counter */

transmembrane voltage value */
subvector of nontab gate values */
subvector of tab gate values */

vector of values of tabulated
functions */

pointers to subvectors of

Rush-Larsen step coefficients */

aux variable x/

subvector of MC values */

subvector of MC values increments */
auxilary markov state */

matrix for rush-larsen computations */
vector components counters x/

MC counter */

pointer to current chain matrix */

/* flag to specify if the markov_adhoc was done

on the fly or obtained from tabulated data */

real * dchain, *hchain, *trm,

real valscale[1];
real dvar, tmax, tmin;
real sum;

int ch_exp_mc;

CALLOC (dmarkov ,nmv , sizeof (real));

ngate=u+no;

tgate=u+no+nn;

markov=u+no+nn+nt;

curr_chain=&(S->chains [0]);

switch (whichorder) {

case tgo:
DOTABLES;
DOTGATES ;
DOOTHER ;
DOMARKOV ;
DONGATESFE ;
break;

case tog:
DOTABLES;
DOOTHER ;
DOMARKOV ;
DONGATESFE;
DOTGATES ;
break;

case totg:
DOTABLES;
DOOTHER ;
DOMARKOV ;
DONGATESFE;
DOTABLES;
DOTGATES;
break;

case tgo+numorders:
DOTABLES;
DOTGATES;
DOOTHER ;
DOMARKOV ;
DONGATESRL;
break;

case togt+numorders:
DOTABLES;
DOOTHER;
DOMARKOV ;
DONGATESRL ;
DOTGATES;
break;

case totg+numorders:

* markov_adhoc,

* val ;

/* variable to check the sum of states */

219

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

Appendix C. rushlarsen Source Code

DOTABLES;
DOOTHER;
DOTABLES;
DOMARKOV ;
DONGATESRL ;
DOTABLES;
DOTGATES ;
break;
default:

EXPECTED_ERROR ("unknown,order, of, ezecution, code,4d\n",whichorder) ;

} /* swicth whichorder */
FREE (dmarkov) ;
return 1;

set of ionic cell parameters x/
description of variable parameters */
the rhs functions except gates */

the tabulated functions calculator */

/* number of non-gate variables in the state vector */
/* num of nontabulated gate variables in the state vector x*/
/* num of tabulated gate variables in the state vector */

number of tabulated functions */
index of V in state vector */
name of the ionic cell model */
the time step */
numeric code of the order of execution */
number of ’rows’ in the table */
minimal value of V in the table */
maximal value of V in the table */
inverse of increment of V in the table */
array of right-hand sides for FE part */
the table of function values */
array of alphas for the nontab RL part */
array of betas for the nontab RL part x*/
freshly calculated values of functions x*/
vector components counters x/
table row counter */
transmembrane voltage value */
subvector of nontab gate values */
subvector of tab gate values */
vector of values of tab. functions */
pointers to subvectors of Rush-Larsen
step coefficients */
aux variable */
these are */

required */

by DOTABLES */

size of the state vector */
space grid counters x*/
transmembrane voltage value */

}

static inline int equilibration_step(real *u,int nv,STR *S)

{
IONIC_CONST (Par,p); /*
IONIC_CONST (Var,var); /*
IONIC_CONST (IonicFddt *,fddt); /*
IONIC_CONST(IonicFtab *,ftab); /*
IONIC_CONST (int ,no);
IONIC_CONST (int ,nn);
IONIC_CONST (int ,nt);
IONIC_CONST (int,ntab); /*
IONIC_CONST (int ,V_index); /*
DEVICE_ARRAY (char ,ionic); /*
DEVICE_CONST (real,ht); /*
DEVICE_CONST (int ,whichorder); /*
DEVICE_CONST (int ,nV); /*
DEVICE_CONST (real,Vmin) ; /*
DEVICE_CONST (real,Vmax); /*
DEVICE_CONST (real ,one_o_dV); /*
DEVICE_ARRAY (real ,du/*[nol*/); /*
DEVICE_ARRAY (real,tab/*[ntab*xnV]*/); /*
DEVICE_ARRAY (real ,nalp/*[nn]*/); /*
DEVICE_ARRAY (real ,nbet/*[nn]*/); /*
DEVICE_ARRAY (real ,adhoc/*[ntab]l*/); /*
int io, jo, in, it, itl, iv; /*
int iV; /*
real V; /*
real *ngate; /*
real *tgate; /*
real *values; /*
real *a, *b; /*
real gateold; /%
int x=-1; /*
int y=-1; /*
int z=-1; /*
ngate=u+no;
tgate=u+no+nn;
DOTABLES ;
DOOTHER;
DONGATESEQ;
DOTGATESEQ;
return 1;

}

/R Rk kKK kK kkkkKkkk K/

RUN_HEAD (rushlarsen) {
int nv; /*
int x, y, z; /*
real V; /*
real *u; /*

/* The number of layers given to this
nv=s.vl-s.v0+1;

for(x=s.x0;x<=s.xl;x++) {
for(y=s.y0;y<=s.yl;y++) {
for(z=s.z0;z<=s.zl;z++) {
if (isTissue(x,y,z)){

220

state vector at this point */

device */

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

C.3. Source Code of rushlarsen.c

u =

(real *)(New + ind(x,y,z,s.v0));

if NOT(rushlarsen_step(u,nv,S,x,y,z)) return O;

} /%
} /%
} /%
} /%

if isTissue */
for z */
for y */
for x */
}
RUN_TAIL (rushlarsen)

/% % % 5k % %k % % ok % 5k % % k % k K k Kk k% k /
DESTROY_HEAD (rushlarsen) {
FREE (S->du) ;
FREE (S->nalp);
FREE (S->nbet);
FREE (S->adhoc) ;
FREE(S->tab);
FREE (S->u);
if (S->I.var.n) {
FREE(S->I.var.src);
FREE(S->I.var.dst);
}
FREE(S->I.p);
} DESTROY_TAIL (rushlarsen)

/* Declare all available ionic models */
#define D(a) IonicFtab ftab_##a;
#include "doniclist.h"

#undef D

#define D(a) IonicFddt fddt_##a;
#include "doniclist.h"

#undef D

#define D(a) IonicCreate create_##a;
#include "zontclist.h"

#undef D

/% %k Kok ok ok K ok ok K ok ok K ok ok K ok ok ok ok ok K ok K ok K ok Kk K Kok K ok /
CREATE_HEAD (rushlarsen)
{

int nv=dev->s.vl-dev->s.v0+1;

int no, nn, nt, ntab, nV, nmc, nmv;
channel_str * channel;

int size_tr;

/* int *nm; *x/

int step, iv, ix, iy, iz;

int in, it, io, jo, iV;

real *ufull, *u, *values;

real *tr, *mrl, *adhoc;

real V, alp, bet;

int im, jm,ii;

/* Create tables for Markov chain models
/* goes to the top */

real dvar, tmax, tmin, one_o_dvar;

real * trm, * markov_adhoc;

subchain_str * subchain;

int dimension, nT;

real var[1];

/* Accept the time step */
ACCEPTR (ht ,RNONE , 0., RNONE) ;
if (ht==0) MESSAGE (

*/

/* pointer to the tr_tab x/

"/% WARNING : ht=0,%s,formally, allowed, but, hardly, makes, sense */");

/* Accept the execution order x*/
ACCEPTS (order, "totg");

STRSWITCH (order) ;

STRCASE("tgo") S->whichorder=tgo;
STRCASE("tog") S->whichorder=tog;
STRCASE("totg"”) S->whichorder=totg;

STRDEFAULT EXPECTED_ERROR("\nrushlarsen: unknown, execution, order, ’/s’\n",order);

STRENDSW

ACCEPTI (exp_ngate ,0,0,1);
if (exp_ngate) S->whichorder+=numorders;

/* Accept the MC integration method */

221

Appendix C. rushlarsen Source Code

ACCEPTS (exp_mc, "tabmrl");
STRSWITCH (exp_mc);
STRCASE ("mcfe”) S->which_exp_mc=mcfe;
920 STRCASE("tabmrl") S->which_exp_mc=tabmrl;
STRCASE("ntabmrl") S->which_exp_mc=ntabmrl;
STRDEFAULT EXPECTED_ERROR(
"\mrushlarsen: unknown, MC, integration, method, exp_mc, ’%s’\n",exp_mc) ;

STRENDSW
925
/* Accept the ionic cell model x/
ACCEPTS (ionic ,NULL) ;
{
char *pars;
930 MALLOC (pars, (long) MAXSTRLEN) ;
BEGINBLOCK ("par=",pars) ;
S->u=NULL;
#define D(a) \
if (O==stricmp(S->ionic,#a)) { \
935 if NOT (create_##a(&(S->I),pars,&(S->u),dev->s.v0)) \
EXPECTED_ERROR ("reading, parameters,foryksyin,g\"%s\"",S->ionic,pars); \
no=S->I.no; nn=S->I.nn; nt=S->I.nt; \
nmc=S->I.nmc; \
channel=&(S->I.channel [0]); \
940 nmv=S->I.nmv; \
ntab=S->I.ntab; \
if (no+nn+nt+nmv!=nv) \
EXPECTED_ERROR("no+nn+nt+nmv=/d+jd+5d+/d, = nv=/d, for ks\n" \
"Please,correct, the, number of, layers, in, the"” \
945 "input, file, (BBScript).\n",no,nn,nt,nmv,nv,S->ionic); \

S->I.ftab=ftab_##a; \
S->I.fddt=fddt_##a; \
} else
#include "zontclist.h"”
950 #undef D
EXPECTED_ERROR ("unknown, tonic, model, %s",S->ionic);
ENDBLOCK ;
FREE (pars) ;
¥
955
/* compute required sizes for MC */
for (im = 0; im < nmc; im++)
{
/* the table is only created for subchains which are tabulated
960 i.e. subchains with specified i_control variable (only single
variable dependent markov chains which are suitable for
tabulation). */
/* the corresponding size for each subchain is the
ntab_entries*dimension~2 *x/
965
subchain = &(S->I.channel[im].subchain[0]);
for (jm = 0; jm < S->I.channel[im].num_sub; jm++)
{
970 dvar = subchain[jm].tincr;
dimension = channel[im].dimension;
tmax = subchain[jm].tmax;
tmin = subchain[jm].tmin;
if (subchain[jm].i_control >= 0 && dvar > 0)
975 {
nT = ceil ((tmax - tmin) / dvar);
size_tr += dimension * dimension * nT;
}
¥
980 }

/* Allocated working arrays */
CALLOC(S->du, no, sizeof (real));
CALLOC(S->nalp, nn, sizeof (real));

985 CALLOC(S->nbet, nn, sizeof (real));
CALLOC (S->adhoc, ntab, sizeof (real));
CALLOC(S->chains, size_tr, sizeof (real));

/* tabulate Markov chain transition rates matrices */
990 markov_adhoc = &(S->chains [0]);
for (im = 0; im < nmc; im++)

{

222

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

C.3. Source Code of rushlarsen.c

subchain = &(S->I.channel[im].subchain[0]);
dimension = S->I.channel[im].dimension;

