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Abstract

This thesis is concerned with using asymptotic methods to study high-order,

non-linear systems of differential equations for nerve fibres and cardiac muscles.

We use these methods because these systems cannot be solved analytically,

and numerical study is complicated due to the stiffness of the equations, i.e. the

presence of small parameters.

We use well-known asymptotical methods, which describe the fast and slow

processes that occur at different moments in time, so that we can gain a better

understanding of the ways the biological systems work. To achieve this we obtain

simplified models, from our methods, which exhibit the same qualitative features

as the detailed model. From this we can study the simplified models numerically

and analytically.

New asymptotic methods are also derived to obtain simplified models, because

the standard asymptotic methods did not describe some qualitative features of

the solutions. Our new methods also help to solve the systems analytically.

The following properties of the systems of equations are taken into account

to derive the new asymptotic methods:

1. the fact that some small parameters appear in a non-standard way,

2. identifying the most important parameter as being the ionic conductance

gNa characterising the sodium current, this is because gNa is large and its

inverse is small, and

3. the almost perfect closure of the gating variables for the sodium current

in certain ranges of voltage.

The thesis begins with the study of simple classical biological excitable mod-

els, and then moves to studying a more accurate and complicated model.
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Chapter 1

Introduction

This thesis describes a study of systems of first order ordinary differential equa-

tions that describe the electrical behaviour of nerve and cardiac cells. We analyse

the asymptotic structure of those systems by identifying the classes of processes

of different speeds and the speed of the corresponding variables.

The nerve and cardiac cells that we study are called excitable cells by phys-

iologists. The cells have membrane currents flowing through their membranes,

which maintain the polarization of the cells at their resting state. The cell mem-

brane is modelled as a capacitor connected in parallel with variable resistances

and batteries representing the ionic channels and external currents.

If small external currents are applied to the resting state, then these currents

cause small perturbations, which are below the critical level (threshold) of that

system, and they decay straight away back to the resting state. If a perturbation

exceeds the critical level of that system, due to large external currents entering

the cells, then this causes excitation to happen. The cells are then depolarized,

which means that the transmembrane voltage is moved away from its resting

state. This happens for a considerable length of time. This corresponds to

the action potential, as the action potential shows the cell moving away from

the resting state, and then returning to the resting state, which can be either

monotonically or after a plateau stage that exhibits a dome shape.

Excitable cells do not just contain transmembrane processes, processes that

happen in the membrane of the cell, which separates the cell interior from the

outside, but also contains intracellular processes, e.g. the calcium dynamics. In-

tracellular processes happen in the interior of the cell and the calcium dynamics

flow between the compartments inside the cell. These compartments are called

the sarcoplasmic reticulum and are surrounded by myoplasm. Sarcoplasmic retic-
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ulum is an arrangement of membranous vesicles and tubules found in the muscle

fibres of the heart. The sarcoplasmic reticulum plays an important role in the

transmission of nervous excitation to the contractile parts of the fibres. The

sarcoplasmic reticulum acts as an excitable system within the cell. It contains

two more intercellular compartments called the network sarcoplasmic reticulum

and the junctional sarcoplasmic reticulum. Calcium ions flow into the network

sarcoplasmic reticulum from the myoplasm as the calcium uptake current. Once

inside the sarcoplasmic reticulum, calcium is transferred from the network sar-

coplasmic reticulum into the junctional sarcoplasmic reticulum, as the calcium

transient current. Not all of the calcium is transferred, as some is leaked back

into the myoplasm as the calcium leakage current. This process where the cal-

cium is transferred from the network sarcoplasmic reticulum into the junctional

sarcoplasmic reticulum is called calcium transient. The calcium is then released

from the junctional sarcoplasmic reticulum back into the myoplasm if the cell

is depolarized to a critical level by a stimulus of sufficient magnitude to initi-

ate a travelling pulse, which propagates through the cell. This process is called

calcium induced calcium release. Figure 1.1 shows these processes.

Calmodulin, troponin and calsequestrin are the Ca2+ buffers within different

sections of the cell. Troponin and calmodulin are in the cytoplasm and calse-

questrin is in the release compartment.

Figure 1.1: A diagram representing the processes in the cell membrane. From

http://www.cwru.edu/med/CBRTC/ and similar to the cell diagram in Courtemanche

et al’s paper[1].
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So far the models have been described in a physiological context. In a mathe-

matical context the models can be called fast-slow systems of equations, because

the equations describe the fast and slow processes in the models; e.g. the fast

processes correspond to the upstroke of the action potential, this happens for

a short time at the beginning of the action potential, and the slow processes

correspond to the plateau stage and the return of the action potential. We are

interested in the fast and slow processes because we want to use an asymptotic

theory to study the models, and this asymptotic theory is for fast-slow systems

of equations.

Some of the models that we study are relatively simple models, which only

contain four equations, e.g. Hodgkin-Huxley’s 1952 model[2] for a giant squid

axon, and Noble’s 1962 model[3] for mammalian Purkinje fibres. Still, they are

generally considered too complicated to be solved analytically and can only be

solved numerically. We modify these systems to make them even simpler while

preserving their behaviour qualitatively, and we do this by reducing them to

fewer equations, as we want to try and solve the equations analytically rather

than just numerically.

We also consider a more complicated model, e.g. Courtemanche, Ramirez and

Nattel’s 1998 model[1] on the human atrial cell action potential. This is a modern

and very detailed model of cardiac cells compared to the simple models. We apply

the methods that we developed on the simple models, to reduce the complicated

model to a simpler version, which still preserves the behaviour qualitatively. We

do this so we can solve the original model analytically rather than numerically,

and if we can’t solve the model analytically then we want to cut down the

number of time steps the computer takes to calculate the solution. This will

help to consider models that have large numbers of equations to solve, e.g. if the

complicated model described a piece of heart tissue containing millions of cells,

instead of a single cell, and there were 21 equations in each cell in the tissue,

then if the 21 equations contained fast equations, smaller time steps are needed

to solve the model; and the reduced models, after the fast equations have been

eliminated, can tolerate much larger time steps. Therefore a smaller number of

time steps are needed to cover the required time interval.

Chapter 2 is our literature review and we talk about analysis that has been

used on systems of equations that are used to describe excitable properties in

mammalian heart fibres.
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In Section 2.1 we give a brief description for each model before we look at

other models, and more detailed analysis are in separate chapters later on.

We describe FitzHugh’s 1961 system of equations[4] in Section 2.2, which is

a modified version of the van der Pol system. FitzHugh takes the van der Pol

system, which consists of two variables, to represent the Hodgkin-Huxley model,

which has four variables and suggests that if you project the Hodgkin-Huxley

phase space onto a plane it produces a similar phase portrait as the van der Pol

phase portrait.

We have the definitions that are used throughout our work and a 1952 theo-

rem by Tikhonov[5] for fast-slow systems in Section 2.3. We use this theorem to

establish new methods for analysing the asymptotic structure of the Hodgkin-

Huxley model, Noble’s model and Courtemanche et al’s model.

We also describe Zeeman’s two ”toy” models for ”heart” and ”nerve” in Sec-

tion 2.4, which are described in his 1972 paper[6] and his 1977 book[7]. They are

called toy models because he used simple systems of equations to demonstrate

two different types of asymptotic behaviour of the shape of the action potential,

which he believed resembled the shapes of the action potentials in nerve and car-

diac tissue. In his paper Zeeman suggested using the concepts of a slow manifold

and fast foliation for the formal analysis of the properties of the ”heart” and

”nerve” models. The slow manifold and fast foliation are defined in Tikhonov’s

section of Chapter 2.

This observation leads to his hypothesis of there being a cusp catastrophe

in the ”nerve” membrane model. We test this hypothesis and draw the result-

ing phase portrait to see if we can find a cusp and verify his hypothesis. The

action potentials for both the ”heart” and ”nerve” models are also drawn for

comparison.

We use Zeeman’s analysis on the FitzHugh system to see what happens to

the phase portrait and we want to know if the system has a slow manifold and

a fast foliation. To do this we transform the FitzHugh system to look similar to

Zeeman’s ”heart” model.

In Section 2.5 we describe the methods that Krinsky and Kokoz used in their

1972 papers[8] to reduce the Hodgkin-Huxley model to a second order system of

equations. They used two factors to be able to do this:

1. the elimination of the fastest variable and,

2. the approximation of two other variables.
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We also briefly describe how Krinsky and Kokoz[9] reduced Noble’s model to

a second order system of equations.

In Chapter 3 we study the first of the two classical models which is Hodgkin-

Huxley’s 1952 model[2]. We use Krinsky and Kokoz’s analysis to reduce the

Hodgkin-Huxley system to a third order system of equations and what the re-

sulting action potential will look like compared to the original systems action

potential. The question is ”Can we successfully reduce the Hodgkin-Huxley sys-

tem to a third order system of equations without causing too much change to the

behaviour of the action potential?” as we want to keep the qualitative properties

of the system.

After looking at Zeeman’s ”nerve” model in Section 2.4.2, we decided to

test Zeeman’s hypothesis on the Hodgkin-Huxley equations. This is that for a

third order system of equations there exists a cusp catastrophe and we ask the

question ”What is the geometrical representation of the fold curve and does it

form a cusp?”

We change one parameter in the Hodgkin-Huxley model to see if the geometry

of the slow manifold will change, and the two branches of the fold curve will join

together to produce a cusp.

In Chapter 4 we study the second classical model, which is Noble’s 1962

model[3] on the Purkinje fibres of the heart.

In his 1962 paper[3], Noble observed that if he modified the Hodgkin-Huxley

equations, then the properties of excitable membranes may also be used to de-

scribe the long-lasting action and pace-maker potentials of the Purkinje fibres

of the heart. The Hodgkin-Huxley equations were used for nerve fibres; and the

Purkinje fibres are muscle fibres in the heart, through which the atrio-ventricular

node passes signals to the ventricles. The Purkinje fibres are different from the

nerve membrane, because the action potential for the Purkinje fibres exhibits

a much sharper onset compared to the onset of the action potential for nerve

fibres.

In Chapter 5 we want to further develop the results from Chapter 4, by using

a non-Tikhonov embedding method on Noble’s model. The reason we do this is

because by using Tikhonov’s method, the reduced system has a fast onset and

sharp (jump) return. So we do not retain the qualitative properties of the system

by using Tikhonov’s method.

So by using a non-Tikhonov embedding we can retain the slow (smooth)
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return of the original system. We do this by modifying the model to obtain an

excitable system instead of an oscillatory system. Then we study the reduced

model using a non-Tikhonov method and compare our results with the results

from Chapter 4.

In Chapter 6 we study the model by Courtemanche et al in their 1998 paper[1]

on the human atrial cell action potential. We considered a more complicated sys-

tem than we have already been studying and to analyse its asymptotic structure

compared to our two previous models. The reason for this is that Courtemanche

et al’s model is an example of a modern model than Hodgkin-Huxley and Noble’s

models. We also wanted to see if Tikhonov’s method for fast-slow systems will

work on a more complicated model or if we will need to use a non-Tikhonov

embedding method to obtain solutions that we can study.

The results of our study are summarized in Chapter 7.
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Chapter 2

Literature Review

We first consider a literature review where we study systems of equations, the

methods used to analyse their asymptotic structure and the behaviour of their

solutions. The systems that we look at are Hodgkin-Huxley’s 1952 model, No-

ble’s 1962 model, Courtemanche et al’s 1998 model, FitzHugh’s 1961 model and

Zeeman’s 1972 models for ”heart” and ”nerve”. We also describe the classic

perturbation theory for fast-slow systems[10] including Tikhonov’s Theorem.

2.1 Cardiac Excitation Models: from Hodgkin-

Huxley to Modern Systems

We first introduce the classical model by Hodgkin and Huxley[2] for nerve mem-

branes. The system of equations was documented in 1952 and we describe the

model and the resulting action potential for different initial values of voltage.

We then introduce the second classical model which is Noble’s 1962 model[3]

for Purkinje fibres in the heart.

Before we describe the human atrial cell model by Courtemanche et al from

their 1998 paper[1], we briefly describe some of the models that were developed

after 1962.

2.1.1 The Hodgkin-Huxley 1952 system of equations

The Hodgkin-Huxley system of equations is:

dV

dt
=

I − gKn4(V − VK)− gNam
3h(V − VNa)− gl(V − Vl)

CM

, (2.1)
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where,

dn

dt
= αn(1− n)− βnn =

(n− n)

τn

,

dm

dt
= αm(1−m)− βmm =

(m−m)

τm

,

dh

dt
= αh(1− h)− βhh =

(h− h)

τh

,

and

αn =
0.01(V + 10)

e
V +10

10 − 1
, βn = 0.125e

V
80 ,

αm =
0.1(V + 25)

e
V +25

10 − 1
, βm = 4e

V
18 ,

αh = 0.07e
V
20 , βh =

1

e
V +30

10 + 1
,

gNa = 120, VNa = −115,

gK = 36, VK = 12,

gl = 0.3, Vl = −10.613,

CM = 1.0.

Variable V is the displacement of the membrane potential from its resting

value in mV, and n, m and h are dimensionless gating variables which can vary

between [0, 1].

The α’s and β’s are the results of experiments and they are the gates’ open-

ing and closing rates that are functions of voltage, not time, and are in ms−1.

Parameters gNa, gK and gl are all constants in mmho/cm2. Parameters VNa, VK

and Vl are the reversal potentials in mV, and they can be measured directly as

displacements from the resting potential. Functions m, n and h are the gates’

instant equilibrium values, i.e. quasi-stationary values, which are dimensionless,

and the τ ’s are the gates’ dynamics time scales in ms.

In equation (2.1) CM
dV
dt

gives the capacity current, gKn4(V − VK) gives the

current carried by K ions, gNam
3h(V − VNa) gives the current carried by Na

ions and gl(V − Vl) gives the ’leakage current’. The currents are for 1cm2 of

membrane.
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Membrane current

The current carried by any ion depends on the magnitude of its electrochemical

potential gradient, the work done in bringing one mole of an ion from a standard

state (infinitely separated) to a specified concentration and electrical potential,

and on how easy it is for the ions to cross the cell membrane, i.e. membrane

conductivity for that ion.

The total membrane current is divided into a capacity current, CM
dV
dt

, and

an ionic current, Ii. This leads to equation:

dV

dt
=

(I − Ii)

CM

,

where I is the total membrane current density, inward current positive, in

µA/cm2, Ii is the ionic current density, inward current positive, in µA/cm2,

V is the displacement of the membrane potential from the resting value, depo-

larization negative, CM is the membrane capacity per unit area which is assumed

constant in µF/cm2 and t is time in ms.

I is the current we measure at the end after we’ve put the ion currents into

the membrane. We can split the ionic current Ii into components carried by

sodium ions INa, potassium ions IK , and other ions Il which are mainly made

up of chloride. So we have:

Ii = INa + IK + Il.

The independent ionic currents are:

INa = gNa(E − ENa),

IK = gK(E − EK),

Il = gl(E − El),

where gNa, gK and gl are ionic conductance’s and gNa and gK are functions of

time and membrane potential and gl may be taken as a constant. Parameters

ENa and EK are the equilibrium potentials for the sodium and potassium ions

and may be taken as a constant, El is the potential at which the ’leakage current’

due to chloride and other ions are zero, and may be taken as a constant and E

is the membrane potential.
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There are two reasons why we say the ionic currents are independent. These

are because:

1. the currents are carried by different ions, in our case sodium, potassium,

and a ’leakage current’, and

2. the current is carried through different channels in the membrane. What

we mean by channels is that a protein molecule sits on the membrane and

makes a hole that is of a particular shape, so only a certain ion can get

through. So no other ions can get through this hole and they have to find

another hole that they can fit through. Therefore the three types of ions

enter the membrane through different types of channels.

Functions gNa, gK and gl represents the sum of the overall conductance of

the channels for the sodium ion, potassium ion, and other ions respectively.

Therefore from the relation V =E − Er, the ionic current equations become:

INa = gNa(V − VNa),

IK = gK(V − VK),

Il = gl(V − Vl).

The relation V =E − Er, where Er is the resting potential, relates to Chap-

ters 3, 4 and 5 and Section 2.5 later on.

The potassium conductance

We assume that:

gK = gKn4, (2.2)

dn

dt
= αn(1− n)− βnn =

(n− n)

τn

, (2.3)

are used to describe the potassium conductance.

We say that we have four subunits n in the membrane and these constitute

the channels. To open a channel through the membrane to let the ions in we

must have all four subunits open, otherwise we say that the channel is closed.

If we do not have all the subunits open then the ions cannot flow through the

membrane. Variable n is the probability that a subunit is open. Assuming that

10



these events are independent, then the probability for all subunits to be open is

n4. Functions α and β depend on V . The ”Voltage-clamp” is the experimental

technique used by Hodgkin and Huxley to keep V constant. The channels can

either be open or closed depending on the voltage and rate of transfer of α’s and

β’s. In equation (2.3) n represents the proportion of open subunits and (1− n)

represents the proportion of closed subunits. Also αn determines the rate of

transfer from the closed subunits to the open subunits and vice versa for βn.

Functions τn and n are described by the following equations:

τn =
1

αn + βn

, n =
αn

αn + βn

.

The sodium conductance

Equations,

gNa = m3hgNa, (2.4)

dm

dt
= αm(1−m)− βmm =

(m−m)

τm

, (2.5)

dh

dt
= αh(1− h)− βhh =

(h− h)

τh

, (2.6)

are used to describe the sodium conductance.

Here the channel consists of four subunits, where three are of one kind of

subunit m and one is of another kind of subunit h. Variables m and h represents

the proportion of open subunits and (1−m) and (1−h) represents the proportion

of closed subunits. Therefore m3h is the probability for all subunits to be open.

Functions αm or βh and βm or αh represent the transfer rate constants in the two

directions.

Functions τm, m, τh and h are described by the following equations:

m =
αm

αm + βm

, h =
αh

αh + βh

,

τm =
1

αm + βm

, τh =
1

αh + βh

.

Action potential solutions

The expressions for the α’s and β’s are appropriate to a temperature of 6.3oc,

for other temperatures they must be scaled with a Q10 of 3.
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If I=0:

dV

dt
= − 1

CM
(gKn4(V − VK) + gNam

3h(V − VNa) + gl(V − Vl)), (2.7)

dn

dt
= αn(1− n)− βnn =

(n− n)
τn

,

dm

dt
= αm(1−m)− βmm =

(m−m)
τm

,

dh

dt
= αh(1− h)− βhh =

(h− h)
τh

.

These four equations are used to draw the graphs in Figs. 2.1 and 2.2. Pa-

rameter Vl is the exact value chosen to make the total ionic current zero at the

resting potential, V = 0.

The equilibrium values are for dn
dt

=dm
dt

=dh
dt

=0. So the values are:

n0 = 0.3177, m0 = 0.0530, h0 = 0.5961,

to four decimal places.

The α’s and β’s were calculated for a temperature of 6.3oC. In our diagrams

the temperatures are different so we use the equation:

φ = 3(T o−6.3)/10.

We can either multiply the α’s and β’s by φ or multiply Cm by φ to correct

the temperature difference.

We consider the temperature T o in this system, because in Chapter 3 we

study the properties of T o and the effect it has on the τ ’s.

In Figs. 2.2 we see that if the initial voltage V0 is decreased, then the action

potentials for V , m, n and h move along the time axis. This means that the

latency for the rapid depolarisation of the action potentials decreases as the

initial V0 increases.

Hodgkin and Huxley used the equations to predict the qualitative behaviour

of a model nerve under a variety of conditions.

The theory used by Hodgkin and Huxley also predicts that a direct current

will not excite if it rises sufficiently slowly.

All that we have illustrated shows excitability especially around the threshold

and the equilibrium values.
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Figure 2.1: Solution of system (2.7) for (a) T o=6oC and V0 are 90mV (- -), 15mV

(+), 7mV (.) and 6mV (-) and (b) T o=18.5oC and V0=15mV.
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Figure 2.2: Solution of system (2.7) for V (+), m (-.), n (-) and h (- -) for T o=6oC

and (a) V0=90mV, (b) V0=15mV, (c) V0=7mV and (d) V0=6mV.
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We use the computer package Matlab to compute the solutions of the models

we study in this thesis. To find the numerical solutions, e.g. action potentials,

we use two ODE solvers, ODE45 and ODE15s. For the simple systems we use

ODE45 and for the complicated systems we use ODE15s. ODE45 is a non-stiff

solver with medium order of accuracy and is most commonly used. ODE15s is a

stiff solver with low to medium order of accuracy and is used only if ODE45 is

slow. For the solvers, we use all default values of the parameters, which can be

found in any Matlab manual[11].

2.1.2 Noble’s 1962 system of equations

We now review Noble’s 1962 model[3] for Purkinje fibres in the heart as it is

a modified version of the Hodgkin-Huxley model. We will describe how Noble

obtained his model and what the action potential looks like for different values

of gl.

Membrane current

The total membrane current (2.8) is divided into ionic currents and a capacity

current, current flowing into the membrane capacity.

dE

dt
=

I − INa − IK − Il

CM

, (2.8)

where I is the total membrane current density, INa and IK are the ionic currents

and Il is the anion current in µA/cm2, E is the membrane potential in mV, CM is

the membrane capacity in µF/cm2, t is time in ms and CM
dE
dt

gives the capacity

current. The resting potential is a negative quantity.

Here positive currents are taken as outward currents, where Hodgkin and

Huxley took them as inward currents. Also, if we compare the equations in

Noble’s paper[3] to the Hodgkin-Huxley equations in their 1952 paper[2], we

need the substitution:

E = Er − V,

where Er is the resting potential for the nerve, which is zero.

The value for CM is 12, which is twelve times larger than it is for the nerve.

If we have an action potential that is initiated at all points along a fibre

simultaneously, then the membrane potential at each instant will be uniform.
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The axial current will therefore be zero and in absence of applied currents the

total membrane current will also be zero. Hodgkin and Huxley called this type

of response a ’membrane’ action potential and is given by I=0 in equation (2.8).

As we do not consider the axial current, then we neglect it for the action

potentials and so I is taken to be zero. Therefore we have the equation:

dE

dt
= −(INa + IK + Il)

CM

.

The individual ionic currents are:

INa = gNa(E − ENa), (2.9)

IK = gK(E − EK), (2.10)

Il = gl(E − El), (2.11)

where gNa is the sodium conductance, gK is the potassium conductance, and gl

is the anion conductance and all are in mmho/cm2, ENa, EK and El are the

equilibrium potentials in mV.

The potassium current

Modifications are made to the potassium equations; these describe the depen-

dence of the potassium current on potential and time, to take into account the

behaviour during depolarization.

It was found that depolarization decreased the membrane conductance, which

is different to what happened to the nerve. In the nerve the depolarization causes

a rapid increase in sodium conductance and a slower, but maintained increase in

potassium conductance.

It can be assumed that all the current measured in sodium-deficient solu-

tions is carried by potassium ions and also that the potassium ions may move

through two types of channels in the membrane. In the Hodgkin-Huxley system

the potassium ions could only move through one channel of the membrane. In

one channel the potassium conductance gK1 is assumed to be an instantaneous

function of the membrane potential and decreases if the membrane is depolar-

ized. In the other channel the conductance gK2 slowly rises if the membrane is

depolarized.

The following equation is used to describe gK1 :
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gK1 = 1.2e
(−E−90)

50 + 0.015e
(E+90)

60 .

For gK2 we use the Hodgkin-Huxley potassium current equations:

gK2 = gK2
n4,

dn

dt
= αn(1− n)− βnn.

Two modifications are made to these equations. The first modification is to

make gK2
smaller than in the nerve, so that the increase in gK2 produced by

depolarization should not affect the decrease in gK1 . The second modification is

to divide αn and βn by 100 in order to take account of the much slower onset of

this effect in Purkinje fibres.

So the potassium equations become:

gK2 = 1.2n4, (2.12)

dn

dt
= αn(1− n)− βnn,

αn =
0.0001(−E − 50)

e
(−E−50)

10 − 1
,

βn = 0.002e
(−E−90)

80 .

Parameter gK2
=1.2 is a constant in mmho/cm2, αn and βn are the gates

opening and closing rates that are functions of voltage, not time, in ms−1 and n

is a dimensionless gating variable between [0, 1].

The absolute values of the conductance’s have been adjusted to give a rest-

ing conductance of about 1mmho/cm2. For EK=−100mV the total potassium

current is:

IK = (gK1 + gK2)(E + 100).

Function n is described by the following equation:

n =
αn

αn + βn

.
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The sodium current

The sodium equations are kept similar to the Hodgkin-Huxley ones. The solution

to these equations closely resembles the Purkinje fibre action and pacemaker

potentials.

The sodium equations are:

gNa = m3hgNa + 0.14, (2.13)

dm

dt
= αm(1−m)− βmm,

dh

dt
= αh(1− h)− βhh,

where gNa is a constant in mmho/cm2, αm, αh, βm and βh are functions of E in

ms−1, and m and h are dimensionless gating variables between [0, 1].

The only modification made here was that the functions αh and βh should

be shifted along the voltage axis. Therefore the equations for αh and βh were

obtained by adjusting the constants determining the position of the curve until

the potential at which h=0.5 became about −7.1mV.

h =
αh

αh + βh

.

Therefore the equations for αh and βh are:

αh = 0.17e
(−E−90)

20 ,

βh = (e
(−E−42)

10 + 1)−1.

To obtain the equations for the m variable it was observed that there is a

close similarity between the processes determining h in the Purkinje fibre and the

nerve fibre. Therefore it was assumed that the processes determining m are also

similar. The following method was used to find suitable values for the constants

in the m equations.

The action potential was used to help find the m equations. Different equa-

tions of αm and βm are used to see if it is possible to obtain the action potential

similar to that of the Hodgkin-Huxley action potential for these equations. It

was found that this worked well and a solution was obtained that resembled the

Purkinje fibre action potential, but the equations for m which would also allow

pacemaker activity to occur are still needed to be found.
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The equations obtained are:

αm =
0.1(−E − 48)

e
(−E−48)

15 − 1
, (2.14)

βm =
0.12(E + 8)

e
(E+8)

5 − 1
. (2.15)
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Figure 2.3: Graph of m for the Hodgkin-Huxley system (- -) and Noble’s system (-).

Figure 2.3 illustrates how equations (2.14) and (2.15) are obtained. In this

figure m is plotted against E. It was assumed that 0.14mmho/cm2 is independent

of E and t. Assuming this makes it easier to obtain the functions for αm and

βm, which allow pacemaker activity to occur. This does not mean that in some

channels gNa is independent of E and t in cardiac muscle.

The curve m (-) in Fig. 2.3 is given by equations (2.14), (2.15) and (2.16).

m =
αm

αm + βm

. (2.16)

The curve (- -) is for the Hodgkin-Huxley equations, but αm and βm have

been shifted along the voltage axis by the same amount that the h equations were

shifted by. So m is drawn using equation (2.16) and the following two equations:

αm =
0.1(−E − 47)

e
(−E−47)

10 − 1
,

βm = 4e
(−E−72)

18 .
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In Fig. 2.3, the main difference between Noble’s m and Hodgkin-Huxley’s m

is that m and βm vary less steeply with E. Therefore the values m=0.5 and

m=0.1 are separated by about 35mV in Noble’s equations and by about 20mV

in Hodgkin-Huxley’s equations.

Therefore we obtain the equation:

INa = (400m3h + 0.14)(E − 40),

by using the values gNa=400mmho/cm2 and ENa=40mV and putting them in

equations (2.9) and (2.13). Here the value 0.14 is a small component of gNa

which is independent of voltage and time.

Following the large transient increase on gNa, E is suddenly changed from

−90 to −20mV and there appears a small maintained increase which persists

throughout the period of the depolarization. Therefore the steady state Na

current increases, even though there is a decrease in the Na electrochemical

potential gradient. Because of this property the equations can be extended to

describe long-lasting action potentials without any serious modification to the

sodium current equations.
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Figure 2.4: Graph of αm’s and βm’s for the Hodgkin-Huxley system (- -) and Noble’s

system (-).

In Fig. 2.4 we have the αm’s and βm’s for both Noble’s system and Hodgkin-

Huxley’s system. We compare the two systems and see that αm for Noble’s

system has the same shape as αm for the Hodgkin-Huxley system, for the values
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of E, but they are separated by a small distance on the E axis. For the βm’s, we

see that βm for Noble’s system changes less rapidly with E than βm for Hodgkin-

Huxley’s system.

Action potential solutions

If I=0, we have the following system of equations:

dE

dt
= − 1

CM

((m3hgNa + 0.14)(E − ENa) + gl(E − El) (2.17)

+(gK1 + gK2)(E − EK)),

dm

dt
= αm(1−m)− βmm =

(m−m)

τm

,

dh

dt
= αh(1− h)− βhh =

(h− h)

τh

,

dn

dt
= αn(1− n)− βnn =

(n− n)

τn

,

where,

αm =
0.1(−E − 48)

e
(−E−48)

15 − 1
, βm =

0.12(E + 8)

e
(E+8)

5 − 1
,

αh = 0.17e
(−E−90)

20 , βh = (e
(−E−42)

10 + 1)−1,

αn =
0.0001(−E − 50)

e
(−E−50)

10 − 1
, βn = 0.002e

(−E−90)
80 ,

gNa = 400, ENa = 40,

gK1 = 1.2e
(−E−90)

50 + 0.015e
(E+90)

60 , gK2 = 1.2n4,

EK = −100, CM = 12,

gl = 0, El = −60.

In this system we have an unstable equilibrium point, as the system is an

oscillatory system. The solutions of the pacemaker potentials for this system

closely resemble the potential changes in Purkinje fibres.

Figure 2.5 are the pacemaker potentials for the above sys-

tem (2.17) for different values of gl. It is drawn for the initial point,

(E0, m0, n0, h0)=(−90, 0.9537, 0.8858, 0.0019). The solution of this system is

computed for two cycles. The pacemaker potential shows the characteristic

spike, which is about 600ms and 1400ms in Fig. 2.5(a). This is followed

by a plateau lasting about 400ms which is terminated by a faster phase of
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Figure 2.5: Solution of system (2.17) for the initial point

(E0,m0, n0, h0)=(−90, 0.9537, 0.8858, 0.0019) and (a) gl=0, (b) gl=0.075, (c)

gl=0.18, and (d) gl=0.4.
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repolarization. The membrane then slowly depolarizes again, which is the

pacemaker potential, until the threshold is reached and another potential is

initiated.

At the beginning of each pacemaker potential we have a spike which gets

smaller in height as gl increases and this transient means that the programme

used to draw this reproduces the heart model. Figure 2.5(b) resembles the effect

of chloride ions on the Purkinje fibres. Figure 2.5(c) resembles the effect of pro-

longed exposure to Nitrate ions on the Purkinje fibres and Fig. 2.5(d) resembles

the effect if chloride ions are replaced by Iodine ions in the Purkinje fibres.

If we compare Fig. 2.5 to the Hodgkin-Huxley action potentials of the nerve,

we see that where the Hodgkin-Huxley action potentials are more triangular in

shape, the pacemaker potentials for Noble’s heart is rectangular in shape, except

for the spike at the top.

2.1.3 Development of cardiac excitation models after 1962

Noble wrote a paper in 2002[12] outlining the defects in the Hodgkin-Huxley

model, which could only be seen years after Hodgkin and Huxley introduced

their 1952 model. This was because research by other authors[13, 14, 15], found

that calcium currents existed in the membrane.

Therefore it was found that the main defect in Hodgkin-Huxley’s model was

that it only included one voltage-gated inward current, INa, because calcium

currents were not discovered.

So the sodium current acted as both sodium and calcium channels in the

plateau region of the action potential, but to make the model work in this way,

Hodgkin-Huxley had to extend the voltage range of the sodium ”window” cur-

rent. To do this they had to reduce the voltage dependence of the sodium

activation processes m.

Noble says that from this, two predictions were found:

1. either sodium channels in the heart are quantitatively different from those

in the nerve, or

2. other inward current-carrying channels must exist.

As we know both predictions are correct. The first prediction is confirmed

by Noble’s 1962 model and the second has been confirmed by numerous authors

over the world.
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The cardiac calcium current was discovered by Reuter[15] in 1967. Then by

the 70’s Noble’s 1962 model was replaced by more complicated models containing

calcium currents. These models are briefly described in this section with other

models that concern heart and nerve analysis.

In 1975 McAllister, Noble and Tsien[14] modified Noble’s 1962 Purkinje fibre

model by including calcium currents. They found that there were two separate

voltage ranges in which very slow conductance changes could be observed, and

this introduced multiple potassium currents. Their model reconstructed a much

wider range of experimental results and it did so with good accuracy in some

cases.

In 1980 Ebihara and Johnson wrote a paper[16] on the fast sodium current in

cardiac muscle. They had obtained new experimental kinetic data and wanted

to incorporate this into the Hodgkin-Huxley model. To do this Ebihara and

Johnson had to modify the α and β parameters by using curve fitting, so that

the parameter’s described their new kinetic data. They then substituted the new

sodium current into the Hodgkin-Huxley model, and so they could compare their

kinetics with other studies.

DiFrancesco and Noble wrote a paper in 1985[17] about extensive devel-

opments since McAllister et al’s paper. DiFrancesco and Noble replaced the

pacemaker potassium current IK2 in McAllister et al’s model with a new

hyperpolarizing-activated sodium-potassium current If , which was the nearest

equivalent to IK2 in McAllister et al’s model. DiFrancesco and Noble obtained

an accurate mapping between the IK2 model and the new If model that could be

constructed demonstrating how both models related to the same experimental

results and to each other.

Hilgemann and Noble produced a paper in 1987[18] on the rabbit atrium and

they studied the interactions of electrogenic sodium-calcium exchange, calcium

channel and sarcoplasmic reticulum in the mammalian heart by studying simula-

tions of extracellular calcium transients measured with a drug in rabbit atrium.

They do this so that they can reconstruct the action potentials, intercellular

calcium transients and extracellular calcium transients. This also provided the

basis for modelling the ventricular cells in various species with short ventricular

action potentials, e.g. rat and mouse. This model also addressed a number of

important questions concerning calcium balance.

Drouhard and Roberge produced a paper in 1987[19] revising the sodium
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current activation and inactivation gates in Beeler-Reuter’s 1977 model[20] for

ventricular myocardial cells. They revised this current because recent technical

advances have made it possible to achieve more accurate measurements of the

sodium current compared to earlier models. They used curve fitting to determine

the α and β parameters and compared the steady-state gating variables with

selected experimental points from the new data. They fine-tuned the steady

state gating variables and its associated time constant by trial and error to allow

satisfactory simultaneous fit. They then substituted the new sodium current

into the original Beeler-Reuter model, and drew the action potential upstroke,

as this is where INa is active, which they found is comparable to the experimental

observations, but the upstroke is much faster than in the original Beeler-Reuter

model. The peak depolarization is close to the sodium equilibrium potential, due

to large changes in the sodium conductance.

Earm and Noble hypothesised in 1990[21] a non-linear relation between cal-

cium current and calcium release and they investigated this using a single-cell

version of the rabbit atrium model that was developed by Hilgemann and Noble.

Hilgemann and Noble were more concerned with calcium release on the action

potential. To measure the calcium ions in the tissue, they illuminated them

using a laser light that was sensitive to calcium ions, and the signal measures

how the calcium ions changed. They used this on a tissue and assumed that the

amount the calcium changed in one cell happens in all the cells. So the model

they created is a single cell model, based on multiple cells by assuming that all

the cells behave in the same way. From Hilgemann and Noble, Earm and Noble

just rescaled the qualities from multiple cells to a single cell and changed the

unit of measurement.

Between the years of 1991 and 1994 Luo and Rudy[22, 23, 24] developed a

model to study mammalian ventricular cells in several different species. They

wanted to produce a system of equations that would successfully describe the

electrophysiological responses in ventricular cells. They started in 1991 with a

simple system of four currents, INa, IK , IK1 and IKp, which they used to study

single cell responses. Their studies for this system were based on reproducing

the interaction between depolarization and repolarization processes for INa, IK

and IK1.

In 1994 they took their 1991 model and introduced more sodium, potassium

and calcium currents to it. Therefore the new model was able to correctly repro-
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duce the action potential for the ventricular cell and the qualitative properties

of the cell. A working model was then found that could be used to study the

ventricular cell, and this has been the basis for many other modern day models.

In 1995 Zeng et al[25] reformulated the IKr and IKs currents, so that they

could update Luo-Rudy’s 1994 models. Since then Luo-Rudy’s 1994 models have

been developed by Rudy and various other authors[26, 27], so that it can still be

used to describe ventricular cells using modern day results.

Nygren et al in 1998[28] constructed a model of the human atrial cell and we

looked at this to compare the methods and results with Courtemanche et al’s

model[1], which we describe briefly in Section 2.1.4 and study in detail in Chap-

ter 6. Nygren also wrote a paper in 2001[29] comparing both models and found

that even though both models ([28] and [1]) are based on very similar data, they

can result in contradictory results where some are of fundamental importance

to human atrial cell electrophysiology and pharmacology. They analysed the

reasons for these discrepancies. One difference in the two models is the action

potential shape due to the sizes of the underlying ionic currents, but the main

difference was regarding the role of the rapidly activating, sustained outward K+

current, IKur. Also the currents in both models were written differently.

In 1998 Noble et al[30] constructed the guinea-pig ventricular cell model and

how it has been extended to include accumulation and depletion of calcium in

a diadic space between the sarcolemma and the sarcoplasmic reticulum, where,

according to contemporary understanding the majority of calcium-induced cal-

cium release is triggered. Also the delayed potassium current equations have been

developed to include rapid IKr and slow IKs components of the delayed recti-

fier current. Their new model was tested against experimental data on action

potential clamp and was found to reliably reproduce experimental observations.

Nerve excitation models have also been developed over the years, e.g. in

1998 Clay[31] re-examined the electrical properties of the Hodgkin-Huxley model.

Clay said that the Hodgkin-Huxley model did not provide a good description of

many electrophysiological properties of the axon. Clay modified the Hodgkin-

Huxley model so that it did give a good description of many electrophysiological

properties, and display modern findings.

In 2001 Noble and Rudy[32] reviewed the main models of cardiac ventricular

action potentials and they focused on the interaction between simulation and

experimental work. Their aim was to demonstrate that as much was learnt from
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the way in which models failed as from their successes.

From all these papers we can summarise that the main mathematical features

are similar and that Courtemanche et al’s model[1] is a typical representative

from this family; this is described in the next section.

In Noble’s books and reviews[33], Noble considers in detail the underlying

physiology of the biological systems of equations, but in our research we only

concentrate on the mathematical properties of the systems.

2.1.4 Courtemanche et al’s 1998 system of equations

Courtemanche et al developed a more accurate action potential model that mod-

els the human atrium based on ionic current data obtained directly in human

atrial cells. They built their model mostly on the work of Luo-Rudy[23].

We reproduce the action potential of this model using the computer program

Matlab and also in reproducing the other graphs that are in Courtemanche et

al’s paper[1].

For our study we choose Courtemanche et al’s model because it is a system of

ordinary differential equations only, unlike some other models, e.g. the Rudy et

al family, and also because the original error free code of the model was available

thanks to M. Courtemanche.

The action potential is going to have a definite spike and dome shape instead

of a triangular shape like the Hodgkin-Huxley action potential and a rectangular

shape like Noble’s action potential.

We make a note here that the current equations I involved in the equation

for voltage dE
dt

in this section are the true currents which are measured in pA.

The calcium storage and release currents are the same equations that are in their

paper[1], and are measured in pA/pF. The currents in Courtemanche et al’s 1998

paper[1] are the normalised currents, measured in pA/pF. The true currents and

the normalised currents differ by a factor of CM .

Therefore this makes the currents and the voltage equation the same dimen-

sions as the Hodgkin-Huxley and Noble equations, but we cannot compare the

absolute values between Courtemanche et al’s system and Hodgkin-Huxley’s sys-

tem as Hodgkin-Huxley uses per unit squared dimensions and Courtemanche et

al uses the total dimensions.
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Glossary of terms

Table 2.1 contains descriptions of all the terms that are used in this system and

if they are constants then their values as well.