CALLOC (trm, dimension * dimension, sizeof (real));

for (jm = 0; jm < channel[im].num_sub; jm++)
{

dvar = subchain[jm].tincr;

tmax = subchain[jm].tmax;

tmin = subchain[jm]. tmin;

if (subchain[jm].i_control >= 0 && dvar > 0)

{

nT = ceil ((subchain[jm].tmax - subchain[jm].tmin) / dvar);
one_o_dvar = 1.0 / dvar;

for (it = 0; it < nT; it++)
{
/* tabulate transition rates of gate and Markov chain and other
variables */
var [0] = tmin + (it + 0.5) * dvar;
if (!(S->I.channel[im].subchain[jm].trans_rates_mat) (var, trm))
ABORT ("errory,calculating,mtadb (fs),table,for,V=/4g\n",\
S->ionic, V);
/* get exponential integrator -- matrix_rush_larsen x*/
if (S->which_exp_mc == tabmrl)
{
if (!get_matrix_rush_larsen (
&(markov_adhoc[it * dimension * dimension]),
ht, trm, dimension))
URGENT_MESSAGE ("error,calculating, mrl (}s), table, for,V=/g\n"
,S->ionic, V);
}
else if (S->which_exp_mc == mcfe)
{
memcpy (&(markov_adhoc[it * dimension * dimension]), trm,
dimension * dimension * sizeof (real));

}

for (ii = 0; ii < dimension * dimension; ii++)
{
trm[ii] = 0.0;
if (markov_adhoc[it * dimension * dimension + ii] !=
markov_adhoc[it * dimension * dimension + ii])
{
URGENT_MESSAGE ("\nNalN,in,calculation of, "
"markov_adhoc (/s) table,for yvar=/}.15g\n",
S->ionic, var[0]);
ABORT ("");
¥
¥
}
markov_adhoc += dimension * dimension * nT;
}
¥
FREE (trm);
}

/* In any case, do the tabulation */
ACCEPTR (Vmin ,-200, RNONE , RNONE) ;
ACCEPTR (Vmax ,+200 , RNONE , RNONE) ;
ACCEPTR (dV,0.01,0.,RNONE) ;
if (4V == 0.0)
{
MESSAGE ("/*,NOTE:,,dV=0,means, the, transition, rates, are, calculated, on, the, fly"
",and not, tabulated. */");
CALLOC(S->tab,1,sizeof (real)); /* for compatibility reasons,
otherwise there are problems
with destruction of the
device */

else

S->nV=nV=ceil ((S->Vmax-S->Vmin)/S->dV);
S->one_o_dV=1.0/S8->dV;

223

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

Appendix C. rushlarsen Source Code

CALLOC(S->tab,ntab*nV,sizeof (real));

for (iV=0;iV<nV;iV++) {
/* tabulate transition rates of gate and Markov chain and other variables
V=Vmin+(iV+0.5)*dV;
var [0]=V;
values=&(S->tab[ntab * iV]);
if (!'(S->I.ftab)(V,values,ntab))
ABORT ("error,calculating, ftab (4s), table, for,V=/4g\n",S->ionic,V);
for (it=0;it<nt;it++)
calcab(values+it,values+nt+it,ht);
}
}

ACCEPTI (rest ,0,0, INONE);

if

}

if

}
}
CREA

224

(S->rest) {
/* Need full vector, in case variable parameters use extra layers. */
/* NB extra layers may be above as well as below this device’s space */
CALLOC (ufull ,vmax,sizeof (real));
u=&(ufull [dev->s.v0]);

if (S->u) {
MESSAGE("\n/#*, ,NOTICE:, finding,resting, state while already, "
"defined, by, the,model */");
/* use that as the initial condition */
for (iv=0;iv<nv;iv++) uliv]=S->uliv];
} else {
CALLOC(S->u,nv,sizeof (real));

if (S->I.var.n) MESSAGE("\n/*,NOTICE:, finding,resting, state, "
"while,parameters, are variable, */");

for (step=0;step<S->rest;step++)
/* if NOT(rushlarsen_step(u,nv,S,-1,-1,-1)) return 0; x/
if NOT(equilibration_step(u,nv,S)) return O;

/* copy what is needed */
for (iv=0;iv<nv;iv++) S->uliv]=uliv];

/* don’t need this one any more */
FREE (ufull);
/* if S->rest */

(s->u) {
MESSAGEO ("\n/*,Resting, state: ") ;
for(iv=0;iv<nv;iv++) MESSAGE1("/lg,",(S->u)[iv]); MESSAGEO("*/");
/* Fill up the whole of the grid with the resting state */
#if MPI
if (dev->s.runHere) {
#endif
for (ix=dev->s.x0;ix<=dev->s.x1;ix++) {
for (iy=dev->s.y0;iy<=dev->s.yl;iy++) {
for (iz=dev->s.z0;iz<=dev->s.zl;iz++) {
for (iv=dev->s.v0;iv<=dev->s.vl;iv++) {
New[ind (ix,iy,iz,iv)]=(S->u) [iv-dev->s.v0];
} /x for iv x/
} /x for iz x/
} /% for iy */
} /* for ix x/
#if MPI
} /* if runHere x*/
#endif
else {
/* No resting state was defined x*/
MESSAGE ("\n/*,Notice: no,standard, state, defined, for ,iontc ymodel, s’ ,*/\n",\
ionic);
CALLOC(S->u,nv,sizeof (real));

TE_TAIL (rushlarsen,1)

*/

Appendix D

Implementation of Cellular Models

D.1 Standalone Code

D.1.1 Hodgkin-Huxley Squid Model

The aim of this appendix is to demonstrate the implementation of minimalist
cellular models. The implementation is inspired by the Hodgkin-Huxley squid giant
axon description [3], which is the first electrophysiological model. The original
description contains only four dynamical variables, one describing the membrane
voltage, two variables describing the gating variables of Iy, and one variable
corresponding to the gating variable of Ix.

The model is implemented as standalone code and as BeatBox modules. The
BeatBox modules include the implementation as a rhs module and two ionic
modules. The first ionic module is identical to the original model description, the
second contains ion channels defined as Markov chains. These Markov chains
are equivalent to the corresponding gating variables and were developed for the
sake of demonstrating the time integration on Markov chains in BeatBox. The
description of the conversion of both Iy, and Ik channels into equivalent Markov
chain models can be found in Section [2.3.4]

Listings of Hodgkin-Huxley Standalone Code

The implementation of the giant squid axon model in standalone C is listed in the
source code below:

Listing D.1: Code of standalone Hodgkin-Huxley model in file squid_driver. c.

#include <stdio.h>
#include <math.h> /* to include exp */
#include <stdlib.h> /* calloc, exit, free x*/

225

Appendix D. Implementation of Cellular Models

5 #define T_END 10.0
#define DT 0.01

enum
{
10 #define VAR(name, init) var_##name,
#include "squid_war.h"”
#undef VAR
NEQ
I3

typedef struct currents
{
double I_Na;
double I_K;
20 double I_1;
} s

/* function called by the solver x/
25 int HH_1952 (double t, double *y, double *ydot, s * user_data);

int
main ()
{

30 int i, j; /* loop counters x/
int N = T_END / DT; /* number of time steps */
double t; /* time x/
double y[NEQ], ydot[NEQ]; /* states and states increment */

35 s user_data; /* currents */

#define VAR (name, init) y[var_##name] = init;
#include "squid_wvar.h"
#undef VAR
40
for (i = 0; i < N; i++)
{
t = i * DT; /* current time */
/* compute states increment and currents x/
45 HH_1952 (t, y, ydot, &user_data);
/* fe step */
for (j = 0; j < NEQ; j++)
{
50 y[jl += DT * ydot[jl;
if (y[jl '= y[j])
{
fprintf (stderr, "NalN,detected, foryylZd]l.\n", j);
exit (1);
55 }
¥
/* saving data */
fprintf (stdout, "7Z.3f", t); /* time */
60 for (j = 0; j < NEQ; j++)
{
/* print dynamical states */
fprintf (stdout, "“\t/.69", y[jl);
}
65 /* currents */
fprintf (stdout, "“\t/.6g9", (&user_data)->I_Na);
fprintf (stdout, "\t/.6g9", (&user_data)->I_K);
fprintf (stdout, “\n");
}

70

return (0);
}
int

75 HH_1952 (double t, double *y, double *ydot, s * user_data)
{
double C_m = 1.0;

#define VAR (name, init) double name = y[var_##name];

226

80

85

90

95

100

105

110

115

120

D.1. Standalone Code

#include "squid_var.h"
#undef VAR

#define PAR(p, c) const double p = c;
/* maximum conductance of current I_Na (mS/cm”~2) */
PAR (G_Na, 120);
/* maximum conductance of current I_K (mS/cm~2)* */
PAR (G_K, 36);
/* maximum conductance of leakage current: I_1 (mS/cm”2) */
PAR (G_1, 0.3);
/* the sign from HH1952 is according new convention */
/* reversal potential of current I_Na (mV) */
PAR (E_Na, 115);
/* reversal potential of current I_K (mV) */
PAR (E_K, -12);
/* reversal potential of current I_1 (mV) */
PAR (E_1, 10.613);
#undef PAR
/* currents x*/
double I_K = user_data->I_K = G_K * n * n * n * n * (V_m - E_K);
double I_Na = user_data->I_Na = G_Na * m * m * m * h * (V_m - E_Na);
double I_1 = user_data->I_1 = G_1 * (V_m - E_1);

/* gate transition rates x/
double alpha_n = 0.01 * (-V_m + 10.0) / (exp ((-V_m + 10.0) / 10.0) - 1.0);
double beta_n = 0.125 * exp (-V_m / 80.0);

double alpha_m = 0.1 * (-V_m + 25.0) / (exp ((-V_m + 25.0) / 10.0) - 1.0);
double beta_m = 4.0 * exp (-V_m / 18.0);

double alpha_h = 0.07 * exp (-V_m / 20.0);
double beta_h = 1.0 / (exp ((-V_m + 30.0) / 10.0) + 1.0);

/* model equations */

double dot_V_m = -1.0 / C_m * (I_Na + I_K + I_1);
double dot_n = alpha_n * (1 - n) - beta_n * nj;
double dot_m = alpha_m * (1 - m) - beta_m * m;
double dot_h = alpha_h * (1 - h) - beta_h * h;
#define VAR (name, init) ydot[var_##name] = dot_##name;
#include "squid_war.h"
#undef VAR

return (0);

}

The initial conditions are listed in another file that is included from squid_var.h,
which contains function-like macros for each of the dynamical variables. A detailed
explanation of function-like macros is given in Subsection|D.2.1{

Listing D.2: Variables in Hodgkin-Huxley model in file squid_var. h.

/* format: VAR(name, initial) x*/

/* V_m - membrane potential (mV) x/

VAR(V_m, 7.0)

/* n - activation gate of potassium current I_K */
VAR(n, 0.3177)

/* m - activation gate of sodium current I_Na */
VAR (m, 0.0530)

/* h - inactivation gate of sodium current I_Na */

VAR(h, 0.5960)

Building of Hodgkin-Huxley Standalone Code

The compilation and linking of the program can be done by gcc using the following
command.