Table 2.1: Terms and definitions for Courtemanche et al’s model

Variable Definition Value/Units

E Transmembrane Potential mV

Nai Intracellular Concentration Of Ion Na+ mmol

Ki Intracellular Concentration Of Ion K+ mmol

Cai Intracellular Concentration Of Ion Ca2+ mmol

Carel Ca2+ Concentration In The Release Com-

partment

mmol

Caup Ca2+ Concentration In The Uptake Com-

partment

mmol

m Activation Gating Variable For INa+ dimensionless

h Fast Inactivation Gating Variable For INa+ dimensionless

j Slow Inactivation Gating Variable For INa+ dimensionless

oa Activation Gating Variable For Ito dimensionless

oi Inactivation Gating Variable For Ito dimensionless

ua Activation Gating Variable For IKur dimensionless

ui Inactivation Gating Variable For IKur dimensionless

xr Activation Gating Variable For IKr dimensionless

xs Activation Gating Variable For IKs dimensionless

d Activation Gating Variable For ICa,L dimensionless

f Voltage-Dependent Inactivation Gating

Variable For ICa,L

dimensionless

fCa Ca2+-Dependent Inactivation Gating Vari-

able For ICa,L

dimensionless

u Activation Gating Variable For Irel dimensionless

v Ca2+ Flux-Dependent Inactivation Gating

Variable For Irel

dimensionless

w Voltage-Dependent Inactivation Gating

Variable For Irel

dimensionless

continued on next page
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continued from previous page

Variable Definition Value/Units

t Time ms

ENa Equilibrium Potential For Ion Na+ mV

EK Equilibrium Potential For Ion K+ mV

ECa Equilibrium Potential For Ion Ca2+ mV

Iion Total Ionic Current pA

INa Fast Inward Na+ current pA

αm Forward Rate Constant For Gating Variable

m

ms−1

βm Backward Rate Constant For Gating Vari-

able m

ms−1

τm Time Constant For Gating Variable m ms

m Steady-State Relation For Gating Variable

m

dimensionless

αh Forward Rate Constant For Gating Variable

h

ms−1

βh Backward Rate Constant For Gating Vari-

able h

ms−1

τh Time Constant For Gating Variable h ms

h Steady-State Relation For Gating Variable

h

dimensionless

αj Forward Rate Constant For Gating Variable

j

ms−1

βj Backward Rate Constant For Gating Vari-

able j

ms−1

τj Time Constant For Gating Variable j ms

j Steady-State Relation For Gating Variable j dimensionless

IK1 Inward Rectifier K+ Current pA

Ito Transient Outward K+ Current pA

αoa Forward Rate Constant For Gating Variable

oa

ms−1

βoa Backward Rate Constant For Gating Vari-

able oa

ms−1

continued on next page
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continued from previous page

Variable Definition Value/Units

τoa Time Constant For Gating Variable oa ms

oa Steady-State Relation For Gating Variable

oa

dimensionless

αoi
Forward Rate Constant For Gating Variable

oi

ms−1

βoi
Backward Rate Constant For Gating Vari-

able oi

ms−1

τoi
Time Constant For Gating Variable oi ms

oi Steady-State Relation For Gating Variable

oi

dimensionless

IKur Ultrarapid Delayed Rectifier For K+ Cur-

rent

pA

gKur Maximal IKur Conductance nS/pF

αua Forward Rate Constant For Gating Variable

ua

ms−1

βua Backward Rate Constant For Gating Vari-

able ua

ms−1

τua Time Constant For Gating Variable ua ms

ua Steady-State Relation For Gating Variable

ua

dimensionless

αui
Forward Rate Constant For Gating Variable

ui

ms−1

βui
Backward Rate Constant For Gating Vari-

able ui

ms−1

τui
Time Constant For Gating Variable ui ms

ui Steady-State Relation For Gating Variable

ui

dimensionless

IKr Rapid Delayed Rectifier For K+ Current pA

αxr Forward Rate Constant For Gating Variable

xr

ms−1

βxr Backward Rate Constant For Gating Vari-

able xr

ms−1

continued on next page
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Variable Definition Value/Units

τxr Time Constant For Gating Variable xr ms

xr Steady-State Relation For Gating Variable

xr

dimensionless

IKs Slow Delayed Rectifier For K+ Current pA

αxs Forward Rate Constant For Gating Variable

xs

ms−1

βxs Backward Rate Constant For Gating Vari-

able xs

ms−1

τxs Time Constant For Gating Variable xs ms

xs Steady-State Relation For Gating Variable

xs

dimensionless

ICa,L L-Type Inward Ca2+ pA

τd Time Constant For Gating Variable d ms

d Steady-State Relation For Gating Variable

d

dimensionless

τf Time Constant For Gating Variable f ms

f Steady-State Relation For Gating Variable

f

dimensionless

fCa Steady-State Relation For Gating Variable

fCa

dimensionless

Ip,Ca Sarcoplasmic Ca2+ Pump Current pA

INaK Na+-K+ Pump Current pA

fNaK Voltage-Dependence Parameter For INaK mV

σ [Na+]o-Dependence Parameter For INaK mV

INaCa Na+/Ca2+ Exchanger Current pA

Ib,Na Background Na+ Current pA

Ib,Ca Background Ca2+ Current pA

Ib,K Background K+ Current pA

Irel Ca2+ Release Current From The Junctional

Sarcoplasmic Reticulum

pA/pF

u Steady-State Relation For Gating Variable

u

dimensionless

continued on next page
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Variable Definition Value/Units

τv Time Constant For Gating Variable v ms

v Steady-State Relation For Gating Variable

v

dimensionless

τw Time Constant For Gating Variable w ms

w Steady-State Relation For Gating Variable

w

mV

Fn Saroplasmic Ca2+ Flux Signal For Irel dimensionless

Iup Ca2+ Uptake Current Into The Network

Saroplasmic Reticulum

pA/pF

Itr Ca2+ Transfer Current From The Network

Saroplasmic Reticulum To The Junctional

Saroplasmic Reticulum

pA/pF

Iup,leak Ca2+ Leak Current From The Network Saro-

plasmic Reticulum

pA/pF

z Corresponds To The Charge Of The Ions dimensionless

Q10 Temperature Adjustment Factor,

k(T o)=k(T o
0 )Q

(T o−T o
0 )/10

10

dimensionless

CaCmdn Ca2+-Bound Calmodulin Concentration mmol

CaTrpn Ca2+-Bound Troponin Concentration mmol

CaCsqn Ca2+-Bound Calsequestrin Concentration mmol

R Gas Constant 8.3143JK−1mol−1

T o Temperature 310K

F Faraday Constant 96.4867C/mmol

CM Membrane Capacitance 100pF

Vcell Cell Volume 20100µm3

Vi Intracellular volume 13668µm3

Vup Saroplasmic Reticulum Uptake Compart-

ment Volume

1109.52µm3

Vrel Saroplasmic Reticulum Release Compart-

ment Volume

96.48µm3

Ist Stimulus Current 0 or −2000 pA

Nao Extracellular Concentration Of Ion Na+ 140mmol

continued on next page
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Variable Definition Value/Units

Ko Extracellular Concentration Of Ion K+ 5.4mmol

Cao Extracellular Concentration Of Ion Ca2+ 1.8mmol

gNa Maximal INa+ Conductance 7.8nS/pF

gK1 Maximal IK1 Conductance 0.09nS/pF

gto Maximal Ito Conductance 0.1652nS/pF

KQ10 Q10-Based Temperature Adjustment Factor

For IKur And Ito Kinetics

3

gKr Maximal IKr Conductance 0.0294nS/pF

gKs Maximal IKs Conductance 0.129nS/pF

gCa,L Maximal ICa,L Conductance 0.1238nS/pF

τfCa
Time Constant For Gating Variable fCa 2ms

Ip,Ca(max) Maximal Ip,Ca 0.275pA/pF

INaK(max) Maximal INaK 0.60pA/pF

Km,Na(i) [Na+]i Half-Saturation Constant For INaK 10mmol

Km,K(o) [K+]o Half-Saturation Constant For INaK 1.5mmol

INaCa(max) INaCa Scaling Factor (Maximal INaCa) 1600pA/pF

Km,Na [Na+]o Saturation Constant For INaCa 87.5mmol

Km,Ca [Ca2+]o Saturation Constant For INaCa 1.38mmol

Ksat Saturation Factor For INaCa 0.1mmol

γ Voltage-Dependence Parameter For INaCa 0.35mV

gb,Na Maximal Ib,Na Conductance 0.000674nS/pF

gb,Ca Maximal Ib,Ca Conductance 0.00113nS/pF

gb,K Maximal Ib,K Conductance 0nS/pF

Krel Maximal Ca2+ Release Rate For Irel 30ms−1

τu Time Constant For Gating Variable u 8ms

Kup [Ca2+]i Half-Saturation Constant For Iup 0.00092mmol

Iup(max) Maximal Ca2+ Uptake Rate For Iup 0.005mmol/ms

Caup(max) Maximal Ca2+ Concentration In The Up-

take Compartment

15ms−1

τtr Ca2+ Transfer Time Constant 180ms

[Cmdn]max Total Calmodulin Concentration In My-

oplasm

0.05mmol

continued on next page
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Variable Definition Value/Units

[Trpn]max Total Troponin Concentration In Myoplasm 0.07mmol

[Csqn]max Total Calsequestrin Concentration In The

Junctional Saroplasmic Reticulum 10mmol

Km,Cmdn Ca2+ Half-Saturation Constant For

Calmodulim

0.00238mmol

Km,Trpn Ca2+ Half-Saturation Constant For Tro-

ponin

0.0005mmol

Km,Csqn Ca2+ Half-Saturation Constant For Calse-

questrin

0.8mmol

The mathematical model

The time derivative of the membrane potential E, with the assumption of an

equipotential cell, is given by:

dE

dt
= −(Iion + Ist)

CM

.

The total ionic current is given by:

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INa,K + INaCa

+Ib,Na + Ib,Ca + Ib,K ,

and Ist is the stimulus current, which is a function that depends on time. The

Ist current takes two values depending on time, as for 2ms of time a large Ist

current enters the cell. So Ist can be written as follows:

Ist(t) = Ist(max)θ(t− 100)θ(102− t),

where Ist(max)=−2000pA, and t is measured in ms.

The membrane currents

Here we state the equations for the membrane currents in this system and then

we will list the α’s, β’s, τ ’s and quasi-stationary values in Tables 2.2 and 2.3.

The fast sodium current is:

INa = CMgNam
3hj(E − ENa),
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where,

ENa =
RT o

zF
log

Nao

Nai
, z = 1,

y = αyτy, τy = (αy + βy)
−1,

where y=m,h and n.

The inward rectifier potassium current is:

IK1 = CM
gK1(E − EK)

1 + e0.07(E+80)
,

where,

EK =
RT o

zF
log

Ko

Ki
.

The transient outward and ultrarapid rectifier potassium currents are:

Ito = CMgtoo
3
aoi(E − EK),

IKur = CMgKuru
3
aui(E − EK),

respectively, where,

gKur = 0.005 +
0.05

1 + e−
(E−15)

13

.

We see that both currents share the same structure of gating variables where

the activation gating variables are to the power three and the inactivation gating

variables are to the power one. Ito has fairly rapid inactivation kinetics; IKur

displays only partial slow inactivation.

The delayed rectifier equations are:

IKr = CM
gKrxr(E − EK)

1 + e
(E+15)

22.4

,

IKs = CMgKsx
2
s(E − EK).

We see that both currents have only a single activation gate, although IKs

activation uses a squared activation gate, x2
s.

The slow inward Ca2+ current is:

ICa,L = CMgCa,L d f fCa(E − 65).
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This includes voltage-dependent activation gate d and inactivation gate f , as

well as a Ca2+-dependent inactivation gate fCa. A fixed intrinsic time depen-

dence, τfCa
=2ms, is incorporated into the fCa gate to better reproduce the time

course of Ca2+-dependent inactivation of ICa,L.

The sodium-potassium pump equation is:

INaK = CMINaK(max)fNaK

(
1

1 + (Km,Na(i)/Nai)1.5

)(
Ko

Ko + Km,K(o)

)
,

where,

fNaK = (1 + 0.1245e−0.1(FE
RT

) + 0.0365σe−
FE
RT )−1,

σ =
e

Nao
67.3 − 1

7
.

The sodium/calcium exchanger equation is:

INaCa = CM

INaCa(max)(e
γ( EF

RTo )Nai3Cao− e(γ−1)( EF
RTo )Nao3Cai)

(K3
m,Na + Nao3)(Km,Ca + Cao)(1 + Ksate

(γ−1) EF
RTo )

.

The background calcium, sodium and potassium currents are:

Ib,Ca = CMgb,Ca(E − ECa),

Ib,Na = CMgb,Na(E − ENa),

Ib,K = CMgb,K(E − EK),

respectively, where,

ECa =
RT o

zF
log

Cao

Cai
, z = 2.

Also included in the model is a sarcolemmal Ca2+ pump to maintain Cai at

physiological levels.

Ip,Ca = CMIp,Ca(max)

(
Cai

0.0005 + Cai

)
.

The saroplasmic reticulum calcium storage and release currents are:

Irel = Krelu
2vw(Carel − Cai),

Itr =
Caup− Carel

τtr

,

Iup =
Iup(max)

1 + (Kup/Cai)
,

Iup,leak =
Caup

Caup(max)
Iup(max).
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Courtemanche et al claims that the voltage-dependent inactivation gate w

contributes to the decrease in saroplasmic reticulum release current amplitude at

positive potentials, if membrane voltage approaches the ICa,L reversal potential.

The activation gates u and v control the release of Ca2+ from the junctional

sarcoplasmic reticulum compartment in the cell membrane.

The calcium flux signal for Irel is:

Fn = 10−12VrelIrel −
5 ∗ 10−13

F

(
1

2
ICa,L −

1

5
INa,Ca

)
.

The formulae for the α’s, β’s, τ ’s and quasi-stationary values are in Table’s 2.2

and 2.3 below and where the formulae produce a zero denominator then apply

continuity. Also θ is the Heaviside function here.

Table 2.2: Gating variables and their values for α and β for Courtemanche et

al’s model, where A=−1.2714 ∗ 105, B=V , C=3.474 ∗ 10−5 and D=0.04391.

Gate α β

m 0.32(E+47.13)

1−e−0.1(E+47.13) 0.08e−
E
11

h 0.135e−
(E+80)

6.8 θ(−E − 40) (0.13(1 + e−
(E+10.66)

11.1 ))−1θ(E + 40) +

(3.56e0.079E + 3.1 ∗ 105e0.35E)θ(−E −
40)

j (AeBE − Ce−DE) ∗(
E+37.78

1+e0.311(E+79.23)

)
θ(−E − 40)

0.3
(

e−2.535∗10−7E

1+e−0.1(E+32)

)
θ(E + 40) +

0.1212
(

e−0.01052E

1+e−0.1378(E+40.14)

)
θ(−E− 40)

Table 2.3: The other gating variables and their τ ’s and quasi-stationary values

y for Courtemanche et al’s model.

Gate (y) τy y

oa
1

KQ10
(0.65(e−

(E+10)
8.5 + e−

(E−30)
59 )−1 +

0.65(2.5 + e
(E+82)

17 )−1)−1

(1 + e−
(E+20.47)

17.54 )−1

oi
1

KQ10
((18.53 + e

(E+113.7)
10.95 )−1 + (35.56 +

e−
(E+1.26)

7.44 )−1)−1

(1 + e
(E+43.1)

5.3 )−1

ua
1

KQ10
(0.65(e−

(E+10)
8.5 + e−

(E−30)
59 )−1 +

0.65(2.5 + e
(E+82)

17 )−1)−1

(1 + e−
(E+30.3)

9.6 )−1

ui
1

KQ10
(21 + e−

(E−185)
28 )−1 + e

(E−158)
16 )−1 (1 + e

(E−99.45)
27.48 )−1

xr (0.0003
(

E+14.1

1−e−
(E+14.1)

5

)
+ 7.3898 ∗

10−5

(
E−3.3328

e
(E−3.3328)

5.1237 −1

)
)−1

(1 + e−
(E+14.1)

6.5 )−1

continued on next page
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Gate (y) τy y

xs
1
2(4 ∗ 10−5

(
E−19.9

1−e−
(E−19.9)

17

)
3.5 ∗

10−5

(
E−19.9

e
(E−19.9)

9 −1

)
)−1

(1 + e−
(E−19.9)

12.7 )−1/2

d 1−e−
(E+10)

6.24

0.035(E+10)(1+e−
(E+10)

6.24 )
(1 + e−

(E+10)
8 )−1

f 9(0.0197e−0.03372(E+10)2 + 0.02)−1 (1 + e
(E+28)

6.9 )−1

fCa 2
(
1 + Cai

0.00035

)−1

u 8
(

1 + e−
(Fn−3.4175∗10−13)

13.67∗10−16

)−1

v 1.91 + 2.09
(

1 + e−
(Fn−3.4175∗10−13)

13.67∗10−16

)−1

1 −(
1 + e−

(Fn−6.835∗10−14)

13.67∗10−16

)−1

w 6
(

1−e−
(E−7.9)

5

(1+0.3e−
(E−7.9)

5 )(E−7.9)

)
1−

(
1 + e−

(E−40)
17

)−1

The system of equations

The system of 21 equations is:

dE

dt
= −(Iion + Ist)

CM
, (2.18)

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INa,K

+INaCa + Ib,Na + Ib,Ca,

dNai

dt
= −

3INaK + 3INaCa + Ib,Na + INa

FVi
,

dKi

dt
=

2INaK − IK1 − Ito − IKur − IKr − IKs − Ib,K

FVi
,

dCai

dt
=

B1
B2

,

B1 =
2INaCa − Ip,Ca − ICa,L − Ib,Ca

2FVi
+

Vup(Iup,leak − Iup) + IrelVrel

Vi
,

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCaup

dt
= Iup − Iup,leak − Itr

Vrel

Vup
,

dCarel

dt
= (Itr − Irel)

(
1 +

[Csqn]maxKm,Csqn

(Carel + Km,Csqn)2

)−1

,

dy

dt
=

y − y

τy
, y = m,h, j, oa, oi, ua, ui, xr, xs, d, f, fCa, u, v, w.
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Table 2.4: The initial values for all the dynamic variables for Courtemanche et

al’s model.

State Variable Resting Value State Variable Resting Value

Erest −81.2 m 2.91 ∗ 10−3

h 0.965 j 0.978

d 1.37 ∗ 10−4 f 0.999

u 0 v 1

w 0.999 xr 3.29 ∗ 10−5

xs 0.0187 Nai 11.2

Cai 1.02 ∗ 10−4 Ki 0.0139

Caup 1.49 Carel 1.49

oa 0.0304 oi 0.999

ua 4.96 ∗ 10−3 ui 0.999

fCa 0.775 [Cmdn]i − Cai 2.05 ∗ 10−3

[Csqn]i − Cai 6.51 [Trpn]i − Cai 0.0118

Figure 2.6 shows the action potential of system (2.18) for the initial values

in Table 2.4, which has a spike and dome shape and this is different from the

Hodgkin-Huxley and Noble’s action potentials.

The spike shows the sudden displacement of membrane potential from its

resting state and then the recovery is a dome shape back to the equilibrium.

The return to the equilibrium point is a smooth return here, as we can see from

Fig. 2.6.

Figure 2.7 are the graphs of the currents of this system and they are drawn

for the output from the twelfth action potential. All the graphs are drawn for

Ist=0 for the times [0, 100] and [102, 600] and Ist=−2000 for the time [100, 102].

Figure 2.7 is drawn using CM=1 in the currents and CM=12 in dE
dt

equation,

i.e. the normalised currents.

2.1.5 Summary

In Section 2.1.1 for the Hodgkin-Huxley system, we can see from Fig. 2.2 that

the curves h and n behave in a similar way and curves V and m behave in a

similar way also. This is seen especially in Fig. 2.2(c) if we have a small voltage

that is close to the threshold. So we can say that h and n are similar and V and

m are similar. In Section 3.2, we will see that V and m are the fast variables
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Figure 2.6: Action potential for CRN-21, system (2.18).

and h and n are the slow variables.

Hodgkin-Huxley, Noble and Courtemanche et al’s models are all different

in their own ways. Noble’s model is for Purkinje fibres in mammals and is a

modified version of the Hodgkin-Huxley model, which is for the nerve in a squid,

and Courtemanche et al’s model is for the human artial cell. Even though these

three models are different, they also contain similar features, because they are

excitable systems. From this we know that they display important features of

excitable systems which are; a stable equilibrium, in Noble’s model this is for the

excitable system, which is in Chapter 5, threshold properties-above the threshold

is where excitation occurs if the system is displaced from equilibrium, and below

the threshold is where the system is slightly displaced from equilibrium, but not

enough to cause excitation as it returns immediately to equilibrium. Also the

action potentials display features of fast onset and slow return. They contain a

physiological feature in their structure, where the sodium current INa has the

same structure in all three models.

2.2 The FitzHugh System

FitzHugh suggested in his paper[4] that a modified version of the well-known

van der Pol system of equations has qualitative properties similar to that of the

Hodgkin-Huxley system. We look at this model because FitzHugh suggested
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Figure 2.7: Graphs of the currents. (a) IKur (-), Ito (:), ICa,L (- -), (b) INaCa (-), IKs

(:), IKr (- -), (c) INaK (-), Ip,Ca (:), (d) IK1 (-), Ib,Na (:), Ib,Ca (- -), (e) Fn (-), (f)

Cai (-), (g) Caup (-), Carel (- -), and (h) Irel ∗ 0.01 (-), Iup (-.), Itr (- -) drawn for the

output from the twelfth action potential.
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that the four-dimensional projection of the Hodgkin-Huxley phase portrait to

a two-dimensional subspace gives a phase portrait, where the trajectories look

similar to the trajectories of the FitzHugh phase portrait. So therefore this shows

us that FitzHugh’s two-dimensional model can be studied using the phase plane

analysis, whereas Hodgkin-Huxley’s model cannot.

Here we consider a concrete example of the FitzHugh System. We have the

van der Pol system of equations in x and y.

ẋ = c(y + x− x3/3 + z),

ẏ = −(x− a + by)/c.

We can use different values of a, b, c and z to analyse this system of equations

to find the nullclines, trajectories, singular point and the phase portrait.

The x-nullcline is:

y = x3/3− x− z.

This is a N-shaped cubic curve, which gives us the y-intercept (x, y)=(0,−z),

and the three x-intercepts satisfies the equation x3−3x−3z=0. The gradient of

the slope at the three x intercepts are found using y′=x2−1. The maximum and

minimum points are (x, y)=(1,−2/3− z) and (x, y)=(−1, 2/3− z) respectively.

The y-nullcline is:

y =
a− x

b
.

This gives us a straight line with y intercept (x, y)=(0, a/b) and x intercept

(x, y)=(a, 0). The gradient of the slope is y′=−1/b.

The equation for the singular point P is:

bx3 + 3x(1− b)− 3(a + bz) = 0.

Therefore there are three solutions to this equation. We consider two

sets of values for a, b, c and z. One set is for an excitable system,

(a, b, c, z)=(3/4, 1/2, 3, 0), which gives two complex solutions and one real so-

lution for the singular point. We only want the real root, P≈ (1.08,−0.66) to
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two decimal places. The eigenvalues are complex conjugates with negative real

part, so this is a stable spiral at the singular point P.

The other set of values is for an oscillatory system, where we just change z

to 0.4 and keep a, b, and c the same. This gives two complex solutions and one

real solution for the singular point again, where P≈ (0.88,−0.25) to two decimal

places. The eigenvalues are complex conjugates with positive real part, so this

is an unstable spiral at the singular point P.

With all the information we have gathered we can now draw the phase portrait

of our system.
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Figure 2.8: (a,c) The FitzHugh system with the x-nullcline (-.) and the y-nullcline

(-) and the trajectories starting from different initial points, (x, y)=(0.5,−1) (.) and

(x, y)=(0.8,−0.7) (+). (b,d) Action potential of −x against time for the initial values

(x, y)=(0.5,−1) (-) and (x, y)=(0.8,−0.7) (-.). (a,b) is for z=0, excitable system, and

(c,d) is for z=−0.4, oscillatory system.

In Fig. 2.8(a), the arrows on the nullclines and in the four sections of the

phase portrait show which direction the trajectories will travel at these points.
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We can see that we have a stable singular point with a trajectory that spirals

towards it. Figure 2.8(b) shows the action potentials for the two initial points

that are used to draw the trajectories, (x, y)=(0.5,−1) (-) and (x, y)=(0.8,−0.7)

(-.). Figures 2.8(c) and (d) show the FitzHugh system as an oscillatory system,

which can be achieved by replacing z with a negative number. Therefore there

is an unstable equilibrium point and the trajectories are limit cycles. The action

potential is now a series of solutions and not one single solution, as we have for

the excitable system.

FitzHugh used the van der Pol system of equations because it has qualitative

properties similar to that of the Hodgkin-Huxley system. So we can say that the

pair (V, m) corresponds to x as they are the fast variables and so they represent

excitability. The pair (h, n) corresponds to y as they are the slow variables.

FitzHugh suggested a projection of the four-dimensional phase space of the

Hodgkin-Huxley system to a two-dimensional subspace gives a phase portrait,

where the trajectories look similar to the trajectories in this system. So we see

from Fig. 2.9(a) that this is true. Using FitzHugh’s replacements of the (V, m)

and (h, n) variables, taken from his 1960 paper[34], we have x=V − 36m and

y=(n − h)/2. We see that the trajectories look similar to the trajectories in

Fig. 2.8(a), so FitzHugh’s suggestion is confirmed. Also Figs. 2.9(c) and (d)

show that if z and I are negative, then the Hodgkin-Huxley system changes to

an oscillatory system, just like FitzHugh’s system did and Figs. 2.9(c) and (d)

are similar to Figs. 2.8(c) and (d). Therefore the Hodgkin-Huxley model can be

considered as belonging to the same general class of excitable-oscillatory systems

as the FitzHugh system.

Figures 2.9(b) and (d) show the action potentials for the two initial points

that are used to draw the trajectories and this is similar to what happens in

Figs. 2.8(b) and (d) respectively for the FitzHugh system.

2.2.1 Summary

Van der Pol’s system is generalized by the addition of terms to produce a pair

of non-linear differential equations with either a stable singular point or a limit

cycle.

FitzHugh considers the Hodgkin-Huxley model as a member of a large class

of non-linear systems of equations showing excitable and oscillatory behaviour.

Excitation occurs if the initial points, for the trajectories, are displaced from
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Figure 2.9: (a,c) Projection of the Hodgkin-Huxley system to a two-dimensional sub-

space with x=V −36m and y=(n−h)/2, with trajectories starting from different initial

points, (x, y)=(−46.9080,−0.1392) (.) and (x, y)=(−7.9080,−0.1392) (+). (b,d) Ac-

tion potential of −x against time for the initial values (x, y)=(−46.9080,−0.1392) (-)

and (x, y)=(−7.9080,−0.1392) (-.). (a,b) is for z=0 and I=0, excitable system, and

(c,d) is for z=−0.4 and I=−10, oscillatory system. The graphs can be compared with

Fig. 2.8

44



right to left of the y-nullcline. So we have two responses, above the threshold

and below the threshold. If we are above the threshold, then the action potential

(-) in Fig. 2.8(b) has a long, non-monotonic return. If we are below the threshold,

then the action potential (-.) in Fig. 2.8(b) has a fast, monotonic return.

This is also the same for Fig. 2.9(b) for the projection of the Hodgkin-Huxley

system.

2.3 The Classical Perturbation Theory

All the definitions that are used throughout this work and two theorems on the

perturbation theory by Tikhonov, that he published in 1952[5], and Pontryagin

in 1957[35] are all contained in this section.

Tikhonov’s theorem has since been used and explained in other books and

papers, e.g. [36, 37].

Definition [Manifold ]

A subset X ⊂ Rn is a K-dimensional manifold, K ≤ n, if it is locally diffeo-

morphic to RK , that is for any x ∈ X there exists a neighbourhood v ⊂ X of x

that is diffeomorphic to an open subset U of RK .

Definition [Foliation and Leaves ]

A foliation is a partition of phase space to a set of manifolds of lesser dimen-

sion, such that for every point in the space there is exactly one manifold from

that set that passes through that point. So these are called the leaves of the

foliation. All leaves should be of the same dimension.

The above definition of foliation and leaves is a simple version of the definition

in the book by Dubrovin et al[38]. Some authors[10] use the terms fibration and

fibres to denote closely related concepts. There are some technical differences

between both sets of definitions, which are not essential for our study and we

will use the terms foliation and leaves, following Zeeman[6].

2.3.1 Tikhonov’s theorem

Here we mostly follow notations used in Arnold et al[10]. We consider the system

of m+n autonomous first-order differential equations for m+n dynamic variables,

where m are slow variables and n are fast variables. Therefore the vector of slow
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variables is y ∈ Rm and the vector of fast variables is x ∈ Rn. The system of

equations is:

dx

dt
= F (x, y, ε), (2.19)

dy

dt
= εG(x, y, ε).

All variables are real, the parameter ε > 0 and t is an independent variable.

We say this system has asymptotic structure (m, n).

We have the initial conditions,

x(0) = x0, y(0) = y0, (2.20)

where x0 and y0 are constants, which don’t depend on ε.

System (2.19) and the initial conditions (2.20) are called the full problem in

the fast time.

Definition [Asymptotic Stability Of Singular Points Of Differential Equations ]

Let

dz

dt
= H(z, t),

be a vector system of real differential equations. A point z=z0 is called a stable

singular point of this system, as t →∞, if

1. H(z0, t)=0, for t ≥ 0.

2. To every µ > 0 there exists a δ(µ) > 0 with the properties that any

solution z(t) of the differential system for which ||z(0)− z0|| < δ(µ) can

be continued for all t > 0 and satisfies the inequality ||z(t)− z0|| < µ.

A stable singular point is called asymptotically stable, if in addition,

lim
t→∞

z(t) = z0,

for all solutions such that ||z(0)− z0|| < δ(µ).

Function δ(µ) is not uniquely defined here.

Definition

The following system of differential equations is obtained by putting ε=0 in

system (2.19), and this system is called the fast system.
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dx

dt
= F (x, y, 0), (2.21)

dy

dt
= 0.

For any solution of (2.21), y=constant. Geometrically, it means that all

trajectories of (2.21) lie within leaves of the fast foliation defined by y=constant.

If ε is small, system (2.21) differs from system (2.19) only slightly, at every

choice of variables x and y. That is, system (2.19) can be considered as a regularly

perturbed version of system (2.21), which means that the solution of an initial

value problem for system (2.19), for any fixed interval of time, converges to the

solution of system (2.21) during that interval of time, as ε → 0, according to

the theorem on the continuous dependence on parameters [39]. This is of course

only valid as long as the interval of time is kept fixed as ε decreases. What we

are also interested in, is what happens at long time intervals. Mathematically,

this corresponds to time intervals that grow as ε decreases. To see the behaviour

there, we use a change of variables τ = εt to system (2.19), where τ is the slow

time.

dx

dτ
=

1

ε
F (x, y, ε), (2.22)

dy

dτ
= G(x, y, ε).

System (2.22) with initial conditions (2.20) is the full problem in the slow

time.

Definition

If ε → 0 we obtain the slow system:

dy

dτ
= g(x, y), (2.23)

f(x, y) = 0,

where g(x, y)=G(x, y, 0) and f(x, y)=F (x, y, 0).

This system is also called the ”reduced system”.

Assume that equation f(x, y)=0 defines at least one real solution for every y,
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x = φ(y).

This typically defines a manifold in the (x, y) space which is called the slow

manifold. The slow manifold is a set of singular points of the fast equation dx
dt

.

We are interested in the solution x=φ(y), where x is a function of y.

We put this solution in the reduced system (2.23), then the reduced system

becomes:

dy

dτ
= g(φ(y), y), (2.24)

x = φ(y).

This is the equation on the slow manifold. We note that if there is an equi-

librium in the full system, then it always lies on the slow manifold.

We will consider the slow system (2.24) with initial conditions:

x(0) = φ(y0), (2.25)

y(0) = y0.

System (2.24) and the initial conditions (2.25) are called the reduced problem.

We make the following assumptions:

Assumption 1 The functions F and G in (2.19) are continuous.

Assumption 2 There is a n-dimensional continuous vector function φ(y) in

y ∈ D such that f(φ(y), y) ≡ 0, where D ⊂ Rm is a domain.

Assumption 3 There exists a number η > 0, independent of y, such that the

relations,

||x− φ(y)|| < η, x 6= φ(y) for y ∈ D

imply

f(x, y) 6= 0, for y ∈ D.

A solution φ(y) that satisfies this condition will be called isolated in y ∈ D.
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Assumption 4 The singular point x=φ(y) of the fast system (2.21) is asymp-

totically stable for all y in y ∈ D.

Assumption 5 The full, as well as the reduced problem have unique solutions

in an interval 0 ≤ τ ≤ T for any ε.

Theorem 1 (Tikhonov) Let assumptions 1 to 5 be satisfied and let (x0, y0)

be a point in the basin of attraction of the equilibrium (φ(y0), y0) of the fast

system. Then the solution x(τ, ε), y(τ, ε) of the full initial value problem (2.22),

(2.20) is connected with the solution ys(τ), xs(τ)=φ(ys(τ)) of the slow (reduced)

problem (2.24) and (2.25), by the limit relations

lim
ε→0

x(τ, ε) = xs(τ) = φ(ys(τ)), 0 < τ ≤ T0,

lim
ε→0

y(τ, ε) = ys(τ), 0 ≤ τ ≤ T0.

Here T0 ≤ T is any number such that x=φ(ys(τ)) is an isolated stable root of

f(x, ys(τ))=0 for 0 ≤ t ≤ T0. The convergence is uniform in 0 ≤ τ ≤ T0, for

y(τ, ε), and in any interval 0 < t1 ≤ τ ≤ T0 for x(τ, ε).

This says that as long as all the assumptions are satisfied then we can obtain

the reduced system by putting ε=0 in the dx
dt

equation and the solution of the

reduced system is a good approximation of the original system, as long as ε is

small enough for this to happen. Equation x=φ(y) says that a solution of y=y0

of this will always move along the slow manifold φ(y). The solution for the full

system will approach φ(ys(t, 0)) and then move along the slow manifold. At t=0,

the two solutions are separated by finite distance. They will move closer for

positive time, but not for t=0. No matter how small ε is they will never be the

same at t=0.

This theorem will only hold as long as all the points on the slow manifold,

through which the trajectories of the reduced system pass, are asymptotically

stable equilibria of the fast system.

Tikhonov’s theorem is stated for a two-speed system, but he also generalised

his theorem for hierarchical systems that depend on more than one small param-

eter, e.g:

dx

dt
= F (x, y, z, ε1, ε2), x ∈ Rn,
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dy

dt
= ε1G(x, y, z, ε1, ε2), y ∈ Rm,

dz

dt
= ε1ε2H(x, y, z, ε1, ε2), z ∈ Rl,

where simultaneously ε1 → 0 and ε2 → 0. This is a system of l+m+n first order

differential equations for l +m+n dynamic variables, where l are the super-slow

variables, m are slow variables and n are fast variables.

All variables are real and ε1, ε2 > 0 and t is an independent variable. So in

this case, a typical trajectory would consist of:

1. fast motion where only x changes, while y and z remain constant during

time t ∝ 1, followed by,

2. a slow part where x and y changes, so that F (x, y, z, ε1, 0) ≈ 0, while z

remains constant, lasting t ∝ ε−1
1 , followed by,

3. a super-slow part where all three sets of variables change with

F (x, y, z, 0, 0) ≈ 0 and G(x, y, z, 0, 0) ≈ 0, on the time scale t ∝ ε−1
1 ε−1

2 .

We say that this system has asymptotic structure (l,m, n).

2.3.2 Pontryagin’s theorem

Pontryagin’s theorem is obtained from Arnold et al[10] and it is as follows.

We consider the reduced system (2.23):

f(x, y) = 0,
dy

dτ
= g(x, y),

where f(x, y)=F (x, y, 0) and g(x, y)=G(x, y, 0).

Definition [Fold Points]

Fold points are points on the slow manifold where the linearized equations for

the fast variables have one zero eigenvalue. They represent the boundary between

the stable (attractor) and unstable (repellor) parts of the slow manifold.

System (2.19) or (2.22) is a fast-slow system of equations where if ε → 0 we

can study the asymptotic behaviour with respect to ε. In this system the singular

(fixed) points of the equation of the fast foliation dy
dt

lose their stability as the slow

variable y changes and this is due to one of the eigenvalues of the linearized fast
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equations dx
dt

vanishing. Therefore the slow manifold will have stable (attractor)

and unstable (repellor) parts, which are separated by fold points.

Definition [Regular and Degenerate Phase Curves]

The phase curves of the fast-slow system are subdivided into two kinds, the

regular phase curves and degenerate duck-like curves called ”degenerate ducks”.

The regular phase curves consist of trajectories flowing along the stable parts of

the slow manifold and along the fast foliation. The degenerate ducks consists of

trajectories flowing along the stable and unstable parts of the slow manifold and

fast foliation. Therefore the trajectory will look like a duck.

Theorem 2 (Mishchenko And Rozov (1975), Pontryagin (1957))

Suppose (x, y)=p is a fold point of the slow manifold of a fast-slow system of the

form (2.22). Suppose that the vector g(x, y) is transversal to the projection of

the fold curve onto the phase space of the slow variables y along the axes of the

fast variables x. Moreover, suppose that this vector is directed to the exterior,

relative to the projection of the slow manifold on the phase plane of the slow

variables. Then, there exists a neighbourhood U of the point p in the phase space

such that for any point q ∈ U , the connected component of the intersection of the

neighbourhood U with a positive semi-trajectory of the system (2.22) with initial

point q converges, as ε → 0, to a regular phase curve of the fast-slow system.

The ducks existence were found for a two-dimensional fast-slow system of

equations and is described in Guckenheimer and Ilyashenko 2001 paper[40]. They

found an example where the ducks existence was a typical solution, but the ducks

only exists for a small range of parameters in a system.

Theorem 2 says that if we have a point p on the slow manifold on the boundary

between its stable and unstable pieces, and draw a trajectory that goes through

this point, then it will follow the fast foliation to a stable piece of slow manifold,

and then follow this until it reaches the point p, then it leaves the slow manifold

by making a jump down the fast foliation to another piece of slow manifold.

The regular phase curves correspond to having fixed initial conditions and the

degenerate ducks correspond to different initial conditions for different values of

ε.
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2.3.3 Geometry of the slow manifold

Here we have some definitions to do with the geometry of two-dimensional slow

manifolds. If a trajectory reaches a region on the slow manifold where the points

are unstable equilibria, then the trajectory leaves the slow manifold and these

points are called the threshold.

The boundary where the stable and unstable regions of the slow manifold

meet are the fold curve.

These definitions only make sense for x ∈ R1. For more general definitions,

see[41].

Definition [The Fold Curve]

The fold curve consists of fold points where the slow manifold is tangent to

the fast foliation. This is defined by the equations f=0 and ∂f
∂x

=0.

Definition [Threshold ]

The threshold is a point on the fold curve where a particular regular trajectory

departs from the slow manifold.

Definition [The Cusp Point ]

The cusp point occurs if the fold curve is tangent to the fast foliation. The fold

curve is a smooth line that belongs to the slow manifold and the slow manifold

is tangent to the fast foliation, but the projection of the fold curve will not be

smooth at the cusp point. In addition to f=0 and df
dx

=0, we have ∂2f
∂x2 =0 as well.

2.3.4 Parametric embedding

To apply Tikhonov and Pontryagin’s theorems to our work, we need the models

that we are studying to be in the same form as system (2.19). However, they do

not depend explicitly on any parameters that can tend to zero, but only contain

constants that have been measured experimentally.

So to apply Tikhonov and Pontryagin’s theorems we need to define a para-

metric embedding, which is where we introduce the small parameter ε artificially.

Definition

We will call a system:
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dx

dt
= F (x; ε), x ∈ Rd,

depending on parameter ε, a one-parametric embedding of a system:

dx

dt
= f(x), x ∈ Rd,

if f(x) ≡ F (x, 1) for all x ∈ Rd. Similarly, we define an n-parametric embedding,

with right-hand sides in the form F (x, ε1, . . . , εn) and F (x, 1, . . . , 1) ≡ f(x).

If an n-parametric embedding has a form of a Tikhonov fast-slow system with

asymptotic structure (k1, . . . , kn), we call it a (Tikhonov) (k1, . . . , kn)-asymptotic

embedding.

We use this procedure to replace a small dimensionless constant a with an

artificial small parameter εa, where ε � 1. The replacement εa constitutes a

one-parametric embedding. We can consider the limit ε → 0 and observed what

happens to the qualitative features that we are interested in. Namely, to see

if they will converge satisfactorily, then the embedding is adequate for these

features.

2.3.5 Summary

The classical perturbation theory, Tikhonov and Pontryagin’s Theorems, de-

scribe the asymptotic behaviour of fast-slow systems of differential equations in

(m + n)-dimensional space. This theory defines the slow manifold, fast foliation;

fold curve, threshold and cusp.

Therefore we can say:

Dim(SlowManifold) + Dim(FastFoliation) = Dim(PhaseSpace).

# of slow variables + # of fast variables = total # of variables.

2.4 Two Excitable Systems by Zeeman

We study the methods Zeeman uses for his two ”toy” models[6, 7]. The two mod-

els are simple equations, which describe solutions for the ”heart”, and ”nerve”,

which are examples of fast-slow systems, where one equation is the fast equation

and the other equation is the slow equation.
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Zeeman built two simple mathematical models for ”heart” and ”nerve” be-

cause he wanted to demonstrate the fast onset and fast/slow return in the phase

portraits and action potentials of the two models.

We have three dynamic qualities, which are displayed by the heart fibres and

nerve axons and these are:

(1) stable equilibrium,

(2) threshold, for triggering an action, and

(3) return to equilibrium.