Listing D.3: Compilation of standalone code.

gcc -c -o squid_driver.o squid_driver.c
gcc -1lm squid_driver.o -o squid_driver

227

Appendix D. Implementation of Cellular Models

The simulation results are printed to the standard output, which is redirected
into a file by the > operator, e.g. the output is written into squid.dat by the
command below.

Listing D.4: Execution of standalone model using standard output redirection.

./squid_driver > squid.dat

D.2 Implementation as BeatBox Modules

D.2.1 Enumeration of Variables

Function-like macros are a feature of the C preprocessor, which are routinely used
for a variety of purposes within BeatBox modules, for example the enumeration
of variables, or setting of initial conditions. As these function-like macros are
essential for understanding how BeatBox modules are built, we briefly describe
the functionality of the preprocessor macros in this subsection.

The function-like macros used in BeatBox are normally in the format
_(<codel>,<code2>), where <codel1>, and <code2> contain pieces of code. The
function-like macros are processed by the C preprocessor (cpp) according to the
definition of a particular macro. An example of such a definition is the following
code:

#define _(variable,initial) var_##variable,

During preprocessing, the string var_ is concatenated (through cpp operator ##)
together with the first argument called variable. During the preprocessing stage
of the compilation, cpp processes the code and each construct in the specific
form, such that the source code is converted to the corresponding expression. For
example, a source code defining the initial value of membrane voltage _(V,-80.0)
is substituted by var_V,. In this instance the value of -80.0 is ignored.

Once the function-like macro is no longer needed, it can be undefined by
#undef _ and redefined again when required. The definition in any of the cases
is not constrained syntactically, so it allows more than one definitions within the
same code to fit a particular purpose. For example, the same macro that defines
the initial value of the membrane voltage _(v,-80.0) from the previous paragraph
can be used to assign the initial value in another instance of the model.

The full advantage of using this approach lies in the combination of function-like
macros together with the include statements. The include statements include the
content of any file into the preprocessed code. The syntax of the include statement
is:

#include "filename.h"

228

D.2. Implementation as BeatBox Modules

which includes the code in the file filename.hinto the preprocessed code. If the
code contains any defined function-like macros, the cpp expands them in the same
manner as described above. So, if the file filename.h is imported at different
locations, the cpp will substitute the function-like macros according to the latest
definition, which can be different in each case.

The specific definition of the function-like macro can be changed depending on
the context in which the file is included, resulting in a different piece of code. Any
modifications of the included file will have an effect on both places of its inclusion.
So, any changes need to be done in only one place, which minimises redundant
code, helps to avoid possible errors and simplifies the maintenance of the module.

The following code listing illustrates the idea of the expansion of function-like
macros included from header files. The following case shows enumeration of all
dynamical variables.

Listing D.5: Enumeration of variables using function-like macros.

/* Enumerate the dynamical ("state") variables within the vector

of dynamical variables */

enum {

#define _(variable,initial) var_##variable,

#include "<tonic>_other.h"

#include "<tonmic>_mgate.h"”

#include "<tonic>_tgate.h"”

#undef _

NV /* total number of variables */
I
Those header files contain a list of variables and their values (or initial value of
dynamical variables) in function-like macros e.g. _(V,-80.0). Notice, that in this
case we use <ionic> as a placeholder for an arbitrary ionic module, e.g. hh52m
(not to be confused with angle brackets used for including from an include path in
cpp)-

Notice that due to the use of enumeration the var_V is in fact a number, which
can be used interchangeably with a number corresponding to the position of a
specific function-like macro (starting from 0). Also, the value of NV corresponds
to the total number of dynamical variables.The macro NV is required by the ionic
module. In the same fashion we define other macros such as the number of “other”
(NO), tabulated (NT) and non-tabulated gating variables (NN), as well as the number
of tabulated transition rates (NTAB).

The counting and initialisation of variables can be done through including
separate header files named <ionic>_<type>.h into the main file (<ionic>.c).
Here <type> stands for other (“other” variables), ngate (non-tabulated gating
variables), tgate (tabulated gating variables), par (parameters), fun (other voltage-
dependent tabulated functions). An example of a routinely used file is shown in
Table DAl

Some ionic modules also include large parts of the code to minimise the

size of the main file <ionic>.c. However, those files are included only once,

229

Appendix D. Implementation of Cellular Models

Table D.1: Examples of included files with function-like macros.

file name description

<tonic>_fun.h functions for other tabulated variables (empty in <ionic>)

<ionic>_par.h parameters and their values

<ionic>_other.h names and initial conditions of “other” variables

<tomic>_ngate.h names and initial conditions of gates with non-tabulated
transition rates (empty in <ionic>)

<tomic>_tgate.h names and initial conditions of gates with tabulated transition
rates

<ionic>_1ik.h definition of Ix model as Markov chain

<ionic>_ina.h definition of Iy, model as Markov chain

and normally do not use function-like macros. Typically, a module includes the
file <ionic>_ftab.h, which specifies equations of tabulated voltage-dependent
transition rates and other functions, the file <ionic> fddt.h, which includes equa-
tions for non-tabulated gating variables and “other” dynamical variables, and
<iomic>_const.h which contains macro definitions for some physical constants
used in tabulated functions, such as temperature and the Faraday constant.

D.2.2 Implementation of Markov Chains

We use the included files to preprocess the function-like macros similarly as
described with other dynamical variables. The Markov chain variables are de-
fined within _(variable, value) where variable determines the name of the
Markov chain state and value specifies the initial conditions of the variable, e.g.
_(1typeCzero, 0.948). Using this approach we can enumerate the variables of
a single Markov chain, which can be used to assign the dimensionality of the
channel_str.

Additional function-like macros serve to initialise the subchain_str. Transi-
tion rates functions are constructed from macro _VFUN(variable,expression),
where variable is the name of transition rate and expression the mathematical
expression that defines it.

The transition matrix is constructed from macro
_RATE(from,to,direct,reverse). This macro specifies the transition rates be-
tween two states (from, to) and the transition rates in between (direct, reverse)
as described on page [168]

The macro RATE helps to generate TransRatesMat C-functions that construct
a function to construct the transition matrix of a subchain. A macro called
CHANNEL_TR_MATRIX as shown below generates a function computing transition
rates within an ionic module.

Listing D.6: Function for population of transition matrix.
CHANNEL_TR_MATRIX (<ionic>_ical){

230

D.2. Implementation as BeatBox Modules

#define v ul[o0]

#define _(n,i)

#define _VFUN (name,expression) real name=expression;

#define _RATE(from,to,direct,reverse) \
TR_MAT (<channel>,from,to,direct ,reverse)

#include "<tonic>_<channel>.h"

#undef _RATE

#undef _VFUN

#undef

#undef

return

=<

Here the _RATE expands using another function-like macro TR_MAT. The
TR_MAT(chan,from,to,direct,reverse) is defined in channel.h as follows.

Listing D.7: Function-like macro for population of transition matrix.

#define TR_MAT (chan,from, to, direct, reverse)\

tr_mat [chan##_##toxNM_##chan+chan##_##from]=direct;\
tr_mat [chan##_##from*xNM_##chan+chan##_##from]-=direct;\
tr_mat [chan##_##from*xNM_##chan+chan##_##to]l=reverse;\
tr_mat [chan##_##toxNM_##chan+chan##_##to] -=reverse;

D.2.3 Including Modules into BeatBox

The inclusion of cellular modules into BeatBox requires changes to the BeatBox
source files and the files of the GNU build system of BeatBox configure. ac (the
suffix is an abbreviation from Autoconf) and Makefile. am (the suffix is an abbrevi-
ation from Automake). Those files are used to create configuration configure and
build script Makefile.

The building of a new rhs module starts by including its name into the rhslist.h
in a form D(<rhs>), as in the following example.

Listing D.8: Specification of new rhs modules in src/rhslist.h.

#if HH
D (hh)
#endif

In this listing the hh is the name of the module of the Hodgkin-Huxley model.
The rhs modules are also required to add a macro definition to the file on.r and
generate a new file <rhs>. on with the same macro. This macro reads as:

#define HH 1

The building of a new ionic module starts by including its name into the
ioniclist.hin aform D(<ionic>), as in the following example.

Listing D.9: Specification of new ionic modules in src/ioniclist.h.

D(hh52)
D (hh52m)

In this listing hh52 is the name of the module, which is the conversion of rhs
module hh into ionic format. In hh52 the ion channels are implemented as gate
models. The hh52m is the same model, where the ion channels were converted
into Markov chain models as described in Section [2.3.4]

231

20

Appendix D. Implementation of Cellular Models

The main module file contains a formal definition of the model. It is expected to
be in the file <name>. c. The time stepping devices require the module to initialise
specific structures and functions.

All files used in the implementation of those modules have to be listed within
the common_sources variable in src/Makefile.amin the BeatBox root directory:

Listing D.10: Specification of new ionic and rhs modules in src/Makefile. am.

common_sources = \
hh52.c hh52_other.h hhb52_tgate.h hh52_par.h hh52_ftab.h\
hh52m.c hh52m_ik.h hh52m_ina.h\
hh.c \
HH.on \
hh.h \

this file maintains the list of the source files. The Automake takes care of generating
the Makefiles specific for compilation on a particular computer architecture, for
which the BeatBox executable is targeted. This allows portability of the code to a
large variety of different machines.

The template files Makefile.amand configure.ac (not modified in this exam-
ple) are processed to generate and install corresponding configure and Makefile
in the appropriate directories. This is done by a command

autoreconf -fi

in the root directory of BeatBox (-f for force, -i for install).

D.3 Hodgkin-Huxley Squid Model

D.3.1 Code Listings of Hodgkin-Huxley Model as rhs Module

The listing below shows the main file rh. c of the model hh which is a minimalist
implementation of the original Hodgkin-Huxley code in BeatBox in the rhs format.

Listing D.11: Main file rh. c of rhs module hh.

/* Hodkin & Huxley model (J Physiol 117:500-544,1952),
*/

#include <assert.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "system.h"

#include "beatboz.h"

#include "HH.on"

#if HH

#include "dewice.h'"
#include "state.h'"
#include "bikt.h"
#include "Ths.h"

#include "gpp.h"

/* number of layers of dynamical variables */
#define N 4

static double cub(double x) {return x*x*x;}

232

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

D.3. Hodgkin-Huxley Squid Model

static double qrt(double x)

typedef struct {

{double g=x*x;

return q*q;}

mV/ms*capacitance -trmbr current x/

#define _(n,v) real n;

#include "hh.h"

#undef

real I; /* current/area =

real IV;/* mV/ms - intercellular current */
} STR;

/* RHS_HEAD expands to full right hand side function for the

model (including all the dynamical
int hh(real *u, real *du, Par par,
INPUT ARGUMENTS

real *u | pointer to array of
real *du | pointer to array of
Par par | parameter structure
Var var | variable structure

int 1n | number of variables

*/

RHS_HEAD (hh,N) {

Var var,

equations):

int 1n)

states variables
increments of *u

/* DEVICE_CONST copies elements of device structure S */

#define _(n,v) DEVICE_CONST(real,n)
#include "hh.h"
#undef

DEVICE_CONST (real,I)
DEVICE_CONST (real, IV)

real V = ul0];

real h = u[1];

real n = ul[2];

real m = u[3];

real *dV = du+0;

real *dh du+1;

real *dn = du+2;

real *dm = du+3;

real INa, IK, Il;

real alpm = 0.1 * (-V + 25.0) /

(exp ((-V + 25.0) / 10.0) - 1.0);
real betm = 4.0 * exp (-V / 18.0);
real alph = 0.07 * exp (-V / 20.0);
real beth = 1.0 / (exp ((-V + 30.0) / 10.0) + 1.0);
real alpn = 0.01 * (-V + 10.0) /

(exp ((-V + 10.0) / 10.0) - 1.0);
real betn = 0.125 * exp (-V / 80.0);
IK = gK*xqrt(n)*(V-VK);

INa = gNa*cub(m)*h*(V-VNa);

I1 = gl*x(V-V1);

*dV = -1./Cx(IK + INa + Il + I) + IV;
dh = alphx(1-h)-beth*h;

dn = alpn(1-n)-betn*n;

dm = alpm(1-m)-betm*m;

} RHS_TAIL (hh)

/* RHS_CREATE_HEAD expands to intitialise the model.

This

includes assigning values for all model parameters,

i.e.
values otherwise;

(steady-state) values of dynamic variables,

be used by time-stepping device to
medium.

int

create_hh (Par *par, Var *var,

INPUT ARGUMENTS

Par par | parameter structure
Var var | variable structure
char *w |

char *xw,

reading from the script or keeping the default
and creating the vector of initial

which will
initialise the whole

real **u, int vO0)

parameters to be assigned from script
pointer to array of states variables

233

Appendix D. Implementation of Cellular Models

100 int vO0 | number of entries in states array
*/
RHS_CREATE_HEAD (hh) {
/* ACCEPTP reads value of named parameter from BBS script x/
#define _(n,v) ACCEPTP(n,v,RNONE,RNONE);
105 #include "hh.h"
#undef _
ACCEPTP (I,0,RNONE,RNONE) ;
ACCEPTP (IV,0,RNONE ,RNONE) ;
/* allocate an array for results */
110 MALLOC (*u,N*sizeof (real));

/* V_m - membrane potential (mV) x/
(xu) [0] = 7.0;
/* h - inactivation gate of sodium current I_Na */
(*u) [1] =0.5960;

115 /* n - activation gate of potassium current I_K */
(*xu)[2] =0.3177;
/* m - activation gate of sodium current I_Na */

(*u) [3] =0.0530;
} RHS_CREATE_TAIL (hh,N)
120
#endif

The file nh. hincluded in several places contains a list of variables used in the
model, as follows.

Listing D.12: Variables in hh module file rh. .

/* List of pars x/
/* Name Value */
_(c, 1.)
/* maximum conductance of current I_Na (mS/cm~2) x*/
5 _(gNa, 120);
/* maximum conductance of current I_K (mS/cm~2)* */
_(gK, 36);
/* maximum conductance of leakage current: I_1 (mS/cm”2) */
_(gl, 0.3);
10 /* reversal potential of current I_Na (mV) */
_(VNa, 115);
/* reversal potential of current I_K (mV) */
_(VK, -12);
/* reversal potential of current I_1 (mV) */
15 _(V1, 10.613);

The rhs module hh can be used from the following bbs script passed as a
command line argument to BeatBox, i.e. Beatbox hh.bbs.

Listing D.13: bbs script for rhs module hh from file hh. bbs.
/*

* Driver for Hodgkin-Huxley 1952 minimalistic rhs model
*/
def int neqn 4; /* number of layers of state variables x/
5 def real dt 0.01; /* time step */

/* declare schedule variables */
def real begin;
def real end;

10 def real T;

/* configuration of the dimensions */
state xmax=1 ymax=1 zmax=1 vmax=neqn+l1;

15 /* Schedule */
k_func name=schedule nowhere=1 pgm={

T = t*dt; /* simulation time */
begin =eq(T, 0); /* start of simulation [ms] */
end =ge(T, 10.); /* end of simulation [ms] */

20 };

/* Reaction substep */
euler v0=0 vi=neqn-1 ht=dt ode=hh par={IV=04;};

25 /x define output variable */

234

30

35

40

20

D.3. Hodgkin-Huxley Squid Model

def real v;
sample x0=0 v0=0 result=v;
def real h;
sample x0=0 v0=1 result=h;
def real n;
sample x0=0 v0=2 result=n;
def real m;
sample x0=0 v0=3 result=m;

/* write output to a file */

k_print nowhere=1 when=always file="hh.vtg" append=0
valuesep="\t" 1list={T;v;n*n*n*n;m*m*m*h;7};

/* end simulation */

stop when=end;
end ;

D.3.2 Code Listings of Hodgkin-Huxley Model as ionic
Module with Gate Models of lon Channels

The rhs module can be converted to an ionic module. For that purpose, we need to
change the template macros to the ionic equivalents. In the first instance, we use
all dynamical variables, including gate ion channel models, as “other” variables,
calculated using forward Euler. This allows us to compare the solution of an ionic
module using rushlarsen device with its rhs counterpart solved by euler device.
This comparison proved the identity of both results (not shown).

Consequently, we have implemented a C-function calculating voltage-dependent
functions, such as the transition rates of the gating variables, and performed nec-
essary changes to specify that the gating variables are now considered to be
tabulated gates. This implementation allows us to employ the Rush-Larsen tech-
nique.

The listing below shows the main file rh52. ¢ of the model hh52, which is a
minimalist implementation of the original Hodgkin-Huxley code in BeatBox in the
ionic format.

Listing D.14: ionic module hh52 with gate variables defined in file rh52. c.

/% %
* IONIC description of the Hodgkin-Huxley 1952 model.
*/

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "system.h"
#include "beatboz.h"”

#include "device.h”
#include "state.h'"
#include "bikt.h"
#include "donic.h'"
#include "gpp.h"

/* number of Markov chain models */
#define NMC O

/* possition of membrane voltage in state vector */
static int V_index = 0;

235

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Appendix D. Implementation of Cellular Models

/* Enumerate all dynamic variables */
enum

{

#define _(n,i) var_##n,

#include "hh52_other.h"

#include "hh52_tgate.h"”

#undef
NV /* total number of variables */
+;
/* Enumerate the other (non-gate) variables */
enum
{

#define _(n,i) other_##n,

#include "hh52_other.h"

#undef

NO /* total number of other variables x*/

15

/* there are none of non-tabulated gate variables x*/
#define NN O

/* Enumerate the gates */
enum

{

#define _(n,i) gate_##n,
#include "hhb2_tgate.h"

#undef
NT /* total number of tabulated gate variables x*/
I
/* Enumerate the tabulated transition rates */
enum
{

#define _(n,i) _alp_##n,

#include "hhb2_tgate.h"

#undef

#define _(n,i) _bet_##n,

#include "hhb52_tgate.h"”

#undef

/* there are no other tabulated functions in HH52 */
NTAB /* total number of tabulated functions */

I3

/* The structure containing the parameter values
for this instance of the model */
typedef struct
{
/* First go the canonical cell parameters */
#define _(name,default) real name;
#include "hh52_par.h"
#undef
/* Then the external current. */
real IV;
} STR;

/* IONIC_FTAB_HEAD expands to a function defining voltage dependent
transition rates for tabulation:
int ftab_hh52(real V, real *values, int ntab)

INPUT
real V | membrane voltage
real *values | pointer to array to be filled with Transition
| rates
int ntab | number of tabulated variables
Returns 1 if succeeds.
*/
IONIC_FTAB_HEAD (hh52)
{

#include "hhb52_ftab.h"

/* Copy the results into the output array values[]. */
#define _(n,i) values[_alp_##n]l=alpha_##n;
#include "hh52_tgate.h"

236

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

D.3. Hodgkin-Huxley Squid Model

#undef

#define _(n,i) values[_bet_##n]l=beta_##n;
#include "hhb2_tgate.h"”

#undef _

} IONIC_FTAB_TAIL (hh52);

/* IONIC_FDDT_HEAD expands to a function of right hand sides for the
computation of increment of other and non-tabulated gates.

int fddt_hh52(real *u,int nv,real *values,int ntab,Par par,\
Var var,real *du,int no,real #*nalp,real *nbet,int nn)

INPUT ARGUMENTS

pointer to array of states variables
total number of variables

pointer to array of tab. transition rates

|
int nv |
real *values |
int ntab | number of tab. transition rates
Par par | parameter structure
Var var | variable structure
real *du | pointer to array of increments of *u
int no | number of other variables
real *nalp | pointer to array of non-tabulated alphas
real *nbet | pointer to array of non-tabulated betas
|

int nn number of non-tab. gates
*/
IONIC_FDDT_HEAD (hh52, NV, NTAB, NO, NN)
{

/* Declare the const pars and take their values from struct
S==par (a formal parameter) */
#define _(name,default) DEVICE_CONST (real ,name);
#include "hh52_par.h"
#undef _
DEVICE_CONST (real, IV);
/* Declare and assign local variables for dynamic variables
from state vector */
/* ..., first for non-gate variables */
#define _(name,initial) real name=ul[var_##namel];
#include "hh52_other.h"
#undef
/* ..., and then for tabulated gate variables x/
#define _(name,i) real name=ul[var_##name];
#include "hhb2_tgate.h"

#undef
/* Calculate the rates of non-gate variables */
real 0_K = n * n * n * n;
real O_Na = m * m * m * h;

/* currents x*/

real I_K = G_K * 0_K *x (V - E_K);
real I_Na = G_Na * 0_Na * (V - E_Na);
real I_1 = G_1 * (V - E_1);

/* model equations */
real dot_V = -1.0 / C_m * (I_Na + I_K + I_1);

/* Copy the calculated rates into the output array dul]l. =*/
/* Care is taken that all, and only, non-gating variables
are attended here */

#define _(name,initial) dulother_##name]=dot_##name;

#include "hh52_other.h"

#undef
/* Finally add the "external current" parameter values */
dul[V_index] += 1IV;

} IONIC_FDDT_TAIL (hh52);

/* IONIC_CREATE_HEAD expands to a function which initialises)\
an instance of the model.

int create_hh52(ionic_str *I,char *w,real **u,int vO0)

INPUT ARGUMENTS

ionic_str *I | pointer to ionic structure to be initialised
char *w | parameters to be assigned from script
real **u | pointer to array of states variables

237

180

185

190

Appendix D. Implementation of Cellular Models

int vO | number of entries in states array
*/
IONIC_CREATE_HEAD (hh52)
{

/* Here we assign the parameter values to the structure
AND to namesake local variable x/

#define _(name,default) ACCEPTP(name,default ,0,RNONE);

#include "hh52_par.h"

#undef _

/* Assign the initial values as given in the *.h files */
#define _(name,initial) (*u)[var_##namel=initial;
#include "hh52_other.h"
#include "hh52_tgate.h"
#undef _

} IONIC_CREATE_TAIL (hh52, NV);

The functions of transition rates are needed in several places in the code and
therefore are included from a file hh52_ftabd.h.