Quality (3) is split up into two more cases, depending on whether the return

is smooth or not. These are:

(a) jump return (”heart”), as in Fig. 2.8(b) (-), and

(b) smooth return (”nerve”), as in Fig. 2.8(b) (-.).

2.4.1 The ”heart” by Zeeman

We analyse the ”heart” model first and show that the solutions satisfy ”Theo-

rem” 1.

”Theorem” 1 There exists a dynamical system on R2 possessing the qualities

(1), (2) and (3), where (3) is the jump return.

Variables x, b ∈ R2 and ε is a small positive parameter, ε � 1.

We call it ”Theorem”1 as this is what Zeeman calls it, but it is not really

a Theorem because there is no proof or even a rigorous formulation. This also

applies to ”Theorem”2 and the ”Lemma”.

Zeeman’s ”heart” model has asymptotic structure (1, 1) which is written as

follows:

εẋ = −(x3 − x + b), (2.26)

ḃ = x− x0.

The fixed point is at x=x0 and b=b0. We want to find the stability of the

fixed point and also how the trajectories act at this point, i.e. do they travel

straight to the fixed point or is it a stable spiral like the FitzHugh system.

The x-nullcline is b=−x3 + x and this is a N-shaped cubic curve which gives

b-intercept (b, x)=(0, 0) and three x-intercepts (b, x)=(0, 0) and (0,±1). The

gradient of the slope at x=0 is b′=1 and at x=±1 it is b′=−2.
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The maximum and minimum points are (b, x)=( 2
3
√

3
, 1√

3
) and (b, x)=( −2

3
√

3
, −1√

3
)

respectively.

The b-nullcline is x=x0 and for this we take the maximum point and have

x0=
1√
3
. We want x0 > 1√

3
so we can have a stable fixed point.

The eigenvalues are:

λ1,2 =
(1− 3x2

0)±
√

(1− 3x2
0)

2 − 4ε

2ε
.

We also obtain from the Jacobian matrix that the det(A)=1
ε

> 0 as ε > 0 and

Tr(A)=
1−3x2

0

ε
. If Tr(A) > 0, then 3x2

0 < 1 and if Tr(A) < 0, then 3x2
0 > 1. We

know that x0 > 1√
3
, then Tr(A) < 0, so the fixed point is stable. So if x0 < 1√

3
,

we have an unstable fixed point.

Slow manifold and fast foliation

The slow manifold exists if ε=0 and f(b, x)=0. The fast equation determines

the slow manifold and the slow equation determines the behaviour on the slow

manifold.

In our particular example, the fast foliation is a family of lines parallel to

the x-axis, which are oriented towards x-positive if f < 0 and oriented towards

x-negative if f > 0. If we say that the fast foliation is a tree, then the vertical

lines b=constant are the leaves of that tree. They are the individual straight

lines that make up the foliation.

Using Tikhonov’s theorem we introduce a new variable t=εT to system (2.26)

to obtain another system of equations to find the fast foliation.

dx

dT
= −(x3 − x + b), (2.27)

db

dT
= ε(x− x0).

We take our two systems (2.26) and (2.27) and we use them to find the slow

manifold and fast foliation in our phase plane.

System (2.26) gives us the slow manifold if ε=0 and f(b, x)=x3 − x + b.

b = −x3 + x,

ḃ = x− x0.
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System (2.27) gives us the fast foliation, if ε=0.

b = constant,
dx

dT
= −(x3 − x + b).

The phase plane and action potential

We can now draw our phase portrait with the slow manifold and trajectories.

In our phase portrait, Fig. 2.10(a), T’ and T are the thresholds and they are

given by 3x2=1. The attracting branches of the slow manifold are x3 − x + b=0

and 3x2 ≥ 1 (-). The tangency at T is generic (quadratic), so therefore by

continuity of the fast foliation, the slow manifold must change from attractor to

repellor at T. Our fixed point here is stable, but if (x0, b0)=(0, 0) then the fixed

point would be unstable and if we take one of the trajectories on our phase plane

and follow it round then it would never go near the fixed point, instead it would

make a path around it and just keep going on this route without stopping. This

is called a limit cycle. Points B and D are on the maximum and minimum of the

curve. Paths T→B and T’→D are the instantaneous jumps that occur during

the limit cycle TBT’D.

As we have a stable fixed point in our model then we do not have a limit

cycle, instead our trajectories travel along the fast foliation until it reaches a

point on the slow manifold and then it travels along the slow manifold to the

equilibrium point.

In Fig. 2.10(a), we see that a trajectory starting from an initial point A in

the phase plane will travel along the fast foliation to the piece of slow manifold,

x < 0, (B). It travels along the slow manifold until it reaches T’ and can’t go

any further as it has reached a piece of slow manifold that is a repellor (- -),

and therefore has to make a jump from T’ to D and travel back along the slow

manifold to the equilibrium point (E). As the trajectory makes this jump at T’

then we have a jump return and not a smooth return. For a smooth return to

happen we would not have the repellor piece of the slow manifold.

Therefore Zeeman proposed the following:

”Lemma” 1 In R2 a smooth return is not possible.

Figure 2.10(b) is the action potential of the heart. It corresponds to the

trajectory in Fig. 2.10(a) and as we can see from the action potential we can
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follow the path of the trajectory starting at A and see which parts correspond to

parts on the action potential. We can see that it has a jump return by the sharp

corner at D. The return is not smooth as the return from T’ to E in Fig. 2.10(b)

is not smooth. If we compare the ”heart” action potential to FitzHugh’s action

potentials in Fig. 2.8(b), then we see that Fig. 2.10(b) has a jump onset and a

jump return, which is similar to Fig. 2.8(b) (-).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

A

B

T’

D

E

T

attractor

repellor

threshold

equilibrium
attractor

jump
return

↑

↑

→
←

→

↓

→−
x

b
(a)

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

A

B

T’

D
E

−
x

t
(b)

Figure 2.10: (a) Phase portrait of Zeeman’s ”heart” model. The double arrows repre-

sent the flow on the fast foliation and the single arrows represent the flow on the slow

manifold. A trajectory is shown for ε=10−3 at (b, x)=(0.2, 0.1). Straight lines repre-

sent the stable parts of the slow manifold and the dashed lines represent the unstable

part. (b) The ”heart” action potential drawn against t corresponding to the trajectory

in (a). Here the voltage is −x.

2.4.2 The ”nerve” by Zeeman

We study the second of Zeeman’s ”toy” models and analyse the solutions to see

if we obtain a smooth return, because we can’t obtain a smooth return in R2.

We are now in three dimensions. Therefore we have one fast eigenvalue and

two slow eigenvalues, which can either, be real or complex. As before the fast

foliation will be a family of lines parallel to the x-axis. The slow manifold will be

a surface cutting the fast foliation transversally near the equilibrium point. This

means that the angle is non-zero if the slow manifold crosses the fast foliation.

We want to see if we obtain a cusp catastrophe in the ”nerve” equation. A

cusp catastrophe is if all three definitions of the fold curve, the threshold and

the cusp point apply and the trajectories start from an initial point and travel

smoothly around the cusp point to the stable equilibrium.
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We analyse the ”nerve” model to show that the solutions satisfy ”Theorem” 2.

”Theorem” 2 There exists a dynamical system on R3 possessing the qualities

(1), (2) and (3), where (3) is a smooth return.

Variables x, a, b ∈ R3 and ε � 1.

Zeeman’s ”nerve” model has asymptotic structure (2, 1) which is written as

follows:

εẋ = −(x3 + ax + b), (2.28)

ȧ = −2(a + x), (2.29)

ḃ = −(a + 1). (2.30)

Equation (2.28) is the fast equation and equations (2.29) and (2.30) are the

slow equations. The slow equations determine the flow on the slow manifold.

Therefore the fixed point is (x, a, b)=(1,−1, 0).

Stability

We find the eigenvalues for this point by using the Jacobian matrix.

Jac(1,−1, 0) =


−2

ε
−1

ε
−1

ε

−2 −2 0

0 −1 0

 .

The characteristic equation is:

ελ3 + 2λ2(1 + ε) + 2λ + 2 = 0.

The eigenvalues are of two types, one type is if λ is finite and the other type

is if λ is of the order ε−1 as ε → 0.

If λ is finite and ε=0, then the characteristic equation is:

λ2 + λ + 1 = 0.

The solution to this is:

λ2,3 =
−1±

√
3i

2
.

If λ is of order ε−1, we say λ ∼ 1
ε

as ε → 0 and λ=1
ε
Λ, where Λ is finite,

Λ 6= 0.
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Putting this in the characteristic equation we obtain:

Λ3 + 2Λ2(1 + ε) + 2Λε + 2ε2 = 0.

As ε → 0:

Λ3 + 2Λ2 = 0.

So we have Λ= 0, which is a repeated root, and Λ=−2.

We have Λ finite, so we can’t have the value Λ=0. Therefore λ1=−2
ε
.

Therefore the eigenvalues are:

λ1 ≈ −
2

ε
, λ2,3 ≈

−1±
√

3i

2
.

As ε � 1, then λ1 � 1.

All three eigenvalues have negative real part, λ1 < 0 and Re(λ2,3) < 0, then

we have a stable spiral of the transients, e.g. trajectories, that converges inwards

at the point (1,−1, 0). The equilibrium is stable.

Now
∣∣−2

ε

∣∣=2
ε

and,

∣∣∣∣∣−1±
√

3i

2

∣∣∣∣∣ = 1.

If ε � 1, then the first value is large, and the second value is small compared

to 2
ε
. So λ1 is the fast eigenvalue and λ2,3 are the slow eigenvalues.

For λ1=−2
ε
, we obtain the eigenvectors by multiplying the matrix by ε and

then taking the limit as ε → 0. So we have x=0, a=0 and b=0. The eigenvector

is: 
1

0

0

 .

This is the tangent to the fast foliation.

For λ2=
−1±

√
3i

2
we do the same thing again and the equation of the tangent

plane is:

2x1 + a1 + b1 = 0.

Where x1=x − 1, a1=a + 1 and b1=b. This plane is tangent to the slow

manifold. This is also the plane that spans the two complex eigenvalues.

This is tangent to the slow manifold.
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Slow manifold and fast foliation

Following Tikhonov’s approach we introduce a new variable t=εT . This allows

separate consideration of the processes. x=x(T ), a=a(T ), b=b(T ).

The slow system is:

εẋ = −(x3 + ax + b),

ȧ = −2(a + x),

ḃ = −(a + 1).

This gives us the slow manifold, if ε=0, and f(x, a, b)=(x3 + ax + b)=0.

Therefore we obtain:

b = −x3 − ax,

ȧ = −2(a + x),

ḃ = −(a + 1).

The fast system is:

dx

dT
= −(x3 + ax + b),

da

dT
= −2ε(a + x),

db

dT
= −ε(a + 1).

This gives us the fast foliation, if ε=0.

a = constant,

b = constant,
dx

dT
= −(x3 + ax + b).

Finding the threshold at the equilibrium point

Our slow manifold is:

f(x, a, b) = x3 + ax + b = 0.
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This is the equation of the curved surface in R3. A solution of this is the

equilibrium point. To find the threshold T we want to project the surface down

along the x-axis to the (a, b) plane.

The direction of the projection is:
x

a

b

 =


1

0

0

 = p.

At every point we can define a normal vector n. If p is tangent to a point on

the slow manifold, then we have a normal to that point which is perpendicular

to p.

So we want to find the dot product of n and p, where:

n = ∇f =

(
∂f

∂x
,
∂f

∂a
,
∂f

∂b

)
= (3x2 + a, x, 1).

The dot product of n and p is:

n · p = (3x2 + a, x, 1)


1

0

0

 = 3x2 + a = 0.

So the fold curve satisfies these two equations:

f = 0 : x3 + ax + b = 0,
∂f

∂x
= 0 : 3x2 + a = 0.

If we project the fold curves onto the (a, b) plane, then we obtain a cusp and

to find the cusp we eliminate x from these two equations.

The second equation gives us:

x2 = −a

3
.

We put x=
√
−a

3
in f=0, to obtain:

4a3 + 27b2 = 0.

We see f=0 is a cubic equation in x, so if we project the fold curves onto

the (a, b) plane we see that we obtain a cusp, which corresponds to the cubic
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equation having three real roots and one of the roots is a repeated root. The

assumption to find the threshold is that as we keep a constant and we take a

point in the (x, a, b) space and draw a trajectory from this point. We allow x

to follow the slow manifold, then the trajectory moves along the b-axis until it

reaches the fold curve. The point where the trajectory reaches the fold curve is

called the threshold T, and this point T is the intersection of the fold curve with

the plane a=−1. The value a=−1 was taken from Zeeman’s paper to obtain the

value for b for the intersection of the fold curve and the plane a=−1.

So we rearrange 4a3 + 27b2=0 to obtain:

b = −2a

3

√
−a

3
.

Then the intersection of the fold curve and the plane a=−1 is b= 2
3
√

3
.

The phase portrait

Our phase portrait is now in three dimensions with the surface b=−x3 − ax as

the slow manifold. We take a trajectory starting at the initial point (x, a, b) in

the plane and see that it travels along the fast foliation to the nearest branch of

the slow manifold. The trajectory then moves along the slow manifold around

the cusp and back to the equilibrium point without making any jumps. As we

have two complex eigenvalues then the trajectory travels smoothly around the

cusp and we have a smooth return.

With having a threshold T we obtain a fold curve which separates a piece of

slow attractor from a piece of slow repellor and as we have a return to equilib-

rium, then this means that there is another piece of slow attractor to catch the

trajectory otherwise it won’t return to the equilibrium. As we have a smooth

return here and not a jump return, then this implies that the two pieces of slow

attractor can be connected by an arc which doesn’t cross any fold curves, in

order to achieve the smooth return.

Figure 2.11(c) is the ”nerve” model’s action potential and it corresponds to

the trajectory, (a, b, x)=(−0.8, 0.25,−0.1), in Figs. 2.11(a) and (b). We can see

here that it has a smooth return, as there is no sharp corner on the return. Fig-

ure 2.11(c) has a jump onset and a smooth return, which is similar to Fig. 2.8(b)

(-.).
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Figure 2.11: Phase portrait of Zeeman’s ”nerve” model. (a) Drawn are the slow

manifold which is the semitransparent surface, a trajectory with ε=10−3 and its pro-

jections (-.) at (a, b, x)=(−0.8, 0.25,−0.1), the fold curve (thick-) and its projections

(thin-) and the cusp point (0, 0, 0) and its projections (.). (b) Drawn are the trajectory,

fold curve and their projections, and (c) the ”nerve” action potential drawn against t

corresponding to the trajectory, (a, b, x)=(−0.8, 0.25,−0.1), in (a,b).

Projecting the slow manifold to the (a,−x) plane

We want to project the slow manifold to the (a,−x) plane, because the projection

on that plane is unique and the projection on the (a, b) plane is not unique. We

do this because we want to see what the projection looks like and this view was

not in Zeeman’s paper and therefore is part of our new research into this system.

The slow manifold is:

b = −x3 − ax,

for ε=0.

We differentiate b with respect to t and put ḃ=−(a + 1) in to obtain:

ẋ =
a + 1− ȧx

3x2 + a
.

Put ȧ=−2(a + x) in here to obtain:

ẋ =
2x(a + x) + a + 1

3x2 + a
,

ȧ = −2(a + x).

This is our new system of equations.

The equilibrium point is (a, x)=(−1, 1) and the eigenvalues are:
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λ1,2 =
−1±

√
3i

2
.

We have negative real part for each eigenvalue, therefore we have a stable

spiral at the point (−1, 1).

The x-nullcline is:

ẋ = 0 ⇒ a =
−2x2 − 1

2x + 1
.

This is a curve which gives us two x intercepts (a, x)=(0,±
√

1/2i) and the

a intercept (a, x)=(−1, 0). As the x-axis intersections are complex, then we are

not interested in them as we can’t see them in the real plane.

The a nullcline is:

ȧ = 0 ⇒ a = −x.

This gives us a straight line with a intercept (a, x)=(0, 0) and x intercept

(a, x)=(0, 0). The gradient of the slope is a′=−1.

We find the trajectories by using different points on the phase plane and

putting them into the differential equations. As we can see from the phase

portrait we have two nullclines and the parabola a=−3x2, from ∂f
∂x

=0 previously,

which if you take a point inside the parabola the trajectory cannot cross it

because we have ẋ=∞ on the parabola. Any trajectories taken near the parabola

do not behave very well, so we only have points below and above the parabola

that have trajectories that spiral towards the stable point as seen in the phase

portrait, Fig. 2.12. Also, you can see that the parabola is the same as the

projection of the fold curve on the (a, x) plane in Figs. 2.11(a) and (b).

The phase portrait shows us where the trajectories can travel on the slow

manifold and we see that they can’t travel inside the parabola a=−3x2. On our

phase portrait of the ”nerve” model, a=−3x2 are the threshold points and these

points give us our fold curve which separates a piece of slow attractor from a

piece of slow repellor. Therefore, the points inside the parabola a=−3x2 are the

points which make up the slow repellor piece of the slow manifold and the points

outside the parabola make up the slow attractor piece of the slow manifold.

Therefore this is why the trajectories cannot cross the parabola.
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Figure 2.12: Projection of the slow manifold of Zeeman’s ”nerve” model, with the x

nullcline (-), a nullcline (-.), projection of the fold curve (- -), and trajectories (+).

Drawn as -x against t.

2.4.3 Applying Zeeman’s method to the FitzHugh system

We wanted to see if Zeeman’s methods would work for other systems, e.g. the

FitzHugh system. To do this we transformed the FitzHugh system to look like

Zeeman’s ”heart” model and then we used Zeeman’s methods to find the slow

manifold and fast foliation exactly as we did in Zeeman’s ”heart” model and we

also draw two trajectories to see what path they take. We then compared the

resulting phase portrait with Fig. 2.10(a) and Fig. 2.8(a).

If we compare our new phase portrait, Fig. 2.13, with FitzHugh’s phase por-

trait, Fig. 2.8(a), we see that the two portraits look the same. Here the slow

manifold is the same as the x-nullcline and the v and y nullclines are the same

and we have the double arrows representing the flow on the fast foliation. There-

fore FitzHugh’s system is a particular example of Zeeman’s system with a jump

onset and a jump return. This is similar to the ”heart” model.

2.4.4 Summary

Zeeman concludes that in a system with two equations, e.g. the ”heart” model,

we have a jump onset and a jump return, ”Theorem” 1. In a system with three

equations, e.g. the ”nerve” model, we can have a jump onset and a smooth

return, but only by having a cusp, ”Theorem” 2. Also it is not possible to have
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Figure 2.13: Phase portrait of the new FitzHugh system. The double arrows represent

the flow on the fast foliation and the single arrows represent the flow on the slow

manifold. In this case the slow manifold is the curve v=u3

3 − u (-.). Also shown are

trajectories starting from the initial points (v, u)=(0.5,−1) (.) and (v, u)=(0.8,−0.7)

(+) and the v nullcline (-).

a jump onset and a smooth return in the system of two equations, ”Lemma” 1.

2.5 Reduction of the Classical Models to a Sec-

ond Order System by Krinsky and Kokoz

Krinsky and Kokoz wrote four papers on the analysis of the equations of excitable

membranes. They wrote two papers[8, 9] on reducing the Hodgkin-Huxley equa-

tions to a system of two equations and they wrote two papers[42, 43] on reducing

Noble’s 1962 equations to a system of two equations.

Krinsky and Kokoz wanted to asymptotically reduce the Hodgkin-Huxley

system to a system of two equations, so that they could analyse the second

order system by qualitative methods without the use of a computer. They do

this because it makes a convenient model for approximate evaluations of the

solutions before calculations with a computer of the Hodgkin-Huxley system and

also for analysing and planning electrophysiological experiments.

In their paper[8] Krinsky and Kokoz used the equations in Section 2.1.1 with

a slight modification. They replaced V with −E and I=−Ib. They did this with
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the constants as well. So VNa becomes −ENa, VK becomes −EK and Vl becomes

−El. Therefore the equations become:

dE

dt
= −(gKn4(E − EK) + gNam

3h(E − ENa) + gl(E − El)) + Ib, (2.31)

dn

dt
= αn(1− n)− βnn,

dm

dt
= αm(1−m)− βmm,

dh

dt
= αh(1− h)− βhh,

αn =
0.01(−E + 10)

e
−E+10

10 − 1
, βn = 0.125e

−E
80 ,

αm =
0.1(−E + 25)

e
−E+25

10 − 1
, βm = 4e

−E
18 ,

αh = 0.07e
−E
20 , βh =

1

e
−E+30

10 + 1
.

Here we have EK=-12, ENa=115 and El=10.613. Following Krinsky and

Kokoz we now use these equations to reduce the system to a second order system.

From Fig. 2.14 we obtain the relations:

τm(E) � τn(E), τh(E), (2.32)

n(E) + h(E) ≈ const, τh(E) ≈ τn(E). (2.33)

Here we have:

n =
αn

αn + βn

, h =
αh

αh + βh

,

τn =
1

αn + βn

, τh =
1

αh + βh

.

This is so we can reduce the system to a second order system, by eliminating

two equations.
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Figure 2.14: (a) Graph of τn (- -), τm (-) and τh (-.) against E. (b) Graph of n (- -),

m (-) and h (-.) against E.

2.5.1 Reduction of the Hodgkin-Huxley system to a third

order system

We make relation (2.33) precise instead of approximate and use it in the original

system to reduce it to a third order system.

n(E) + h(E) = G, (2.34)

τh(E) = τn(E), (2.35)

where G is a constant.

From now on we will take τn and discard τh according to equation (2.35).

So,

G =
αn(αh + βh) + αh(αn + βn)

(αn + βn)(αh + βh)
.

We can find G by drawing the graph of n + h against voltage as shown in

Fig. 2.15. We use G=1, 0.87 and 0.76 because Krinsky and Kokoz used G=0.87

and 0.76 to draw their phase portraits. We choose G=1 so we could compare

our phase portraits with theirs.

Figure 2.15 is similar to Fig. 4 in Meunier’s 1992 paper[44]. Meunier wrote a

paper to assess the validity of Krinsky and Kokoz’s reduction process, by studying

the τ ’s and Krinsky and Kokoz’s assumptions; m is a fast variable and h+n can

be replaced with a constant.

In the original system we have the arbitrary initial conditions:
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Figure 2.15: Graph of G=n + h against E. The lines represent the values

G=1, 0.87, 0.76.

E(0) = E0, m(0) = m0, n(0) = n0, h(0) = h0, (2.36)

h0 + n0 = G. (2.37)

By the law of conservation we have:

G = n(t) + h(t). (2.38)

We use equation (2.38) to reduced the original system to a third order system.

So the original system becomes:

dE

dt
= −(gKn4(E − EK) + gNam

3(G− n)(E − ENa) + gl(E − El)) + Ib,

dn

dt
= αn(1− n)− βnn,

dm

dt
= αm(1−m)− βmm. (2.39)

The original system now uses conditions (2.34) and (2.35), so the solutions

of the original system comply with the solutions of a third order system for the

initial values (2.36) and (2.37).

Krinsky and Kokoz gave a brief proof that it is always possible to reduce the

original system to a third order system. We want to eliminate the h equation

from the original system. So we use conditions (2.34) and (2.35) to obtain:
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ḣ =
G− n− h

τn

.

We then introduce the new variable:

η = G− n− h,

then,

η̇ = −ṅ− ḣ.

We put this into the ḣ equation to obtain:

η̇ = − η

τn

.

We replace h with η=G − n − h in the original system and our new system

is:

dE

dt
= −(gKn4(E − EK) + gNam

3(G− n− η)(E − ENa) + gl(E − El))

+Ib,

ṁ = αm(1−m)− βmm,

ṅ = αn(1− n)− βnn,

η̇ = − η

τn(E)
. (2.40)

So η̇=0, η=0 is a solution, so η0=0. Variable η monotonically approaches G

as time goes on.

The new initial conditions are E0, m0, n0 and η=0. Initial conditions E0, m0

and n0 are arbitrary. So η̇=− η
τn

for fixed E=E0 and initial condition η0 has the

solution:

η = η0e
− t

τn(E0) .

Also τn(E0) is a limited function, so by putting,

τn = max
E

τn(E),

we obtain a solution of equation (2.40) that E satisfies the inequality:

|η(t)| ≤ |η0|e−
t

τn .
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From this η(t) → 0 more rapidly then the exponent with the constant τn, τn ≈
10ms. From the original system with the relations (2.32) and (2.33) we can

consider η(t)=0 and that it is always possible to reduce the original system to

the third order system.

2.5.2 Reduction of the third order system to a second

order system

To reduce the third order system to a second order system we need to find which

variable is the fastest and then eliminate this variable from the system. We do

this by drawing the graph of τm, τn and τh against voltage to see which is the

fastest. What we look for on the graph is which τ ’s are the smallest and these

variables are considered as the fast variables, the largest τ ’s are consider as the

slow variables. As we can see from Fig. 2.16, τm is the smallest and τn and τh are

the largest variables. Therefore m is the fast variable and n and h are the slow

variables. Now we have found this, we need to eliminate m from the system of

equations.
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Figure 2.16: Graph of τn (- -), τm (-), τh (-.) against E drawn using a logarithmic

scale on the vertical axis for the τ ’s.

To eliminate m we need to introduce a small parameter ε to the m equation

because if we don’t then Tikhonov’s theorem and Zeeman’s methods for finding

the slow manifold and fast foliation can’t be used. This is because Tikhonov’s

theorem will only work for a system of equations with an independent parameter,
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as all our parameters are given constants of E. Therefore all the results are

correct in the limit ε → 0.

So we introduce ε to the m equation as this is the fastest equation, where,

ε = max
E

(
τm(E)

τn(E)

)
.

So equation (2.39) becomes:

ε
dm

dt
=

(m−m)

τm

.

We use ε to find the slow manifold. So if ε → 0 the slow manifold is:

m = m,

where,

m =
αm

αm + βm

, (2.41)

and this is the stable equilibrium in the fast system.

The condition for the slow manifold is that both the fast and slow systems

should contain the stable equilibrium. Parameter ε is small which enters the

equation of the slow manifold, so we can exclude m to obtain a second order

system of equations by using equation (2.41).

We know that the slow manifold of the third order system is m=m, so we

now want to find the fast foliation. To do this we introduce t=εT to the third

order system (2.39).

So the system becomes:

dE

dT
= ε(−(gKn4(E − EK) + gNam

3(G− n)(E − ENa) + gl(E − El)) + Ib),

dm

dT
=

(m−m)

τm

,

dn

dT
= ε

(n− n)

τn

.

So the fast foliation, ε → 0, is:

V = constant,

n = constant,

ṁ =
(m−m)

τm

.
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Now we can replace equation (2.39) with (2.41) in our third order system

to exclude it. We can exclude it because it has an equilibrium point which is

asymptotically stable for any fixed E. This is at ṁ=0. At ε → 0 the difference

in the solutions of the second order system and the third order system tends to

zero. We say that ε � 1 and to prove this we need to draw the graph of τm

τn
and

find the maximum. So,

ε = max
E

(
1

αm+βm

1
αn+βn

)
,

ε = max
E

(
αn + βn

αm + βm

)
� 1.

From Fig. 2.17 we see that the maximum of the graph is at 0.1656. Therefore

ε=0.1656 � 1.
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Figure 2.17: Graph of τm
τn

against voltage.

Now the second order system is:

dE

dt
= −(gKn4(E − EK) + gNam

3(G− n)(E − ENa) + gl(E − El))

+Ib, (2.42)
dn

dt
= αn(1− n)− βnn =

(n− n)
τn

. (2.43)
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Therefore the original system has been reduced to a second order system of

equations by conditions (2.38) and (2.41). Therefore, m and h are now functions

of E.

As second order systems can be analysed by qualitative methods, we can

see that by a simple coordinate transformation this second order system can be

converted to a form similar to the van der Pol equations.

2.5.3 Phase portrait of the second order system

In the second order system E is the fast variable and n is the slow variable. We

want to find the isoclines (nullclines).

The n isocline is:

n = n.

The n intercept is (E, n)=(0, 0.32) and the E intercept is (E, n)=(10, 0).

The E isocline is:

gNam
3(G− n)(E − ENa) + gKn4(E − EK) + gl(E − El)− Ib = 0.

The n intercept and the E intercept depends on the values of G and Ib. So

the equation for E=0 is:

gNam
3(G− n)ENa + gKn4EK + glEl − Ib = 0.

This will give an N-shaped curve. For n=0 the equation is:

gNam
3G(E − ENa) + gl(E − El)− Ib = 0.

The singular point satisfies the following equation:

gKn4(E − EK)− gNa(G− n)m3(E − ENa) + gl(E − El)− Ib = 0.

Figure 2.18 shows the phase portraits for system (2.42) for different values

of G and Ib. We see that for Ib=0 we have a stable equilibrium point and the

trajectories for systems (2.42) and (2.31) travel to the equilibrium point for any

value of G. For Ib 6= 0 we have an unstable equilibrium point and the trajectories

form a limit cycle.

We can compare Fig. 2.18(a) to the FitzHugh system, Fig. 2.8(a) and we see

that they are similar. In both systems we have isoclines that are similar to each
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other. Also the trajectories don’t always go monotonically to the equilibrium

point, but some might have to take a longer path to get to it. This is similar

to the trajectory in FitzHugh’s phase portrait, Fig. 2.8(a) (-) as that doesn’t go

straight to the equilibrium point, so here excitation also occurs.

We can see that the two systems are similar by just looking at the equations,

as the FitzHugh system is based on the van der Pol equations and Krinsky and

Kokoz’s second order system is similar to the generalised van der Pol system, so

the phase portraits are going to be alike.

The difference between the FitzHugh and Krinsky and Kokoz systems is that

Krinsky and Kokoz obtained results by the reduction of high order, complicated

empirical systems of ordinary differential equations; and FitzHugh used the van

der pol equations by ab initio construction of simplest nonlinear ordinary differ-

ential equations with required behaviour.

2.5.4 Reduction of Noble’s 1962 model by Krinsky and

Kokoz

In Krinsky and Kokoz’s papers[42, 43] they obtained a second order system for

Noble’s 1962 model, by adiabatically eliminating the m variable and saying that:

τm, τh � τn,

and that m and h are equally fast and much faster than E, based on the value of

the membrane resistance outside the fast upstroke, which is determined mainly

by the potassium conductance. Therefore the characteristic time of the charge

of the membrane capacitance is large, τe ≈ Cm/gK ≈ 10−2sec, and m and h are

replaced with their quasi-stationary values.

Once the second order system is found, due to these two findings, then the

nullclines can be found and drawn. They use the method of nullclines to analyse

the properties of excitable cells and the oscillatory behaviour of the second order

system. They use this method, for example, to study the boundaries between

oscillatory and excitable behaviour. From this the boundaries for the parameter

regions, where the oscillatory behaviour can be observed, are found.

Therefore they found two new properties of Noble’s equations, which are:

the complete absence of accommodation and the easiness of repetitive responses.

So the electrophysiological characteristics obtained from Noble’s original system

and the reduced system differ by no more than 1 to 3%.
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Figure 2.18: Phase portrait of the second order system (2.42) with two isoclines ṅ=0

(-) and Ė=0 (:), and trajectories for system (2.42) (.) and the original system (2.31)

(+) for (a) G=0.87 and I=0, (b) G=0.76 and I=50, (c) G=1 and I=0 and (d) G=1

and I=50.
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Therefore the accuracy of Noble’s equations is estimated and was found to

be more accurate than the approximation for the Hodgkin-Huxley model, as the

accuracy for the four-dimensional equations and the two-dimensional equations

in the Hodgkin-Huxley model, differ by 10 to 15%.

Since these four papers, their methods have been used by others[45, 46] to

study variations of the Hodgkin-Huxley model.

2.5.5 Further models using Krinsky and Kokoz’s methods

Models concerning the development of membranes in the heart have been sim-

plified using asymptotic methods similar to Krinsky and Kokoz’s methods.

In 1994 Vinet and Roberge[47] wrote a paper using methods that were

analogous to FitzHugh’s[4, 34] and Krinsky and Kokoz’s[8] work on reducing

the Hodgkin-Huxley system of equations to a two-dimensional system. They

used these methods on a variation of the Hodgkin-Huxley model (Beeler-Reuter

model[20]) involving six voltage-dependent gating variables, to obtain a simpli-

fied model that would preserve the essential features of the action potential.

The action potential upstroke, plateau and repolarization phase in this model

occur for different time stages, e.g. fast, intermediate and slow.

We will use similar methods to analyse Courtemanche et al’s model in Chap-

ter 6, as we split Courtemanche et al’s model up into three time stages so that

we can analyse each stage separately and reduce the system to a smaller number

of variables.

First Vinet and Roberge adiabatically eliminate the m variable, which is

super-fast, and then for the fast stage, where the upstroke occurs, they consider

all other variables, except V , to be equal to their initial values. So therefore the

system is reduced to one-dimension (V ) and then they can draw the V nullcline

for this equation to see how many equilibrium points there are and if they are

stable or unstable.

For the intermediate stage they notice that h is only partially closed, so V

and h are equally fast, similar to our reduction of Noble’s model in Chapter 4,

and therefore all other variables are equal to their initial values, so they obtain

a two-dimensional system (V , h).

These two systems successfully reproduce the original systems main excitabil-

ity properties.

For the slow stage they reduced the system to three variables, where V is
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small compared to d, m and h, and INa=0 because of a small overlap between

m and h. As they cannot assume d reaches its steady state instantaneously

due to faster repolarization then they approximate x1 ≈ 1 − f . So they have a

three-dimensional model (V , d, f).

This was an efficient approach to simplifying a complicated model. However,

they did not use explicit asymptotic analysis for their approximations, they did

not formally identify different time scales and they did not use any phase plane

analysis for the fast and slow stages.

Another example of using Krinsky’s and Kokoz’s methods is in work by Enns-

Ruttan[48], where she uses the Kepler-Marder model[49] to study spontaneous

secondary spiking in this Hodgkin-Huxley type system.

Enns-Ruttan studies and compares the results using two reductions,

FitzHugh-Nagumo and Krinsky and Kokoz. She reduces the Kepler-Marder

model to three equations instead of five, by using the FitzHugh-Nagumo reduc-

tion on the four Hodgkin-Huxley type equations (V , m, h, n) to two equations

(V , U), and then using a Tikhonov style embedding of the slow system to see

what happens to the action potential as ε → 0.

Then Enns-Ruttan compared these results with the reduction of the four

Hodgkin-Huxley equations to two equations by using a Krinsky and Kokoz type

reduction. This shows that Krinsky and Kokoz’s methods can be used universally

for different research.

Bernus et al[50] wrote a paper about the human ventricular cell by Priebe-

Beuckelmann[51] in 2002. Bernus et al studied the Priebe-Beuckelmann model

and then reduced this system to a six variable model using methods similar to

what we used in our study of Courtemanche et al’s model in Chapter 6, and also

methods that would keep the numerical accuracy and stability of the reduced

model, but they did not do any formal asymptotic analysis.

Their reduced model was 4.9 times faster for numerical computations and

is more stable than the original model. It also retained all the properties and

qualitative behaviour of the original model and was suitable for efficient and

accurate studies of re-entrant phenomena in human ventricular tissue.

Papers have also been written studying high-order, non-linear systems, be-

cause these systems cannot be solved analytically and numerical study is compli-

cated. So papers were written to solve this problem, by developing simple models,

e.g. second order, to describe the integral characteristics of the propagation pulse,
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the membrane potential and inward and outward currents[52, 53, 54, 55, 56].

2.5.6 Summary

Krinsky and Kokoz showed that it is possible to reduce the system of nerve

equations to two equations, even though their theory of reducing the equations

is not rigorously justified, e.g. G=n+h. Zeeman said that this was not possible

for a system with small parameters, but Krinsky and Kokoz’s reduced system

doesn’t contain any small parameters and this is why it was possible for them

to reduce the Hodgkin-Huxley system to two equations and Zeeman’s ”nerve”

model was in three dimensions.

We will use methods described here in the analysis of Courtemanche et al’s

model.
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Chapter 3

Hodgkin-Huxley Model:

Tikhonov’s Approach

We have described Hodgkin-Huxley’s model in Section 2.1.1, so now we want to

use Tikhonov’s approach and Zeeman’s methods for finding the slow manifold,

fast foliation and cusp to see what asymptotic structure this system has and

the solutions we obtain from our analysis. We do this without assuming n + h

is constant. We don’t use Krinsky and Kokoz’s assumption because it is not

rigorously justified and we want to use methods that can be used again on more

complicated systems.

3.1 Looking For Small Parameters In The

Hodgkin-Huxley Model

In this section we use the Hodgkin-Huxley system of equations to see if we can

answer our question ”Can we successfully reduce the system to a third order

system of equations without causing too much change to the action potential?”

dV

dt
= −(gKn4(V − VK) + gNam

3h(V − VNa) + gl(V − Vl)),

dn

dt
= αn(1− n)− βnn =

(n− n)

τn

,

dm

dt
= αm(1−m)− βmm =

(m−m)

τm

,

dh

dt
= αh(1− h)− βhh =

(h− h)

τh

.
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To reduce the system to three equations, we need to find which of these

equations is the fastest, so we can solve it and exclude it from the system. We

can use the same method as we used in Section 2.5, by drawing a graph of the

τ ’s against V . As we don’t have τV defined then we use a new definition to draw

all the τ ’s. The definition is obtained from the equations of y where:

dy

dt
=

(y − y)

τy

,

as the gating variables contain the functions τ , and dV
dt

can be written in this

form by rearranging its right-hand side.

Therefore we obtain the definition by differentiating the equation above:

∂

∂y

(
dy

dt

)
= − 1

τy

,

τy =

∣∣∣∣ ∂

∂y

(
dy

dt

)∣∣∣∣−1

.

So this is the reason why we use this definition to find the τ ’s and it is the

most reliable method to use.

We can see from Fig. 3.1 that τm is the fastest compared to τn and τh, but

τV is faster than τm for large voltage and τm is faster than τV for small voltage.

So V is a fast variable as well and V may be faster than m for a small time.

Technically, we already knew this was true from Krinsky and Kokoz as they used

the Hodgkin-Huxley equations with a slight modification, E=−V , which means

that E is the reversal potential. Therefore the results should be the same except

that Krinsky and Kokoz didn’t draw τV , so the results are the same except that

now we can treat V as a fast variable for a small amount of time. As V is only

fast for a small moment of time then we will say that m is a super-fast variable

and V is a fast variable.

For the original system we draw the graph of m against time and m against

time to see the differences in the systems. This can be seen in Fig. 3.2. We see

that they start from the same initial point and as we get closer to m=m=0, and

the voltage increases, then the graphs become the same. Both functions m and

m for each value of V are similar, there is just a small difference between them.

This is why we can replace dm
dt

by zero, so m is a given function of V .

m = m =
αm

αm + βm

.
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Figure 3.1: Graph of τn (- -), τm (-), τh (-.) and τV (.) against V . (a) is drawn using

a logarithmic scale on the vertical axis for the τ ’s and (b) is drawn using a real scale

on the vertical axis for the τ ’s.
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Figure 3.2: Graphs of m (-), m (- -), −V ∗ 0.01 (.) against time for initial values

(m0, n0, h0)=(0.0530, 0.3177, 0.5961) with T o=6oC and (a) V0=15, (b) V0=90, (c) V0=7

and (d) V0=6.
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3.1.1 The V , n, h reduced system

With m eliminated, the system becomes:

dV

dt
= −(gKn4(V − VK) + gNam

3h(V − VNa) + gl(V − Vl)), (3.1)

dh

dt
= αh − (αh + βh)h =

(h− h)

τh

,

dn

dt
= αn − (αn + βn)n =

(n− n)

τn

.

For the reduced system and the original system we drew the graphs of negative

voltage against time to see how close the reduced system is to the original. We

do this for different initial values of V , i.e. V0. We see from Fig. 3.3 that the

further away from the threshold we are the closer the graphs become, for example

if the initial value is V0=90; but the closer we are to the threshold the more the

graphs are different. Therefore the latency for the rapid depolarisation of the

action potential decreases as the initial V0 increases.

3.1.2 Introducing a small parameter ε

We want to keep the qualitative behaviour of the reduced system the same as

the original system, i.e. not much difference between them. So to do this we

use the procedure of parametric embedding that we introduced in Section 2.3.4,

where we introduce a small parameter ε � 1 (ε → 0) to the ṁ equation in the

original system. We introduce it to the ṁ equation as m is the fastest variable.

So the ṁ equation becomes:

dm

dt
=

1

ε
(αm(1−m)− βmm).

Therefore all the results are correct in the limit ε → 0.