Listing D.15: Transition rates in file hh52_ftab. h.

/* gate transition rates x/

real alpha_n = 0.01 * (-V + 10.0) /
(exp ((-V + 10.0) / 10.0) - 1.0);

real beta_n = 0.125 * exp (-V / 80.0);

real alpha_m = 0.1 * (-V + 25.0) /
(exp ((-V + 25.0) / 10.0) - 1.0);
real beta_m = 4.0 * exp (-V / 18.0);

real alpha_h = 0.07 * exp (-V / 20.0);
real beta_h = 1.0 / (exp ((-V + 30.0) / 10.0) + 1.0);

Dynamical variables are defined in two separate files since this particular model
does not contain non-tabulated gating variables. The first file contains the “other’
variables.

Listing D.16: Other variables rh52_other. h.

/* format: _(name, initial) x/
/* V - membrane potential (mV) */
_(v, 7.0

The second file contains the tabulated gating variables.

Listing D.17: Tabulated gating variables rh52_tgate.h.

/* format: _(name, initial) =*/
/* h - inactivation gate of sodium current I_Na */
_(h, 0.5960)

/* n - activation gate of potassium current I_K */
_(n, 0.3177)

/* m - activation gate of sodium current I_Na */
_(m, 0.0530)

The default value of parameters are defined in a similar format to dynamical
variables. The default value of parameters can be modified from bbs script. The
file defining the parametes is shown in subsequent listing.

Listing D.18: Parameters of the hh52 model rh52_par. h.
/* membrane capacitance */
_(C_m, 1.0)
/* maximum conductance of current I_Na (mS/cm~2) *x/
_(G_Na, 120);
/* maximum conductance of current I_K (mS/cm~2)* */

_(G_K, 36);
/* maximum conductance of leakage current: I_1 (mS/cm”2) */
_(G_1, 0.3);

238

20

25

30

35

40

D.3. Hodgkin-Huxley Squid Model

/* the sign from HH1952 is according new convention */
/* reversal potential of current I_Na (mV) */

_(E_Na, 115);

/* reversal potential of current I_K (mV) */

_(E_K, -12);

/* reversal potential of current I_1 (mV) %/

_(E_1, 10.613);

The ionic model hh52 model can be run by using the following bbs script
passed as command line argument to BeatBox, i.e. Beatbox hh52.bbs.

Listing D.19: bbs script hh52. bbs for hh52m ionic module with gating variables.
/ *

* Driver for Hodgkin-Huxley 1952 minimalistic ionic model

*/
def int neqn 4; /* number of layers of state variables */
def real dt 0.01; /* time step */

/* declare schedule variables */
def real begin;

def real end;

def real T;

/* configuration of the dimensions */
state xmax=1 ymax=1 zmax=1 vmax=neqn+1;

/* Schedule x*/
k_func name=schedule nowhere=1 pgm={

T = tx*dt; /* simulation time */
begin =eq(T, 0); /* start of simulation [ms] */
end =ge(T, 10.); /* end of simulation [ms] */

Irg

/* Reaction substep */
rushlarsen v0=0 vli=neqn-1 ht=dt ionic=hh52 order=tog
par={ht=dt};

/* define output variable */
def real v;

sample x0=0 v0=0 result=v;
def real h;

sample x0=0 vO0=1 result=h;
def real n;

sample x0=0 v0=2 result=n;
def real m;

sample x0=0 v0=3 result=m;

/* write output to a file */

k_print nowhere=1 when=always file="hh52.vtg" append=0
valuesep="\t" 1list={T;v;n*n*n*n;m*m*m*h;l};

/* end simulation */

stop when=end;
end ;

The parameters of the model can be modified using a par parameter of the
rushlarsen device. For instance we could set up different membrane capacitance
and sodium conductance by the following call of rushlarsen device in bbs script.

rushlarsen v0=0 vli=neqn-1 ht=dt ionic=hh52 order=tog
par={ht=dt C_m=2.0 G_Na=130};

239

20

Appendix D. Implementation of Cellular Models

D.3.3 Code Listings of Hodgkin-Huxley Model as ionic Mod-
ule with Markov Chain Models

To illustrate the functionality of the Matrix Rush-Larsen method we have imple-
mented a minimalist example of an ionic module. In this example we have
converted the gating variables for both Ik and Iy, channels from the hh52 module
into Markov chain. The details about the coversion are provided in Subsection
The definition of the Markov chain in the Ix model is given by the following
listing.

Listing D.20: Definition of states and Matrix of Ix Markov chain file hkh52m_ik.h

/* _(state_name, intial_condition) */
_(closed4 ,(1-n)*(1-n)*(1-n)*(1-n))
_(closed3 ,4*n*(1-n)*(1-n)*(1-n))
_(closed2 ,6*n*n*x(1-n)*(1-n))
_(closedl ,4*n*n*n*x(1-n))
_(0_K,n*n*n*n)

/* _RATE(from_state, to_state, direct_TR, reverse_TR) x*/
_RATE(closed4,closed3 ,4*alpha_n,beta_n)
_RATE(closed3,closed2,3*alpha_n ,2*beta_n)
_RATE(closed2,closedl ,2*alpha_n ,3*beta_n)

_RATE(closedl ,0_K,alpha_n ,4*beta_n)

The definition of the Markov chain of Iy, format is given below.

Listing D.21: Definition of states and Matrix of Iy, Markov chain file hh52m_ina.h

/* _(state_name, intial_condition) */
_(C3,(1-m)*(1-m)*(1-m)*h)
_(C2,3*m*(1-m)*(1-m)*h)
_(C1,3*m*m*(1-m)*h)

_(0_Na,m*m*m*h)

_(I3,(1-m)*(1-m)*(1-m)*(1-h))
_(I2,3*m*(1-m)*(1-m)*(1-h))
_(I1,3*m*m*(1-m)*(1-h))
_(I0,m*m*m*(1-h))

/* _RATE(from_state, to_state, direct_TR, reverse_TR) */
_RATE(C3,C2,3*alpha_m,beta_m)
_RATE(C2,C1,2*alpha_m,2*beta_m)
_RATE(C1,0_Na,alpha_m,3*beta_m)

_RATE(I3,I2,3*alpha_m,beta_m)
_RATE(I2,I1,2*alpha_m,2*beta_m)
_RATE(I1,I0,alpha_m,3*beta_m)

_RATE(I3,C3,alpha_h,beta_h)
_RATE(I2,C2,alpha_h,beta_h)
_RATE(I1,C1,alpha_h,beta_h)
_RATE(IO,0_Na,alpha_h,beta_h)

The main file hh52m. ¢ which implements the model hh52m, is a modification of
hh52. c.

Listing D.22: ionic module hh52m with Markov chains in file hh52m. c.
/ * %
* IONIC description of the Hodgkin-Huxley 1952 model.
x/

#include <assert.h>
#include <math.h>

#include <stdio.h>
#include <stdlib.h>

240

20

25

30

35

40

45

50

55

60

65

70

75

80

D.3.

Hodgkin-Huxley Squid Model

#include <string.h>
#include "system.h"
#include "beatboxz.h"”

#include "device.h”
#include "state.h'"
#include "bikt.h"
#include "donic.h"
#include "gpp.h"

/* Enumerate the INa Markov chains variables */
enum {

#define _RATE(n,i,a,b)

#define _(n,i) ina_##n,

#include "hh52m_ina.h"

#undef _RATE

#undef

NM_ina /* total number of INa Markov variables x*/

I3

/* Enumerate the IK Markov chains variables */
enum {

#define _RATE(n,i,a,b)

#define _(n,i) ik_##n,

#include "hhb52m_ik.h"

#undef _RATE

#undef

NM_ik /* total number of IK Markov variables */
i

/* Enumerate Markov chains */
enum {

MC_ina,

MC_ik,

NMC
I3

/* possition of membrane voltage in state vector */
static int V_index = 0;

/* Enumerate all dynamic variables */
enum
{
#define _(n,i) var_##n,
#include "hh52_other.h"
#define _RATE(a,b,c,d)
#include "hh52m_ina.h"
#include "hh52m_1ik.h"
#undef _RATE
#undef
NV /* total number of variables */
I3

/* Enumerate the other (non-gate) variables */
enum
{
#define _(n,i) other_##n,
#include "hh52_other.h'"
#undef
NO /* total number of other variables */

I8

/* there are none of non-tabulated gate variables x*/
#define NN O

#define NT O
#define NTAB O

/* The structure containing the parameter values
for this instance of the model x/

typedef struct

{
/* First go the canonical cell parameters */

#define _(name,default) real name;

#include "hh52_par.h"

#undef

241

Appendix D. Implementation of Cellular Models

85 /* Then the external current. */
real 1IV;
} STR;

/* IONIC_FTAB_HEAD expands to a function defining voltage
90 dependent transition rates for tabulation:
int ftab_hh52(real V, real *values, int ntab)

95 real V | membrane voltage
real *values | pointer to array to be filled with
| transition rates
|

int ntab number of tabulated variables

100 Returns 1 if succeeds.
*/
IONIC_FTAB_HEAD (hh52m)
{
} IONIC_FTAB_TAIL (hh52m);
105
/* CHANNEL_TR_MATRIX expands to a function which fills the
transition rates matrix:
int hh52m_{ina,ik}(real *u, real *tr_mat)
110 INPUT ARGUMENTS
real *u | states vector
real *tr_mat | matrix to be filled with transtion rates

*/
115 CHANNEL_TR_MATRIX (hh52m_ina){
#define V (ul[0])
/* transition rates */
real alpha_m = 0.1 * (-V + 25.0) /
(exp ((-V + 25.0) / 10.0) - 1.0);
120 real beta_m = 4.0 * exp (-V / 18.0);
real alpha_h = 0.07 * exp (-V / 20.0);
real beta_h = 1.0 / (exp ((-V + 30.0) / 10.0) + 1.0);
#undef V

125 #define _(n,i)
#define _RATE(from,to,direct,reverse) \
TR_MAT (ina,from,to,direct ,reverse)
#include "hh52m_ina.h"
#undef _RATE
130 #undef
return 1;

}

CHANNEL_TR_MATRIX (hh52m_ik){ /* described above */
135 #define V (ul0])
/* transition rates */
real alpha_n = 0.01 * (-V + 10.0) /
(exp ((-V + 10.0) / 10.0) - 1.0);
real beta_n = 0.125 * exp (-V / 80.0);
140 #undef V

#define _(n,i)
#define _RATE(from,to,direct,reverse) \
TR_MAT (ik,from,to,direct ,reverse)
145 #include "hh52m_ik.h"
#undef _RATE
#undef
return 1;

}
150
/* IONIC_FDDT_HEAD expands to a function of right hand sides
for the computation of increment of other and non-tabulated
gates.
155 int fddt_hh52(real *u,int nv,real *values,int ntab,Par par,\
Var var,real *du,int no,real #*nalp,real *nbet,int nn)
INPUT ARGUMENTS
160 real *u | pointer to array of states variables

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

D.3. Hodgkin-Huxley Squid Model

total number of variables
pointer to array of tab. transition rates
number of tab. transition rates

int nv
real *values
int ntab

Par par parameter structure

Var var variable structure

real *du pointer to array of increments of *u
int no number of other variables

real *nalp
real *nbet

pointer to array of non-tabulated alphas
pointer to array of non-tabulated betas

int nn number of non-tab. gates
*/
IONIC_FDDT_HEAD (hh52m, NV, NTAB, NO, NN)
{

/* Declare the const pars and take their values from struct
S==par (a formal parameter) */
#define _(name,default) DEVICE_CONST (real ,name);
#include "hh52_par.h"
#undef _
DEVICE_CONST (real, IV);
/* Declare and assign local variables for dynamic variables
from state vector x/

/* ..., first for non-gate variables */
#define _(name,initial) real name=ul[var_##namel;
#include "hh52_other.h'"

#undef

/* ..., then the Markov chains. */
#define _RATE(a,b,c,d)

#define _(name,i) real name=ul[var_##namel;
#include "hh52m_ina.h"

#undef

#define _(name,i) real name=ul[var_##namel];
#include "hh52m_1ik.h"

#undef _

#undef _RATE

/* currents */

real I_K = G_K * 0_K * (V - E_K);

real I_Na = G_Na * 0_Na * (V - E_Na);

real I_1 = G_1 * (V - E_1);

/* model equations x/
real dot_V = -1.0 / C_m * (I_Na + I_K + I_1);

/* Copy the calculated rates into the output array dul]. =*/
/* Care is taken that all, and only, non-gating variables
are attended here */

#define _(name,initial) dulother_##name]=dot_##name;

#include "hh52_other.h"

#undef
/* Finally add the "external current" parameter values */
du[V_index] += IV;

} IONIC_FDDT_TAIL (hh52m);

/* IONIC_CREATE_HEAD expands to a function which
initialises an instance of the model.

int create_hh52(ionic_str *I,char *w,real **u,int vO)

INPUT ARGUMENTS

ionic_str *I pointer to ionic structure to be initialised

|
char *w | parameters to be assigned from script
real x**u | pointer to array of states variables
int vO | number of entries in states array
*/
IONIC_CREATE_HEAD (hh52m)
{

/* Here we assign the parameter values to the structure
AND to namesake local variable x/

#define _(name,default) ACCEPTP (name,default ,0,RNONE);

#include "hh52_par.h"

#undef

/* Assign the initial values as given in the *.h files */

/ *
the macro SUBCHAIN(fun_tr, index, min, max, incr, sc) intialises
the parameters of Markov subchain.

243

240

245

250

255

260

265

270

Appendix D. Implementation of Cellular Models

variable | meaning
function of transition rates as defined
by CHANNEL_TR_MATRIX

index index of control variable for tabulation
(negative to avoid tabulation)

min minimal value for tabulation

max maximal value for tabulation

incr increment in the tabulation

scale for tabulation

*/

/* intialize INa Markov chain */

sbch = &(ch->subchain [0]);

ch->dimension = NM_ina;

SUBCHAIN (hh52m_ina, -1, -200, 200, 0.01, 0);
/* intialize IK Markov chains x*/

ch += 1;
sbch = &(ch->subchain [0]);
ch->dimension = NM_ik;

SUBCHAIN (hh52m_ik, -1, -200, 200, 0.01, 0);

/* asign gates for computation of MCs initial conditions */

#define _(name, initial) real name = initial;
#include "hh52_tgate.h"
#undef _

#define _(name,initial) (*u)[var_##name]=initial;
#include "hh52_other.h"
#define _RATE(a,b,c,d)
#include "hh52m_ina.h"
#include "hh52m_ik.h"
#undef _RATE
#undef _
} IONIC_CREATE_TAIL (hh52m, NV);

The rh52m shares some included files with the rh52 model, such as the file
for “other” variables nhh52_other.h, initial values of gating variables used to de-
termine the initial values of Markov chains states rh52_tgate.h and parameters
hh52_par. h.

The bbs script for hh52m module has only a few differences from rh52. bbs.
The main difference is obviously the name of the ionic module in the rushlarsen
device call, which now reads as hh52m. Another difference is the higher number of
dynamical variables in hh52m, which results from the conversion of gate variables
into corresponding Markov chain models. This is reflected in the parameter neqn,
which specifies the number of dynamical variables in bbs script. Now it has to be
set to the specific value for hh52m which is neqn=14. Finally, to save the results we
sample the open probabilities of both Iy, and Ix. The corresponding bbs script is
shown below.

Listing D.23: bbs script hh52m. bbs for hh562m ionic module with Markov chains.

/ *
* Driver for Hodgkin-Huxley 1952 minimalistic ionic model
*/
def int neqn 14; /* number of layers of state variables */
def real dt 0.01; /* time step */

/* declare schedule variables */
def real begin;

def real end;

def real T;

/* configuration of the dimensions */

244

20

25

30

35

40

D.4. TenTusscher-Panfilov (2006) Model

state xmax=1 ymax=1 zmax=1 vmax=neqn+1;

/* Schedule x*/

k_func name=schedule nowhere=1 pgm={
T = tx*dt; /* simulation time */
begin =eq(T, 0); /* start of simulation [ms] */
end =ge(T, 10.); /* end of simulation [ms] =*/

g

/* Reaction substep */

rushlarsen v0=0 vli=neqn-1 ht=dt ionic=hh52m order=tgo
exp_mc=ntabmrl par={ht=dt};

/* define output variable */

def real v;

sample x0=0 v0=0 result=v;

/* ik channel x*/

def real 0_Na;

sample x0=0 v0=4 result=0_Na;

/* ina channel */

def real 0_K;

sample x0=0 v0=13 result=0_K;

/* write output to a file */

k_print nowhere=1 when=always file="hh52m.vtg" append=0
valuesep="\t" list={T;v;0_K;0_Na;};

/* end simulation */

stop when=end;
end ;

D.4 TenTusscher-Panfilov (2006) Model

We have noticed that some published models include the forward Euler in equations
for computing calcium dynamics. The numerical algorithm used for integrating
the system of differential equations in BeatBox has to allow for the flexibility of
using any numerical integration method, i.e. the calcium dynamics have to be
implemented as pure dynamic equation.

For this purpose we suggest a method for transforming the equations of calcium
dynamics, which include the forward Euler integration, into pure dynamic equations.

This section was developed with important contribution from Vadim Biktashev.

D.4.1 Calcium Dynamics

The equation describes the evolution of total calcium dynamics as a com-
bination of free calcium and buffered calcium. The chemical reactions of the
buffering are assumed to be fast, hence can be adiabatically eliminated. Equation
is multiplied by the denominator of the second term on the right hand side
and collecting terms with [Ca*?]; together yields a quadratic equation

[Ca™?]7 + (k: + B; — [Ca+2]t) [Ca™®]; — k[Ca™?], = 0. (D.1)

We find both roots of the quadratic equation and considering the physical
constraints of the concentration, which is restricted only to positive values, the only

245

Appendix D. Implementation of Cellular Models

feasible solution is a unique positive root

(Ca*?]; = ; (—(k; + By — [Ca*2)) +1/(k + B — [Ca*?],)2 + 4k[Ca+2]t> . (D2

where the total concentration [Ca™], is described by a differential equation involv-
ing the ionic fluxes of Ca®" in and out of the corresponding compartment.

To summarise, we write down the equations used for the computation of the
Calcium dynamics. Function f([Ca™?],...) is a given function defined within the
cell model, binding k& = k.. /kos, and constants By, ko, kog € RT so that:

d[Ca™?;,
o p), (D.3)
(Cat2)y = 5 (k= Bi— [Ca™)) + \(k+ B, = [Ca™) 2+ 4K[Ca™Y.), (D)
21 _ By[Ca™?];
[Ca™), = W, (D.5)

which satisfies the requirement on BeatBox ionic modules, where the “other” vari-
ables have to be implemented as a system of differential equations. In the model
published by tenTusscher-Panfilov (2006), the computation of calcium dynamics
includes the time-stepping algorithm within the code. For the implementation as
ionic model we have converted the system into dynamic equations as described
in the next subsection.

D.4.2 Calcium Computation in the TenTusscher-Panfilov Model

The Ca®" dynamics within the TTP model are calculated for three compartments:

sarcoplasmic reticulum (SR); dyadic subspace (SS), which is the compartment in

the proximity of the cellular membrane and SR; and bulk intracellular calcium.
The algorithm computing the calcium dynamics in the SR in the TTP code is

given as
Bsr[Ca™?|sr
[Ca*?]csqn =) (D.6)
([Ca+2]SR + kSR)
A[Ca+2]SR :At (Iup —]rel — Ileak) s (D7)
bsr =Bsr — [Ca™?]csgn — A[Ca™?|sg — [Ca™®|sr + ksr, (D.8)
csr =ksr ([Ca+2]CSQN + A[Ca™?|sg + [Ca+2]SR) , (D.9)
\/b2p +4dcgg — b
[(Cat?)gp — YO T TSR 7 SR (D.10)

2

where [Ca“]CSQN represents buffered calcium and [Ca™]sr represents free cal-
cium concentration. I, is calcium induced calcium release (CICR) current; 1., is

246

D.4. TenTusscher-Panfilov (2006) Model

SR Ca™? pump current; I,..x is SR Ca** leak current. The coefficients kgg = 0.3,
and Bsg = 10.0. Time and calcium concentration increments in one time step are
denoted by At and A[Ca™|sg respectively.

This method computes the [Ca*?|y; by the forward Euler method, which is
implemented into (D.8) and (D.9) as

[Caw}sr{ = [Ca+2]CSQN + [Ca™Jsr + A[Ca™|sg, (D.11)

so that the higher order method cannot be applied unless we reformulate the
system as pure dynamical equations.