We can see in Fig. 3.4 that there is still a small difference between the two

curves. If ε gets closer to zero then the difference becomes even smaller and

almost impossible to see, so the two curves become identical. A small value of ε

for V0=15 and V0=90, makes the difference small as we see in Figs. 3.4(a) and (b),

but the value of ε doesn’t work for V0=7 and V0=6 as we can see in Figs. 3.4(c)

and (d), because we are close to the threshold, so we need an even smaller value

of ε to make the difference smaller. Once we’ve done that then the two systems

give identical curves.
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Figure 3.3: Graphs of −V against t for T o=6oC and different initial values of V0, for

the reduced system (3.1) (-) and the original Hodgkin-Huxley system (.). (a) V0=15,

(b) V0=90, (c) V0=7 and (d) V0=6.
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Figure 3.4: Graphs of −V against t for the reduced system (3.1), m(t)=m(E(t)), ε=0,

(-) and the original Hodgkin-Huxley system (.) with T o=6oC, ε=0.1 and (a) V0=15,

(b) V0=90, (c) V0=7 and (d) V0=6.
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After seeing the differences in the two curves, we know that m is not always

the fast variable, but from our speed analysis we know that V is the fast variable

for small moments of time. So we draw the τ ’s for different initial V0 to see what

this does to the τ ’s.

In Fig. 3.5 we have τn, τm, τh and τV against time for the original system to

see what happens to them. Functions τn, τm, τh and τV depend on time because

V depends on time and as all four are functions of V then they all depend on

time. If we get close to the threshold, as in Fig. 3.5 (c) and (d), then m becomes

faster than V . If we are far away from the threshold, as in Fig. 3.5(b), then V is

faster than m for a few milliseconds and then m is faster than V .
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Figure 3.5: Graph of τn (–), τm (-), τh (-.) and τV (.) against time drawn using

a logarithmic scale on the vertical axis for the τ ’s with T o=6oC and (a) V0=15, (b)

V0=90, (c) V0=7 and (d) V0=6.

Figure 3.5 is drawn for temperature being 6oC and we see that the further

away from the threshold we are, then the more chance of τV being faster than τm.

So if we change the temperature at the points furthest away from the threshold,
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then τV and τm will interchange.

For other values of temperature we will now see if V can become consistently

faster or consistently slower than m. For some moments in time we have τV > τm

and for other moments in time we have τV < τm.

As τV and τm depend on temperature in the original system we want to see

for what temperature τV > τm and τV < τm for higher voltages, as τm is always

greater than τV for any temperature if we are close to the threshold. We say

that the ratio of the two τ ’s can either be greater than one or less than one for

all times. So,

r(t) =
τm

τV

.
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Figure 3.6: Graph of r against −V .

From Fig. 3.6 we see that the maximum of the graph is at 7.019. As we use

the original system to draw the graphs of the τ ’s, then we have,

φCM ∼ τV

τm

.

Here CM=1 and φ depends on temperature. So,

φ ∼ τV

τm

< 1.

This says for large φ, V is a slow variable and for small φ, V is a fast variable.

So now τV is a fixed function of temperature and time. Therefore we can say

that:
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τV (T o, t) = τV (T o
0 , t)φ.

So the ratio becomes:

r(T o, t) =
τm(t)

τV (T o, t)
=

τm(t)

τV (T o
0 , t)φ

≤ 1,

for all time. So,

1 ≥ max

(
τm

τV

)
1

φ
,

φ ≥ max

(
τm

τV

)
,

φ ≥ 7.0196,

3(T o−6.3)/10 ≥ 7.0196.

We take logs of both sides to obtain:

T o ≥ 24.03oC.

This says for temperatures above 24.03oC, τV > τm throughout the action

potential, and for temperatures below 24.03oC, τV > τm in the beginning of the

action potential and τV < τm later.

From Fig. 3.6 we see that the minimum of the graph is at 0.0248. As we use

the original system to draw the graphs of the τ ’s, then we have,

r(T o, t) ≥ 1,

for all time. So,

1 ≤ min

(
τm

τV

)
1

φ
,

φ ≤ min

(
τm

τV

)
,

φ ≤ 0.0248,

3(T o−6.3)/10 ≤ 0.0248.

We take logs of both sides to obtain:

T o ≤ −27.35oC.

This says for temperatures below −27.35oC, τV > τm consistently, and for

temperatures above −27.35oC, τV > τm in the beginning of the action potential

and τV < τm later.

88



3.1.3 If the voltage was the fastest variable

We want to see if we can find m another way, for example by putting dV
dt

=0. It

is not possible to resolve dV
dt

with respect to V , so we resolve it with respect to

m by projecting the slow manifold dV
dt

=0 to the (V, n, h) space, rather than the

(m, n, h) space.

m =

(
−(gKn4(V − VK) + gl(V − Vl))

gNah(V − VNa)

)1/3

.

Substitute this into ṁ to obtain:

dm

dt
= αm − (αm + βm)

(
−(gKn4(V − VK) + gl(V − Vl))

gNah(V − VNa)

)1/3

.

Differentiate m with respect to time and equate it to the right hand side of

the above equation.

dm

dt
=

∂m

∂V
V̇ +

∂m

∂h
ḣ +

∂m

∂n
ṅ.

So after rearranging we obtain the final equation to be:

V̇ =
3gNahm2(V − VNa)

2(αm − (αm + βm)m)− ḣ(V − VNa)(gKn4(V − VK)

h(gKn4(VNa − VK) + gl(VNa − Vl))

+
gl(V − Vl)) + 4ṅgKhn3(V − VNa)(V − VK)

h(gKn4(VNa − VK) + gl(VNa − Vl))
.

Therefore the reduced system of equations is:

V̇ =
3gNahm2(V − VNa)

2(αm − (αm + βm)m)− ḣ(V − VNa)(gKn4(V − VK)

h(gKn4(VNa − VK) + gl(VNa − Vl))

+
gl(V − Vl)) + 4ṅgKhn3(V − VNa)(V − VK)

h(gKn4(VNa − VK) + gl(VNa − Vl))
,

ṅ = αn − (αn + βn)n,

ḣ = αh − (αh + βh)h.

With,

m =

(
−(gKn4(V − VK) + gl(V − Vl))

gNah(V − VNa)

)1/3

.

The graphs of negative voltage against time, Fig. 3.7, can be seen for differ-

ent initial values of V . We can see that the new reduced system is not at all

close to the original system especially near the threshold, so this is not a good

approximation for m and the original approximation we used is better.
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Figure 3.7: Graph of −V against t for the new reduced system (-) and the original

Hodgkin-Huxley system (.) for (a) V0=15, (b) V0=90, (c) V0=7 and (d) V0=6.
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3.1.4 Summary

We’ve seen that we can reduce the original Hodgkin-Huxley system to a third

order system, but as a result there is a change of shape in the action potentials of

the third order system. We see this especially around the return. We therefore

have a smooth return in the original system and this changes to a jump return

in the reduced system. In answer to our question, we can say that yes we can

successfully reduce the system of equations without causing too much change

to the action potential for large initial values of V . The difference between

the curves is large for values of V close to the threshold. We also see that by

eliminating the other fast variable V instead of m doesn’t make any sense, as the

behaviour of the reduced system is completely different from the original system.

For our approximation, i.e. do we change m or V , we have two features:

1. excitable behaviour, and

2. the smooth return.

If we eliminate m, feature (1) is preserved, but feature (2) isn’t. If we elimi-

nate V we see that neither of them is preserved. So from this it is more logical

to eliminate m as one feature is preserved and try to find other methods of

preserving the second feature.

So therefore we have a (2, 1, 1) asymptotic embedding where we have two

slow variables n and h, one fast variable V and one super-fast variable m.

3.2 Properties of the Third Order Reduced

Hodgkin-Huxley System

We want to test Zeeman’s hypothesis of there being a cusp catastrophe in a three

dimensional system. We take the third order Hodgkin-Huxley system, (3.1),

that we obtained in Section 3.1 and we use Krinsky and Kokoz’s notations, i.e.

E=−V , and the methods we derived in Section 2.5, i.e. introducing ε to the fast

equation, to see if we can obtain a cusp.

3.2.1 Hodgkin-Huxley’s third order system

The Hodgkin-Huxley system is:
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dE

dt
= −(gKn4(E − EK) + gNam

3h(E − ENa) + gl(E − El)),

dn

dt
= αn(1− n)− βnn =

(n− n)

τn

,

dh

dt
= αh(1− h)− βhh =

(h− h)

τh

.

We have seen that after m, E is the fastest variable. So now we consider Ė

as the fast equation and ṅ and ḣ as the slow equations. So we have reduced the

(2, 1, 1) asymptotic structure to a (2, 1) structure.

3.2.2 Slow manifold and fast foliation

We now use the theory in Section 2.5 to introduce a small parameter ε to the

Ė equation, where ε � 1 and this ε is not the same ε as in Section 3.1. We

do this because we can’t find the slow manifold and fast foliation without an

independent parameter in the system as all the parameters depend on E. So the

system becomes:

ε
dE

dt
= −(gKn4(E − EK) + gNam

3h(E − ENa) + gl(E − El)), (3.2)

dn

dt
= αn(1− n)− βnn,

dh

dt
= αh(1− h)− βhh.

This is the slow system and it gives the slow manifold.

We introduce the variable t=εT to give us the fast system which we find the

fast foliation from.

dE

dT
= −(gKn4(E − EK) + gNam

3h(E − ENa) + gl(E − El)), (3.3)

dn

dT
= ε(αn(1− n)− βnn),

dh

dT
= ε(αh(1− h)− βhh).

System (3.2) gives us the slow manifold, if ε=0 and f(E, n, h)=(gKn4(E −
EK) + gNam

3h(E − ENa) + gl(E − El))=0.

The slow manifold is:
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h = −(gKn4(E − EK) + gl(E − El))

gNam
3(E − ENa)

,

ṅ = αn − (αn + βn)n,

ḣ = αh − (αh + βh)h.

System (3.3) gives us the fast foliation, if ε=0.

n = constant,

h = constant,
dE

dT
= −(gKn4(E − EK) + gNam

3h(E − ENa) + gl(E − El)).

3.2.3 Fold curve

Our slow manifold is:

f(E, n, h) = gKn4(E − EK) + gNam
3h(E − ENa) + gl(E − El) = 0.

This is the equation of the curved surface in R3. To find the fold curve we

want to project the surface down along the fast foliation, i.e. along the E axis

to the (n, h) plane.

The direction of the projection is:
E

n

h

 =


1

0

0

 = p.

At every point we can define a normal vector n. If p is tangent to a point on

the slow manifold, then we have a normal to that point which is perpendicular

to p. So we want to find the dot product of n and p.

So,

n =

(
∂f

∂E
,
∂f

∂n
,
∂f

∂h

)
.

We want to differentiate f with respect to E. Therefore we obtain:

∂f

∂E
= gKn4 + gl + gNah[m3 + 3m2(E − ENa)m

′].

If we take the dot product of n and p we obtain:
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gKn4 + gl + gNah(m3 + 3m2(E − ENa)m
′) = 0.

So the fold curve satisfies the two equations:

f = 0 : gKn4(E − EK) + gNam
3h(E − ENa) + gl(E − El) = 0,

∂f

∂E
= 0 : gKn4 + gl + gNah(m3 + 3m2(E − ENa)m

′) = 0.

From rearranging ∂f
∂E

=0, we obtain:

h = − (gKn4 + gl)

gNa(m
3 + 3m2m′(E − ENa))

.

We obtain n4 by putting h in f=0 and then obtaining a new equation for h

without n4. Therefore the two equations are:

n =

(
gl

gK

(
m(ENa − El) + 3m′(E − ENa)(E − El)

m(EK − ENa)− 3m′(E − ENa)(E − EK)

))1/4

, (3.4)

h =
gl(EK − El)

gNa(m
3(ENa − EK) + 3m2m′(E − ENa)(E − EK))

. (3.5)

This is only correct for n4 > 0, as for n4 < 0 we have complex roots. Since it

is negative in an interval we obtain two disjoint branches of the fold curve. From

Fig. 3.8(a) we see that n4 > 0 for E ∈ [−9.5, 15] and E ∈ [41, 45.8]. These are

the two disjoint branches.

The projection of the fold curve onto the (n, h) plane in Fig. 3.8(b) gives two

disjoint branches of the fold curve, not a cusp.

3.2.4 Finding the cusp point

A cusp corresponds to the case if f has three real roots and one of the roots is a

repeated root. To find the threshold we take a point in the (E, n, h) plane and

draw a trajectory from this point while keeping n constant. We allow E to follow

the slow manifold, then the trajectory moves along the h axis until it reaches the

fold curve. The point where we reach the fold curve is the threshold T.

We want to find the cusp point to compare with our graph. To do this we

say:

f(E, n, h) = gKn4(E − EK) + F (E)h + gl(E − El),
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Figure 3.8: (a) The graph of n4 given by equation (3.5) plotted against E for the

standard value El=10.613. (b) The projection of the fold curve in the (n, h) plane for

El=10.613.

where,

F (E) = gNam
3(E − ENa).

Then we differentiate f twice to obtain:

∂2f

∂E2
= F ′′(E)h.

The condition for the cusp point is ∂2f
∂E2 =0, but h 6= 0, so F ′′(E)=0. We

look for a solution E=E2 say, where E2 is a constant and does not depend on

the values of the parameters, but it does depend on the function m(E) and

parameter ENa=115.

We rearrange ∂f
∂E

=0 and put in f=0. Therefore the system we have is:

(F (E)− F ′(E)(E − EK))h + gl(EK − El) = 0,

F ′′(E) = 0,

where h ∈ [0, 1].

We now want to draw the graph of F ′′ plotted against E as for F ′′=0 we have

our cusp point. As we can see from Fig. 3.9 the point is E2=31.9 and n4=−0.021

for this point. Therefore we have complex roots and there are no real solutions

and no cusp points in the real space on this manifold.
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Figure 3.9: The graph of F ′′ plotted against E, where the dashed line represents

E=31.9.

3.2.5 The phase portrait

Figures 3.10(a) and (b) show the slow manifold as the semitransparent surface,

the fold curve is the thick solid lines and its projections are the thin solid lines

and the trajectories and their projections are the dashed-dot lines. We use equa-

tions (3.4) and (3.5) to draw the fold curve and this can be seen by the thick

black solid line in Figs. 3.10(a) and (b). The equilibrium values of n and h for

E=0 were used as n and h’s initial points for the trajectories. So the initial

points are:

n0 = 0.3177, h0 = 0.5961, E0 = 15.

We can see from Figs. 3.10(a) and (b) that the trajectory starts from a

point and follows the fast foliation until it reaches a piece of the slow man-

ifold. Then the trajectory moves along the slow manifold to the equilibrium

point (h, n,E)=(0.5961, 0.3177, 0).

We see that the trajectory travels to the equilibrium point, but from the

action potential we see that for the reduced system we have a sharp corner at

D, so therefore we have a jump return from C to D and the trajectory does not

travel around the cusp point. Therefore we do not have a smooth return.
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Figure 3.10: The phase portrait of the reduced system for El=10.613. Drawn are the

slow manifold which is the semitransparent surface, a trajectory and its projections

(:) at (E0, h0,m0, n0)=(15, 0.5961, 0.0530, 0.3177) and the fold curve (thick-) and its

projections (thin-). Labels A-E mark the feature points on the action potential in (c).

The trajectory is drawn using (a) ε=1 and (b) ε=10−3 and (c) the action potential for

this system where ε=1 (-) and ε=10−3 (:).

3.2.6 Finding where n4 is positive

We want to find where n4 > 0, so we can have the cusp point in the real plane.

Say,

n =

(
− gl

gK

(
q1(E)− µ(E)

q2(E)− µ(E)

))1/4

,

q1(E) = (ENa − E)(E − El)(ENa − El)
−1,

q2(E) = (ENa − E)(E − EK)(ENa − EK)−1,

µ(E) =
m(E)

3m
′
(E)

.

Figure 3.11(a) shows the graph of q1, q2 and µ drawn against E. We see

from this figure that the closest curve to the intersection of µ with E=31.9 is

q1, and q2 is the furthest away. We drew this graph because we wanted to see

which curves are the closest to the intersection of µ and E=31.9 because we want

to make n4 > 0 at E=31.9. To do this we will have to change a parameter in

equation (3.4), and from Fig. 3.11(b) we see that the parameter is El.

3.2.7 Changing the value of El

We want to change the value of El as this was chosen by Hodgkin and Huxley as

they wanted the resting potential to be zero. The experimental value of El wasn’t
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Figure 3.11: Graph of q1(E) (:), q2(E) (-.) and µ(E) (-) for (a) El=10.613 and (b)

El=25 with E=31.9 (- -) corresponding to the cusp point.

used as it wasn’t to a high enough degree of precision. So we want to change

this to a value that would give us n4 positive. As we can see from Fig. 3.11(a)

we want to change El so that q1 moves to the right side of µ, Fig. 3.11(b), and

therefore n4 will be positive.

Therefore from experiments we found that for El > 21, we have n4 > 0 and

the two disjoint branches of the fold curve join together and a cusp is projected

to the (n, h) plane. So we choose El=25 as this gives a clear phase portrait.

3.2.8 The phase portrait for El=25

The slow manifold is:

h = −(gKn4(E − EK) + gl(E − El))

gNam
3(E − ENa)

,

and our equations for the cusp point are:

f(E, n, h) = gKn4(E − EK) + gNam
3h(E − ENa) + gl(E − El),

∂f

∂E
= gKn4 + gl + gNah(m3 + 3m2(E − ENa)m

′).

So our h and n are:

n =

(
gl

gK

(
m(ENa − El) + 3m′(E − ENa)(E − El)

m(EK − ENa)− 3m′(E − ENa)(E − EK)

))1/4

, (3.6)

h = − (gKn4 + gl)

gNa(m
3(ENa − EK) + 3m2m′(E − ENa)(E − EK))

. (3.7)
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Figure 3.12: (a) The graph of n4 plotted against E with El=25. The black line

represents E=31.9. (b) The projection of the fold curve in the (n, h) plane with

El=25. The red star represents the cusp point (n, h)=(0.114, 0.0012).

Figure 3.12(a) shows n4 plotted against E for El=25. We see that n4 is

positive between 45.8 > n4 > −9 and negative elsewhere.

We compare Fig. 3.12(a) to Fig. 3.8(a) and we see that the section of graph

45.8 > n4 > −9 is always positive as the curve does not cross the E axis, where

in Fig. 3.8(a) it crosses the E axis in that domain. Here we see that n4 > 0 at

E=31.9.

Now we project the fold curves onto the (n, h) plane, using equations (3.6)

and (3.7), and we see that we obtain a cusp in Fig. 3.12(b). This corresponds to

f having three real roots and one of the roots is repeated.

We now want to find where the cusp point is. We put E=31.9 in equation (3.7)

and we obtain:

n4 = 0.00017,

where,

m = 0.67, m′ = 0.02.

We see that n4 is positive, so the cusp point is in the real plane. We put E

in our new equations for h and n to obtain the point:

(E, n, h) = (31.9, 0.114, 0.0012).

As we can see from Fig. 3.13 we have the slow manifold as the semitransparent

surface, the fold curve, its projections, the trajectory and its projections. We use
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equations (3.6) and (3.7) to draw the fold curve. This can be seen by the thick

black line in Fig. 3.13(a) and (b). We also see the cusp point, which is the filled

circle on the plane. The equilibrium values of n and h at E=0 were used as n

and h’s initial points. So the initial points were:

n0 = 0.3177, h0 = 0.5961, E0 = 15.

We can see from Figs. 3.13(a) and (b) that the trajectory starts from a point

and moves along the E axis until it reaches the fast foliation, it then travels

down the fast foliation to the slow manifold and along the slow manifold to the

equilibrium point (h, n,E)=(0.5961, 0.40, 0). As the trajectory doesn’t travel

around the cusp point, we have a jump return, and not a smooth return.
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Figure 3.13: (a,b) The phase portrait of the reduced system for El=25. Drawn are

the slow manifold which is the semitransparent surface, a trajectory and its projec-

tions (:) at (E0, h0,m0, n0)=(15, 0.5961, 0.0530, 0.3177), the fold curve (thick-) and its

projections (thin-) and the cusp point (E, h, m, n)=(31.92, 0.0013, 0.6711, 0.1860) (.).

Labels A-E mark the feature points on the action potential in (c). The trajectory is

drawn using (a) ε=1 and (b) ε=10−3 and (c) the action potential for this system where

ε=1 (-) and ε=10−3 (:).

3.2.9 Reducing the system by using the Ė and ṁ equa-

tions

We saw that if we reduced the Hodgkin-Huxley equations to a third order system

of equations, by using the m variable, we obtain a cusp, but the trajectory doesn’t

travel around the cusp point, so we have a jump return and not a smooth return.

Therefore we now consider m and E as equally fast, because we found from

Figs. 3.1 and 3.5 that for some moments in time we have τV > τm and for other
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moments we have τm > τV . So far we have been considering that τm > τV , but

there is a point where τV > τm. We want to see if the solutions are different if we

consider m and E equally fast, and this will therefore give us a (2, 2) asymptotic

structure.

We take the original Hodgkin-Huxley system.

Ė = −(gKn4(E − EK) + gNam
3h(E − ENa) + gl(E − El)),

ṁ = αm(1−m)− βmm =
(m−m)

τm

,

ṅ = αn(1− n)− βnn =
(n− n)

τn

,

ḣ = αh(1− h)− βhh =
(h− h)

τh

.

We want to find the slow manifold and the fast foliation, so we introduce a

small parameter ε, where ε � 1, to the Ė and ṁ equations, so that the system

becomes:

Ė = −1
ε
(gKn4(E − EK) + gNam

3h(E − ENa) + gl(E − El)), (3.8)

ṁ =
1
ε

(m−m)
τm

,

ṅ =
(n− n)

τn
,

ḣ =
(h− h)

τh
.

For ε=0 we obtain the slow manifold:

h = −(gKn4(E − EK) + gl(E − El))

gNam
3(E − ENa)

, (3.9)

m = m(E),

and the fast foliation, which is within the planes n=constant and h=constant.

The slow manifold is the set of equilibrium points of Ė and ṁ. The fast

foliation will be along the trajectories of these equations.

We now want to find the fold curve; but instead of using the method we

used earlier, which would give us the same answer as before, because our slow

manifold is the same equation as we obtained by reducing the equations using
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the m variable only. So we will only consider the Ė and ṁ equations with n and

h as constants.

dE

dT
= −(gKn4(E − EK) + gNam

3h(E − ENa) + gl(E − El)),

dm

dT
=

(m−m)

τm

.

We use the determinant of the Jacobian of these two equations, as one of

the equations that satisfies the fold curve, the other equation that satisfies it is

equation (3.9).

The Jacobian matrix is:

JEm =
∂(Ė, ṁ)

∂(E, m)
=

(
−(gKn4 + gNam

3h + gl) −3gNam
2h(E − ENa)

m′

τm
− (m−m)(τ ′m)

τ2
m

− 1
τm

)
.

However, at an equilibrium m=m, this reduces to:

JEm =
∂(Ė, ṁ)

∂(E, m)
=

(
−(gKn4 + gNam

3h + gl) −3gNam
2h(E − ENa)

m′

τm
− 1

τm

)
.

An equilibrium is stable in linear approximation if and only if Tr(JEm) < 0

and det(JEm) > 0. We have :

Tr(JEm) = −(gKn4 + gNam
3h + gl +

1

τm

) < 0.

So Tr(JEm) < 0 is satisfied. The determinant is:

det(JEm) =
1

τm

(gKn4 + gNam
3h + gl + 3gNam

′m2h(E − ENa)).

The condition for the fold curve is det(JEm)=0, which gives:

gKn4 + gNam
3h + gl + 3gNam

′m2h(E − ENa) = 0.

Therefore:

h = − (gKn4 + gl)

gNam
2(m + 3(E − ENa)m

′)
. (3.10)

So by solving the system Ė=0, ṁ=0 and det(JEm)=0, we can draw the fold

curve, which is a parametric solution in terms of E.

Subtract equation (3.9) from equation (3.10) to obtain:
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n =

(
gl

gK

(
m(ENa − El) + 3m′(E − ENa)(E − El)

m(EK − ENa)− 3m′(E − ENa)(E − EK)

))1/4

. (3.11)

Put this in equation (3.10) to obtain:

h =
gl(EK − El)

gNa(m
3(ENa − EK) + 3m2m′(E − ENa)(E − EK))

. (3.12)

These equations are exactly the same as equations (3.4) and (3.5). So there-

fore we will obtain the same answer as we did before. From this we can conclude

that even if we treat the variables m and E as equally fast we still obtain the

same answers as if we treat m as the fastest variable. Therefore the slow mani-

fold and the fold curve do not change because of the condition m=m(E), which

is satisfied on the slow manifold. So no matter which method we use we still

obtain the same answer.

3.2.10 Summary

In this section we wanted to check Zeeman’s hypothesis of there being a cusp

catastrophe in Hodgkin-Huxley’s system. We saw that there wasn’t one for the

standard values of parameters, because the equations for the cusp point only had

complex solutions. As we changed El from the standard value of 10.613 to 25,

we obtained a cusp point in the real plane and therefore the fold curves did form

a cusp. So we’ve answered our question ”What is the geometrical representation

of the fold curve and does it form a cusp?

We didn’t confirm the other part of Zeeman’s hypothesis, because the tra-

jectory did not go around the cusp point to the stable equilibrium, but it does

jump from one part of the slow manifold to another while returning to the stable

equilibrium point.

This is consistent with the behaviour of the reduced system as it produces a

jump return, which is different to the original Hodgkin-Huxley system. Therefore

the jump return must be produced by the reduction procedure. This procedure

will need reviewing so we can construct a model containing a smooth return.
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Chapter 4

Noble’s 1962 Model Of The

Purkinje Fibres: Tikhonov’s

Approach

We have described Noble’s model in Section 2.1.2, so now we want to analyse

this model so we can find its asymptotic structure and see if its structure is the

same as Hodgkin-Huxley’s as then it will give us a similar answer and we can

test Zeeman’s hypothesis to see if it gives a smooth return.

4.1 Reduction of Noble’s Heart Equations

We want to reduce Noble’s system of equations to a third order system, so we

can verify Zeeman’s hypothesis of there being a cusp catastrophe, like we did in

Chapter 3 for Hodgkin-Huxley’s model.

We have noticed from Fig. 2.5(a) that the pacemaker potential for the heart

has a smooth return. It also has an unstable equilibrium as we have oscillations,

so therefore the trajectories will be limit cycles. In Zeeman’s paper, Zeeman said

that for his ”heart” model we have a jump return, but now it has been shown

that this is incorrect. The heart can have a smooth return as well. Now we are

modifying Zeeman’s hypothesis to say that we want the reduced system to have

an unstable equilibrium, a cusp and the trajectories make a limit cycle around

the cusp point. Therefore we have a smooth return.

So we want to find which variable is the fastest variable by drawing a graph

of the τ ’s, then reducing the system of equations by eliminating this variable.
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4.2 Finding which Variable is the Fastest

We draw the graph of τm, τn, τh and τE against voltage to see which is the fastest

variable.
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Figure 4.1: Graph of τE (:), τm (-), τn (- -) and τh (-.) against (a) E drawn on a

logarithmic scale and (b) t with the pacemaker potential of the original system (-).

We see from Fig. 4.1(a) that τm is always the fastest. Therefore m is the

super-fast variable, n is the slow variable and τh and τE are very close together.

In Fig. 4.1(b) τh and τE interchange at the spikes, so E and h are fast variables

and must be treated as being equally fast. So we have one slow variable, two

fast variables and one super-fast variable, therefore we have a (1, 2, 1) asymptotic

structure and this will give us a different structure for the slow manifold as the

structure depends on how many slow variables there are.

4.3 Eliminating the m Variable

We have found out that m is the fastest variable, so we want to eliminate it

from the system of equations. To do this we need to introduce a small parameter

ε � 1 to the ṁ equation, but as we see we have a two-parametric embedding

with two artificial small parameters ε1 and ε2. So our system becomes:

ε1
dE

dt
= − 1

CM

((m3hgNa + 0.14)(E − ENa) + (gK1 + gK2)(E − EK)

+gl(E − El)),

ε2ε1
dm

dt
= αm(1−m)− βmm =

(m−m)

τm

,
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ε1
dh

dt
= αh(1− h)− βhh =

(h− h)

τh

,

dn

dt
= αn(1− n)− βnn =

(n− n)

τn

.

If we consider ε2 → 0 in the above system, then we obtain the solution m=m.

We replace m in the Ė equation with m. This means that we have a system of

three equations without the m variable. We draw the pacemaker potentials of

the reduced system and the original system for ε1=1 and then tend ε2 to zero to

see if the qualitative behaviour stays the same. We see from Fig. 4.2 that the

pacemaker potentials for the original system and the reduced system are similar

and as ε2 → 0 the pacemaker potential for the original system does not change.

Therefore this means that m is super-fast.
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Figure 4.2: Graph of the original system (-) and the reduced system (4.1) (.),

m(t)=m(E(t)), for E0=−90.

The reduced system is:

dE

dt
= − 1

CM

((m3hgNa + 0.14)(E − ENa) + (gK1 + gK2)(E − EK) (4.1)

+gl(E − El)),

dh

dt
= αh(1− h)− βhh,

dn

dt
= αn(1− n)− βnn.

We now consider that the E and h variables are the fast variables from
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Fig. 4.1. So ṅ is the slow equation and Ė and ḣ are the fast equations. The

equilibrium point for these equations is for Ė=ṅ=ḣ=0 being satisfied.

4.4 The Slow Manifold and Fast Foliation

As we have found E and h are equally fast, then we have two fast variables and

one slow variable. So therefore we will have a one-dimensional curve for the slow

manifold and a two-dimensional plane for the fast foliation. So we cannot use

Zeeman’s hypothesis, as we do not obtain a cusp in this reduced system instead

we will have a phase portrait similar to the FitzHugh system. We can still find

out if the trajectories make a limit cycle and how they travel along the slow

manifold. Therefore we have a jump return because of this result. So our system

is:

ε1
dE

dt
= − 1

CM

((m3hgNa + 0.14)(E − ENa) + (gK1 + gK2)(E − EK)

+gl(E − El)), (4.2)

ε1
dh

dt
= αh(1− h)− βhh,

dn

dt
= αn(1− n)− βnn.

This is the slow system.

We want to see what happens to the shape of the pacemaker potential as we

tend ε1 → 0. Figure 4.3 shows the pacemaker potentials of the reduced system

for ε1=1 (-) and the reduced system as we tend ε1 → 0 (.).

We see from Fig. 4.3 that the period of oscillations is shortening. So the

period has a limit as ε1 → 0. This is called the normal limit. We see from the

shape of the pacemaker potentials that as we tend ε1 → 0 we obtain a fast onset

and a sharp return. As ε1 → 0 we see that this furthers the quickening of the

fast onsets. So therefore we have a jump return here and not a smooth return.

Figure 4.3(a) is the same as the FitzHugh system, as we have the fast onset.

So the smooth returns are now changed to jump returns and this will give us a

phase portrait that is similar to Zeeman’s ”heart” model.

Now we introduce a new variable t=ε1T to obtain the fast system.

dE

dT
= − 1

CM

((m3hgNa + 0.14)(E − ENa) + (gK1 + gK2)(E − EK)
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Figure 4.3: Pacemaker potentials for the reduced system (4.2) with ε1 in front of the

Ė and ḣ equations. Reduced system with ε1=1 (-) and (a) ε1=0.1 (.) and (b) ε1=0.01

(.).

+gl(E − El)), (4.3)

dh

dT
= αh(1− h)− βhh,

dn

dT
= ε1(αn(1− n)− βnn).

System (4.2) gives us the slow manifold, if ε1=0.

h =
αh

(αh + βh)
= h,

f(E,n) = (m3hgNa + 0.14)(E − ENa) + (gK1 + gK2)(E − EK) + gl(E − El)

= 0.

Therefore the slow manifold is:

n =

(
(m3hgNa + 0.14)(ENa − E) + gK1(EK − E) + gl(El − E)

1.2(E − EK)

)1/4

,

ṅ = αn − (αn + βn)n.

The slow manifold is a one-dimensional curve as it only has one slow variable.

The ṅ equation is the projection of the slow manifold to the (h,E) plane.

System (4.3) gives us the fast foliation, if ε1=0.

n = constant,
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dE

dT
= − 1

CM

((m3hgNa + 0.14)(E − ENa) + (gK1 + gK2)(E − EK)

+gl(E − El)),

dh

dT
= αh(1− h)− βhh.

So the slow manifold is a curve and the fast foliation is a two-dimensional

plane in the (h,E) plane, as there are two fast variables consisting of planes

n=constant. Therefore, we won’t obtain a three-dimensional phase portrait, as

the slow manifold is a curve not a surface. Instead we are going to obtain a

two-dimensional phase portrait.

Figure 4.4 shows the graph of h, where h is a function of E.
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Figure 4.4: The graph of h.

4.5 Phase Portraits

As we are choosing to study a two-dimensional phase portrait not three-

dimensional, then we need to find the nullclines of the system. We find the

nullclines because we want to draw the four leaves of the fast foliation, so we can

see which parts of the slow manifold are stable and which parts are unstable.

We find the nullclines and trajectories of the following system.

dE

dT
= − 1

CM

((m3hgNa + 0.14)(E − ENa) + (gK1 + 1.2n4)(E − EK)
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+gl(E − El)), (4.4)

dh

dT
= αh(1− h)− βhh,

where we assume that n is a constant parameter defining the leaf.

We select four different values of n to draw portraits of four leaves of the fast

foliation. To draw the leaves we need to find the nullclines and the equilibria on

those nullclines by drawing trajectories of system (4.4).

The h nullcline is:

h =
αh

(αh + βh)
= h(E). (4.5)

The E nullcline is:

h =
0.14(ENa − E) + (gK1 + gK2)(EK − E) + gl(El − E)

m3gNa(E − ENa)
. (4.6)

The slow manifold is the set of equilibrium points of Ė and ḣ. We want to

study the Jacobian matrix of this system to check to see which branches on the

slow manifold are stable and which are unstable. We also want to find the fold

curve.

The stability of an equilibrium in system (4.4) is determined by the Jacobian

of the right hand sides of the equations. We use the determinant of the Jacobian

of these two equations as one of the equations that satisfies the fold curve, the

other equations that satisfies it are:

Ė = 0, ḣ = 0,

which gives the slow manifold,

n =

(
(m3hgNa + 0.14)(ENa − E) + gK1(EK − E) + gl(El − E)

1.2(E − EK)

)1/4

,

ṅ = αn − (αn + βn)n.

The Jacobian matrix is:

JEh =
∂(Ė, ḣ)
∂(E, h)
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=



−C−1
M (m2hgNa(m + 3m

′
(E − ENa)) −C−1

M m3gNa(E − ENa)

+g
′
K1

(E − EK) + gl + gK1

+1.2n4 + 0.14)

h
′

τh
− (h−h)τ

′
h

τ2
h

− 1
τh


.

However, at an equilibrium h=h(E), the Jacobian becomes:

JEh =



−C−1
M (m2hgNa(m + 3m

′
(E − ENa)) −C−1

M m3gNa(E − ENa)

+g
′
K1

(E − EK) + gl + gK1

+1.2n4 + 0.14)

h
′

τh
− 1

τh


.

An equilibrium is stable in linear approximation if and only if Tr(JEh) < 0

and det(JEh) > 0. So we have:

Tr(JEh) = −C−1
M (gl + gK1 + 1.2n4 + 0.14 + g

′

K1
(E − EK)

+m2hgNa(m + 3m
′
(E − ENa)))−

1

τh

,

det(JEh) = C−1
M τ−1

h (m2hgNa(m + 3m
′
(E − ENa)) + gl + gK1 + 1.2n4

+0.14 + g
′

K1
(E − EK) + m3gNa(E − ENa)h

′

).

We draw the graphs of the det(JEh) and Tr(JEh) against E to check

that we have the condition Tr(JEh) < 0 and det(JEh) > 0. We see from

Fig. 4.5 that the stability condition for Tr(JEh) < 0 is violated in the range

of E=(−68.25,−57.01) and that the condition for det(JEh) < 0 is satisfied in

the intervals E=(−∞,−77.37), (−55.54,−47.24), (−20.27, +∞).

We see that the interval of stability due to positive trace, lies in the interval

(−77.37,−55.54) of the determinant and here the equilibria are unstable due

to negative determinant. Therefore we have found that the slow manifold has

attractive (stable) and repelling (unstable) pieces, which are determined by the

sign of the determinant only. We can deduce the sign of the determinant and the

stability of the slow manifold from the slope of its (n,E) projection. The slow

manifold defines this projection.

We differentiate the slow manifold to find the slope of its projection as:
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Figure 4.5: Graph of Tr(JEh) (- -) and 10 ∗ det(JEh) (-).

dn

dE
= − 1

4n3(EK − E)1.2

(gl(EK − El) + (m3hgNa + 0.14)(EK − ENa)

(E − EK)

+
m2gNa(ENa − E)(E − EK)(3hm′ + mh

′
)− g′K1

(EK − E)2)

(E − EK)
.

We can rewrite this as:

dn

dE
= −

(
∂fE(n)

∂n

)−1(
∂fE

∂E
+

∂fE

∂h

dh

dE

)
,

where
(

∂fE(n)
∂n

)−1

= 1
4n3(EK−E)1.2

and fE(E, h, n(E))=(m3hgNa+0.14)(E−ENa)+

(gK1
+ 1.2n4(E))(E − EK) + gl(E − El).

We compare this with the det(JEh) which can be rewritten as:

det(JEh) = −C−1
M τ−1

h

(
∂fE

∂E
+

∂fE

∂h

dh

dE

)
.

We see that det(JEh) has the opposite sign to dn
dE

as long as E > EK , i.e.

during any physiologically sensible pacemaker potential. Therefore, the stable

points of the slow manifold are those where the slope of the projection of the

slow manifold to the (E, n) plane is negative.

The condition for the fold curve is det(JEh)=0, which gives:

gl + gK1 + 1.2n4 + 0.14 + g′K1
(E − EK) + m2hgNa(m + 3m′(E − ENa))

+h
′
(m3gNa(E − ENa)) = 0.
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Therefore,

n4 = −
(gl + gK1 + 0.14 + g′K1

(E − EK) + m2hgNa(m + 3m′(E − ENa)))

1.2

−(h
′
(m3gNa(E − ENa)))

1.2
.

We subtract the equation for the slow manifold from the equation above to

obtain:

gl(EK − El)− g
′

K1
(Em − EK)2 + (m3hgNa + 0.14)(EK − ENa)

+m2gNa(ENa − Em)(Em − EK)(mh
′

+ 3m
′
h) = 0.

This is the equation for the fold points and is the same as dn
dE

=0.

We draw the phase portraits of the fast leaves at specified values of n and this

shows us that the top branch and the bottom branch are stable and the middle

branch is split up into two unstable and one stable piece.

Figure 4.7 shows the phase portrait for the reduced system for two values of ε1

for the trajectory. So Fig. 4.7(a) has the trajectory for ε1=1 and Fig. 4.7(b) has

the trajectory for the reduced system for ε1=10−3 which corresponds to ε1 → 0.

We see that the trajectory starting from an initial point

(E0, n0, h0)=(−81.5, 0.5, 0.0019) will travel along the slow manifold until it

reaches the repellor piece; then it makes a jump up the fast foliation to the

attractor piece. The trajectory travels along the same path like this because we

have an unstable equilibrium point, and therefore we have a limit cycle. Here A

and D are our fold points (threshold).

Figure 4.7(c) is the pacemaker potential of the original system, which is the

same as Fig. 2.5(a). We can compare this pacemaker potential with the slow

manifold. We have labelled parts of the pacemaker potential and the slow man-

ifold so we can see which parts of the two graphs correspond to each other.

The pacemaker potential starts at A which corresponds to the trajectory

in Fig. 4.7. The trajectory jumps up the fast foliation to the point B as we

have a repellor piece on the slow manifold. This corresponds to the jump onset

(AB) on the pacemaker potential. Point B is the overshot and this can be seen

on the pacemaker potential as well. This corresponds to the time independent

potassium current gK1 , and the value 0.14 is a small component of gNa, which

is also a time independent variable. These two-time independent variables cause

113



10
−3

10
−2

10
−1

10
0

−100

−50

0

50

E
(m

V
)

h
(a)

10
−3

10
−2

10
−1

10
0

−100

−50

0

50

E
(m

V
)

h
(b)

10
−3

10
−2

10
−1

10
0

−100

−50

0

50

E
(m

V
)

h
(c)

10
−3

10
−2

10
−1

10
0

−100

−50

0

50

E
(m

V
)

h
(d)

Figure 4.6: Phase portraits of the fast leaves at the specified values of n with the

Ė=0 isoclines (- -), ḣ=0 isoclines (-), selected trajectories (:), stable equilibria (.) and

saddle points (*). (a) n=0.3, (b) n=0.5, (c) n=0.636 and (d) n=0.8.
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Figure 4.7: (a) The projection of the phase portrait of Noble’s system onto the (n, E)

plane with the slow manifold (-) and (- -), a selected ”pacemaker potential” trajectory

(:) and the positions of the selected fast leaves shown in figure 4.6 (-.). (b) Same as (a),

with the trajectory of the embedded system at ε1=10−3. (c) The pacemaker potentials

of the original (-) and embedded (.) systems. Letters A-E mark feature points on the

pacemaker potential trajectory.
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the overshot. The Hodgkin-Huxley model doesn’t have an overshot as it only

has gK2 in its equation.