D.4.3 Differential Equations for Calcium

For the purposes of BeatBox ionic modules, the calcium concentration for [Ca*?]gy,
[Ca™]sq and [Ca™]; should be implemented as pure dynamical equations. The
particular equations for each compartment are constructed by substituting the sub-
sequent formulas into the equations (D.3)—(D.5). For the sarcoplasmic reticulum

[Ca™?]; = [Ca™?]y, we use

fl)= d[Ci:]SR qup([Ca“],-)—
La([Ca™?]sg, [Ca™]s, O([Ca™?]sg, [Ca™])) —
[1eak<[ca+2]SRa [Ca2+]i)> (D.12)
B, = By =10.0, (D.13)
k = kgg =0.3, (D.14)

for the subspace [Ca™], = [Ca™?] , we use

2
f(.) = d[CZt]SS - - ‘/‘;;Sleer([ca‘+2]sw [Ca’2+]i)+
K ([Ca*sr, [Ca™?]u, O([Ca* sp, [Ca)~
Cm
QVSSF[Ca(L)(d(Vm)a fl (Vm)7 f2 (Vm>7 f3([Ca‘+2]SS)> (D1 5)
B, = Bgs =0.4 (D.16)
k = kgs =0.00025, (D.17)

and in the bulk intracellular space [Ca™*?]; = [Ca*?], we use

f(..)= d[C;) = — Zasz (IbCa(Vm) + [pCa([Ca2+]i) — 2INaca(Vim, [Na't];, [Caﬂ]i)) —
Ver

Ve

(Iup([CaH]i) — Leax([Ca™]gg, [Caw]i)) +

247

Appendix D. Implementation of Cellular Models

[N

OI
AN
=y

40 - ——rrrm 10720

1.48 0.2
- 1.46 P2l BT 0.18 -
20 (é . 144 - < 10 g " 0.16 10722 g
0 <37} 114% r 410 g o 8%‘21 i o3 M
g 20 o ¥ e L 4,13 0 F o7 L 1 I
® 4 138 108 ¢ f 0.1 w8
—40 I 3 ® 1.36 [f = $ 008 [107 5
-60 1 o = D 13 JO 7= O 006 52
A [132 140715 © 0.04 | 1079
-80 /1 ot 3107 & i ~
_100 Lt L 1123 i 716 O'Og bt v N -16
1 10 100 1000 1000
t (ms)
(a) (b) (c)
3107 70000 T — 2
5 , 60000 [Ca®Fsn .
e . & & 50000 | E
1210 o & 40000 7
8 Z 2 30000 |- 4
= . s 8 20000 - -
110 < 10000 | -
0 Aol N
21071 0-10° 2.1071% 4.1071° 61071
Absolute Error
(d) (e)

Figure D.1: Comparison of author’s and reformulated algorithm for computation
of calcium dynamics: (a) Membrane potential V,,,, (b) calcium concentration in
sarcoplasmic reticulum [Ca™?|sg, (c) subspace [Ca™], (d) intracellular calcium
[Ca®*]; (blue line shows simulated traces — left axis, red line shows the difference
between results of the authors’ algorithm and reformulated code — right axis), (e)
distribution of absolute differences in one time step between the authors’ algorithm
and reformulated code for [Ca*?|sg. Simulations were done using the forward
Euler method with a time step of At =1 pus.

[xfer([ca+2]sS7 [Ca2+]i) (D1 8)
B; = B; =0.2 (D.19)
k = k; =0.001, (D.20)

where F is the Faraday constant; V., Vsgr, Vsg are volumes of intracellular space,
sarcoplasmic reticulum and subspace respectively; C,, is the cellular membrane
capacitance; ionic currents are denoted by (. ..) with corresponding subscripts
substituted for s and dependent on other dynamical variables given in the model
description. The other dynamical variables are: membrane voltage V,,; calcium
concentrations [Ca®"];, [Ca™®|sg, [Cat?]s; open probability O([Cat?|sg, [Ca™?])
of RyR channel; and open probability of gating variables d(V.,), fi(Vi), fo(Vi),
f3([Ca™?]y) for Icary current.

D.4.4 Comparison of Algorithms for Computation of Calcium
Dynamics

The Figure[D.1]shows the original (TTP) implementation (free calcium as dynamical
variables) compared with the reformulated algorithm (total calcium concentration
is as dynamical variable).

The error of the computation is normally defined as the deviation from the exact
solution. Because both methods only calculate approximate solution we compare

248

D.4. TenTusscher-Panfilov (2006) Model

them to each other, to demonstrate that both offer similar results.The relative error
for our purposes is defined as the relative difference between the two methods
and calculated according to the following formula:

JA-D
‘Tl a

, (D.21)

where A is the value from the authors’ code and D is the corresponding dynamical
variable using the reformulated algorithm.

From the Figure [D.1[a-d) we see, that the difference between the TTPs’ and
updated algorithm is around 10~!%. Although this value of error seems rather high,
we can show that such a result is consistent.

The iterative solvers introduce a small truncation error in each iteration. BeatBox
uses variables in double float precision. This means the number of significant
digits is 15. Any consequent digits are lost so the truncation error in each iteration is
of the order of 10~1°. The error at individual steps can accumulate or compensate
the global error for the simulation.

To see the average effect of the error in our simulations we analyse the absolute
numerical error in one time step. We implement both the TTPs’ and updated
algorithm side by side in one code. The calcium concentrations from the updated
algorithm D are used for the calculations of all of the cellular compartments.
Besides that we obtain the calcium concentrations using the TTPs’ algorithm
based on the calcium concentrations obtained in the updated algorithm D in the
previous time step, and we denote these results by A*.

The error in this experiment is than defined as the difference between the
updated method and the TTPs” method (D— A*). Figure[D.Tle shows the distribution
of the values of error during the simulation. The average error is skewed towards
10712,

As seen from the relative error [Ca™]gg in Figurepanel (c) the error reaches
values about 10~ after 100 ms with a time step of At = 1 us. This means that if the
average error is 10~1° after 10° calculations (100 ms x 1000 steps) we can expect
an error around 1071°. We have to bear in mind that this is a rough estimation as
the two simulations are not exactly identical. However, it is a clear indication that a
plausible source of error is due to the accumulation of truncation errors.

The truncation errors are skewed because the increment of the concentration
of calcium is applied to different variable. The TTPs’ algorithm increases the free
calcium concentration [Ca™?];. In the approach used in the updated code, the
A[Ca*?] increases the total calcium concentration. The steady-state approximation
of calcium buffering then determines the free calcium concentration. However, as
the difference is only to the order of 10~ for 100 ms the algorithms are equivalent
for practical purposes.

249

Appendix D. Implementation of Cellular Models

D.4.5 Implementation of TenTusscher-Panfilov in ionic Format

BeatBox implementation of the TTP model has already been present in form
of rhs module. To use the rushlarsen device for solving gate variables using
Rush-Larsen method, we have to convert the rhs module to ionic format. The
specifications of the ionic module is described in Subsection[6.4.2] The ionic
module has to define all the equations as the ODEs, which requires a modification
of the equations for the calcium dynamical as has been described in the previous
subsection.

The dynamical variables are then divided into three groups: so called (1)
tabulated gates, (2) non-tabulated gates, and (3) “other” variables. The transition
rates of tabulated gates depend on the voltage. Those variables and their initial
conditions are defined in the file ttp2006r1_tgate.h. This includes the gates for
currents:

* Ina — M, H, J gates;

» Ix,1 — Xr1 gate;

» [k — Xr2 gate;

» Ixs — Xs gate;

* I,,1 — R, S gates;

* Ic. — D, F, F2 gates.

The transition rates of non-tabulated gates depend on variables other than voltage
and are computed on-the-fly. Those variables and their initial conditions are
defined in the file ttp2006ri_ngate.h. This includes the gates for currents:

* I, — FCaSS gate;

* I, (RyR) — RR gate.

Finally, the “other” variables include non-gating variables such as voltage and ionic
concentrations. Those variables and their initial conditions are defined in the file
ttp2006rl_others.h. This includes the following dynamical variables:

* V,, — voltage;

« [Ca™?], — intracellular calcium concentration;

« [Ca™]sz — total calcium concentration in sarcoplasmic reticulum;

[Ca*?]4 — total calcium concentration in subspace;
« [Na*]; — sodium concentration;
[K*]; — potassium concentration.

The dynamics of calcium refer to the total calcium concentration rather than the
free calcium concentration as in the authors’ code.

Figure [D.2 compares the simulation results by the rhs module ttp0o6 with the
solution of the ionic module ttp2006 and shows the convergence in the time-step
and step in the tabulation of the tabulated gates. The results of the figure confirm
expected convergence with step size and step in the tabulation grid.

250

D.4. TenTusscher-Panfilov (2006) Model

At =10 ps AViap. = 0.001 mV AViap, = 0.1 mV - —
At =100 ps ——~ AViap, = 0.01 mV -
1. 0; T T T T :]18; y 1 N 7 102 g
o : —— o 095 [. 4 O
E gs N 4 18:‘3‘ g 09 e 7 1276 E
s L 4 .55 % 085
5 04 4107 5 R 75 1010 3
© 0.3 E 1ojg © 07 1012 ¢
E] S S b 0.65 1 4g714
100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t (ms) t (ms) ¢ (ms)
(b) (c)
C AT s e .
IS) 9 10 o 0.95 pi T 710 3
5 0.8 [—4107 E 0o k- 107 =
@ 0.7 | 108 © : 110 3
o 0.6 |- 410° o 2z 08 7105, o
o | -10 > © 10 >
R 0.5 10 S O 0.8 a A1 =
K| 04 R 1002 5
-~ : 12— 0.75 -1 10 -~
[03 4102 o 14918 T
) . = 0.2 |- 4101 = 0.7 J g1+ =
100 | | | | E 10712 0.1 | | | | 10714 0.65 | | | | 10718
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
t (ms) t (ms) t (ms)
(d) (e) (f)

Figure D.2: Convergence of the solution in time-step (top row) and voltage-step in
tabulation (bottom row) for tenTusscher-Panfilov (2006) [29] model. The panels (a),
(d) show the membrane voltage V., computed as “other” variable; the panels (b),
(e) show F gate of the I, current computed as tabulated gating variable; and the
panels (c), (f) show the gate FCaSS of the I, computed as non-tabulated gating
variables. The convergence in time-step is compared with a reference solution
of rhs model solved with the At = 0.1 us, the convergence in voltage step in the
tables is compared with reference solution of the same ionic without tabulation
(transition rates computed on-the-fly).

These results also confirm that the difference in the computation of calcium
dynamics, as discussed in the previous section, is insignificant compared to the
errors due to the increase in step sizes. The difference in the algorithm for the
computation of calcium dynamics between rhs module and ionic module only
accounts for errors up to a magnitude of 101, which is several orders of magnitude
lower than the errors observed in the step-size convergence.

251

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

Gregory M Faber, Jonathan Silva, Leonid Livshitz, and Yoram Rudy. Kinetic
properties of the cardiac L-type Ca** channel and its role in myocyte elec-
trophysiology: a theoretical investigation. Biophys J, 92(5):1522—1543, Mar
2007.

Colleen E Clancy and Yoram Rudy. Na*™ channel mutation that causes
both Brugada and long-QT syndrome phenotypes: a simulation study of
mechanism. Circulation, 105(10):1208-1213, Mar 2002.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. J Physiol,
117(4):500-544, Aug 1952.

Vladimir E. Bondarenko. A compartmentalized mathematical model of the
[S1-adrenergic signaling system in mouse ventricular myocytes. PLoS One,
9(2):€89113, 2014.

W. G. Wier and D. T. Yue. Intracellular calcium transients underlying the short-
term force-interval relationship in ferret ventricular myocardium. J Physiol,
376:507-530, Jul 1986.

Bertil Hille. lonic Channels of Excitable Membranes. Sinauer Associates Inc,
second edition, 1992.

[7] T. Kispersky and J. A. White. Stochastic models of ion channel gating.

Scholarpedia, 3(1):1327, 2008. revision #137554.

[8] F. Bezanilla and C. M. Armstrong. Inactivation of the sodium channel. I.

Sodium current experiments. J Gen Physiol, 70(5):549-566, Nov 1977.

[9] C. M. Armstrong and F. Bezanilla. Inactivation of the sodium channel. Il.

gating current experiments. J Gen Physiol, 70(5):567-590, Nov 1977.