At B the trajectory travels to C, which is an attractor piece of the slow

manifold and then travels along it to the point D, this corresponds to the path

CD on the pacemaker potential, then the trajectory makes another jump down

the fast foliation to E and then travels along the slow manifold to A, which is

where it started from, and follows the same path around again. The path BE

corresponds to the smooth return on the pacemaker potential. Then EA on the

pacemaker potential shows the start of the limit cycle as the trajectory moves

along the slow manifold to start its journey again and it goes on like this forever.

4.6 Using Tikhonov’s Approach for an Ex-

citable Version of Noble’s Model

We want to make Noble’s model excitable, because other systems in the heart

are excitable, e.g. human atrial cell, and we want to see what results we will

achieve if we use Tikhonov’s method to find the phase portrait.

We decide to modify the parameter EK from −100 to −110 to obtain an

excitable system, and therefore we will have one action potential solution not an

infinite series of solutions. So we cut the time period down to [0, 600], so that

we can see what happens during this one action potential solution. Therefore we

have a stable equilibrium point.

We decided to modify EK instead of the constant in front of the first expo-

nential in gK1 , e.g. change value from 1.2 to 1.3, even though Krinsky and Kokoz

said that you can obtain an excitable system by modifying gK1 [42].

We are not really interested in which parameter we change, as we want an

excitable system. We chose EK , because it is physiologically more feasible than

changing gK1 , as gK1 is harder to change if we want to find the result using

laboratory experiments, whereas EK can be changed with ease.

Also we compared the results from both modifications and preferred the accu-

racy we achieved using EK , but there are still different ways that Noble’s model

can be made excitable.

So we use Tikhonov’s method, equations and results from the previous four

sections and changed the parameter EK to −110 and redrew most of the graphs.

We also have to change the initial values to:
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E0 = −10, n0 = 0, h0 = 1.

We found that if we did this, the results are different, but still qualitatively

the same with the non-excitable model, and we still obtain a jump return, which

is a feature of Tikhonov’s method. This can be seen from Figs. 4.8, 4.9, and 4.10.
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Figure 4.8: Action potentials for the reduced system with ε1 in front of the Ė and

ḣ equations. ε1=1 (-) and ε1=0.1 (.). (a) The slow time scale, system (4.2). (b) The

fast time scale T , system (4.3). (c) Graph of T=Tr(JEh) (- -) and d=10 ∗det(JEh) (-).

Same as Fig. 4.3(a) and Fig. 4.5 with EK=−110.

We see that if we change the system to an excitable system, we have two

disjoint branches of the slow manifold, Fig. 4.10, as one piece is in the complex

plane. The trajectory travels along the slow manifold to the equilibrium point,

which is different to the non-excitable model as we have limit cycles there.

4.7 Summary

Even though Krinsky and Kokoz[42] found that they could reduce Noble’s 1962

model to a system of two equations by asymptotic methods, we have found

that we can reduce Noble’s system to a three-dimensional system of equations

consisting of (2+1) equations, i.e. two fast and one slow.

This is because Krinsky and Kokoz said that m and h are equally fast and

can be replaced with their quasi-stationary values, but from our analysis we have

found that this is not true. From our speed analysis of the original system, we

have found that m is super-fast, E and h equally fast and n is slow. Therefore

m can be replaced with its quasi-stationary value, but h can not, as h and E

must be considered fast at the same time.
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Figure 4.9: Phase portraits of the fast leaves at the specified values of n with the

Ė=0 isoclines (- -), ḣ=0 isoclines (-), selected trajectories (:), stable equilibria (.) and

saddle points (*). (a) n=0.3, (b) n=0.5, (c) n=0.636 and (d) n=0.8. Same as Fig. 4.6

with EK=−110.
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Figure 4.10: (a) The projection of the phase portrait of Noble’s system onto the (n, E)

plane with the slow manifold (-) and (- -), a selected ”action potential” trajectory (:)

and the positions of the selected fast leaves shown in figure 4.9 (-.). (b) Same as (a),

with the trajectory of the embedded system at ε1=10−3. (c) The action potentials of

the original (-) and embedded (.) systems. Letters A-E mark feature points on the

action potential trajectory. Same as Fig. 4.7 with EK=−110.

Krinsky and Kokoz also said that their two-dimensional system describes the

slow processes in Noble’s system and is not applicable for the description of the

onset of the action potential, which is the fast process. As we are interested in

studying both fast and slow processes of the system, then this method used by

Krinsky and Kokoz is not sufficient to us, even though the equation for the Ė=0

nullcline is the same equation as our slow manifold.

We have found that here we have one super-fast variable, m, two fast variables

h and E, and one slow variable, n, where the Hodgkin-Huxley system had two

fast variables, m and E and two slow variables, h and n. From this we have

seen that we have a one-dimensional slow manifold and a two-dimensional fast

foliation, this results in there not being a cusp. Therefore this gives us a FitzHugh

like phase portrait. Also, we cannot obtain a smooth return; instead we obtain

a jump return with limit cycles.

We have found that with there being two fast variables, we can’t test Zeeman’s

hypothesis on this model; but we have seen that it gives us a jump return which

corresponds with Zeeman’s ”heart” model in Section 2.4.1. The phase portrait

also corresponds with Zeeman’s ”heart” model except that we have a limit cycle

here and in Zeeman’s model we have the trajectories going straight to the stable

equilibrium. We can obtain a limit cycle with Zeeman’s model if we have x0 < 1√
3
.

We also found from analysing Tikhonov’s method for Noble’s oscillatory and

excitable systems that with using this method we still obtain a jump return.
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So to obtain more accurate results for excitable systems we need to introduce a

non-Tikhonov embedding.

We also see that there is the possibility of fast oscillatory instability, as this

is theoretically possible in systems with two fast variables, but not in systems

with one fast variable.

This is characterized by the change of sign in the trace of the Jacobian at the

equilibrium with a positive determinant, i.e. a Hopf bifurcation. This possibility

is not realised here because we have the change of sign in the trace, but a negative

determinant. However, because there exists a change of sign in the trace, doesn’t

say that this can’t happen for different parameter values, or in other models of

similar nature.

This would correspond to bursts of high frequency oscillations at the plateau

of the action potential, which can be seen in other models[57, 48].
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Chapter 5

Noble’s 1962 Model:

Non-Tikhonov Approach

In Chapter 4 we studied Noble’s model using Tikhonov’s method for fast-slow

systems of equations and found that we had a one-dimensional slow manifold and

a two-dimensional fast foliation. This was because we had a (1, 2, 1) asymptotic

structure. We saw from Fig. 4.3 that if we let ε1 → 0, then we obtained a fast

onset and a sharp return, so this is a jump return and not a smooth return.

We also saw from Section 4.6 that if we change the oscillatory system to an

excitable system, by modifying the parameter EK , and then using Tikhonov’s

method, we still obtain a fast onset and sharp (jump) return. This is therefore

a feature of Tikhonov’s method. The results for this are accurate, but we want

to obtain a smooth return. So to do this we will have to use a non-Tikhonov

embedding method.

We use a non-Tikhonov embedding method to obtain a non-Tikhonov system

of equations and therefore retain the fast onset and smooth return, instead of a

jump return. This will then confirm that we can reduce a fast-slow system of

equations and retain the smooth return, which we haven’t been able to do with

Hodgkin-Huxley’s model or Noble’s model, using Tikhonov’s method.

5.1 Non-Tikhonov Embedding of Noble’s

Model

We still have a (1, 2, 1) asymptotic structure for Noble’s model and a two-

parametric embedding, so we take Noble’s model once we have adiabatically
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eliminated the m variable:

dE

dt
= − 1

CM
((gNam

3h + 0.14)(E − ENa) + (gK1 + gK2)(E − EK) (5.1)

+gl(E − El)),
dh

dt
=

(h− h)
τh

,

dn

dt
=

(n− n)
τn

.

We know from Chapter 4 that if we just introduce an artificial small parameter

ε to system (5.1) in a Tikhonov way, then we will obtain Fig. 4.3 again. So this

time we introduce ε to the h equation, and for the E equation we just introduce

ε to the large current only, as Ė contains large and small currents. The large

current in Ė is INa, so we introduce 1
ε

in front of gNam
3h(E − ENa) only.

We also changed the EK parameter from −100 to −110 and this changed

the system from being oscillatory to excitable. Therefore we obtain one action

potential solution and not an infinite series of solutions. So we then cut the time

period down to [0, 600], so that we can see what happens during this one action

potential solution. Therefore a stable equilibrium exists, where the oscillatory

model had an unstable equilibrium, and the trajectories will travel to the equi-

librium point and not be limit cycles. We have a two-dimensional slow manifold

and a two-dimensional fast foliation here, whereas with Tikhonov’s method we

obtain a one-dimensional slow manifold and a two-dimensional fast foliation.

Figure 5.1 shows the action potential of system (5.1) with graphs for h and n

and we see that the action potential looks similar to Noble’s original pacemaker

potential, Fig. 4.3, except that we have one action potential here.

5.2 Replacing m3 and h with Heaviside Func-

tions

From Fig. 5.2(a) we observed that we could replace m3 and h with Heaviside

functions:

m3 ≈ θ(E − Em), h ≈ θ(Eh − E), (5.2)

where Em=−14 and Eh=−69.
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Figure 5.1: Action potential of system (5.1) (-), with h (-.) and n (- -).

This method was obtained from Biktashev’s papers[58, 59] on the dissipation

of excitation wave fronts, where in these papers this method was used for the

Hodgkin-Huxley and Courtemanche et al’s models.
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Figure 5.2: (a) Graph of m3 (-) and h (- -) with the products of 100m3h (.) and

1000m3h
′
(:). (b) Action potential of system (5.1) (-) with approximations (5.2) and

h (-.) and n (- -).

Once we’ve done this we draw the action potential and graphs for n and h,

system (5.1), with the approximations (5.2) to see what happens to the action

potential. We see from Fig. 5.2(b) that with this approximation we shorten the

fast onset of the action potential and therefore shorten the return by making the

action potential return immediately to the resting state. This was not what we
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wanted to do, as we wanted to replace m3 and h and still retain the qualitative

properties of the system.

We can see why this happens by drawing the currents for the reduced

system (5.1), and the reduced system with the approximations (5.2). Fig-

ure 5.3(a) shows the currents for the reduced system without the approxima-

tions, where INa=gNam
3h(E − ENa) (- -), Iout=(gK2 + gK1)(E − EK) (:) and

Iin=gl(E − El) + 0.14(E − ENa) (-.) and Fig. 5.3(b) shows the currents for the

reduced system with the approximations.

We see that if we compare both graphs, the reason for the shortening of the

action potential is that INa closes very quickly. So instead of closing at t about

350ms, it closes near enough immediately and therefore we have the voltage

returning to the resting state. This is because the m and h gates remain close

to their quasi-stationary values as voltage slowly decreases, and therefore their

product with the approximation is zero.

In the reduced model, without the approximations, the product of m3h re-

mains non-zero and therefore plays a significant role in returning the action

potential to its resting state. This product plays a significant role because if it is

multiplied by gNa, which is a large number, it makes the sodium current large and

therefore comparable to the potassium and leakage current. This sodium current

is called the ”window” sodium current because it runs in the region [Eh, Em],

where the product of the gates is very small and therefore almost closed. This

feature of Noble’s model of Purkinje cells is not observed in models of other types

of cells, e.g. Courtemanche’s model, which can be seen in Fig. 5.3(c).

A study of the ”window” sodium current was done in 1979 by Attwell et

al[60], where he found that the sodium current was large and INa∞ will not be

zero if both m3 and h are non-zero. INa is only zero if m3 → 0 at negative

potentials and if h → 0 at positive potentials.

We also see in Fig. 5.3(a) that the potassium current counteracts the sodium

current for most of the plateau phase.

5.3 Axiomatic Approach

From Fig. 5.2(b) we found that if we replace m3 and h with Heaviside functions,

then we shorten the action potential, therefore this is not a good approximation,

as we don’t want to do this. So we need to find another approximation that will
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Figure 5.3: Graph of the currents INa (- -), Iout (:) and Iin (-.), and action potential (-)

for (a) the reduced system (5.1) without the approximations (5.2) and (b) system (5.1)

with the approximations (5.2) and (c) for Courtemanche’s system (2.18).

allow us to retain the shape of the action potential.

To do this we use an axiomatic approach and obtain some axioms from obser-

vations of the properties of system (5.1). Then once we do this we can obtain a

more accurate approximation and perform the embedding on the system to find

the slow manifold, fast foliation and the phase portraits.

The axioms are:

A1 constant gNa=400 is large compared to similar constants 0.14 in INa,

gK=1.2, and gl=0. So we can describe gNa by a small parameter ε, be-

cause the value of associated small constants gK/gNa etc are of the order

of 10−2. Therefore we replace gNa with:

gNa(ε) = ε−1gNa.

A2 Function 1
τh

is large, so h is a fast variable. Also the speed of h is comparable

to E during the upstroke and they both are faster than n. Therefore, we

characterise this speed by the same small parameter ε, so that:

τh(E; ε) = ετh(E).

A3 Function m3(E) is finite, in fact mostly close to unity, for E > Em and

small below it, Fig. 5.2(a). The value of the switch voltage Em can be

chosen at around the solution of m(E)=1/2, which is −14. Therefore we

replace m(E) with m(E; ε) so that:

lim
ε→0

(
m(E; ε)3

)
= M(E)θ(E − Em).
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A4 Function h(E) is finite, mostly close to unity, for E < Eh and small above

it, Fig. 5.2(a). The value of the switch voltage Eh can be chosen at around

the solution of h(E)=1/2, which is −69. So we replace h(E) with h(E; ε)

where:

lim
ε→0

h(E; ε) = H(E)θ(Eh − E).

A5 The switch voltages obey the inequality:

Em > Eh.

This is obviously satisfied from Fig. 5.2(a). A consequence of A3, A4 and

A5 is that limε→0

[
m3h

]
=0.

A6 The product of W (E)=m3(E)h(E) is small, which can be seen in

Fig. 5.2(a), and is of the order of ε. We assume, therefore, that:

lim
ε→0

[
ε−1m3(E; ε)h(E; ε)

]
= W̃ (E) > 0,

where W̃ (E) is in some sense close to W (E).

A7 In addition to A5, we will also assume that:

lim
ε→0

[
m3 ∂

∂E
h

]
= 0.

So these axioms allow us to do our asymptotic embedding of system (5.1),

where they say that we can introduce ε−1 in front of gNam
3h(E − ENa) and ḣ

only. Then we obtain a more accurate approximation for m3 and h and also

add the product W (E) to Ė as we need this for our approximations to work.

Therefore we won’t be shortening the action potential.

The reason we obtain W (E) (A6) is because h is small, but m is not, which can

be seen from Fig. 5.2(a). So with m not being small, if we tend ε → 0 to study

the embedding, we have a small parameter ε multiplied by a large parameter

gNam
3 and therefore we can’t neglect gNam

3h(E −ENa). In Chapter 6 later on,

we study the embedding for the fast time stage for Courtemanche’s model where

we see that m is small and if ε → 0 we can neglect the INa current, and therefore

we don’t need to introduce the term W (E).
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So if we study our embedding, ε → 0, we obtain a finite function of E, W (E),

which is positive and not smaller than ε. So ε−1W (E) will leave a finite function

as ε → 0.

A7 is included to assure that h
′

is small as well.

Therefore we obtain our asymptotic embedding of system (5.1):

dE

dt
= − 1

CM
((ε−1gNam

3(E; ε)h + 0.14)(E − ENa) (5.3)

+(gK1 + gK2)(E − EK) + gl(E − El)),
dh

dt
= ε−1 (h(E; ε)− h)

τh
,

dn

dt
=

(n− n)
τn

,

where A1-A5 is taken into account.

Now we consider system (5.3):

dE

dt
= − 1

CM
((ε−1gNam

3(E; ε)h(E; ε) + 0.14)(E − ENa) + (gK1 + gK2)(E − EK)

+gl(E − El)) + o(1),

O(ε) = h(E; ε)− h,

dn

dt
=

(n− n)
τn

,

where the o(1) term in the first equation is due to the small deviation of h and

h. As ε → 0 and taking into account A6 and A7, we have:

dE

dt
= − 1

CM
((gNaW̃ (E) + 0.14)(E − ENa) + (gK1 + gK2)(E − EK) (5.4)

+gl(E − El)),

h = H(E)θ(Eh − E),
dn

dt
=

(n− n)
τn

.

System (5.4) defines the slow manifold which is two-dimensional because we

have two slow variables. Variables E and n are the slow variables and therefore

E is both a fast and slow variable, which is a non-Tikhonov feature.

Variable E is a fast variable because if we use the change of variable t=εT

and ε → 0 we obtain the fast system:
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dE

dT
= − 1

CM

(gNaM(E)θ(E − Em)h(E − ENa)), (5.5)

dh

dT
=

(H(E)θ(Eh − E)− h)

τh

,

n = constant.

From system (5.5) we see that we have two fast variables E and h. The slow

manifold is the set of equilibria of this system and is defined by the set of finite

equations:

M(E)θ(E − Em)h = 0, (5.6)

H(E)θ(Eh − E)− h = 0. (5.7)

With the substitution of (5.7) into (5.6) taking into account that A5 makes

(5.6) an identity due to the product of the two Heaviside functions. Therefore

we have a co-dimension one slow manifold that is defined by (5.7), as we have a

three-dimensional system and a two-dimensional slow manifold, it therefore has

co-dimension one. This is a non-Tikhonov feature, because in a Tikhonov system

the co-dimension of the slow manifold is equal to the number of fast variables.

This feature is the consequence of (5.6) becoming an identity if (5.7) is satisfied,

which in turn is a consequence of a near-perfect switch behaviour of h(E) and

m(E).

A consequence of this feature is that all equilibria of the fast system are not

isolated, and therefore we cannot use Tikhonov’s method here, as it requires

asymptotic stability of equilibria of the fast system.

5.4 Modifying System (5.1)

From our axioms we can modify the reduced system (5.1) and analyse the asymp-

totics to see if we obtain an action potential that looks similar to Fig. 5.1. There-

fore our modified system is:

dE

dt
= − 1

CM
((gNaMθ(E − Em)h + gNaW + 0.14)(E − ENa) (5.8)

+(gK1 + gK2)(E − EK) + gl(E − El)),
dh

dt
=

(Hθ(Eh − E)− h)
τh

,
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dn

dt
=

(n− n)
τn

,

where M=m3, H=h and W=m3h.

Here we add to the Ė equation another time-independent variable W , which

is separate from the sodium current.

Figure 5.4 shows the action potential, the h and n graphs for systems (5.8)

and (5.1). We see that the two graphs are similar, but there is a slight difference

in the return due to m and h being replaced by Heaviside functions, as h now

has a fracture point instead of a round point as h changes from h to 0.

Therefore the modified system has the same asymptotic properties as the

original system, but now the modified system produces them constructively via

a smooth explicit embedding, rather than axiomatically or via discontinuous

embedding. So now the action potential has a fast onset and a smooth return,

not a fast onset and a jump return like Fig. 4.3. This is now similar to Zeeman’s

”nerve” model where Zeeman had a fast onset and a smooth return, Fig. 2.11(c).
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Figure 5.4: Action potential of system (5.8) (blue:), h (black:) and n (red:) with the

curves for E (-), n (- -) and h (-.) from the original system (5.1).

System (5.8)’s simplest asymptotic embedding, agreeing with axioms A1-A7,

is:

dE

dt
= − 1

CM
((ε−1gNaMθ(E − Em)h + gNaW + 0.14)(E − ENa) (5.9)

+(gK1 + gK2)(E − EK) + gl(E − El)),
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dh

dt
= ε−1 (Hθ(Eh − E)− h)

τh
,

dn

dt
=

(n− n)
τn

.

We use the change of variable t=εT to obtain the fast system:

dE

dT
= −C−1

M (gNaMθ(E − Em)h(E − ENa) + (5.10)

ε((gNaW + 0.14)(E − ENa) + (gK1 + gK2)(E − EK) + gl(E − El))),
dh

dT
=

(Hθ(Eh − E)− h)
τh

,

dn

dT
= ε

(n− n)
τn

.

For ε → 0, the slow system is:

dE

dt
= −C−1

M ((gNaW + 0.14)(E − ENa) + (gK1 + gK2)(E − EK) (5.11)

+gl(E − El)),

h = Hθ(Eh − E),
dn

dt
=

(n− n)
τn

.

This gives us the slow manifold, defined by h, which is a two-dimensional

surface as we have two slow variables.

The fast system, for ε → 0, is:

dE

dT
= −C−1

M gNaMθ(E − Em)h(E − ENa), (5.12)

dh

dT
=

(Hθ(Eh − E)− h)

τh

,

n = constant.

This gives us the fast foliation, which is n=constant, and it is a two-

dimensional plane in the (h,E) plane, as there are two fast variables consisting

of planes n=constant.

Figure 5.5 shows the embedding for systems (5.9) and (5.10) for two values of

ε. We see that as ε → 0 the fast onset on the action potential becomes sharper

and this shows the onset getting quicker. We don’t see much more change to the

action potential, so this shows that the modified embedding is accurate.

129



0 300 600
−100

0

50

0 300 600

0

0.5

1

E
(m

V
)

n
,h

t(ms)
(a)

0 0.5 1
−100

0

50

0 0.5 1

0

0.5

1

E
(m

V
)

n
,h

t(ms)
(b)

0 0.5 1
−100

0

50

0 0.5 1

0

0.5

1

E
(m

V
)

n
,h

T (ms)
(c)

Figure 5.5: Action potential (-) with n (- -) and h (-.) for different values of ε for

(a,b) system (5.9) and (c) system (5.10). ε=0.001 (:).

5.5 Slow System

Our phase portrait is going to be two-dimensional like in Chapter 4, so we take

system (5.11) and analyse it so that we can draw the phase portrait. We want

to find the nullclines, equilibrium points and their stability and trajectories for

this system.

The n nullcline is:

n = n(E),

and the E nullcline is:

0 = (gNaW + 0.14)(E − ENa) + (gK1 + gK2)(E − EK) + gl(E − El),

n4 =

(
(gNaW + 0.14)(ENa − E) + gl(El − E) + gK1(EK − E))

1.2(E − EK)

)
.

The equation for n4 is the same equation as the slow manifold in the Tikhonov

embedding, except that here EK=−110.

To find the stability of the three points where the n and E nullclines intersect,

(n,E)=(0.281,−61.09), (0.51,−46.09), and (0.02366,−95.7453), we find the Ja-

cobian of the system (5.11). We use the determinant of the Jacobian of Ė and

ḣ as one of the equations that satisfies the fold curve, the other equations that

satisfies it are:

Ė = 0, ḣ = 0.

The Jacobian matrix is:

JEn =
∂(Ė, ṅ)
∂(E,n)
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=



−C−1
M (gl + gK1 + 1.2n4 + 0.14 −4C−1

M n31.2(E − EK)

gNam
3h + g

′
K1

(E − EK)

+m2gNa(ENa − E)(mh
′
+ 3m

′
h))

n
′

τn
− (n−n)τ

′
n

τ2
n

− 1
τn


.

However, at an equilibrium n=n(E), the Jacobian becomes:

JEh =



−C−1
M (gl + gK1 + 1.2n4 + 0.14 −4C−1

M n31.2(E − EK)

gNam
3h + g

′
K1

(E − EK)

+m2gNa(ENa − E)(mh
′
+ 3m

′
h))

n
′

τn
− 1

τn


.

An equilibrium is stable in linear approximation if and only if Tr(JEn) < 0

and det(JEn) > 0. So we have:

Tr(JEn) = −C−1
M (gl + gK1 + 1.2n4 + 0.14 + g

′

K1
(E − EK) + gNam

3h

+m2gNa(E − ENa)(mh
′

+ 3m
′
h))− 1

τn

,

det(JEn) = C−1
M τ−1

n (gl + gK1 + 1.2n4 + 0.14 + gNam
3h + g

′

K1
(E − EK)

+m2gNa(E − ENa)(mh
′

+ 3m
′
h) + 4n31.2(E − EK)n

′
).

We draw the graphs of the det(JEn) and Tr(JEn) against E to check where

our points lie and if they are stable (Tr(JEn) < 0 and det(JEn) > 0), unstable

(Tr(JEn) > 0 and det(JEn) > 0) or a saddle (Tr(JEn) < 0 and det(JEn) <

0). We see from Fig. 5.6 that (n, E)=(0.0236,−95.7453) (F) is a stable point,

(n, E)=(0.281,−61.09) (G) is a saddle point and (n,E)=(0.51,−46.09) (H) is

an unstable point. So therefore the slow manifold has attractive and repelling

pieces, which are determined by the sign of the determinant.

From studying the stability, we found that G is an unstable spiral as

Tr(JEn)2 − 4det(JEn) < 0. The eigenvalues for all three points are:

F : λ1 = 0.0408, λ2 = −0.00165,

G : λ1,2 = 0.0084± 0.0019i,

H : λ1 = −0.0022, λ2 = −0.088.
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to Fig. 5.7.

Figure 5.7(a) and (b) show the phase portraits for the slow system with a

trajectory (thick dotted line) for system (5.9) with (a) ε=1 and (b) ε=0.001.

Also we see that for ε → 0 the onset becomes sharper. So the trajectory will

start at point B and travel along the slow manifold until it reaches the repellor

piece of the slow manifold (D), this is our fold point (threshold), then it jumps

down the fast foliation to the point (E) and travels along the stable piece of the

slow manifold until it reaches the equilibrium point (F).

The phase portrait is similar to Fig. 4.7, except here our slow manifold has a

section that is in the complex plane, and therefore cannot be seen, and we have

a stable equilibrium point instead of an unstable one. Also here the two points

that are a saddle and unstable points can be seen more clearly.

The action potential in Fig. 5.8 can be compared with the trajectories to see

what happens to the onset and the return.

5.6 Fast System

We take system (5.12) and analyse it so that we can draw its phase portrait. We

want to find the isoclines, equilibrium points and trajectories.

The h isocline is:

h = Hθ(Eh − E),
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Figure 5.7: Phase portrait for the slow system with n nullcline (-), E nullcline (-

-) and numerical trajectories, system (5.11), for (a) ε=1 and (b) ε=0.001 (:). The

thick dotted line is the trajectory corresponding to system (5.9). The arrows represent

the flow of the trajectory. A-F mark feature points of the action potential trajectory.

G=(0.281,−61.09) and H=(0.51,−46.09).
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Figure 5.8: Action potential for system (5.9) (-) with h (-.) and n (- -), for ε=1 and

ε=0.001 (:).
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and the E isocline is defined by equation:

gNaM(E)θ(E − Em)h(E − ENa) = 0.

From this the solutions are:{
E ∈ [−∞, Em],

h ∈ [0, 1],

{
E ∈ [−∞, +∞],

h = 0,

and {
E = ENa,

h ∈ [0, 1].

The equation for the equilibrium points satisfies dh
dT

=0 and dE
dT

=0. We know

that for dh
dT

=0 we obtain h=Hθ(Eh − E), so we put this into the equation for
dE
dT

=0 to obtain:

gNaMθ(E − Em)Hθ(Eh − E)(E − ENa) = 0.

The solution from this equation is:{
E ∈ [−∞,∞],

h = Hθ(Eh − E).

Figure 5.9(a) and (b) shows the phase portraits for the fast system with a

trajectory (thick dotted line) for system (5.10) with (a) ε=1 and (b) ε=0.001.

5.6.1 If we consider τh as a constant

We replace τh with a constant to obtain an analytical solution for the trajectories

of system (5.10).

We choose the value for τh at E=ENa. We used ENa because we are only

interested in the region [Em, ENa] and this is the maximum value of E in this

range.

If E < Em, the trajectories are straight lines as we have:
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Figure 5.9: Phase portrait for the fast system with h isocline (-), E isocline (- -) and

the dashed region, equilibrium points (-.), numerical trajectories, fast system (5.12),

(:) for (a) ε=1 and (b) ε=0.001. The thick dotted trajectory corresponds to the full

system (5.10). The arrows represent the flow of the trajectories.

dE

dT
= 0,

dh

dT
=

Hθ(Eh − E)− h

τh

,

as Mθ(E − Em)=0. Therefore E=constant and

h = Hθ(Eh − E) + (h0 −Hθ(Eh − E))e−(T−T0)/τh(E).

If E > Em, Hθ(Eh − E) = 0 and Mθ(Em − E)=m3.

dh

dE
=

dh
dT
dE
dT

=
Cm

τh(ENa)gNam
3(E)(E − ENa)

,∫ h

h0

dh =
Cm

τh(ENa)gNa

∫ E

E0

1

m3(E)(E − ENa)
dE,

h = h0 +
Cm

τh(ENa)gNa

∫ E

E0

1

m3(E)(E − ENa)
dE. (5.13)

We obtain our answer for the analytical trajectories in quadratures because

m3 is a function containing exponentials and therefore equation (5.13) cannot be

integrated easily.
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5.7 Summary

We have found a non-Tikhonov embedding that retains the qualitative properties

of Noble’s system, fast onset and smooth return. We kept the asymptotic struc-

ture of Noble’s system, but found that if we tend ε → 0 in the three-dimensional

system, including the approximations for m and h, that we didn’t obtain a one-

dimensional slow manifold, like in Chapter 4, instead we have a two-dimensional

slow manifold.

To be able to do the asymptotic embedding of Noble’s reduced system (5.1),

we needed to modify this system so that we could retain the asymptotic properties

of the system. So we formulated seven axioms that described the properties of

the three-dimensional reduced system (5.1) and from these we could obtain our

modified model (5.8), then we could do our asymptotic embedding on this system

to obtain the phase portraits in the fast and slow time scales.

We found from our analysis that the simple asymptotic embedding, replacing

m and h with Heaviside functions, didn’t retain the qualitative features of the

system, whereas the embedding for the modified model did. So from the phase

portraits for the fast and slow embedding we found that the trajectories travelled

to the equilibrium point of system (5.8).

We compared the two phase portraits of the slow time scale with Fig. 4.7

and saw that the E nullcline had the same equation as the slow manifold using

Tikhonov’s embedding in Chapter 4.

In the fast system we don’t have different fast leaves as before for different

values of n, instead here n doesn’t enter our equations. So we have the same fast

phase portrait for all n with nullclines, sets of equlilbria points and trajectories

that follow the nullclines to the equilibrium point.

Therefore the main features of the non-Tikhonov embedding are:

1. that it preserves the smooth return of the original four-dimensional

system,

2. E is both a fast and slow variable,

3. the fast subsystem is extremely unusual because it gives a whole line of

equilibria which are neither asymptotically stable or isolated, and

4. the slow manifold has co-dimension one, despite having two slow variables.
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Chapter 6

The Human Atrial Cell Action

Potential-Courtemanche et al

Model

In this chapter we analyse the Courtemanche et al model[1], with a view to

reduce it to a simpler form using asymptotic methods, and then perform quali-

tative analysis wherever possible. As the model is much more complicated than

the models considered previously, we deliberately restrict our attention to ap-

proximating one selected action potential solution.

We choose to study one solution for a certain initial condition and not a series

of solutions for different initial conditions, as this would be too complicated. We

only use one solution to see how accurate our methods are, and if they will work

for a complicated model for one solution.

We want to demonstrate that the asymptotic techniques are applicable in

principle to detailed contemporary models.

6.1 Time Scales and Time Stages

We want to analyse the Courtemanche system, so we can reduce it to a combi-

nation of simpler systems, which don’t contain small parameters.

6.1.1 The action potential solution

In their paper[1] Courtemanche et al uses two different values for Ist, where Ist

is the stimulus current, which is a function that depends on time. Ist takes two
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values depending on time which is written as:

Ist(t) = Ist(max)θ(t− 100)θ(102− t),

where Ist(max)=−2000pA and time t is measured in ms.

From this we can see that for the first 100ms, Ist=0 and there is a balance of

membrane currents in diastole. Courtemanche et al says that during the diastole

phase, the relaxed state of the heart, the steady state involves a balance be-

tween the pump and exchanger currents INa,K , Ip,Ca and INa,Ca, the background

currents Ib,Na and Ib,Ca, and IK1 .

Then at 100ms a 2ms pulse of Ist=Ist(max), twice the diastolic threshold, is

introduced to the system of equations and this causes the overshot to happen in

the action potential. This pulse is over at 102ms, so Ist=0 again and the voltage

returns back to its resting state. This gives us a spike and dome shaped action

potential as seen in Fig. 6.1(a).

We want to treat system (6.1) without external stimulus current, Ist, so we

put Ist always equal to zero and therefore we don’t have the 100ms diastole state,

instead we’ll start our action potential at t=0.

To be able to do this we need to find the threshold value of E0 that will let us

keep the shape of the action potential for Ist=0. From our numerical experiments

we have found that any value between [−50, 0] will do this, so we choose the value

E0=−20 so that we can see the overshot happening. So Fig. 6.1(b) shows the

action potential for our new values of E0=−20 and Ist=0.

0 100 200 300 400 500 600
−100

−80

−60

−40

−20

0

20

E
(m

V
)

t(ms)
(a)

0 100 200 300 400 500 600
−100

−80

−60

−40

−20

0

20

E
(m

V
)

t(ms)
(b)

Figure 6.1: Action potential of CRN-21 with (a) Ist=−2000, E0=−81.18 and (b)

Ist=0, E0=−20.

Our CRN-21 system is:
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dE

dt
= −Iion

CM
, (6.1)

Iion = INa(E,m, h, j) + IK1(E,Ki) + Ito(E,Ki, oa, oi)

+IKur(E,Ki, ua, ui) + IKr(E,Ki, xr) + IKs(E,Ki, xs)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E,Nai)

+INaCa(E,Nai, Cai) + Ib,Na(E,Nai) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = m,h, j, oa, oi, ua, ui, xr, xs, d, f, fCa, u, v, w,

dNai

dt
= (FVi)(−1)(−3INaK(E,Nai) + 3INaCa(E,Nai, Cai)

+Ib,Na(E,Nai) + INa(E,m, h, j)),
dKi

dt
= (FVi)(−1)(2INaK(E,Nai)− IK1(E,Ki)− Ito(E,Ki, oa, oi)

−IKur(E,Ki, ua, ui)− IKr(E,Ki, xr)− IKs(E,Ki, xs)

−Ib,K(E,Ki)),
dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Nai, Cai)− Ip,Ca(Cai)

−ICa,L(E, d, f, fCa)− Ib,Ca(E,Cai))

+(Vi)(−1)(Vup(Iup,leak(Caup)− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCaup

dt
= Iup(Cai)− Iup,leak(Caup)− Itr(Caup, Carel)

Vrel

Vup
,

dCarel

dt
=

(Itr(Caup, Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) ,

and the initial conditions are:

y0 = (E0, Nai0,Ki0, Cai0, Caup0, Carel0,m0, h0, j0, oa0 , oi0 , ua0 , ui0 , xr0 , xs0 , d0,

f0, fCa0 , u0, v0, w0),

= (−20, 11.17, 0.0139, 1.013 ∗ 10−4, 1.488, 1.488, 2.908 ∗ 10−3, 0.9649, 0.9775,

0.03043, 0.9992, 4.966 ∗ 10−3, 0.9986, 3.296 ∗ 10−5, 0.01869, 1.367 ∗ 10−4,

0.9996, 0.7755, 2.350 ∗ 10−112, 1, 0.9992).
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6.1.2 Speed analysis

We first want to be able to put the variables into two categories, super-fast

and super-slow. There are also fast and slow variables as well, but we are only

interested at the moment in determining which are super-fast and which are

super-slow. To do this we use Tikhonov’s method for fast-slow systems to find

which variables are super-fast and which are super-slow. We draw the graph of

the τ ’s for the 21 variables in this system.

To obtain the graphs of the τ ’s against time we use the definition:

τy = −
∣∣∣∣ ∂

∂y

(
dy

dt

)∣∣∣∣−1

, (6.2)

where y=E, Cai,Nai,Ki, Caup, Carel, m, h, j, oa, oi, ua, ui, xr, xs, d, f, fCa, u, v

and w.

Figure 6.2 shows us the graph of the τ ’s and from this we can see that the

variables with the smaller τ will be called super-fast and fast variables, the

variables with the larger τ will be called super-slow and slow variables. This

helps us to obtain an asymptotic embedding of the system using the super-fast,

super-slow, fast and slow variables.

As we see from Fig. 6.2, the τ ’s intersect each other for the time period

[0, 600], but we are able to see clearly that the m variable is a super-fast variable

and the Ki and Nai variables are the super-slow variables.
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Figure 6.2: Graph of the ln(τ)’s for CRN-21, system (6.1), for Ist=0, E0=−20, and

(a) t=[0, 600] and (b) t=[0, 3].
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6.1.3 Elimination of the super-slow variables

We start eliminating the super-slow variables from CRN-21. We consider Nai,

Ki, Caup and ui as the super-slow variables as these are the largest τ ’s, from

Fig. 6.2.

We want to check that the super-slow variables are actually super-slow vari-

ables. So we take CRN-21 and we introduce ε to the right-hand sides of Nai,

Ki, Caup and ui. We then tend ε to zero to see what happens to the shape of

the action potential. We also check this by putting ε=0 in system (6.3). So we

replace system (6.1) with:

dE

dt
= −Iion

CM
, (6.3)

Iion = INa(E,m, h, j) + IK1(E,Ki) + Ito(E,Ki, oa, oi) + IKur(E,Ki, ua, ui)

+IKr(E,Ki, xr) + IKs(E,Ki, xs) + ICa,L(E, d, f, fCa) + Ip,Ca(Cai)

+INa,K(E,Nai) + INaCa(E,Nai, Cai) + Ib,Na(E,Nai) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = m, h, j, oa, oi, ua, xr, xs, d, f, fCa, u, v, w,

u̇i = ε
(ui − ui)

τui

,

dNai

dt
= ε(FVi)(−1)(−3INaK(E,Nai) + 3INaCa(E,Nai, Cai) + Ib,Na(E,Nai)

+INa(E,m, h, j)),
dKi

dt
= ε(FVi)(−1)(2INaK(E,Nai)− IK1(E,Ki)− Ito(E,Ki, oa, oi)

−IKur(E,Ki, ua, ui)− IKr(E,Ki, xr)− IKs(E,Ki, xs)− Ib,K(E,Ki)),
dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Nai, Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(Iup,leak(Caup)− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Caup, Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) ,

dCaup

dt
= ε

(
Iup(Cai)− Iup,leak(Caup)− Itr(Caup, Carel)

Vrel

Vup

)
.

If we put ε=0 we see that the resulting action potential doesn’t change com-

pared to the CRN-21 action potential and this can be seen in Fig. 6.3(a).
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Figure 6.3: Graphs of CRN-21, system (6.1), (-) and CRN-21, system (6.3), (.) with

the super-slow variables frozen, Nai, Ki, Caup and ui. (a) E, (b) Nai, (c) Ki, (d)

Caup, and (e) ui.
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We also see from Fig. 6.3(b), (c) and (d) that if ε=0 Nai, Ki, Caup and ui

can be treated as their initial values. So therefore the variables can be replaced

with their initial values, as they are super-slow variables. Now we have a system

of 17 equations, CRN-17:

dE

dt
= −Iion

CM
, (6.4)

Iion = INa(E,m, h, j) + IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr)

+IKs(E, xs) + ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + Ib,Na(E)

+INaCa(E,Cai) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = m,h, j, oa, oi, ua, xr, xs, d, f, fCa, u, v, w,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(Iup,leak − Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

6.1.4 Adiabatical elimination of the super-fast variables

Now that we have eliminated the super-slow variables, we can eliminate the

super-fast variables. We see that m, ua and w have the smallest τ ’s, so we check

this by introducing 1/ε to the right-hand sides of their equations:

ẋ =
1

ε

(x− x)

τx

, x = m, ua, w. (6.5)

If we tend ε to zero, we obtain the solution x=x and we can adiabatically

eliminate these variables from system (6.4) by replacing them with their quasi-

stationary values in the system. Where,

x =
αx

αx + βx

,

for all gating variables.

143



As we want to replace x with x, then we want to see what difference there is

between x and x for these variables and this shows us how accurate the replace-

ment is. We draw the graphs for each variable in the long and short time scales

to see the differences, Fig. 6.4. For the short time scale we can see where the

differences are and they are mostly at the spike.

We see that m is close to its quasi-stationary value. So this gives us the result

that m is a super-fast variable and is also responsible for the excitability at the

spike.

We see that there are changes in ua and w. These variables correspond to

the height of the spike being higher than for CRN-21 in the time scale t=[0, 600],

but we can still consider them a good replacement.
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Figure 6.4: Graphs of the super-fast variables (-) and their quasi-stationary values (.)

for CRN-17, system (6.4), (a) m, t=[0, 600], (b) w, t=[0, 600], (c) ua, t=[0, 600], (d)

m, t=[0, 3], (e) w, t=[0, 3] and (f) ua, t=[0, 3].