253

Bibliography

[10] G. W. Beeler and H. Reuter. Reconstruction of the action potential of ventric-
ular myocardial fibres. J Physiol, 268(1):177-210, Jun 1977.

[11] R. W. Hadley and W. J. Lederer. Ca?* and voltage inactivate Ca** channels in
guinea-pig ventricular myocytes through independent mechanisms. J Physiol,
444:257-268, Dec 1991.

[12] J. P. Imredy and D. T. Yue. Mechanism of Ca**-sensitive inactivation of L-type
Ca?* channels. Neuron, 12(6):1301-1318, Jun 1994.

[13] M. S. Jafri, J. J. Rice, and R. L. Winslow. Cardiac Ca*" dynamics: the roles
of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J,
74(3):1149-1168, Mar 1998.

[14] A. N. Tikhonov. Systems of differential equations containing small parameters
in the derivatives. Mat. Sb. (N.S.), 31(73)(3):575-586, 1952.

[15] Neil Fenichel. Geometric singular perturbation theory for ordinary differential
equations. Journal of Differential Equations, 31(1):53 — 98, 1979.

[16] V.N. Biktashev. Envelope equations for modulated non-conservative waves.
IUTAM Symposium Asymptotics, Singularities and Homogenisation in Prob-
lems of Mechanics, 5(1):11, 2003.

[17] S. Rush and H. Larsen. A practical algorithm for solving dynamic membrane
equations. IEEE Trans Biomed Eng, 25(4):389-392, Jul 1978.

[18] Dmitrii E Makarov. @ Some mathematical properties of master equa-
tions, 2011. http://makarov.cm.utexas.edu/resources/Lecture-notes,-tutorials-
etc./master_equations.pdf.

[19] Rebecca Suckley and Vadim N Biktashev. Comparison of asymptotics of
heart and nerve excitability. Phys Rev E Stat Nonlin Soft Matter Phys, 68(1
Pt 1):011902, Jul 2003.

[20] W.A. Stein et al. Sage Mathematics Software. The Sage Development Team,
2014. http://www.sagemath.org.

[21] Gregory M Faber, Jonathan Silva, Leonid Livshitz, and Yoram
Rudy. Source code of Faber et al. (2007) -cellular model.
http://rudylab.wustl.edu/research/cell/code/Faber_LRd_CalL_2007.zip.

[22] J. Douglas Faires Richard L. Burden. Numerical Analysis, 9th Edition. Brooks
Cole, 9 edition, 2010.

254

Bibliography

[23] OpenCourseWare. Numerical methods for partial differential equations, oper-
ator splitting. online, spring 2009. http://ocw.mit.edu/courses/mathematics/18-
336-numerical-methods-for-partial-differential-equations-spring-
2009/lecture-notes/MIT18_336S09_lec20.pdf.

[24] Mauro Perego and Alessandro Veneziani. An Efficient Generalization Of The
Rush-Larsen Method For Solving Electro-Physiology Membrane Equations.
Electronic Transactions on Numerical Analysis, 35:234—-256, 2009.

[25] Joakim Sundnes, Robert Artebrant, Ola Skavhaug, and Aslak Tveito. A
second-order algorithm for solving dynamic cell membrane equations. |IEEE
Trans Biomed Eng, 56(10):2546—2548, Oct 2009.

[26] BeatBox developers. Source code of beatbox package. online, accessed
2015. http://empslocal.ex.ac.uk/people/staff/vnb262/software/BeatBox/.

[27] R. McFarlane. High-Performance Computing for Computational Biology of
the Heart. PhD thesis, University of Liverpool, 2010.

[28] BeatBox developers. Beatbox home page. online, accessed 2015.
http://empslocal.ex.ac.uk/people/staff/vnb262/software/BeatBox/.

[29] K. H W J ten Tusscher and A. V. Panfilov. Alternans and spiral breakup in a hu-
man ventricular tissue model. Am J Physiol Heart Circ Physiol, 291(3):H1088—
H1100, Sep 2006.

[30] Gregory M Faber and Yoram Rudy. Calsequestrin mutation and catecholamin-
ergic polymorphic ventricular tachycardia: a simulation study of cellular mech-
anism. Cardiovasc Res, 75(1):79-88, Jul 2007.

[31] SM Cox and PC Matthews. New instabilities in two-dimensional rotating
convection and magnetoconvection. Physica D: Nonlinear Phenomena,
149(3):210-229, 2001.

[32] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta
Numerica, 19:209-286, 2010.

[33] Donald M. Bers. Cardiac excitation-contraction coupling. Nature,
415(6868):198-205, Jan 2002.

[34] Wei Chen, Mesfin Asfaw, and Yohannes Shiferaw. The statistics of calcium-
mediated focal excitations on a one-dimensional cable. Biophysical Journal,
102(3):461 — 471, 2012.

[35] Enrique Alvarez-Lacalle, Blas Echebarria, Jon Spalding, and Yohannes
Shiferaw. Calcium alternans is due to an order-disorder phase transition
in cardiac cells. Phys Rev Lett, 114(10):108101, Mar 2015.

255

Bibliography

[36] C. H. Luo and Y. Rudy. A dynamic-model of the cardiac ventricular action-
potential .1. simulations of ionic currents and concentration changes. Circula-
tion Research, 74(6):1071-1096, June 1994.

[37] P. C. Viswanathan, R. M. Shaw, and Y. Rudy. Effects of I-Kr and I-Ks hetero-
geneity on action potential duration and tts rate dependence - A simulation
study. Circulation, 99(18):Amer Heart Assoc; Hoechst Marion Roussel Inc,
Kansas City, May 1999.

[38] J. L. Zeng, K. R. Laurita, D. S. Rosenbaum, and Y. Rudy. Two components of
the delayed rectifier K* current in ventricular myocytes of the guinea-pig type
- theoretical formulation and their role in repolarization. Circulation Research,
77(1):140-152, July 1995.

[39] William T. Vetterling Brian P. Flannery William H. Press, Saul A. Teukolsky.
Numerical Recipes; The Art of Scientific Computing. Cambridge University
Press, 2007.

[40] C. Wilkinson, H.H.; Reish. Handbook for Automatic Computation. Springer,
1971.

[41] Jack Dongarra. Freely available software for linear algebra (may 2013). web
page, May 2013. Table on Sparse Eigenvalue Solvers; retrieved 26 January
2015.

[42] M. Galassi et al. GNU Scientific Library Reference Manual. 2009.

256

	Introduction
	Cellular Electrophysiology
	The Hodgkin-Huxley Model
	Model of a Cell
	Ionic Currents
	Summary of the Hodgkin-Huxley Model

	Cardiac Excitation Models
	Development of Cardiac Models
	Calcium Buffers Kinetics
	Ion Channels

	Ion Channel Models
	Exposing the Limitations of Gate Model
	Deriving Markov Chain Models
	Conversion from Markov chain to a Gate Model
	Conversion of Hodgkin-Huxley INa and IK to Markov Chains

	Popular Markov Chain Ion Channel Models
	Fast Sodium Current INa
	L-type Calcium Current ICa(L)
	Calcium Current of the Sarcoplasmic Reticulum Irel
	Calcium Dynamics in Faber et al. (2007) Model

	Asymptotic and Numerical Methods
	Asymptotic methods
	Toy Example of Dimensionality Reduction
	Classical Formulations of Singular Perturbation Theory
	Leading-Order Reduction for Linear Systems
	First-Order Correction Term for General Systems
	First-Order Correction Term for Markov Chains

	Numerical Integration Methods
	Order of Approximation
	Explicit Methods – Forward Euler
	Rush-Larsen Technique for a Gate Model

	Dimensionality Reduction of INa Markov Chain
	Analysis of INa Markov Chain
	Formulation of INa Markov Chain
	Embeddings of INa Markov chain

	Leading-Order OP-Reduction in INa Markov Chain
	Embedding of OP States
	Choice of Eigenvectors
	Reduction of States O and P to One State N
	Solution of OP-Reduction with a First-Order Term

	Leading-Order STU-Reduction in INa Markov Chain
	Embedding of STU States
	Choice of Eigenvectors
	Reduction of States S, T and U to One State M

	Leading-Order RQ-Reduction in the STU-Reduced INa Model
	Embedding of RQ States
	Choice of Eigenvectors
	Reduction of states R and Q by One State L

	Testing of the Reduced Models within a Cell Model
	Choice of the Cellular Model
	Stiffness of the Model

	Conclusions

	Exponential Solvers for Markov Chain Models
	Application to INa Model
	Operator Splitting for INa Model
	Hybrid Method for INa model
	Matrix Rush-Larsen for INa Model
	Simulation in a Cellular Model

	Application to RyR and ICa(L) Models
	Cellular model
	RyR Markov Chain Model
	ICa(L) Markov Chain Model
	Conclusions for RyR and ICa(L) Case Study

	Accuracy of Numerical Methods for Markov Chain
	Order of Approximation
	Forward Euler method
	Matrix Rush-Larsen
	Operator Splitting for Linear Systems
	Truncation Error of Lie Splitting

	Conclusions

	Exponential Solvers for Markov Chain Models in BeatBox
	Definition of a Reaction System
	Solution of Reaction System
	Tabulation
	Forward Euler Method
	Exponential Integration for Hodgkin-Huxley Type Gates
	Exponential Integration for Markov Chains

	Running BeatBox Simulation
	Definition of Reaction System in BeatBox
	rhs Modules
	ionic Modules
	Extension of ionic Modules

	Solution of Reaction System in BeatBox
	euler Device
	rushlarsen Device

	Specification of ionic Modules
	Data Structures
	C-Functions and Template Macros

	Testing of BeatBox ionic Modules with Markov Chains
	Hodgkin-Huxley Minimalist Model
	TenTusscher-Panfilov (2006) Model
	Faber et al. (2007) model

	Conclusions

	Conclusions
	Main Results
	Limitations
	Further Work

	Definition of Clancy-Rudy (2002) Model
	Eigenvalue Computation
	Overview of Subroutines for Finding Eigenvalues
	Linear Algebra Package LAPACK
	Overview of LAPACK
	Standalone LAPACK Code for Eigenvalue Computation

	GNU Scientific Library (GSL)
	Overview of GSL
	Standalone GSL Code

	Including GSL to BeatBox

	rushlarsen Source Code
	Source Code of ionic.h
	Source Code of channel.h
	Source Code of rushlarsen.c

	Implementation of Cellular Models
	Standalone Code
	Hodgkin-Huxley Squid Model

	Implementation as BeatBox Modules
	Enumeration of Variables
	Implementation of Markov Chains
	Including Modules into BeatBox

	Hodgkin-Huxley Squid Model
	Code Listings of Hodgkin-Huxley Model as rhs Module
	Code Listings of Hodgkin-Huxley Model as ionic Module with Gate Models of Ion Channels
	Code Listings of Hodgkin-Huxley Model as ionic Module with Markov Chain Models

	TenTusscher-Panfilov (2006) Model
	Calcium Dynamics
	Calcium Computation in the TenTusscher-Panfilov Model
	Differential Equations for Calcium
	Comparison of Algorithms for Computation of Calcium Dynamics
	Implementation of TenTusscher-Panfilov in ionic Format