So we now know that this is a good replacement, therefore we put ε=0 in

CRN-17 and replace x=x to give us a new system CRN-14:

dE

dt
= −Iion

CM
, (6.6)

Iion = INa(E,m, h, j) + IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr)

+IKs(E, xs) + ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + Ib,Na(E)
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+INaCa(E,Cai) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = h, j, oa, oi, xr, xs, d, f, fCa, u, v,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) ,

and the initial conditions are:

y0 = (E0, Nai0,Ki0, Cai0, Caup0, Carel0,m0, h0, j0, oa0 , oi0 , ua0 , ui0 , xr0 , xs0 , d0, f0,

fCa0 , u0, v0, w0),

= (−20, 11.17, 0.0139, 1.013 ∗ 10−4, 1.488, 1.488, 2.908 ∗ 10−3, 0.9649, 0.9775,

0.03043, 0.9992, 4.966 ∗ 10−3, 0.9986, 3.296 ∗ 10−5, 0.01869, 1.367 ∗ 10−4,

0.9996, 0.7755, 2.350 ∗ 10−112, 1, 0.9992).
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Figure 6.5: Action potential of CRN-17, system (6.4), (-) and CRN-14, system (6.6),

(.) for the time periods (a) [0, 600] and (b) [0, 3].

We draw the action potential for CRN-17 and CRN-14 for two time periods,

Fig. 6.5, to see what difference it makes to the action potential. The difference is

that the spike is higher for CRN-14. So we want to check which variable causes

145



this. To do this we take CRN-17, and use the time period [0, 3] to obtain a better

look, Fig. 6.6. We then adiabatically eliminate each variable separately to see

which causes the spike. Figure 6.6(a) shows that the m variable is responsible

for the change, so m plays the essential role at the spike. As the change is only in

the spike of the action potential for a small moment of time, we can say that the

qualitative behaviour of the system hasn’t been modified and that the change is

such a small percentage of the whole that we can carry on analysing CRN-14.

All the other variables make no or little change here.
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Figure 6.6: (a) Action potential for CRN-17, system (6.4), (-) for the time period

[0, 3] with the following variables adiabatically eliminated (a) m (.), (b) ua (.) and (c)

w (.).

6.1.5 Definition of the fast, intermediate and slow time

stages

We have found from our numerical experiments that the sodium current is only

open for a short period of time, which is approximately [t0, t1]=[0, 1.2] and then

it is over and can be treated as zero after that. So we can split CRN-14 into

three different time stages, fast, intermediate and slow.

In the fast stage we have INa active. In the intermediate stage the sodium

current is over, INa ≈ 0, and therefore h, d and oa are fast variables and therefore

can be put to their quasi-stationary values.

The same can be done for other variables in the intermediate and slow stages,

where in the intermediate stage we take CRN-11 and find which are the fast

variables here. We see that u and v are the fast variables and can be replaced

with functions of t, and not their quasi-stationary value. We found that they are

fast in the slow stage, and can therefore be replaced with their quasi-stationary

146



Super Fast<

1ms

Fast≈ 1ms Intermediate≈
10ms

Slow≈
100ms

Super Slow>

100ms

m h u xr Nai

ua oa v xs Ki

w d j f Caup

fCa ui

oi

Non-Tikhonov variables: E, Cai and Carel.

Table 6.1: Defining the different time stages and corresponding variables for

Courtemanche et al’s model.

values there.

Even though u and v are fast in both the intermediate and slow stages, we

have two time stages and not one because u and v are taken as different values

in each time stage. This is because the intermediate stage finishes if τv and u

switches from one value to another. The reason they switch is due to the Ca2+

flux variable, Fn, as at this moment of time Fn reaches its threshold. Therefore

the intermediate stage finishes here and this is also where the slow stage begins.

For the slow stage we take CRN-11 again and replace u and v with their

quasi-stationary values, as well as the fast variables that are in this system; j,

fCa and oi.

Variables can be considered as fast and slow for different time stages, this

helps us to reduce this system further. We cannot further reduce the system

using Tikhonov’s method and therefore have to use a non-Tikhonov embedding

method. The time scale is split into three sections, fast, intermediate and slow.

Table 6.1 shows which variables are considered as fast or slow variables in these

time stages, where E, Cai and Carel are the variables spread across different

time stages.

6.1.6 Summary

We chose to study one solution of Courtemanche et al’s model for a certain initial

condition and not a series of solutions for different initial conditions, as this would

be too complicated. We only use one solution to show how accurate our methods
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are, and that they will work for a complicated model for one solution. Some of the

approximations that we do are specific to keeping the qualitative behaviour of this

single solution. So the elimination of the super-slow and super-fast variables does

not change the systems action potential for our analysis, but the changes may

appear in a series of action potentials, or sub-threshold responses, i.e. anything

different from a single action potential.

Therefore we wanted to demonstrate that the asymptotic techniques are ap-

plicable in principle to detailed contemporary models.

6.2 The Fast Stage [t0, t1]

We are only interested in the fast time stage [t0, t1]=[0, 1.2] for CRN-14 as this is

where INa enters into this system. After t1=1.2, sodium current is over and can

be treated as zero, so we look at CRN-14 and concentrate on the E, h, oa, and

d variables and the INa current. We are only interested in h, oa and d as we see

from Fig. 6.7 that for this time stage, the τ ’s for these variables are the smallest

and therefore they are the fast variables. This can also be seen from Fig. 6.8, as

we draw these variables against their quasi-stationary values for this time period

and we see that there is no difference. Also we know that INa is a large current,

as this current is the largest compared to all the other currents.

We also notice from Fig. 6.7 that τu has a discrepancy around t=0.4, this is

because at this point the equation for τu becomes zero, i.e. ∂
∂u

(
du
dt

)
=0, so if we

draw ln(τu) the discrepancy occurs because we obtain infinity at this point. This

is the reason this happens and not because the u variable is fast or slow at this

moment of t.

We now use a non-Tikhonov embedding here to analyse system (6.6), which

is the same non-Tikhonov embedding that we used in Chapter 5 for Noble’s

model. So we still introduce ε to the fast variables, and the large currents in the

Ė equation, as Ė contains small and large currents.

Now that we know that h, d and oa are fast variables and INa is a large current,

we make the variables even faster by introducing 1/ε to the right-hand sides of

their equations in system (6.6), and we make INa even larger by introducing 1/ε

in front of INa to obtain system (6.7):

dE

dt
= −Iion

CM
, (6.7)
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Figure 6.7: Graph of the τ ’s for CRN-14, system (6.6), for the time scale [0, 1.2].

Iion = INa(E,m, h, j)/ε + IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr)

+IKs(E, xs) + ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + Ib,Na(E)

+INaCa(E,Cai) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = j, oi, xr, xs, f, fCa, u, v,

dx

dt
=

1
ε

x− x

τx
, x = h, oa, d,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

Figures 6.9 and 6.10 show what happens to E, h, oa and d if we tend ε to

zero in system (6.7). We see that the spike becomes higher and starts earlier.

We then use the change of variable t=εT to system (6.7) to see what happens

to all the other variables.

dE

dT
= −Iion

CM
, (6.8)
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Figure 6.8: Graphs of the fast variables (-) and their quasi-stationary values (.) for

CRN-14, system (6.6), t=[0, 1.2]. (a) h, (b) oa, (c) d and (d) graph of the currents

for CRN-14, where the solid blue line represents INa which is larger than any other

currents.
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Figure 6.9: Graph of CRN-14, system (6.6) ε=1, (-) and CRN-14, system (6.7) ε → 0,

(.) for t=[0, 1.2] for the variables (a) E and (c) h. Graph of CRN-14, system (6.6)

ε=1, (-) and CRN-14, system (6.8) ε → 0, (.) for T=[0, 1.2] for the variables (b) E

and (d) h.
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Figure 6.10: Graph of CRN-14, system (6.6) ε=1, (-) and CRN-14, system (6.7) ε → 0,

(.) for t=[0, 1.2] for the variables (a) oa and (c) d. Graph of CRN-14, system (6.6)

ε=1, (-) and CRN-14, system (6.8) ε → 0, (.) for T=[0, 1.2] for the variables (b) oa

and (d) d.
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Figure 6.11: Graph of CRN-14, system (6.6) ε=1, (-) and CRN-14, system (6.8) ε=0,

(.) for the variables (a) Cai, (b) Carel, (c) j, (d) oi, (e) xr, (f) xs, (g) f , (h) fCa, (i)

u and (j) v.
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Iion = INa(E,m, h, j) + ε(IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr)

+IKs(E, xs) + ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + Ib,Na(E)

+INaCa(E,Cai) + Ib,Ca(E,Cai)),
dy

dT
= ε

y − y

τy
, y = j, oi, xr, xs, f, fCa, u, v,

dx

dT
=

x− x

τx
, x = h, oa, d,

dCai

dT
= ε

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dT
= ε

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

If we put ε=0 in system (6.8), Fig. 6.11, we see that all the other variables,

Cai, Carel, j, oi, xr, xs, f , fCa, u and v, become their initial values. So we can

replace them with their initial values to obtain a new system, CRN-4, that just

contains E, h, d and oa. Also Fig. 6.9(b), (d), (f) and (h) shows what happens

to E, h, oa and d if ε → 0 in system (6.8). There is little change in E, oa and d

and no change in h.

dE

dT
= −CMgNam

3(E)hj(E − ENa)
CM

, (6.9)

dh

dT
=

h(E)− h

τh(E)
,

doa

dT
=

oa(E)− oa

τoa(E)
,

dd

dT
=

d(E)− d

τd(E)
.

Figure 6.12 shows that if we compare CRN-4 with CRN-14 there is no change

in h and little change in E, oa and d. We see that making h, d and oa fast, and

INa large for [0, 1.2] is a good approximation. So we now have a system of four

equations for the fast stage. After this time stage INa=0 and x=x, where x=h,

d and oa.
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Figure 6.12: Graph of CRN-14, system (6.6), (-) and CRN-4, system (6.9), (.) for

T=[0, 1.2] for the variables (a) E, (b) h, (c) oa and (d) d.
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6.2.1 Phase portrait for sodium embedding

We have the following system of equations, same as the first two equations of

system (6.9), T=[t0, t1]:

dh

dT
=

(h(E)− h)

τh(E)
, (6.10)

dE

dT
= −INa(E, m, h, j)

CM

= −Am3(E)h(E − ENa),

where

A = gNaj = 7.6245, ENa = 67.5339,

τh =
1

αh + βh

, Cai = const, Carel = const, j = const,

oi = const, xr = const, xs = const, f = const, u = const, v = const.

We are only interested in the E and h equations at the moment so that we

can find an analytical solution for h and E, and then we can find a solution for

oa and d in quadratures. This is because the two equations are separate from the

E and h equations. What we mean by this is that oa and d are not contained

in Ė and ḣ, but E is contained in ȯa and ḋ. As oa and d don’t affect the action

potential then we only study the sodium embedding of E and h.

We have found that m and h can be replaced by Heaviside functions, which

is what we found in Section 5.6 for Noble’s non-Tikhonov embedding, and this

will help make our embedding easier. Therefore the Heaviside functions are:

h = θ(−E + Eh), m = θ(E − Em),

where Eh=−66.6 and Em=−32.7.

We find the isoclines and equilibrium points for system (6.10).

The h isocline is:

h = h = θ(−E + Eh).

This is a step function.

The E isocline is:

INa = 0 ⇒ Am3h(E − ENa) = 0,

A 6= 0,

m3h(E − ENa) = 0.
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From this the solutions are:
E ∈ [−∞, Em],

h ∈ [0, 1],

m3 = θ(E − Em) = 0,


E ∈ [−∞,∞],

h = 0,

m3 = θ(E − Em),

and 
E ∈ ENa,

h ∈ [0, 1],

m3 = θ(E − Em) = 1.

The equation for the equilibrium points satisfies dh
dT

=0 and dE
dT

=0. So we

know that for dh
dT

=0 we obtain h=h, so we put this into the equation for dE
dT

=0

to obtain:

Am3h(E − ENa) = 0.

From this we have the solution:{
E ∈ [−∞,∞],

h = h(E),

which represents a continuum of equilibrium points, or line of equilibria, which

is the same as in Section 5.6.

6.2.2 Replacing τh with a constant or a function of E

We replace τh with a constant to obtain an analytical solution for the trajectories

of system (6.10), and then compare them with the numerical answer to see how

accurate they are.

dh

dT
=

(h(E)− h)

τh(E)
,

dE

dT
= −Am3(E)h(E − ENa).
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We are only interested in the region [Em, ENa], which is the same region that

we were interested in for finding the analytical solutions for the trajectories in

Chapter 5 for Noble’s non-Tikhonov embedding. For E < Em, the trajectories

are straight lines and they have the same equation as we obtained in Chapter 5,

except here h=θ(Eh − E).

In the range [Em, ENa], for E > Em, h=0 and m3=1 and the equation for the

trajectories in this range will be:

dh

dE
=

dh
dT
dE
dT

=
h

τh(E)Ah(E − ENa)
,∫ h

h0

dh =
1

A

∫ E

E0

1

τh(E)(E − ENa)
dE,

h− h0 =
1

A

∫ E

E0

1

τh(E)(E − ENa)
dE.

We found the value, for τh to be a constant, at E=ENa. We used ENa because

we are only interested in the region [Em, ENa] and ENa is the maximum value of

E in this region. Therefore the equation for E is:

E = (E0 − ENa)e
(h−h0)/B + ENa,

where,

B =
1

τh(ENa)A
, A = gNaj = 7.6245, τh(ENa) = 0.1301.

This solution is drawn on the phase portrait, Fig. 6.13, and is represented

by magenta (thick :). This can be compared with Fig. 5.9 from Noble’s non-

Tikhonov analysis, and we can see that the graphs are similar, where we have

the h and E isoclines, where the E isocline also has a rectangle region as well,

and the numerical trajectories travel to the equilibrium points, which consists of

a line of equilibria.

If we consider τh as a function of E in our region, then we approximate τh

so it is easily integrated. We say that ε(E)= 1
τh(E)(E−ENa)

. As E → ENa, the

singularity, we have:

ε(E) ≈ 1

τh(ENa)(E − ENa)
.

Therefore ε(E) can be written as follows:
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Figure 6.13: Phase portrait for the sodium embedding with h isocline (-), E isocline (-

-) and the dashed region, equilibrium points (-.), numerical trajectories, system (6.10),

(black:) and analytical trajectories for τh=const (magenta, thick :).

ε(E) =
1

τh(ENa)(E − ENa)
+

1

(E − ENa)

(
1

τh(E)
− 1

τh(ENa)

)
,

=
1

τh(ENa)(E − ENa)
+

τh(ENa)− τh(E)

(E − ENa)τh(E)τh(ENa)
,

=
1

τh(ENa)(E − ENa)
+ µ(E),

where µ(E) is continuous at E=Em.

6.2.3 Representing µ as an exponential function

We draw the graph of ln(µ) first to see if we can approximate this with a

straight line and then we can find a linear approximation for µ(E). We obtain

µ(E) ≈ e(mE+c) ≈ KemE, where m=−0.0471, c=−4.2321 and K=ec=0.1452.

We obtain this from Fig. 6.14, by ensuring the approximation is exact at E=Em

and E=ENa.

So,

ε(E) =
1

τh(ENa)(E − ENa)
+ KemE.

Therefore,
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Figure 6.14: (a) Graph of ln(µ) (-) and its approximation ln(µ)=−0.0471E − 4.2321

(- -). (b) Graph of µ (-) and its approximation µ=0.1452e−0.0471E (- -).

dh

dE
=

ε(E)

A
,

h = B ln

(
|E − ENa|
|E0 − ENa|

)
+ G(emE − emE0) + h0,

with initial conditions h(E0)=h0 and

B =
1

τh(ENa)A
, G =

K

Am
.

The analytical solutions are drawn on the phase portrait, Fig. 6.15, as blue

(thick :) lines, and we can see that the solutions are not close to the numerical

solutions (black :).

If we put K=0 and G=0, then we obtain the same solution as τh=const.

h = B ln

(
|E − ENa|
|E0 − ENa|

)
+ G(emE − emE0) + h0,

h = B ln

(
|E − ENa|
|E0 − ENa|

)
+ h0,

E = (E0 − ENa)e
(h−h0)/B + ENa.

6.2.4 Approximating µ by a quasi-polynomial using the

Marquardt-Levenberg procedure (best fit)

In Fig. 6.15 the analytical trajectories are not close enough for our satisfaction

to the numerical trajectories, as we want to see if we can get them exactly the
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Figure 6.15: Phase portrait for the sodium embedding with h isocline (-), E isocline (-

-) and the dashed region, equilibrium points (-.), numerical trajectories, system (6.10),

(black:) and analytical trajectories for µ=KemE (blue, thick :).

same or only slightly displaced. So we try again with another approximation,

and we use the Marquardt-Levenberg procedure for best fit.

This time we have µ(E)=(a+bE)e−cE, where a=0.0304031, b=−0.000597257

and c=0.0145176, which is the best fit for our interval of E, [Em, ENa]. For any

other interval we would have to use this procedure again and obtain another

solution. Figure 6.16 shows our new µ (- -) drawn against our old µ (-) and it

shows the difference between them.

Therefore,

dh

dE
=

ε(E)
A

,

h = B ln
(
|E − ENa|
|E0 − ENa|

)
+ H(c(a + bE0)e−cE0 + be−cE0 − c(a + bE)e−cE − be−cE)

+h0,

with initial conditions h(E0)=h0 and

H =
1

Ac2
, B =

1

τh(ENa)A
.

The analytical solutions are drawn on the phase portrait, Fig. 6.17, as blue

(thick :) lines and we can see that they are the same as the numerical solutions

(black :). Therefore we have found a good approximation.
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Figure 6.16: Graph of µ (-) and µ=(a + bE)e−cE (- -).
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Figure 6.17: Phase portrait for the sodium embedding with h isocline (-), E isocline (-

-) and the dashed region, equilibrium points (-.), numerical trajectories, system (6.10),

(black:) and analytical trajectories for µ(E)=(a + bE)e−cE (blue, thick:). Here they

practically coincide.

162



6.2.5 Obtaining E(T ) using the solution from τh=constant

We want to obtain a solution for E(T ) because the beginning of the intermediate

stage is the final stage of the fast stage. We can’t deduce the final stage for E,

unlike all other three variables, from qualitative analysis, since there is a whole

line of equilibria at different values of E, and the system may end up in any

of them, depending on initial conditions. So we need to find the dependence of

E∞(E0), where E∞ is limT→+∞E(T ) and E0=E(0).

The solution from τh=constant is:

h(E) =
1

τh(ENa)A
ln

(
|E − ENa|
|E0 − ENa|

)
+ h0.

We put this solution in system (6.10) to obtain a differential equation, that

can be separated and integrated to find the solution E(T ). So by using initial

conditions (E0, T0)= (−20, 0) we obtain:

E(T ) = (E0 − ENa)e
−(Aτh(ENa)h0(1−e

− (T−T0)
τh(ENa) ) + ENa.

For T →∞ we obtain the equation E∞(E0):

E∞(E0) = (E0 − ENa)e
−Aτh(ENa)h0 + ENa ≈ 33.9247, (6.11)

for E0=−20 and h0=0.965.

In Fig. 6.18 we draw the graph of E(T ) against T for two different time periods

to make sure that this answer is correct and it looks similar to the original E(T ),

Fig. 6.12(a) (.).

We draw E(T ) against E0, for T → ∞, to see what values we obtain for

E∞ for different values of E0, this can be seen from equation (6.11), and we see

from Fig. 6.19 that we obtain a straight line. So for every new value of E0, the

function E∞ grows as a linear function.

If E=E(T ) is known we can obtain an analytical solution for oa and d in

quadratures:

oa = oa0 +

∫ T

T0

oa(T )

τoa(T )
dT,

d = d0 +

∫ T

T0

d(T )

τoa(T )
dT.
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Figure 6.18: Graph of E(T ) against T for the time periods (a) [0, 1.2] and (b) [0, 600].
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Figure 6.19: Graph of peak voltage E∞, (6.11), against the initial voltage E0 for the

approximation τh=constant.
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We can also find the solutions for oa and d by using the value of E∞, from

equation (6.11), for E in oa, d, τoa and τd. Therefore these functions of E can be

replaced with a constant for E=E∞.

oa = 0.9569, τoa = 1.4467,

d = 0.9959, τd = 0.6493.

From our analysis we found that we can replace oa, d, τoa and τd with con-

stants for short and long periods of time. For a short period of time the ap-

proximations are not as accurate and therefore we just replace oa and d with

constants.

For the time period [t0, 0.12] we have the solutions:

oa = oa + (oa0 − oa)e
∫ T

T0
1/τoa (T )dT

,

d = d + (d0 − d)e
∫ T

T0
1/τd(T )dT

,

and for the time period [0.12, t1] we have the solutions:

oa = oa + (oa0 − oa)e
−(T−T0)/τoa ,

d = d + (d0 − d)e−(T−T0)/τd .

6.2.6 Summary

For the fast stage we have found that INa is a fast current during the time

period [0, 1.2], and after this sodium doesn’t enter the system or if it does then

it is very small and can be ignored. We also found from the speed analysis that

the fast gating variables are h, oa and d. So by using a Tikhonov and non-

Tikhonov embedding we obtained CRN-4 in the fast time T . Variables E and h

are described by a system of equations similar to the fast system in Chapter 5.

With this result we were able to study the graphs of h and E and obtain a

two-dimensional phase portrait with nullclines, stable equilibria and trajectories.

We also tested approximations for τh and found a suitable approximation that

gave explicit answers for the analytical trajectories. From this an equation for

E(T ) was found that gave the same solution for E that we obtained from the

system of equations.
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Therefore if E(T ) is known, then explicit equations are found for oa and d.

As we saw from Fig. 6.18, we did obtain an action potential that looked the same

as the action potential for the system of four equations (6.9), the dotted line in

Fig. 6.12(a). So this confirmed that our embedding for the sodium subsystem

and the approximations for τh, to find an equation for E(T ), are correct.

6.3 Calcium Subsystem in the Intermediate

Stage

We know that INa=0 after the fast stage, so we now have the intermediate stage,

where INa=0, h=h, oa=oa and d=d.

We have noticed that u and v can be written in the form of the Heaviside

function of Fn, as they contain a very small parameter a and as this parameter

tends to zero we obtain the Heaviside function. This small parameter a and

the equation for Fn were obtained by Courtemanche et al from a master the-

sis by Friedman[61] and a paper also by Friedman[62]. In the thesis Friedman

introduces these equations to the calcium system for the human atrium.

u =

(
1 + e−

(Fn−3.4175∗10−13)

13.67∗10−16

)−1

,⇒ u = (1 + He−Fn/a)−1,

v = 1−
(

1 + e−
(Fn−6.835∗10−14)

13.67∗10−16

)−1

⇒ v = 1− (1 + Ge−Fn/a)−1,

where

H = 3.7465 ∗ 10108, a = 13.67 ∗ 10−16, G = 5.1847 ∗ 1021.

Here a is small compared to typical variations of Fn.

Therefore from the limit:

lim
a→+0

(1 + e−(Fn−F∗)/a)−1 = θ(Fn − F∗),

we obtain:

u = θ(Fn − F1), v = θ(Fn − F2),

where

F1 = a ln H = 3.4175 ∗ 10−13, F2 = a ln G = 6.8350 ∗ 10−14.
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So therefore we have a piecewise solution for u and v where a � F1, F2.

So we use the time scale [1.2, 33] for the intermediate stage because at t2=33,

u and τv switch their values. This is because u and τv are Heaviside functions

that depend on Fn, and at t2=33, Fn exceeds its threshold F1=3.4175 ∗ 10−13,

and therefore u switches from 1 to 0 and τv switches from 4 to 1.91. So for this

time period u and τv can be kept at one value and then after t2=33 they can be

kept at another value. So we have a new system, CRN-11:

dE

dt
= −Iion

CM
, (6.12)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr) + IKs(E, xs)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = j, oi, xr, xs, f, fCa, u, v,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

We consider from the τ ’s that j, oi, fCa, u and v are the fast variables here

and f , xr and xs are the slow variables. Even though we know that INa=0, so

j doesn’t affect the action potential at all, j must still be part of the system,

because E affects j and a solution for j can still be found. This is similar to oa

and d in the fast stage.

6.3.1 Considering u as a fast variable

We know that u is fast in this time stage from the graph of the τ ’s, Fig. 6.20(c).

So we want to look at system (6.12) for t=[1.2, 600], because u is fast in both

the intermediate and slow stages, therefore we use t=[1.2, 600]. We want to see

what exactly happens to the u equation if we consider it as fast. If we replace u

with u we will obtain a system of ten equations. So if we consider this we end
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Figure 6.20: Graph of the τ ’s for CRN-11, system (6.12), for the time scale [1.2, 33].

up with a loop because Irel contains u, u contains Fn and Fn contains Irel. So

we have a non-linear system of three equations:

Irel = Krelu
2vw(E)(Carel − Cai), (6.13)

u =
(

1 + e−
(Fn−3.4175∗10−13)

13.67∗10−16

)−1

,

Fn = 10−12VrelIrel(E,Cai, Carel, u, v, w)

−5 ∗ 10−13

F

(
1
2
ICa,L(E, d, f, fCa)−

1
5
INaCa(E,Cai)

)
.

So,

Irel = Ku2, (6.14)

u = (1 + He−Fn/a)−1,

Fn = CIrel(E, Cai, Carel, u, v, w)−D,

where,

K(E, Cai, Carel, v) = Krelvw(E)(Carel − Cai),

C = 10(−12)Vrel,

D(E, Cai, f, fCa) =
5 ∗ 10(−13)

F
(
1

2
ICa,L(E, d, f, fCa)−

1

5
INa,Ca(E, Cai)),
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E = 3.7465 ∗ 10108,

a = 13.67 ∗ 10−16.

We know that u is between [0, 1], but we still want to find an equation for u

so we can show that the solutions are between [0, 1].

We eliminate Fn and Irel from system (6.14) by replacing u with (1 +

e−(Fn−F1)/a)−1, where F1=a ln H and rearranging u to have Fn(u) and replac-

ing Fn with this:

Fn = F1 − a ln

(
1− u

u

)
.

So we obtain the following equation:

F1 + D − a ln

(
1− u

u

)
= CKu2. (6.15)

This can’t be resolved with respect to u easily, so we will find solutions of u

by drawing both sides of this equation and see where the solutions are.

y1 = F1 + D − a ln

(
1− u

u

)
, (6.16)

y2 = CKu2. (6.17)

If we draw y1 we see that it is a step function on the y-axis between [0, 1] for

u, because we know that u is between [0, 1]. We see that y1 goes from being a

vertical line downwards at u=0 to a vertical line upwards at u=1, in-between it

is a horizontal line at y1=F1 + D. Equation y2 is a parabola and for u between

[0, 1] we obtain the positive section of the parabola, where it touches the u axis

at zero.

So to find for what value of u these two cross we put them equal to each

other. We know from Fig. 6.21 that they cross three times for y1=0, F1 + D and

1. So the y2 values corresponding to this are 0, +
√

F1+D
CK

and CK. We are only

interested in the positive root as the negative root is not in the region we are

looking at.

Therefore we find that we have one or three solutions:

t = 1.2− 14.9761, one solution,

169



t = 15.9053− 33.8085, three solutions,

t = 34.1751− 171.9058, one solution,

t = 172.2015− 600, three solutions.

We also see that if we use the original E0=−81.18 we have three solutions

and if we use E0=−20 we have one solution, at t=0. Even though we are drawing

the graphs for the time period [1.2, 600], we draw the two graphs for different

E0 to show that if we use the original E0 we obtain three solutions and if we use

our modified value we obtain one solution. Therefore for different time periods

of the action potential we have either one or three solutions of equations (6.16)

and (6.17). In Fig. 6.21, we see that for E0=−81.18 we have the solution on the

lower branch of y1 and for E0=−20 we have the solution on the top branch of

y1.

We use different values from the action potential to draw the graphs to show

how many solutions we have for different points on the action potential. Fig-

ure 6.21 shows six graphs of equations (6.16) (- -) and (6.17) (-) that are drawn

for the following points of the action potential:

(a) (t, E0) = (0,−81.18),

(b) (t, E0) = (0,−20),

(c) (t, E) = (6.5215,−1.9925),

(d) (t, E) = (29.0419,−12.5132),

(e) (t, E) = (83.8959,−7.3251),

(f) (t, E) = (172.9342,−24.7021).

Graphs (a) and (b) are drawn using the resting values of all the variables for

different E0, where also Ist=−2000 for (a) and Ist=0 for (b), (c), (d), (e) and (f).

Graphs (c), (d), (e) and (f) are drawn using the results after one action potential

for different values of t and E. The dots represent the equilibrium (true solution)

of the fast subsystem CRN-11 and the stars represent the other solutions.

Therefore we see that for different time periods of the action potential we

have the solutions of equations (6.16) and (6.17) alternating between one and

three solutions. For E0=−81.18 we have three solutions and for E0=−20 we

have one solution. So we see that if we change the initial value of E we obtain
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Figure 6.21: Graphs of equations (6.16) (- -) and (6.17) (-) for the

resting values with (a) E0=−81.18, (b) E0=−20 and after one action

potential for (c) (t, E)=(6.5215,−1.9925), (d) (t, E)=(29.0419,−12.5132), (e)

(t, E)=(83.8959,−7.3251) and (f) (t, E)=(172.9342,−24.7021).
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different results and the true solution for E0=−81.18 is on the lower branch, and

for E0=−20 the true solution is on the top branch of equation (6.16). For the

upstroke and overshot of the action potential we have one solution, (c), and then

if the action potential comes down for the return we have three solutions, (d),

then back to one solution, (e), and then three solutions again, (f).

Therefore we see that the solutions for equations (6.16) and (6.17) start at

the lower branch of equation (6.16) for E0=−81.18, then at E0=−20 it moves to

the top branch and stays there until we have one solution at t=34.1751 where it

moves to the lower branch and it stays on the lower branch. Therefore we have

a jump return from the top branch to the lower branch.

So the solutions jump from one bistability region of the slow manifold to

another bistability region, completely avoiding the monostability region. This is

just like the Hodgkin-Huxley, FitzHugh and Noble 1962 systems. We have a jump

return because we don’t have a monostability region where the upper and lower

solutions coincide to make one true solution, which would be in between these

two solutions. So therefore we don’t have a cusp catastrophe like in Zeeman’s

”nerve” system.

Therefore the three solutions are:

Fn1 ≈ −D, u1 ≈ 0,

Fn2 ≈ F1, u2 ≈ +

√
F1 + D

CK
,

Fn3 ≈ CK −D, u3 ≈ 1.

We obtain Fn by putting the values for u in equation (6.14), where u1 cor-

responds to the lower branch/solution of equation (6.16), u2 corresponds to

the middle branch/solution of equation (6.16) and u3 corresponds to the upper

branch /solution of equation (6.16).

Function u2 depends on what values you take from the solution of the ac-

tion potential, as D=D(E, Cai, f, fCa), C=const, K=K(E, Cai, Carel, v) and

F1=const.

Figure 6.22 shows a typical solution of equations (6.16) and (6.17). We use

the same graph as Fig. 6.21(d), except here we have marked the three solutions,

u1, u2 and u3

Figures 6.23(c) and (d) shows the graphs of the absolute values of u1, u2, u3

and u, the true solution from CRN-11, for two time periods. We see that u is a
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Figure 6.22: Graph of y1 (6.16) (- -) and y2 (6.17) (-) for t=29.05132, Fig. 6.21(d),

with u1, u2 and u3.

step function that follows the path of u3 at the very beginning and then changes

to follow u1.

From Figs. 6.22 and 6.23(c) we are able to formulate three algorithms to give

us values for u. We see from Fig. 6.22 that we can’t have u3 < u2 and u1 > u2

as this is not possible. So if this happens we have u=u1 and u3 respectively. We

use Fig. 6.23(c) to see for what time period this happens. Inequality u1 > u2

never happens for our time period t=[1.2, 600], it might happen before t=1.2,

but we are not interested in that time period here. Inequality u3 < u2 happens

for t=[33.92, 172.61]. For the remaining time we have u1 < u2 < u3, we can’t say

exactly what u is, so we have to use an algorithm that takes a previous value of

u, calculates if it is closer to u1 or u3 and which ever one it is closer to is our new

u. From this we see that for t=[1.2, 33.92], u=u3 and for t=[172.61, 600], u=u1.

Therefore for any point on the action potential we can say that u is either u1

or u3. We are now able to replace the u equation in system (6.12) with either u1

or u3 for different moments in time. This confirms that the Heaviside equation

for u is a correct assumption. Therefore we keep u as the Heaviside function:

u = θ(Fn − F1),

where F1=3.4175 ∗ 10−13.

Function u can also be written in the following form without Fn:
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Figure 6.23: (a) and (b) are the action potentials of CRN-11, system (6.12), and

(c) and (d) are the graphs of u (- -) and the absolute values of u (-),u1 (-.),

u2 (:) and u3 (.) for E0=−20. (a) and (c) are for the time period [1.2, 600]

and (b) and (d) are for the time period [1.2, 33] with the points (a) E0=−81.18,

(b) E0=−20, (c) (t, E)=(6.5215,−1.9925), (d) (t, E)=(29.0419,−12.5132), (e)

(t, E)=(83.8959,−7.3251) and (f) (t, E)=(172.9342,−24.7021).
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u =


0 if u1 ≥ u2,

if u1 < u2 < u3 and u− u1 < u3 − u,

1 if u3 ≤ u2,

if u1 < u2 < u3 and u− u1 > u3 − u.

Therefore we now have a new system of ten variables, CRN-10:

dE

dt
= −Iion

CM
, (6.18)

Iion = INa(E,m, h, j) + IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr)

+IKs(E, xs) + ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + Ib,Na(E)

+INaCa(E,Cai) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = h, j, oi, xr, xs, f, v,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)

−ICa,L(E, d, f, fCa)− Ib,Ca(E,Cai))

+(Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, un, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, un, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

Figure 6.24 shows the action potential of CRN-11 and CRN-10 and we see

that the spike is the same, but there is a slight change on the return. The new

system, CRN-10, still looks like the old system, CRN-11.

6.3.2 Comparing u and u

From the graph of u and u, Fig. 6.25, we see that the quasi-stationary value is

now a rectangular shape, but is still a perfect switch for the u variable. We also

see that for various moments in time u is not close to u.

Also we see that u comes into action during the intermediate stage [1.2, 33]

as after this it is close to zero. So this confirms our assumption that u can be

considered a fast variable during this time period. Also we see that for this time
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Figure 6.24: Action potential for CRN-11, system (6.12), (-) and CRN-10, sys-

tem (6.18), (.) for E0=−20 for the time periods (a) [1.2, 600] and (b) [1.2, 33].
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Figure 6.25: Graph of u (-) and its quasi-stationary value u (- -) for CRN-11 for the

time period [1.2, 100].
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period u can be replaced with an exponential function of time. We go into more

detail on replacing u with an exponential function later.

Variable u=u in principle, but introduces noticeable errors. On the other

hand, this suggests a more accurate way to treat u, which is considered later.

6.3.3 Finding the threshold for E where the intersections

change from three to one in Fig. 6.21, lower equi-

librium disappears

We have equation (6.15) for u and to find how many intersections this has we draw

equations (6.16) and (6.17), Fig. 6.21. We found that for the initial conditions

and different values of E0 we obtained one or three intersections, so we want to

find for what value of E0 this change happens. We use equation (6.15) to do this:

F1 + D − a ln

(
1− u

u

)
= CKu2.

We know that we have three solutions to this equation, u1, u2 and u3:

1. u < +
√

F1+D
CK

; u1=0 iff +
√

F1+D
CK

> 0,

2. u=+
√

F1+D
CK

; u2 = +
√

F1+D
CK

iff 1 > +
√

F1+D
CK

> 0,

3. u > +
√

F1+D
CK

; u1=1 iff +
√

F1+D
CK

< 1.

So we have two conditions here:

Condition 1 : +

√
F1 + D

CK
> 0,

Condition 2 : +

√
F1 + D

CK
< 1.

Condition 1 ⇔ S1 : u1 = 0,

Conditions 1, 2 ⇔ S2 : u2 = +

√
F1 + D

CK
,

Condition 2 ⇔ S3 : u3 = 1.

So we are looking for the threshold where S1 and S2 cease to exist. This is

for u1 ≥ u2 ⇒ 0 ≥ +
√

F1+D
CK

. Therefore the threshold is at +
√

F1+D
CK

=0.
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F1 + D

CK
= 0,

F1 = −D.

Therefore if we put the initial conditions in D=−F1 we obtain:

A

F

(
1

2
ICa,L(E, d(E))− 1

5
INa,Ca(E)

)
+ F1 = 0,

where

A = 5 ∗ 10(−13), F = 96.4867,

gCa,L = 0.12375, d = (1 + e−(E+10)/8)−1 = (1 + e−(E+Ed)/b,

fCa = 0.7749, f = 0.9959,

Cai = 0.0001, CM = 100,

INa,Ca(max) = 1600, Ksat = 0.1,

γ = 0.35, R = 8.3143,

T = 310, Nai = 11.17,

Cao = 1.8, Nao = 140,

Km,Na = 87.5, KM,Ca = 1.38,

ICa,L = CMgCa,LdffCa(E − 65) = 9.55d(E − ECa,L).

INa,Ca =
CMINa,Ca(max){e(γFE/RT )Nai3Cao− e(γ−1)FE/RT Nao3Cai}

(K3
m,Na + Nao3)(KM,Ca + Cao)(1 + Ksate(γ−1)FE/RT )

,

=
0.01{2508.7e0.0131E − 274.4e−0.0243E}

1 + 0.1e−0.0243E
.

Now we say that:

y =
1

2
ICa,L(E, d(E))− 1

5
INa,Ca(E) +

F1F

A
= 0,

y =
1

2
Bd(E)(E − ECa,L)− 1

5

G{HeIE − JeLE}
1 + KsateLE

+
F1F

A
= 0,

where
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d = (1 + e−(E+Ed)/b)−1, ECa,L = 65,

B = CMgCa,LffCa = 9.55, H = Nai3Cao = 2508.7,

I = (γF/RT ) = 0.0131, J = Nao3Cai = 274.4,

L = (γ − 1)F/RT = −0.0243,
F1F

A
= 5.9487,

G =
CMINa,Ca(max)

(K3
m,Na + Nao3)(KM,Ca + Cao)

= 0.01, Ksat = 0.1,

and we draw y against voltage, Fig. 6.26(a), as this equation is too complicated

to resolve with respect to E, and we see that the curve crosses y=0 at E=−24.09.
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Figure 6.26: (a) Graph of y against E. (b) Graph of d against E. (c) Graph of

d(ECa,L − E) (-) and q (- -) against E.

We want to approximate analytically the solution to y(E)=0. So we take

y=0 and we know that INa,Ca is small compared to ICa,L, so we can ignore this

term. Therefore y=0 becomes:

Bd(E)(E − ECa,L) = −2
F1F

A
,

d(E)(ECa,L − E) = q,

where,

q = 2
F1F

AB
= 2

a ln(H)F

ACMgCa,LffCa

= 1.246.

Then we use the definition of d(E), to obtain:

E = −Ed − b ln

(
ECa,L − E − q

q

)
.
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From this equation we can take iterations for E, but to do this we need an

initial point, E0, for the iterations. We choose E0=−Ed, because if we draw d

against E, Fig. 6.26(b), we see that d changes from 0 to 1 at around E=−Ed.

Also from Fig. 6.26(c), graph of q=d(65−E), we see that we have two solutions,

one is q=2F1F
AB

=1.246 (- -), and the other is d(65−E) (-). We see that we have a

fast raising d which occurs at E=−Ed. So we use E0=−Ed and take iterations

of E and see if this will give us the same value of E, as we obtained with the

numerical method.

En+1 = −Ed − b ln

(
ECa,L − En − q

q

)
.

We take E0=−Ed as our initial value for E0 in the iterations. So the iterations

give us the following values:

E0 = −10, E1 = −21.9079,

E2 = −23.3305, E3 = −23.4847,

E4 = −23.5012, E5 = −23.5030,

E6 = −23.5032, E7 = −23.5032.

We see that the values of the iterations tend to E=−23.5032 which is close

to the value of the numerical answer, E=−24.09. So the iteration method gives

an answer close to the numerical answer and therefore this method can be used

to find the threshold of E, without having to find it numerically.

Therefore E1 gives a good approximation so we can say:

E ≈ E1 = −Ed − b ln

(
ECa,L + Ed − q

q

)
.

6.3.4 Finding the threshold for E where the intersections

change from three to one in Fig. 6.21, upper equi-

librium disappears

Now that we have found the threshold where the lower equilibrium disappears,

then we want to find the threshold where the upper equilibrium disappears. This

happens if S2 and S3 ceases to exist. This happens at the following values:

(E, Cai, Carel, j, oi, xr, xs, f, fca, u, v) = (−12.1869, 0.0008, 0.1485, 0.0001,
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0.0719, 0.0935, 0.0445, 0.8732,

0.2965, 0.9535, 0.0002),

and t=34.1751. So this is for F2 > F3 ⇒ F1 > CK−D. Therefore the threshold

is at F1=CK −D.

This happens if S2 and S3 ceases to exist. So this is for u2 > u3 ⇒ +
√

F1+D
CK

>

1. Therefore the threshold is at +
√

F1+D
CK

=1.

+

√
F1 + D

CK
= 1,

F1 = CK −D.

CK −D = CK − A

F

(
1

2
ICa,L(E, d, f, fCa)

)
,

K(E, Cai, Carel, v) = Krelvw(E)(Carel − Cai),

C = Vrel ∗ 10(−12) = 96.48 ∗ 10(−12),

F1 = 3.4175 ∗ 10(−13),

Krel = 30.

Therefore if CK −D=F1 we obtain:

cw(E)− ed(E)(E − ECa,L)− F1 = 0,

where

w = 1− (1 + e−(E−40)/17)−1 = 1− (1 + e−(E−Ew)/d)−1,

d = (1 + e−(E+10)/8)−1 = (1 + e−(E+Ed)/b)−1, e =
AB

2F
,

c = CKrelv(Carel − Cai), A = 5 ∗ 10(−13),

F = 96.4867, B = CMgCa,LffCa,

ECa,L = 65, F∗ = 3.4175 ∗ 10(−13).

Now we say that:

y = cw(E)− ed(E)(E − ECa,L)− F1 = 0,

and draw y against voltage for the values of Cai, Carel, f , fCa and v at t=34.1751

where the solutions change from three to one intersections. We see from Fig. 6.27
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that the curve crosses the y-axis in two places at E=−13.24 and 30.01. So this

equation has two values of E, but going from Fig. 6.21 E=−13.24 is relevant and

E=30.01 isn’t.
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Figure 6.27: Graph of y against E.

We want to approximate analytically y(E)=0, therefore take y=0:

cw(E)− ed(E)(E − ECa,L)− F1 = 0,

d(E) =
p

(ECa,L − E)
,

p =
F1 − cw(E)

e
,

E = −Ed − b ln

(
ECa,L − E − p

p

)
,

En+1 = −Ed − b ln

(
ECa,L − En − p

p

)
,

where

w(E0) = 1− (1 + e−(E0−40)/17)−1, c = 8.5501 ∗ 10−14,

e = 8.3015 ∗ 10−15, F1 = 3.4175 ∗ 10−13,

Cai = 0.0008, Carel = 0.1485,

f = 0.8732, fCa = 0.2965,

v = 0.0002.
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We take E0=−Ed as our initial value for E0 in the iterations. So the iterations

give us the following values:

E0 = −10, E1 = −12.6328,

E2 = −13.1321, E3 = −13.2231,

E4 = −13.2396, E5 = −13.2426,

E6 = −13.2431, E7 = −13.2432,

E8 = −13.2432.

So we see that the analytical value is the same as the numerical value to two

decimal places.
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Figure 6.28: Graph of w (- -) and d (-) against E.

From Fig. 6.28 we could also take w=1, if d changes from 0 to 1 at E=−Ed

as we see that if d is open then w is closed and vice versa, but d opens at a faster

rate than w is closing at. So we can take iterations of E and see if this will give

us an answer similar to the numerical answer.

We see that the values of the iterations tend to E=−13.4643 which is close

to the value of the numerical answer E=−13.24, but is not the same value as

we obtained above with the other iterations. So the iteration method gives an

answer close to or the same as the numerical answer, therefore this method can

be used to find the threshold of E without having to find it numerically.

We can say again that E1 gives a good approximation, so:

183



E ≈ E1 = −Ed − b ln

(
ECa,L + Ed − p

p

)
.

6.3.5 Summary

We can summarize this section and see that the main results are:

1. we know that u can be written as follows,

u ≈ θ(Fn − F1),

in the limit a → 0 where F1=a ln E=3.4175 ∗ 10−13,

2. we found that u can be considered as a fast variable during the intermediate

and slow stage [1.2, 600] because τu is small. Variable u is close to u most

of the time, but we were studying u mainly for the intermediate stage and

found that it can be treated as fast in the slow stage as well,

3. function u is a solution of the following equation:

F1 + D − a ln

(
1− u

u

)
= CKu2, (6.19)

4. during the time period t=[1.2, 600] we have,

t = 1.2− 14.9761, one solution of (6.19),

t = 15.9053− 33.8085, three solutions of (6.19),

t = 34.1751− 171.9058, one solution of (6.19),

t = 172.2015− 600, three solutions of (6.19),

5. the three solutions for u and Fn from (6.19) and Fn=CKu2 −D are,

Fn1 ≈ −D, u1 ≈ 0,

Fn2 ≈ F1, u2 ≈ +

√
F1 + D

CK
,

Fn3 ≈ CK −D, u3 ≈ 1,

provided that u1 ≤ u2 ≤ u3,
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6. we found that the equation for the bifurcation of merging the lower and

middle solutions is,

u1 > u2,

A

F

(
1

2
ICa,L(E, d(E))

)
+ F1 = 0,

and,

E ≈ E1 = −Ed − b ln

(
ECa,L + Ed − q

q

)
= −21.9079,

7. we found that the equation for the bifurcation of merging the upper and

middle solutions is,

u2 > u3,

cw(E)− ed(E)(E − ECa,L)− F1 = 0,

and

E ≈ E1 = −Ed − b ln

(
ECa,L + Ed − p

p

)
= −12.6328.

We want to draw the parametric plane for our solution of u. So we take the

two equations for the bifurcations, leaving the variables as their initial values for

the whole of the action potential and not just at the start of it. So we use the

following two equations:

1

2
ICa,L(E, d(E), f, fCa) +

F1F

A
= 0,

CK(E, Cai, Carel)− A

2F
ICa,L(E, d(E), f, fCa)− F1 = 0,

and find two common parameters in them and then draw the plane of these

two parameters. We see from the two equations that K and ICa,L are the com-

mon parameters. We rearrange these two equations to obtain the following two

equations:

ICa,L = −2F1F

A
,

ICa,L =
2F (F1 − CK)

A
.

Figure 6.29(a) shows the graph of these two equations and we see that they

cross and give us a quadrant. If we draw the trajectory corresponding to the
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action potential of the system we see that the trajectory only touches three

parts of the quadrant. The trajectory is colour and line coded to show which

part corresponds to the lower solution u1 (*) and which corresponds to the upper

solution u3 (.). The quadrant is also marked with which section corresponds to

how many solutions of the action potential there are and which solutions they

are. We see that the lower left quadrant corresponds to the solutions for u2,

but we can say that if we change the initial values for the action potential, then

the trajectory would enter this quadrant and the solution here would be three

solutions with u3 (upper) solution being the true solution.

We draw the phase portrait for the calcium subsystem to show where all

three solutions for u exist. We use equation (6.19) equal to zero to draw the

three-dimensional surface, where (x, y, z)=(K, ICa,L, u). So the equation for the

surface is:

f = 0 : F1 + D − a ln

(
1− u

u

)
− CKu2 = 0,

where D=
AICa,L

2F
as we considered INa,Ca=0 earlier.

So we can say that f=0 is our slow manifold for the calcium subsystem.

We also want to find the fold curve, and draw a trajectory to see if the projec-

tions of the fold curve and trajectory onto the (K, ICa,L) plane looks exactly like

Fig. 6.29(a). The fold curve satisfies the following two equations:

f = 0 : F1 + D − a ln

(
1− u

u

)
− CKu2 = 0,

∂f

∂u
= 0 : −2CKu + a

(
1

1− u
+

1

u

)
= 0.

If we rearrange ∂f
∂u

=0 and put the answer in f=0, we obtain the following two

equations:

K =
a

2Cu2(1− u)
,

ICa,L =
2F

A

(
a ln

(
1− u

u

)
+

a

2(1− u)
− F1

)
.

If we project the fold curve to the (K, ICa,L) plane we obtain a right angled

curve, where the right angle is our cusp point. So the projection doesn’t look

like a cusp, this is because the fold curve is not smooth around the cusp point

and we see what is projected if the fold curve is travelling along the u axis.
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To find the cusp point we use the equation ∂2f
∂u2 =0, which gives us the solution

(K, ICa,L, u)=(4.7819 ∗ 10−5,−131.4716, 2/3).

We drew three graphs corresponding to f=0, where two are using approxima-

tions for u, so that we have a good view of the surface and can see all the solutions

for u. Figure 6.29(b) is drawn for z=u, Fig. 6.29(c) is drawn for z=ln(1−u
u

), where

the fold curve satisfies:

K =
a(ez + 1)3

2Cez
,

ICa,L =
2F

A

(
az +

a(ez + 1)

2ez
− F1

)
,

and the cusp point is (K, ICa,L, u)=(4.7819 ∗ 10−5,−131.4716,−0.6931).

Figure 6.29(d) is drawn for z= 1
u
, where the fold curve satisfies:

K =
az3

2C(z − 1)
,

ICa,L =
2F

A

(
a(z − 1) +

az

2(z − 1)
− F1

)
,

and the cusp point is (K, ICa,L, u)=(4.7819 ∗ 10−5,−131.4716, 3/2).

So we see from all three graphs that the projection to the (K, ICa,L) plane is

the same as Fig. 6.29(a), and therefore the surface further proves which quadrant

the solutions lie in, i.e. u1, u2 and u3.

We also see from Fig. 6.29(b) that the trajectory doesn’t start near the slow

manifold and doesn’t at first travel along it. This is because the beginning of the

trajectory corresponds to the time period [1.2, 20], where u is actually not fast,

as it is not close to its quasi-stationary value, which can be seen from Fig. 6.25.

Also, if you look at Fig. 6.29(c), you’ll see that the projection of the trajectory

to the (ICa,L, ln(1−u
u

)) axis is a straight line, whereas the trajectory is actually not

straight at this point, this is because the projection has squashed the trajectory

so that it looks like a straight line.

Figure 6.30 shows two enlarged graphs of the projection of the fold curve to

the (K, ICa,L) plane from Fig. 6.29(b), from two different viewpoints. This is to

show that even though the projection is a right angle, if viewed in this scale, it is

actually still a cusp. So by enlarging the scale we can see that a cusp is projected

down the z-axis. This then corresponds with the theory from Zeeman that we

used to draw the phase portraits for the Hodgkin-Huxley system.
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Figure 6.29: (a) Graph of ICa,L against K with a trajectory that corresponds to

the action potential representing the lower solution (*) and the upper solution (.).

Phase portrait of the calcium subsystem with the semi-transparent surface as the slow

manifold (6.19), fold curve and its projections (-) and trajectory and its projections

(-.) for (x, y, z)=(K, ICa,L, z), where (b) z=u, (c) z=ln(1−u
u ) and (d) z= 1

u . The arrows

represent the flow on the slow manifold.
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Figure 6.30: Phase portrait of the calcium subsystem with the semi-transparent sur-

face as the slow manifold (6.19), fold curve and its projections (-) and trajectory and

its projections (-.) for (x, y, z)=(K, ICa,L, u), which corresponds to Fig. 6.29(b), from

two viewpoints and different ranges of variables.

6.4 Other Variables in the Intermediate Stage

[t1, t2]

In the intermediate stage we have CRN-11 (6.12), which is a problem in a finite

interval and therefore we have regular perturbation and not singular perturba-

tion, because if ε=0 we don’t have zeros in the denominator.

We know that f , xr and xs were slow variables in the fast stage, and we

assume from their τ ’s that they are slow variables here and can be replaced with

their initial values. To show this we take CRN-11 and introduce ε to the right-

hand sides of f , xr and xs. We then tend ε to zero to see what happens to the

shape of the action potential. So CRN-11 looks like this:

dE

dt
= −Iion

CM
, (6.20)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr) + IKs(E, xs)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = j, oi, fCa, u, v,

dx

dt
= ε

x− x

τx
, y = xr, xs, f,

dCai

dt
=

B1
B2

,
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B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

Figure 6.31 is draw using the new initial conditions, y1, for the intermediate

stage.

y1 = (E, Cai, Carel, j, oi, xr, xs, f, fCa, u, v)

= (21.7785, 0.0001, 1.4735, 0.6892, 0.9054, 0.0107, 0.0202, 0.9959, 0.7749,

0.0804, 0.6972).
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Figure 6.31: Action potential for CRN-11, system (6.20) ε=1, (-) and system (6.20)

ε → 0, (.) for t=[1.2, 33].

We see from Fig. 6.31 that there is little change on the action potential, so

we can replace f , xr and xs with their initial values and obtain a system of eight

variables, CRN-8:

dE

dt
= −Iion

CM
, (6.21)
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Iion = IK1(E) + Ito(Eoa, oi) + IKur(E, ua) + IKr(E) + IKs(E)

+ICa,L(E, d, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = j, oi, fCa, u, v,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

Figure 6.32 shows the action potential for CRN-11 and CRN-8 to show that

if we replace xr, xs and f with their initial values that it makes little difference

to the action potential, no more than 3.6414mV.
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Figure 6.32: Action potential for CRN-11, system (6.20) ε=1, (-) and CRN-8, sys-

tem (6.21), (.) for [1.2, 33].

6.4.1 Neglecting dependence of Irel on Cai

We see from Fig. 6.33 that Carel is greater than Cai so therefore we can replace

(Carel − Cai) ≈ Carel in Irel, then Irel will depend on fewer variables. So
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Figure 6.33: Graph of Cai ∗ 1000 (- -) and Carel (-) for CRN-8, system (6.21), for

[1.2, 33].

we draw the variables and currents that Irel becomes involved with and see

that with this replacement there is no difference, Fig. 6.34. We even drew the

graphs for [0, 600] and found that there was no change either. So we can replace

(Carel − Cai) ≈ Carel in Irel.

6.4.2 Explicit solution for u and v in the intermediate

stage

We found earlier that u could be replaced with u which is either 0 or 1, and this

introduced notable error, but from Fig. 6.34(d) we see that u can be written as

a function of t which is a more accurate way of writing u. Also from Fig. 6.34(e)

we see that we can rewrite v as a function of t, for this time scale [1.2, 33]. This

is because we know that τu=8 and from looking at τv against t we found that

the graph looked like the Heaviside function and also this is in the same limit as

u if a → 0, so we can treat τv as a Heaviside function and it can be written as

follows:

τv = 2 + 2θ(Fn − F1),

= 4− 2θ(t− t3).

If Fn reaches its threshold u and τv switch from one value to another. So τv
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Figure 6.34: Graph of CRN-8, system (6.21), (-) and CRN-8 with (Carel − Cai) ≈
Carel in Irel (.) for t=[1.2, 33] for the variables (a) E, (b) Cai, (c) Carel, (d) u, (e)

v, (f) Irel, (g) ICa,L and (h) fn.
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remains constant for the whole of the intermediate stage.

Therefore u and v can be rewritten as functions of time:

u(t) = 1− e−t/τu , v(t) = e−t/τv .

So we finally have a system of six equations, CRN-6:

dE

dt
= −Iion

CM
, (6.22)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E) + IKs(E)

+ICa,L(E, d, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),

dj

dt
=

j(E)− oi

τj(E)
,

doi

dt
=

oi(E)− oi

τoi(E)
,

dfCa

dt
=

fCa(Cai)− fCa

τfCa

,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Carel, u(t), v(t), w(E))Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Carel, u(t), v(t), w(E)))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

We have a sixth-order system (6.22) and we draw the graphs of CRN-8 and

CRN-6 for E, Cai, Carel, j, oi and fCa once INa is over. So we have new initial

conditions y1 to see if there is any difference between the two systems. Figure 6.35

shows that there is no change in E, j and oi and there is little change in Carel

and fCa, and Cai is higher.

6.4.3 Neglecting the minor currents

We want to be able to eliminate the currents that are small compared to Ito

and ICa,L. We found that we could eliminate IK1 , IKr, IKs, INa,Ca, and Itr and

replace the other currents with constant values, INa,K=22.4544, Ip,Ca=17.7916,
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Figure 6.35: Graphs of CRN-8, system (6.21), (-) and CRN-6, system (6.22), (.) for

t=[1.2, 33] and (a) E, (b) Cai, (c) Carel, (d) oi, (e) fCa and (f) j.

Ib,Na=−5.3323, Ib,Ca=−12.7536 and Iup=3.2 ∗ 10−3. These values were found

empirically to give us an accurate approximation.

So the system looks like this now:

dE

dt
= −(Ito(E, oa(E), oi) + IKur(E, ua(E)) + A)

CM
(6.23)

+
ICa,L(E, d(E), fCa(Cai))

CM
,

dj

dt
=

j(E)− j

τj(E)
,

doi

dt
=

oi(E)− oi

τoi(E)
,

dfCa

dt
=

fCa(Cai)− fCa

τfCa

,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(B − ICa,L(E, d(E), fCa(Cai))) + (Vi)(−1)(VupC

+Irel(Carel, u, v, w(E))Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,
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dCarel

dt
=

−Irel(Carel, u, v, w(E))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) ,

where A=22.1601, B=−5.0380 and C=−0.0027.

Figure 6.36 shows that these changes don’t make much difference to the

system, it only brings Cai closer to its CRN-8 solution. So by eliminating these

currents we make the number of currents in Iion less.
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Figure 6.36: Graphs of CRN-8, system (6.21), (-) and CRN-6, system (6.23), (.) for

t=[1.2, 33] and (a) E, (b) Cai, (c) Carel, (d) oi, (e) fCa and (f) j.

6.4.4 Iterations for constant E=E0

Now that we have eliminated the minor currents we want to see if we can replace

E with a constant, E0, that will make no difference to j, oi, fCa, Cai and Carel

in system (6.23). We can only do this for the scale [4.1, 33] where we can cut off

the beginning of the action potential, see Fig. 6.35(a). So we chose the value of

E0 at t=33 and this is E0=−10.8425. So the new system is:

E0 = −10.8425, (6.24)
dj

dt
=

j(E0)− j

τj(E0)
,

196



doi

dt
=

oi(E0)− oi

τoi(E0)
,

dfCa

dt
=

fCa(Cai)− fCa

τfCa

,

dCai

dt
=

B1

B2
,

B1 = (2FVi)(−1)(B − ICa,L(fCa)) + (Vi)(−1)(VupC + Irel(Carel, u, v)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

−Irel(Carel, u, v)(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) ,

where B=−5.0380, C=−0.0027 and w=0.9522.

As we can see from this system we can replace ȯi and j̇ with an exponential

function using the initial conditions for t, j and oi to give us a system of three

equations (fCa, Cai, Carel).

j0 = j(E0) + (j(t0)− j(E0))e−(t−t0)/τj(E0),

oi0 = oi(E0) + (oi(t0)− oi(E0))e−(t−t0)/τoi (E0).

We draw system (6.24) using the initial conditions y2 taken at t=4.2703. In

Fig. 6.37 we draw each equation against the equations in system (6.23) to see if

there is any difference. There was no difference in the graphs, so we can consider

E as a slow variable for t=[4.2703, 33]. The initial conditions at t=4.2703 are:

y2 = (E, Cai, Carel, j, oi, fCa),

= (3.1006, 0.0003, 0.6157, 0.2785, 0.7001, 0.6473).

We now draw the action potential of system (6.25) with E0=−10.8425 and the

solutions from system (6.24), Fig. 6.37, for E1, to see if it makes any difference

to the action potential, if it doesn’t then we can say that E is a constant for the

time period [4.2703, 33]. We see from Fig. 6.38 that there isn’t much change here

so therefore the assumption that we made is correct.

j0 = j(E0) + (j(t0)− j(E0))e−(t−t0)/τj(E0), (6.25)

oi0 = oi(E0) + (oi(t0)− oi(E0))e−(t−t0)/τoi (E0),
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Figure 6.37: Graphs of CRN-6, system (6.23), (-) and CRN-5, system (6.24), (.) for

t=[4.2703, 33] and (a) Cai, (b) Carel, (c) oi (d) fCa and (e) j.

fCa0 = fCa(Cai0) + (fCa(t0)− fCa(Cai0))e−(t−t0)/τfCa ,

dCai0
dt

=
B1

B2
,

B1 = (2FVi)(−1)(B − ICa,L(fCa0)) + (Vi)(−1)(VupC + Irel(Carel0, u, v)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai0 + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai0 + Km,Cmdn)2
,

dCarel0
dt

=
−Irel(Carel0, u, v)(

1 + [Csqn]maxKm,Csqn

(Carel0+Km,Csqn)2

) ,

dE1

dt
= −

Ito(E1, oa(E1), oi0) + IKur(E1, ua(E1)) + ICa,L(E1, d(E1), fCa0) + A

CM
,

where B=−5.0380, C=−0.0027 and w=0.9522.

From Fig. 6.38 we see that the action potential goes to a straight line, so

maybe it could be going to an equilibrium point. To find this out we draw the

graphs of the variables and currents in system (6.23) to check this.

What we see in Fig. 6.39 is that there is no equilibrium point, but a lo-

cal minimum, so therefore our conjecture that there is an equilibrium point is

incorrect.

Now we know we can recreate the action potential by making the voltage a

constant between t=[4.2703, 33]. Lets see if we can use the same method again,

but this time without knowing the value of E0 at t=33. We know the value of
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Figure 6.38: Action potential of CRN-6, E, system (6.23), (-) and CRN-6, E1, sys-

tem (6.25), (.) with solutions for Cai0, Carel0, j0, oi0 and fCa0 for t=[4.2703, 33] and

E0=−10.8425.

E0 at t=1.2 is 21.778. So we use the initial conditions y1 and E0=21.7785, then

we draw the six variables, system (6.25), for t=[1.2, 33] against its equation in

system (6.23). We see from Fig. 6.40 that there is either no difference or little

difference between the graphs.

We see that the Cai0 graph, Fig. 6.40(b), drops below the CRN-6 Cai graph.

So it was decided to see if we can obtain a better approximation for Cai by

adding to the iterations an extra equation of Cai1, system (6.26), and drawing

Cai1 against CRN-6’s Cai and see if it is more accurate. The iterations become:

E0 = 21.7785, (6.26)

j0 = j(E0) + (j(t1)− j(E0))e−(t−t1)/τj(E0),

oi0 = oi(E0) + (oi(t1)− oi(E0))e−(t−t1)/τoi (E0),

fCa0 = fCa(Cai0) + (fCa(t1)− fCa(Cai0))e−(t−t1)/τfCa ,

dCai0
dt

=
B1

B2
,

B1 = (2FVi)(−1)(B − ICa,L(fCa0)) + (Vi)(−1)(VupC + Irel(Carel0, u, v)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai0 + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai0 + Km,Cmdn)2
,

dCarel0
dt

=
−Irel(Carel0, u, v)(

1 + [Csqn]maxKm,Csqn

(Carel0+Km,Csqn)2

) ,
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Figure 6.39: Graphs of CRN-6, system (6.23), (-) for t=[1.2, 300] and (a) E, (b) Cai,

(c) Carel, (d) oi (e) fCa, (f) Ito, (g) ICa,L, (h) Ikur and (i) Irel.
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Figure 6.40: Graphs of CRN-6, system (6.23), (-) and CRN-6, system (6.25), (.) for

t=[1.2, 33] and E0=21.7785 for (a) E1 with solutions for Cai0, Carel0, j0, oi0 and fCa0 ,

(b) Cai0, (c) Carel0, (d) j0 (e) oi0 , (f) fCa0 , (g) Ito, (h) Ikur and (i) ICa,L.
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dE1

dt
= −

Ito(E1, oa(E1), oi0) + IKur(E1, ua(E1)) + ICa,L(E1, d(E1), fCa0) + A

CM
,

dCai1
dt

=
B11

B21
,

B11 = (2FVi)(−1)(B − ICa,L(fCa0)) + (Vi)(−1)(VupC + Irel(Carel0, u, v)Vrel),

B21 = 1 +
[Trpn]maxKm,Trpn

(Cai1 + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai1 + Km,Cmdn)2
,

where B=−5.0380, C=−0.0027 and w=0.9522.

We see from Fig. 6.41(a) that Cai1 is higher than before, compared to

Fig. 6.40(b). So we also add Carel1 to Cai1, system (6.27), as dCai1
dt

is a function

of Carel1. Therefore we have reduced CRN-6 to a system of one equation CRN-

1, because we can solve all the equations in quadratures except E1 because E1

is too complicated to solve and approximations cannot reproduce the accuracy

of the differential equation. If we find a numerical solution for E1 though, then

we can solve all the other equations in quadratures.

E0 = 21.7785, (6.27)

j0 = j(E0) + (j(t1)− j(E0))e−(t−t1)/τj(E0),

oi0 = oi(E0) + (oi(t1)− oi(E0))e−(t−t1)/τoi (E0),

fCa0 = fCa(Cai0) + (fCa(t1)− fCa(Cai0))e−(t−t1)/τfCa ,∫ Cai0

Cai(t1)
B2(Cai0)dCai0 =

∫ t

t1

B1(t)dt,

B1 = (2FVi)(−1)(B − ICa,L(fCa0(t))) + (Vi)(−1)(VupC

+Irel(Carel0(t), u(t), v(t))Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai0 + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai0 + Km,Cmdn)2
,

∫ Carel0

Carel(t1)

(
1 + A

(Carel0+B)2

)
Carel0

dCarel0 = −Krelw(E0)
∫ t

t1

u2(t)v(t)dt,

dE1

dt
= −

Ito(E1, oa(E1), oi0) + IKur(E1, ua(E1)) + ICa,L(E1, d(E1), fCa0) + A

CM
,∫ Cai1

Cai(t1)
B12(Cai1)dCai1 =

∫ t

t1

B11(t)dt,

B11 = (2FVi)(−1)(B − ICa,L(fCa0)) + (Vi)(−1)(VupC

+Irel(Carel1, u(t), v(t))Vrel),

B21 = 1 +
[Trpn]maxKm,Trpn

(Cai1 + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai1 + Km,Cmdn)2
,

∫ Carel1

Carel(t1)

(
1 + A

(Carel1+B)2

)
Carel1

dCarel1 = −Krelw(E1)
∫ t

t1

u2(t)v(t)dt,
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where B=−5.0380, C=−0.0027 and w=0.9522.

We see from Fig. 6.41(b) that now we have no difference between CRN-6’s

Cai and Cai1.
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Figure 6.41: Graphs of CRN-6, system (6.23), (-) for t=[1.2, 33] for E0=21.7785 for

(a) Cai1, system (6.26), with E1, (.) and (b) Cai1, system (6.27), with E1 and Carel1

(.).

Therefore we can summarize that from drawing system (6.25), with putting

j0, oi0 , fCa0 , Cai0 and Carel0 in E1, we see that Cai drops below CRN-6’s

Cai, Fig. 6.40, and this stems from using the initial value E0=21.7785. We

see that by using E0=−10.8425 we have no change in the graphs of Cai, so

this is to do with using a different value for E0. Therefore we see that by

drawing Cai1, system (6.26), instead of Cai0, system (6.25), against CRN-6’s

Cai, system (6.23), then Cai1 is above CRN-6’s Cai, Fig. 6.41(a). We also know

that dCai
dt

is a function of Carel and therefore if we replace Carel with Carel1 in
dCai1

dt
, system (6.27), and draw Cai1 against CRN-6’s Cai, system (6.23), then

we see that there is no difference between them, Fig. 6.41(b).

6.4.5 Dynamics of Carel

We take system (6.24) where E0=21.7785 not −10.8425 as we are taking E0 at

t=1.2, and we see that dCarel
dt

is a function of t and Carel only, so we want to

find an explicit solution for Carel. Therefore we integrate dCarel
dt

:

dCarel

dt
= −Irel(Carel, u, v, w(E0))(

1 +
[Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) , (6.28)
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dCarel

dt
= −Krelu

2vw(E0)Carel(
1 + A

(Carel+B)2

) ,

∫ Carel

Carel0

(
1 + A

(Carel+B)2

)
Carel

dCarel = −Krelw(E0)

∫ t

t0

u2vdt,

where A=[Csqn]maxKm,Csqn and B=Km,Csqn.

Say γu=1/τu, γv=1/τv and the initial conditions are (t0, Carel0), then we use

partial fractions to find the solution.

Say p=e−tγv , r=e−tγu , q=e−t0γv and s=e−t0γu .

So,

ln

 (Carel)
(B2+A)

B2

(Carel + B)
A

B2

+
A

B(Carel + B)
= Krelw(E0)

(
p− q

γv
+

2(qs− rp)
γu + γv

+
pr2 − qs2

2γu + γv

)
+D,

where D=ln

(
(Carel0)

(B2+A)

B2

(Carel0+B)
A

B2

)
+ A

B(Carel0+B)
, which is a constant.

To obtain an explicit solution for Carel(t), which is not possible by rearrang-

ing the above equation, we have to use iterations.

Say, G=Krelw(E0)
(

p−q
γv

+ 2(qs−rp)
γu+γv

+ pr2−qs2

2γu+γv

)
+ D, so

ln

 (Carel)
(B2+A)

B2

(Carel + B)
A

B2

+
A

B(Carel + B)
= G,

ln(Carel(B
2+A)/B2

)− ln(Carel + B)A/B2

+
A

B(Carel + B)
= G,

ln(Carel) =
B2

(B2 + A)

(
G +

A

B2
ln(Carel + B)− A

B(Carel + B)

)
,

Careln+1 = (Careln + B)A/(B2+A)e
B2G−AB/(Careln+B)

(B2+A) .

To check this we use the initial value of Carel at t=0, which is Carel0=1.488,

and we put it in the recurrence relation. Figure 6.42 shows that we need seven

iterations to obtain an accurate solution close to the original solution for Carel

from system (6.24).

6.4.6 Finding a simpler approximation for Carel

We have found an approximation for Carel using iterations, but the equation

we obtained only gives one approximation for Carel, so we want to see if we can
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Figure 6.42: Graph of iterations for Carel (6.24) for the initial point Carel0=1.488.

find a simpler approximation, that approximates the solution of the integral as

a function of G.

So we have the following equation for Carel:

G(Carel) = Krelw(E0)
(

p− q

γv
+

2(qs− rp)
γu + γv

+
pr2 − qs2

2γu + γv

)
+ D, (6.29)

where G(Carel) is defined as:

G(Carel) = ln

 (Carel)
(B2+A)

B2

(Carel + B)
A

B2

+
A

B(Carel + B)
.

Figure 6.43 shows the graphs of G against Carel and the inverse of this for

equation (6.29), so we can determine which approximation we can use.

We have two approximations for this equation, Carel=aebG and Carel =

c(−G)−d. So we evaluate these two approximations to see which one is the

best for our function. We also found two different values for a, b, c and d as

well, where one set of values joins the two endpoints together and the other set

of values are the ones obtained through a computer approximation using the

Marquardt-Levenberg procedure for best fit.

The approximations using the endpoints are:

Carel = 1.6323e0.1613G,

Carel = 1.0499(−G)−0.7460,
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Figure 6.43: Graphs of (a) G against Carel and (b) Carel against G for equa-

tion (6.29).

and the approximations using the Marquardt-Levenberg procedure are:

Carel = 1.53814e0.192407G,

Carel = 1.20435(−G)−0.652733.

We draw the graphs of Carel against G for all approximations and com-

pare them with the original graph of Carel(G). Figure 6.44(a) shows the

approximations for Carel=aebG, Fig. 6.44(b) shows the approximations for

Carel=c(−G)−d; Fig. 6.44(c) shows the computer approximations, using the

Marquardt-Levenberg procedure, against Carel(G); this shows us that the two

approximations swap at the middle points of the graph and one is above the

original curve and one is below the original curve. Figure 6.44(d) shows the

approximations using the endpoints against Carel(G) and this shows that one

curve is above and one curve is below the original curve. From this analysis we

could take either of the endpoint approximations, as these are more accurate

than the computer approximations using the Marquardt-Levenberg procedure,

as they do incorporate the beginning and endpoints of the curve. The approxi-

mation where Carel=1.6323e0.1613G looks the best as it is closer to the original

curve.

6.4.7 Summary

The end value of the time period, for the intermediate stage, is found where u

and τv switch their values. We checked that u can be replaced with the Heaviside
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Figure 6.44: Graph of equation (6.29) drawn for (a) Carel against G (-) with

the approximations Carel=1.6323e0.1613G (-.) and Carel=1.53814e0.192407G (- -),

(b) Carel against G with the approximations Carel=1.0499(−G)−0.7460 (-.) and

Carel=1.20435(−G)−0.652733 (- -), (c) Carel against t with the computer approxi-

mations Carel=1.53814e0.192407G (- -) and Carel=1.20435(−G)−0.652733 (.) and (d)

Carel against t with the endpoint approximations Carel=1.6323e0.1613G (.) and

Carel=1.0499(−G)−0.7460 (- -).
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function and found that this is a good approximation for E(T ).

We found that we can eliminate the minor currents from CRN-6, so that the

equation for Carel only contains Carel and t, therefore it is a separable equation

and can be solved in quadratures. Then we used the method of iterations to find

an analytical equation for Carel. We found that the method of iterations worked

well and gave us an equation for Carel, but if we wanted to put that equation

in dCai
dt

, to integrate with respect to Cai, to find an equation for Cai, then the

equation for Carel is complicated to integrate. So we wanted to find a simpler

equation for Carel, that is why we tried different approximations for Carel.

From these approximations we found that there wasn’t a good approximation

for Carel.

We also found that we could obtain analytical solutions for j0, fCa0 , oi0 ,

Cai0, Carel0, E1, Cai1 and Carel1, if we replaced E=E0, even though some of

the solutions are in the form of quadratures.

Before we did any iterations we had obtained an accurate system. So the

accurate system for the intermediate stage is a system of six equations (5 + 1),

because j is a separate equation that splits away from the other five equations.

We compare this with the fast stage and see that we have a system of four

equations (2 + 2), where oa and d split away.

6.5 The Slow Stage [t2,∞]

The system is CRN-11 (6.20) which is valid both in the intermediate and slow

stage:

dE

dt
= −Iion

CM
, (6.30)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr) + IKs(E, xs)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = j, oi, xr, xs, f, fCa, u, v,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),
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B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .

We draw the graph of the τ ’s, Fig. 6.45, using the initial values at t=33,

which are the final values of the intermediate stage and are:

(E, Cai, Carel, j, oi, xr, xs, f, fCa, u, v) =

(−12.2830, 0.0008, 0.1478, 0.0001, 0.0779, 0.0919, 0.0438, 0.8770, 0.2956,

0.9829, 0.0002).
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Figure 6.45: Graph of the τ ’s for CRN-11, system (6.30), for the time scale [33, 600].

We see from the graph that the fast variables are fCa, u, v, oi and j. The

intersecting variables are Cai, Carel, f , xs and xr.

We also replace (Carel − Cai) with Carel in Irel and see that there is no

change in the action potential, Fig. 6.46.

We draw the fast variables against their quasi-stationary values for two time

periods [33, 600] and [33, 63] to see how close they are to their quasi-stationary

values. We see from Figs. 6.47 and 6.48 that fCa is exactly like its quasi-stationary

value and therefore can be replaced with its quasi-stationary value, u is close to

its quasi-stationary value and is exactly the same after t=110. Between 33 and

110 it can be replaced at different stages with exponential functions. Variable v
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Figure 6.46: Action potential of CRN-11, system (6.30), (-) and CRN-11 with (Carel−
Cai) ≈ Carel in Irel (.).

is exactly the same as its quasi-stationary value and therefore can be replaced

with it. Variable oi is close to its quasi-stationary value and so is j. Variable f

is not close to its quasi-stationary value and neither are xr or xs.

If we put 1/ε in front of the fast variables the system will look like:

dE

dt
= −Iion

CM
, (6.31)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr) + IKs(E, xs)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = xr, xs, f,

dy

dt
=

1
ε

y − y

τy
, y = j, oi, fCa, u, v,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .
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Figure 6.47: Graphs of the fast variables (-) and their quasi-stationary values (-.) and

(.) for CRN-11, system (6.30), for t=[33, 600]. (a) j, (b) oi, (c) fCa, (d) u and (e) v.
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Figure 6.48: Graphs of the fast variables (-) and their quasi-stationary values (-.) and

(.) for CRN-11, system (6.30), for t=[33, 63]. (a) j, (b) oi, (c) fCa, (d) u and (e) v.
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Figure 6.49: Graphs of CRN-11, system (6.30) ε=1, (-) and CRN-11, system (6.31)

ε → 0, (.) for the variables (a) E, (b) j, (c) oi, (d) fCa, (e) u and (f) v.

As we tend ε to zero we see from Fig. 6.49 that the action potential is similar

to CRN-11, there is only a slight change in the return. We see that from drawing

the action potential of system (6.32) against CRN-11, system (6.30), Fig. 6.50,

oi causes this slight change in the action potential, so it is not a fast variable.

So we take 1
ε

from in front of oi and obtain our new system:

dE

dt
= −Iion

CM
, (6.32)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr) + IKs(E, xs)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = oi, xr, xs, f,

dy

dt
=

1
ε

y − y

τy
, y = j, fCa, u, v,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))
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+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .
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Figure 6.50: Action potential of CRN-11, system (6.30), (-) and CRN-11, sys-

tem (6.32) ε → 0, (.).

If we use the change of variable T= t
ε

we obtain:

dE

dT
= −ε

Iion

CM
, (6.33)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr) + IKs(E, xs)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dT
= ε

y − y

τy
, y = oi, xr, xs, f,

dy

dT
=

y − y

τy
, y = j, fCa, u, v,

dCai

dT
= ε

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa)

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))

+Irel(Cai, Carel, u, v, w)Vrel),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,
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dCarel

dT
= ε

(Itr(Carel)− Irel(Cai, Carel, u, v, w))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .
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Figure 6.51: Graphs of CRN-11, system (6.30) ε=1, (-) and CRN-11, system (6.33)

ε → 0, (.) for T=[33, 63] for the variables (a) E, (b) j, (c) fCa, (d) u and (e) v.

As we tend ε to zero for the fast time we draw the action potential for

T=[33, 63], Fig. 6.51(a) and see that near the end, as the action potential starts

its return, the action potential drops lower than CRN-11. We also draw the

other variables in the system, Figs. 6.51 and 6.52, to see what happens to them

as ε → 0 for system (6.33).

6.5.1 Analysis of u and u

We know from the previous section that u can be replaced with the Heaviside

function. We also see from Fig. 6.49(e) that we have an extra opening in u and

this is caused by the approximations that we have done so far. We want to

analyse this extra opening to see if it is significant. So we draw the graphs of u

and u for its original equation and the Heaviside function. Figure 6.53(a) shows

u and u and this shows what happens to them both for CRN-11.

We see that because of this extra opening on u, then we also have an extra

opening for u if it is the Heaviside function, we didn’t want this as we wanted
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Figure 6.52: Graphs of CRN-11, system (6.30) ε=1, (-) and CRN-11, system (6.33)

ε → 0, (.) for the variables (a) Cai, (b) Carel, (c) oi, (d) xr, (e) xs and (f) f .

a step function. So our approximation is not very good or robust because a is

smaller than F1 by a factor of 230. Despite this fact we know that the action

potential doesn’t change else we wouldn’t have replaced u with the Heaviside

function in the beginning. This doesn’t change any of the other variables either,

because u only appears in product with v, and v is closed in that time interval

anyway.

So we want to eliminate this second opening and therefore u will be zero after

t=33 always. We know that u depends on Fn and that Fn depends on Cai, so

we can vary the initial value of Cai by 1% either way and see what affect this

has on the graphs of u and u. We see from Fig. 6.53 that if we do this we can

eliminate the second opening and obtain the graphs of u and u.

Therefore we can replace u with u=0 as we know that it will be zero always

now, even though the second opening did not affect the action potential, and

we can replace v with v=1, which will give us Irel=0. So we have adiabatically

eliminated two variables and have eliminated a calcium current as well. We can

also adiabatically eliminate fCa and j to obtain the following system of seven

equations:
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Figure 6.53: Graphs of u (-blue) and u (- -) for the original function and u (-.) and

u (-black) for the Heaviside function for CRN-11, system (6.30), for different initial

values for Cai=0.0008m where (a) m=1, (b) m=1.01, (c) m=1.001, (d) m=0.99 and

the action potential of CRN-11, system (6.30), with u as its original function (-) and

as its Heaviside function (.).
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dE

dt
= −Iion

CM
, (6.34)

Iion = IK1(E) + Ito(E, oa, oi) + IKur(E, ua) + IKr(E, xr) + IKs(E, xs)

+ICa,L(E, d, f, fCa(Cai)) + Ip,Ca(Cai) + INa,K(E) + INaCa(E,Cai)

+Ib,Na(E) + Ib,Ca(E,Cai),
dy

dt
=

y − y

τy
, y = oi, xr, xs, f,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Cai)− Ip,Ca(Cai)− ICa,L(E, d, f, fCa(Cai))

−Ib,Ca(E,Cai)) + (Vi)(−1)(Vup(0.000496− Iup(Cai))),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

Itr(Carel)(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) .
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Figure 6.54: Action potential of CRN-11, system (6.30), (-) and CRN-7, system (6.34)

(.).

We see from Fig. 6.54 that there is no difference between CRN-11 (6.30) and

CRN-7 (6.34).
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6.5.2 Eliminating minor currents

We want to see if we can eliminate any minor currents from system (6.34), so we

draw the graphs of the currents in Ė and ˙Cai for both CRN-11, system (6.30),

and CRN-7, system (6.34), Fig. 6.55, to check that the currents look the same

for both systems and we see that they do, so Fig. 6.55 shows all the currents in

Ė and ˙Cai.
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Figure 6.55: Graphs of currents in Ė for (a) CRN-11, system (6.30), and (b) CRN-

7, system (6.34). Graphs of currents in ˙Cai for (c) CRN-11, system (6.30), and (d)

CRN-7, system (6.34).

We found that if we eliminate any of the remaining currents, then this af-

fects the action potential. We know that Irel=0 already, then we found that

if we eliminate Ito we obtain the action potential to look like CRN-11’s action

potential, but it is a little higher at the beginning. So if we eliminate Ito then oi

doesn’t affect the action potential; but the voltage does affect oi, so we might as

well adiabatically eliminate oi. Therefore we decided to keep CRN-7 as an accu-

218



rate system where the action potential doesn’t change, compared with CRN-11,

through the adiabatical eliminations. Then we will have a less accurate system,

which is found by adiabatically eliminating another fast variable, using itera-

tions and approximations of other variables, where the resulting action potential

is compared with CRN-7.

6.5.3 Iterations for dCarel
dt

As we see from system (6.34), the equation dCarel
dt

only contains the variable

Carel and none of the other variables. Also the other equations do not contain

Carel either. So we can resolve dCarel
dt

with respect to Carel and t. So we can

use the variable separable method and then solve by iterations.

dCarel

dt
=

Itr(Carel)(
1 +

[Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) , (6.35)

dCarel

dt
=

Caup− Carel

τtr

(
1 + A

(Carel+B)2

) ,

where A=[Csqn]maxKm,Csqn and B=Km,Csqn. Using partial fractions, the initial

conditions (t0, Carel0), p=Caup+B, and q=AB2−A(Caup+B)2 +ACaup(B +

Caup) to find the solution.

∫ Carel

Carel0

(
1 + A

(Carel+B)2

)
(Caup− Carel)

dCarel =
∫ t

t2

1
τtr

dt,

ln |(Carel − Caup)
(p2+A)

p2 (Carel + B)
q

p2BCaup |+ A

p(Carel + B)

= −(t− t2)
τtr

+
A

p(Carel0 + B)
+ ln |(Carel0 − Caup)

(p2+A)

p2 (Carel0 + B)
q

p2BCaup |.

Rearranging with respect to t, we obtain:

t = τtr(
A

p(Carel0 + B)
+ ln |(Carel0 − Caup)

(p2+A)

p2 (Carel0 + B)
q

p2BCaup |

− A

p(Carel + B)
)− τtr

(
ln |(Carel − Caup)

(p2+A)

p2 (Carel + B)
q

p2BCaup |
)

+ t2.

Again quadratures produce an implicit solution for Carel(t), like we found

for the iterations in the intermediate stage.
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Let us solve this for Carel explicitly using iterations, say

G = −(t− t2)

τtr

+
A

p(Carel0 + B)
+ ln |(Carel0−Caup)

(p2+A)

p2 (Carel0 +B)
q

p2BCaup |.

So,

G = ln |(Carel − Caup)
(p2+A)

p2 (Carel + B)
q

p2BCaup |+ A

p(Carel + B)
,

Carel =
A

p(G− ln |(Carel − Caup)
(p2+A)

p2 (Carel + B)
q

p2BCaup |)
−B.

So for iterations we have:

Careln+1 =
A

p(G− ln |(Careln − Caup)
(p2+A)

p2 (Careln + B)
q

p2BCaup |)
−B.

We can start the iterations from Carel0 which is the vector of Carel taken

from equation (6.35).

To see if the iterations tend to a value we compare the values at t=600. The

iterations converge immediately.

So lets try the iterations as if we don’t know what Carel0 is. We use the initial

point of Carel at t=33, which is Carel0=0.1478, and we see if the iterations

converge. We found that the iterations didn’t converge.

Also we try the following approximation, (Caup − Carel) ≈ Caup in the

equation dCarel
dt

to see if this approximation is close to the original graph of

Carel, as if it is then the workings out using the variable separable method will

be much simpler. Unfortunately as Fig. 6.56 shows this replacement doesn’t

work. The approximation gives a curve that is moving away from the original

curve for Carel.

We want to obtain a simple approximation for Carel that is also close to the

original graph of Carel, so we take the following equation and draw the graph

of G against Carel to see if we can approximate this function.

φ(Carel) = ln |(Carel − Caup)
(p2+A)

p2 (Carel + B)
q

p2BCaup |+ A

p(Carel + B)
= G.

We see from Fig. 6.57(a) that we can approximate this function with a linear

function. So we do this and obtain the following approximation:

Carel = −0.15851G + 0.8557.
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Figure 6.56: Graph of Carel from system (6.34) (-) and the approximation (Caup−
Carel) ≈ Caup in the equation dCarel

dt in system (6.34)) (.).
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Figure 6.57: Graph of Carel, system (6.34) (-) and approximation

Carel=−0.15851G + 0.8557 (- -) and (.) drawn against (a) G and (b) t.
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So we draw our new function against time and compare it with CRN-7’s

Carel to see how well it is approximated and Fig. 6.57(b) shows that it is a good

approximation as it is very close to the original curve of Carel.

Even though we have found a good approximation for Carel as a function of

t, we still want to see if we can make the answer simpler by approximating the
dCarel

dt
equation before we do any calculations to it. So we tried three more ap-

proximations and found that none of the approximations are close to the original

solution for Carel, therefore we conclude that the answer that we obtained for

Carel as a function of t is still the best solution.

6.5.4 Finding a good reduction for CRN-7

We want to reduce CRN-7 to a system of three equations, so we have a system

that we can analyse better. This system won’t be exactly the same as CRN-7,

but that system is our accurate system and any system after that is less accurate,

but is still a good approximation of CRN-7.

The first reduction we tried is to neglect Ito, Ikr and Iks from CRN-7, because

these three currents contain gating variables. We can’t eliminate ICa,L as this

current depends on Cai which we want to keep. So we have a system of three

equations, CRN-3, that is less accurate than CRN-7, but within 10% of CRN-7.

We drew solutions for CRN-3 and compared them with the solutions for

CRN-7. We saw that for the action potential there is a big change on the return,

the shape becomes more dome like and also there is a noticeable change for Cai,

and f , so this is not a good reduction.

Therefore we decided on another reduction. We take CRN-7 and we adi-

abatically eliminate oi and also eliminate Carel, because the Carel equation

only contains Carel and is not affected by any other variables in the system,

and no other variables in the system contain Carel so we consider this equation

separately.

So now we collect all the terms that only contain E together and all the terms

that contain other variables together in the dE
dt

equation. We do the same for

the dCai
dt

equation, but here we collect all the terms that contain only calcium

together. The system will be CRN-5a:

dE

dt
= −(I1(E) + I2(E,Cai, f, fCa(Cai), xr, xs))

CM
, (6.36)
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dy

dt
=

y(E)− y

τy(E)
, y = xr, xs, f,

dCai

dt
=

(I3(Cai) + I4(E,Cai, f, fCa(Cai)))
2FViB2

,

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

where

I1(E) = Ito(E, oa, oi) + IK1(E) + IKur(E, ua) + INa,K(E)

+Ib,Na(E),

I2(E, Cai, f, xr, xs) = CM(
gKrxr(E − EK)

1 + e
(E+15)

22.4

+ gKsx
2
s(E − EK)

+gCa,Ld(E)ffCa(Cai)(E − 65.0)

+Ip,Ca(max)

(
Cai

0.0005 + Cai

)
+

aekE − b Cai e−mE

B(1 + Ksate−mE)

+gb,Ca(E − ECa)),

I3(Cai) = 2FVup(0.000496− Iup)− Ip,Ca,

I4(E, Cai, f) = CM(2
aekE − b Cai e−mE

B(1 + Ksate−mE)
− gb,Ca(E − ECa)

−gCa,Ld(E)ffCa(Cai)(E − 65.0)),

where B=(K3
m,Na+Nao3)(Km,Ca+Cao), a=INaCa(max)Nai3Cao, k= γF

RT o , b=Nao3

and m= (γ−1)F
RT o .

We now draw the solutions for our new system and compare them with the

solutions from CRN-7. The only approximation we use to obtain CRN-5a is that

we adiabatically eliminate oi. So Fig. 6.58 shows the solutions for E, Cai, f , xr

and xs for both systems.

We see that there is a slight change in the action potential. There is a slight

change for xr and f , but no change for Cai and xs. So this reduction is not

perfect, but it is still a good reduction.

We also draw the variables with their quasi-stationary values to see if any

of the gating variables are close to their quasi-stationary values and if they are

then we can call these variables fast variables and replace them with their quasi-

stationary values. We see from Fig. 6.59 that this is not the case for this system.

We draw the τ ’s for CRN-5a to see if there are any variables that are not

intersecting with E, but we see from Fig. 6.60 that all τ ’s intersect with τE so

we can’t say that any are fast or slow variables.
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Figure 6.58: Graphs CRN-7, system (6.34), (-) and CRN-5a, system (6.36), (.) for

the variables (a) E, (b) Cai, (c) xr, (d) xs and (e) f .
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Figure 6.59: Graphs of CRN-5a, system (6.36), for the gating variables (-) and their

quasi-stationary values (.). (a) xr, (b) xs and (c) f .
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Figure 6.60: Graph of the τ ’s for system (6.36).
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We also draw the graphs of the currents I1, I2, I3 and I4 to see what these

look like and we see from Fig. 6.61(a) that currents I1 and I2 are mirror images

of each other. We also draw I1 against E and I3 against Cai to see how they

look.
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Figure 6.61: Graphs of currents in CRN-5a, system (6.36), for (a) I1 (-), I2 (- -), I3

(-.) and I4 (:) against t, (b) I1 against E and (c) I3 against Cai.

We want to see what regions of stability we obtain for the equation dE
dt

for this

time period t=[33, 600]. So we draw dE
dt

against E and see how many solutions

there are and if they are stable or unstable. So we see from Fig. 6.62 that dE
dt

starts off in the monostability region, one stable solution, then at t=45.1709 it

moves into the bistability region, three solutions, two stable and one unstable,

then at t=87.6649 it moves back into the monostability region and finally at

t=244.1889 it returns to the bistability region. So this shows that dE
dt

moves

between the two regions, which is similar to the FitzHugh model and Noble’s

1962 model, because those two systems do the exact same thing for the slow

manifold.

So the reason that the action potential has a slow recovery is that E is actually

not a fast variable in this time period.

6.5.5 Empirical elimination of xr and xs from CRN-5a

We saw previously that by just eliminating Iks and Ikr from CRN-7 we don’t

obtain a good approximation for CRN-7, so we try to eliminate xr and xs from

CRN-5a instead. We choose these two gating variables, and not f , because the

current ICa,L, that contains f , also contains Cai and E. So we wouldn’t make this

current a function of E alone, so we choose xr and xs and make them a function

of f instead. Then we will obtain a system of three equations containing E, Cai

and f .
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Figure 6.62: Graphs of dE
dt in CRN-5a, system (6.36), against E for different points

on the action potential corresponding to the following time (a) t=33, (b) t=48.4858,

(c) t=100.3814, (d) t=201.8122, (e) t=252.7085 and (f) t=600.

We drew graphs of (f, xr), (f, xs) and (xs, xr) to see how they looked and this

made us decide to eliminate xr and xs by replacing them with linear functions

of f . We used the computer to approximate these two functions for us into a

straight line. Figure 6.63 shows the graphs of (f, xr), (f, xs) and (xs, xr) with

their approximations as well.

Our new approximations are:

xr = 0.5608(1− f),

xs = 0.2485(1− f).

These are analogous to Krinsky and Kokoz’s[8] approximation for n + h=G

and also similiar to Vinet and Roberge’s[47] approximation of x1 in their paper.

We notice a de-facto relationship between the variables and exploit it.

Therefore we have a new system CRN-3:

dE

dt
= −(I1(E) + I2(E,Cai, f))

CM
, (6.37)

df

dt
=

f(E)− f

τf (E)
,
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Figure 6.63: Graphs of CRN-5a, system (6.36), for the following variables with their

approximations (a) (f, xr) (-), xr=0.5608(1− f) (- -), (b) (f, xs) (-), xs=0.2485(1− f)

(- -) and (c) (xs, xr) (-), xr=2.2567xs (- -).

dCai

dt
=

(I3(Cai) + I4(E,Cai, f))
2FViB2

,

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

where

I1(E) = Ito(E, oa, oi) + IK1(E) + IKur(E, ua) + INa,K(E) + Ib,Na(E),

I2(E, Cai, f) = CM(
gKrxr(f)(E − EK)

1 + e
(E+15)

22.4

+ gKsx
2
s(f)(E − EK)

+gCa,Ld(E)ffCa(Cai)(E − 65.0) + Ip,Ca(max)

(
Cai

0.0005 + Cai

)
+

aekE − b Cai e−mE

B(1 + Ksate−mE)
+ gb,Ca(E − ECa)),

I3(Cai) = 2FVup(0.000496− Iup)− Ip,Ca,

I4(E, Cai, f) = CM(2
aekE − b Cai e−mE

B(1 + Ksate−mE)
− gCa,Ld(E)ffCa(Cai)(E − 65.0)

−gb,Ca(E − ECa)),

where B=(K3
m,Na+Nao3)(Km,Ca+Cao), a=INaCa(max)Nai3Cao, k= γF

RT o , b=Nao3

and m= (γ−1)F
RT o .

We now draw the solutions for our new system and compare them with the

solutions from CRN-5a to see if they are different and if they are different, how

different. We want to see how good this reduction is. So Fig. 6.64 shows the

solutions for E, Cai, f , xr and xs for both systems.

We see that for the action potential there is a slight change for all the vari-

ables, so this reduction is not perfect, but it is still a good reduction. We draw
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Figure 6.64: Graphs CRN-5a, system (6.36), (-) and CRN-3, system (6.37), (.) for

the variables (a) E, (b) Cai, (c) xr, (d) xs and (e) f .
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Iks and Ikr to see how this approximation affects these two currents. Figure 6.65

shows that the curves from CRN-3, system (6.37), is different than the curves for

CRN-5a, system (6.36), but they are not different by a lot, so this approximation

is still a good approximation.
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Figure 6.65: Graphs CRN-5a, system (6.36), (-) and CRN-3, system (6.37), (.) for

the currents (a) Ikr and (b) Iks.

We draw the τ ’s for CRN-5 to see if there are any variables that are not

intersecting with E, but we see from Fig. 6.66 that all τ ’s intersect with τE so

we can’t say that any are fast or slow variables.
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Figure 6.66: Graph of the τ ’s for system (6.37).

We don’t draw the currents again as they look exactly the same as Fig. 6.65.
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6.5.6 Replacing f and τf with a Heaviside function in

CRN-3 (system (6.37))

We see from Fig. 6.67(a) that we can replace f with a Heaviside function in

system (6.37).

The Heaviside function for f is:

f = θ(−E + Ef ),

where Ef=−27.7206.

We see from Fig. 6.67(b) that we can also replace τf with a Heaviside function

in system (6.37).

The Heaviside function for τf is:

τf = 228 + 220.5993 θ(−E + Ef ).

We draw the solutions of system (6.37) to see if there is any difference with

this new replacement. We see that the solutions are slightly different from CRN-

3’s solutions (6.37) and f(t) has a fracture point now instead of a curve because

of introducing the Heaviside function to f and τf . Even though the solutions are

not exactly the same they are still in a good region of percentage error for them

to be acceptable.

Hence the analytical solutions for f are:

E < Ef : f = f + (f(t2)− f)e−(t−t2)/τf ,

E > Ef : f = f(t2)e
−(t−t2)/τf .

So we have a system of (2 + 1) variables:

dE

dt
= −(I1(E) + I2(E,Cai, f))

CM
, (6.38)

dCai

dt
=

(I3(Cai) + I4(E,Cai, f))
2FViB2

,

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

where

I1(E) = Ito(E, oa, oi) + IK1(E) + IKur(E, ua) + INa,K(E) + Ib,Na(E),
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I2(E, Cai, f) = CM(
gKrxr(f)(E − EK)

1 + e
(E+15)

22.4

+ gKsx
2
s(f)(E − EK)

+gCa,Ld(E)ffCa(Cai)(E − 65.0) + Ip,Ca(max)

(
Cai

0.0005 + Cai

)
+

aekE − b Cai e−mE

B(1 + Ksate−mE)
+ gb,Ca(E − ECa)),

I3(Cai) = 2FVup(0.000496− Iup)− Ip,Ca,

I4(E, Cai, f) = CM(2
aekE − b Cai e−mE

B(1 + Ksate−mE)
− gCa,Ld(E)ffCa(Cai)(E − 65.0)

−gb,Ca(E − ECa)),

where B=(K3
m,Na+Nao3)(Km,Ca+Cao), a=INaCa(max)Nai3Cao, k= γF

RT o , b=Nao3

and m= (γ−1)F
RT o .
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Figure 6.67: (a) Graph of original f (-) and Heaviside f (- -) for CRN-3, system (6.37).

(b) Graph of original τf (-) and Heaviside τf (- -) for CRN-3. Graphs of CRN-3, with

original τf , (-) and CRN-3, with Heaviside τf and f , (.) for the variables (c) E, (d)

Cai and (e) f .

6.5.7 Summary

The accurate system CRN-7, (6.34), was found by adiabatically eliminating the

fast variables j, u and v. Even though CRN-7 is accurate we decided to carry on
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reducing it to obtain a system of three variables. This system is less accurate,

but can still be used because it is within a good percentage of accuracy.

We obtained a system of three variables CRN-3 (6.37) by adiabatically elim-

inating the fast variables and from this we were able to find a system of two

equations, CRN-2 (6.38).

We were able to find a separate equation for Carel because its differential

equation could be separated and integrated, since Carel doesn’t affect the solu-

tions of E.

6.6 Properties of Various Reduced Models with

Respect to Numerical Simulations

We wanted to measure how successful our reduced systems for the intermediate

and slow stages, CRN-6 (6.22) and CRN-7 (6.34) respectively, are compared to

the original system. Even though these two systems can only be solved numeri-

cally, it is still progress from the original system, because it can be solved faster

than the original system.

To check how much faster they are than the original system we have to use

a crude, fixed-step ”forward Euler solver”, (FES). We use this because the FES

allows us to control the time step, so we can make a fair comparison.

To test this we take four CRN systems, CRN-21, system (6.1), [t0,∞],

CRN-14, system (6.6), [t0, t1], CRN-11, system (6.12), [t1, t2], and CRN-7, sys-

tem (6.34), [t2,∞], and we test different time steps to see what effect it has on

the system. We test to see, what is the biggest time step we can use for which

each system will be stable, the numbers in table 6.2 are the biggest time step

we can have before the system becomes unstable, i.e. at certain points we will

have the solution going to infinity. To test to see what is the biggest time step

we can have for the system to be accurate, we use the requirement that the time

step will be taken for the FES solution to be the same as a high-accuracy Matlab

ODE solver to the point that they differ by 1mV.

Table 6.2 shows the values for each system for which time step it was stable

and for which time step it was accurate.

We used the FES solver for our comparison, because we wanted to make a

fair comparison between the FES and the high-accuracy Matlab ODE solver. We

also chose this solver because it is commonly used for modelling the behaviour
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System Stable Accurate

CRN-21 (complete) 0.1 0.002

CRN-14 (without superfast

variables)

0.2 0.004

CRN-11 (after the fast stage) 5 0.1

CRN-7 (the slow stage) 16 2

Table 6.2: Time steps, in ms, admissible for different versions of Courtemanche

et al’s model.

of excitable cells in cardiac tissue, as cardiac tissue is split up into different cells

and to make sure that a fair experiment is being done to study each cell, then

the time step in each cell must be the same. So if you reduce the time step in

one cell, then you must reduce the time step in every cell and the FES allows

you to do this.

Therefore the reduced models are the results of our research and we can see

from table 6.2, that by using bigger steps, due to having different time stages,

we have accelerated the numerical computations to be fifty times faster than the

computations for the original model. So the reduced models can be used for more

efficient numerical calculations, even if the analytical solutions are not feasible.

6.7 Main Results

Courtemanche et al’s system of 21 equations has been reduced to a system of 14

equations by the following procedures:

Methods

1 Variables Nai, Ki, Caup and ui are super-slow, and are taken as their

initial values. Variables m, ua and w are super-fast, and are taken as

their quasi-stationary values.

Results

- The 14 other variables satisfy system (6.6), CRN-14.
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We have split the action potential solution into three time stages, fast in-

termediate and slow, which correspond to different asymptotic scales. The fast

stage is where the sodium current is large. The intermediate stage is where the

sodium current is over. The slow stage is where the intermediate stage is over,

which happens if Fn reaches it threshold and u and τv switch from one value to

another. The solutions for the three time stages are in the form of two tier an-

swers, i.e. an accurate solution and a less accurate solution, where variables and

functions are approximated. For the accurate solution we have used asymptotic

methods, e.g. singular perturbation method, and for the less accurate solution

we have used non-asymptotic methods, e.g. iterations, which produces cruder

results.

The fast stage is for [t0, t1]. We consider t0=0 and t1=1.2 as this is where

the sodium current is large. The intermediate stage is for [t1, t2]. We consider

t1=1.2 and t2=33 as this is where Fn reaches its threshold. The slow stage is for

[t2,∞]. We consider t2=33 as this is where the intermediate stage is over for our

selected initial conditions.

Methods for the accurate solution for the fast stage

2 Variables Cai, Carel, j, oi, xr, xs, f , fCa, u and v are slow and are taken

as their initial values.

Results for the accurate solution for the fast stage

- The four other variables, E, h, oa and d, satisfy the system (6.9), CRN-4.

Methods for the less accurate solution for the fast stage

3 Quasi-stationary values h and m are stepwise functions and are replaced

with h=θ(Eh − E) and m=θ(E − Em), where Eh=−66.6 and Em=−32.7.

Results for the less accurate solution for the fast stage

- For general τh(E), for E < Em, the explicit solution for h is:

h = h + (h0 − h)e−(T−T0)/τh(E).

- For general τh(E), for E > Em, the quadrature solution for h is:

h = h0 +
1

A

∫ E

E0

1

τh(E)(E − ENa)
dE,
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where A=gNaj=7.6245 corresponding to the initial conditions.

- Function τh(E) can be approximated with a constant, which is chosen for

E=ENa, τh(ENa)=0.1301, and the explicit and quadrature solutions are:

h(E) =
1

τh(ENa)A
ln

(
|E − ENa|
|E0 − ENa|

)
+ h0,

E(T ) = −(E0 − ENa)e
(Aτh(ENa)h0e

− (T−T0)
τh(ENa)−Aτh(ENa)h0) + ENa,

oa = oa0 +

∫ T

T0

oa(T )

τoa(T )
dT,

d = d0 +

∫ T

T0

d(T )

τoa(T )
dT.

4 If T →∞, E∞(E0) ≈ 33.9247 for τh=constant, and the values for oa, d,

τoa and τd at E∞ are oa=0.9569, τoa=1.4467, d=0.9959, τd=0.6493, which

are found analytically.

- Variables oa and d have a quadrature solution for a short interval of time

[t0, 0.12]:

oa = oa + (oa0 − oa)e
∫ T

T0
1/τoa (T )dT

,

d = d + (d0 − d)e
∫ T

T0
1/τd(T )dT

.

- Variables oa and d have an explicit solution for a long interval of time

[0.12, t1]:

oa = oa + (oa0 − oa)e
−(T−T0)/τoa ,

d = d + (d0 − d)e−(T−T0)/τd .

Methods for the accurate solution for the intermediate stage

5 Variables h, oa and d are fast, and are taken as their quasi-stationary

values. Current INa is zero due to either m3 or h being zero. Variables f ,

xr, and xs are slow, and are taken as their initial values. Gating variables

u and v are explicit functions of t.

u = 1− e−t/τu , v = e−t/τv ,

where τu=8 and τv=2 + 2θ(Fn − F1) ≈ 4.

Current Irel is replaced with krelu
2vwCarel.
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6 Minor currents IK1, IKr, IKs, INaCa, and Itr can be replaced with zero

and some other currrents with constants, INa,K=22.4544, Ip,Ca=17.7916,

Ib,Na=−5.3323, Ib,Ca=−12.7536 and Iup=3.2 ∗ 10−3. These values were

found numerically.

Results for the accurate solution for the intermediate stage

- The six variables satisfy system (6.23), CRN-6.

Method and result for the less accurate solution for the intermediate

stage

7 CRN-6 can be replaced by an iteration procedure, by a sequence of eight

equations, (6.26), of which seven can be solved in quadratures, and only

one needs to be solved numerically.

Methods for the accurate solution for the slow stage

8 Variables fCa, j, u and v are fast, and are taken as their quasi-stationary

values and u=0 and v=1.

Results for the accurate solution for the slow stage

- The seven other variables satisfy the system (6.34), CRN-7.

Methods for the less accurate solution for the slow stage

9 Variable oi is fast, and is taken as its quasi-stationary value.

10 Variable Carel(t) has a solution in quadratures:∫ Carel

Carel0

(1 + A
(Carel+B)2

)

Caup− Carel
dCarel =

∫ t

t0

1

τtr

dt,

and it can be approximated by iterations:

Carel(t) = −0.15851G(t) + 0.8557,

where

G(t) = ln |(Carel − Caup)
(p2+A)

p2 (Carel + B)
q

p2BCaup |+ A

p(Carel + B)
.
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11 Variables xr and xs are approximated as functions of f ; xr=0.5608(1− f)

and xs=0.2485(1− f).

12 Functions f and τf are stepwise functions and are replaced with

f=θ(−E + Ef ) and τf=228 + 220.5993θ(−E + Ef ), where Ef=−27.7206.

Results for the less accurate solution for the slow stage

- The (2 + 1) variables satisfy the system (6.38).

6.7.1 Hierarchy of small parameters for Courtemanche et

al’s model

In this formal embedding we can summarise all asymptotic methods that we

have applied to the CRN-21 system, as opposed to non-asymptotic methods, e.g.

iterations and empiric relationships. Therefore we obtain the reduced systems

for the three different time stages, fast, intermediate and slow. The hierarchy

system below shows how CRN-21 is reduced for each time stage using small

parameters, εj.

The dependence of ε5 in some of the currents represents the cases where we

have not been able to obtain an explicit asymptotic embedding. Instead we have

used an axiomatic approach to introduce ε5 to the currents to reduce the number

of currents in the equations, and to be able to obtain a solution for the CRN

model.

dE

dt
= −Iion

CM
,

Iion =
1
ε3

INa(E,m, h, j) + IK1(E,Ki; ε5) + Ito(E,Ki, oa, oi)

+IKur(E,Ki, ua, ui) + IKr(E,Ki, xr; ε5) + IKs(E,Ki, xs; ε5)

+ICa,L(E, d, f, fCa) + Ip,Ca(Cai; ε5) + INa,K(E,Nai; ε5)

+INaCa(E,Nai, Cai; ε5) + Ib,Na(E,Nai; ε5) + Ib,Ca(E,Cai; ε5),
dui

dt
= ε1ε5

ui(E)− ui

τui(E)
,

dNai

dt
= ε1ε5(FVi)(−1)(−3INaK(E,Nai) + 3INaCa(E,Nai, Cai)

+Ib,Na(E,Nai) + INa(E,m, h, j)),
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ε Description

1 distinguishes the super-slow variables from the slow variables, CRN-21 →
CRN-17 (6.4),

2 distinguishes the super-fast variables from the fast variables, CRN-17 →
CRN-14 (6.6),

3 distinguishes the fast variables from the intermediate variables, CRN-

14 → CRN-4 (6.9), and CRN-14 → CRN-11 (6.12),

4 sharpness of u and v dependence on Ca flux, small constant a in CRN-11,

(6.12), replacement of u, v and τv with piecewise functions,

5 distinguishes the intermediate variables from the slow variables, CRN-

11 → CRN-8, (6.21) and CRN-11 → CRN-7 (6.34),

6 sharpness of f dependence on E in CRN-3, (6.38), replacement of f and

τf with piecewise functions.

Table 6.3: Description of the ε’s and where they are used in Courtemanche et

al’s model.

dKi

dt
= ε1ε5((FVi)(−1)(2INaK(E,Nai)− IK1(E,Ki)− Ito(E,Ki, oa, oi)

−IKur(E,Ki, ua, ui)− IKr(E,Ki, xr)− IKs(E,Ki, xs)

−Ib,K(E,Ki))),
dCaup

dt
= ε1ε5(Iup(Cai)− Iup,leak(Caup)− Itr(Caup, Carel)

Vrel

Vup
),

dm

dt
=

1
ε2ε3

m(E; ε3)−m

τm(E)
, m(E; 0) = θ(E − Em),

dua

dt
=

1
ε2ε3

ua(E)− ua

τua(E)
,

dw

dt
=

1
ε2ε3

w(E)− w

τw(E)
,

dh

dt
=

1
ε3

h(E; ε3)− h

τh(E)
, h(E; 0) = θ(Eh − E),

doa

dt
=

1
ε3

oa(E)− oa

τoa(E)
,

dd

dt
=

1
ε3

d(E)− d

τd(E)
,

du

dt
=

u(Fn; ε4)− u

τu
, u(Fn; 0) = θ(Fn − F1),

dv

dt
=

v(Fn; ε4)− v

τv(Fn; ε4)
, v(Fn; 0) = θ(Fn − F2),

τv(Fn; 0) = 2 + 2θ(Fn − F1),
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dxr

dt
= ε5

xr(E)− xr

τxr(E)
,

dxs

dt
= ε5

xs(E)− xs

τxs(E)
,

df

dt
= ε5

f(E; ε6)− f

τf (E; ε6)
, f(E; 0) = θ(Ef − E),

τf (E; 0) = 228 + 220.5993θ(Ef − E),

dj

dt
=

j(E)− j

τj(E)
,

dfCa

dt
=

fCa(Cai)− fCa

τfCa

,

doi

dt
=

oi(E)− oi

τoi(E)
,

dCai

dt
=

B1
B2

,

B1 = (2FVi)(−1)(2INaCa(E,Nai, Cai; ε5)− Ip,Ca(Cai; ε5)

−ICa,L(E, d, f, fCa)− Ib,Ca(E,Cai; ε5))

+(Vi)(−1)(Vup(Iup,leak(Caup)− Iup(Cai; ε5))

+Irel(Cai, Carel, u, v, w)Vrel; ε5),

B2 = 1 +
[Trpn]maxKm,Trpn

(Cai + Km,Trpn)2
+

[Cmdn]maxKm,Cmdn

(Cai + Km,Cmdn)2
,

dCarel

dt
=

(Itr(Caup, Carel; ε5)− Irel(Cai, Carel, u, v, w; ε5))(
1 + [Csqn]maxKm,Csqn

(Carel+Km,Csqn)2

) ,

where

Fn = 10−12VrelIrel(Cai, Carel, u, v, w)

−5 ∗ 10−13

F

(
1

2
ICa,L(E, d, f, fCa)−

1

5
INa,Ca(E, Nai, Cai)

)
,

u = (1 + He−Fn/ε4a)−1,

v = 1− (1 + Ge−Fn/ε4a)−1,

F1 = ε4a ln G,

F2 = ε4a ln H.
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Chapter 7

Conclusion

We now conclude all the results in this thesis together. We deal with excitable

systems of equations that are used to describe action potentials of cardiac and

nerve tissues.

We have investigated two classical models, the Hodgkin-Huxley model and

Noble’s 1962 model, which is a modification of Hodgkin-Huxley’s model. As this

is the case we would expect their asymptotic structures to be similar, but they

are not. We see from studying the asymptotic structure in both the Hodgkin-

Huxley and Noble systems, that each system has a different number of fast and

slow variables compared to each other. In the Hodgkin-Huxley model we have two

fast variables and two slow variables, whereas Noble’s model has one super-fast,

two fast and one slow variable. Since we have a different number of slow variables

we have a different geometry of the slow manifold. In Hodgkin-Huxley’s model

we have a two-dimensional slow manifold and the fast foliation is a two-parameter

set of planes h=const and n=const. In Noble’s model we have a one-dimensional

slow manifold and a two-dimensional fast foliation, which consists of planes.

We had to introduce artificial small parameters ε to both models, by using the

method of parametric embedding, so that we could consider Tikhonov’s method

for fast-slow systems of equations, to obtain the slow manifold and fast foliation.

This is because both models do not contain small parameters that we can tend

to zero. For the Hodgkin-Huxley model we had a one-parameter embedding as

we only introduced the small parameter to the fast equations, and for Noble’s

model we had a two parameter embedding as we introduced parameters to the

super-fast and fast equations.

We see from the reductions in both the Hodgkin-Huxley and Noble’s models

that for the original models we have a smooth return from the action poten-
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tials, but as soon as we consider the limit on the small parameters, ε1 and ε2,

approaching zero we lose the smooth returns and obtain jump returns. This is

an inevitable consequence of representing our systems in the standard form of

Tikhonov’s fast-slow systems.

Also we conclude that Hodgkin-Huxley’s model is similar to Zeeman’s ”nerve”

model, because the reduced Hodgkin-Huxley model has an asymptotic structure

of one fast variable and two slow variables, which is the same asymptotic structure

as Zeeman’s ”nerve” model. We chose to draw the solution of the Hodgkin-

Huxley model as a three-dimensional phase portrait, and the geometry of both

phase portraits is the same because they both contain a two-dimensional surface,

which represents the slow manifold; they both have a two-parameter set of planes

that represent the fast foliation, and they both have a fold curve that projects a

cusp down the z-axis.

The difference between both models is where Zeeman’s hypothesis for the cusp

catastrophe is concerned. We have partly confirmed Zeeman’s hypothesis as the

phase portrait shows that a cusp was obtained for this model, as stated above,

but the trajectories do not travel around the cusp point. Therefore we obtained

a jump return, whereas Zeeman hypothesised the opposite with a smooth return,

and this is the part that hasn’t been confirmed and the difference between both

models. Therefore the hypothesis fails here due to the system exhibiting a jump

return. Also we conclude that Noble’s model is similar to Zeeman’s ”heart”

model.

We then considered a non-Tikhonov embedding method to study Noble’s

model, because some qualitative features were not correctly reproduced in the

Tikhonov embedding, such as the smooth return. This non-Tikhonov embedding

was derived to achieve a smooth return in the reduced model. This method was

to consider the fast variables E and h of the reduced model and introduce the

parametric embedding to the Ė and ḣ equations; for E we only introduced 1/ε

to the fast sodium current and not to any of the other currents. Whereas for

Noble’s model, using Tikhonov’s approach, we introduced 1/ε as a factor of the

whole of the right-hand side of the Ė equation. Also, we noticed that the sodium

current gates exhibit near perfect switch behaviour and therefore we replaced the

sodium gates’ quasi-stationary values with Heaviside functions.

This then lead to the following mathematical features in the asymptotic anal-

ysis. These features are that E is both a fast and slow variable, but not at the
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same time, and the equilibria in the fast subsystem are not isolated. These are

features of the non-Tikhonov embedding.

Therefore from analysing this embedding we found that we did retain the

qualitative properties of the system, fast onset and smooth return. Since we

are mostly interested in excitable systems, we have applied this method to an

excitable variant of Noble’s model as well as the original oscillatory variant.

We saw that the phase portrait for the slow system, for the non-Tikhonov em-

bedding of the excitable version of Noble’s model, is similar to the phase portrait

for Tikhonov’s embedding for the excitable version of Noble’s model. We found

that both E nullclines have a branch in the complex plane and that the trajecto-

ries travel to the stable equilibrium point, but the one difference between the two

variants is that the reduced model in the variant using Tikhonov’s embedding

does not retain its smooth return and instead has a jump return to equilibrium.

In the phase portrait, for the variant using Tikhonov’s embedding, this corre-

sponded to an almost vertical jump from the stable piece of the nullcline to the

unstable piece, whereas for the variant using the non-Tikhonov embedding we

retain the smooth return as in the original model. We also saw that for the fast

system, for the non-Tikhonov variant, we have a line of equilibria not an equilib-

rium point and this implies that each of these equilibria has one zero eigenvalue

and therefore are not asymptotically stable.

We conclude the results for Courtemanche et al’s system of 21 equations.

Courtemanche et al’s system was reduced to a system of 14 equations, CRN-

14, by eliminating the super-fast and super-slow variables by using a standard

Tikhonov embedding. Then we discovered that the system could be split up into

three different time scales, according to the speed of the remaining variables at

different parts of the action potential. After this we used the same non-Tikhonov

embedding that we used in Noble’s excitable model to deal with the fast sodium

current here, which we called the sodium embedding.

With these separate time stages we have reduced the system further. So

for the fast stage we have reduced CRN-14 to CRN-4, which has a (2 + 2)

structure, because we had two equations that didn’t affect the voltage equation,

but the voltage equation affected them, e.g. the two equations were functions

of voltage, but voltage wasn’t a function of them. So we could then describe

CRN-4’s properties by using a two-dimensional phase portrait, which is similar

to the phase portrait for the fast embedding for Noble’s excitable model. Also
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we have found analytical solutions for the trajectories for CRN-4 by replacing

τh with various functions of voltage. We replaced τh with a constant and found

analytical solutions for voltage and the gating variable h, and then we found

analytical solutions and solutions in quadratures for the gating variables oa and

d. The solutions for oa and d depends on what the values are for the quasi-

stationary and τ terms at different time intervals along the fast stage, because

for certain time intervals we can either have analytical solutions or solutions in

quadratures.

Once the fast stage is over we have the intermediate stage which starts with

CRN-11, where all the fast variables are replaced with their quasi-stationary

values. We found that CRN-11 contained a calcium subsystem, and from this

subsystem we obtained phase portraits that were similar to the phase portraits

for Zeeman’s ”nerve” model and Hodgkin-Huxley’s model. These phase por-

traits contained a surface, which represented the slow manifold, a fold curve

and trajectories that travel around the fold curve and the surface represent-

ing a smooth return. The differences between the calcium phase portraits and

Zeeman’s ”nerve” model and Hodgkin-Huxley’s model, is that they involve com-

pletely different variables, which describe different processes, and for the calcium

model we do have a cusp projected to the (K, ICa,L) plane, but instead of being

in a 3/2 parabola shape, we have a right angle shape. This is because we treat

the small parameter a to be zero. If the parameter is considered positive then

the cusp can be seen in the standard 3/2 parabola shape.

CRN-11 was reduced to CRN-6 with accuracy, and CRN-1 with less accuracy,

as we did some regular perturbations and non-asymptotic approximations to

CRN-6, which resulted with solutions in quadratures of all the equations in this

system except one. Then the slow stage started after the intermediate stage, this

is where Fn exceeds its threshold and u and τv switch from one value to another.

System CRN-11 was used for this stage and it was reduced to CRN-7 with

accuracy, and CRN-3 with less accuracy, as we did some regular perturbations

and non-asymptotic approximations to CRN-7, which resulted with a solution

in quadratures and an empirical approximation of two of the variables. CRN-11

is used for both the intermediate and slow time stages, because each time stage

has different sets of fast and slow variables.

Therefore each time stage was reduced to an accurate system of equations,

and to a less accurate system of equations that is within 10% accuracy of the
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original system, by using a six-parametric embedding. We were able to reduce

the systems even further, but the results were not as accurate as the original

Courtemanche et al system, but still retained the qualitative behaviour.

So we have seen that by using Tikhonov, and non-Tikhonov methods solutions

can be obtained for a more complicated system of equations that are used to

describe cardiac activity.

245



Bibliography

[1] M. Courtemanche, R. J. Ramirez, and S. Nattel. Ionic mechanisms underly-

ing human atrial action potential properties: Insights from a mathematical

model. Am J Physiol Heart Circ Physiol, 275:H301–H321, 1998.

[2] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.,

117:500–544, 1952.

[3] D. Noble. A modification of the Hodgkin-Huxley equations applicable to

Purkinje fibre action and pace-maker potentials. J. Physiol., 160:317–352,

1962.

[4] R. FitzHugh. Impulses and physiological states in theoretical models of

nerve membrane. Biophys J, 1:445–456, 1961.

[5] A. N. Tikhonov. Systems of differential equations, containing small param-

eters at the derivatives. Mat. Sbornik, 31(3):575–586, 1952.

[6] E. C. Zeeman. Differential Equations for the Heartbeat and Nerve Impulse.

Mathematics Institute, University Of Warwick, Coventry, 1972.

[7] E. C. Zeeman. Catastrophe Theory. Selected Papers 1972-1977. Addison-

Wesley, Reading, MA, 1977.

[8] V. I. Krinsky and Yu. M. Kokoz. Analysis of equations of excitable mem-

branes I: Reduction of the Hodgkin-Huxley equations to a second order

system. Biofizika, 18(3):506–511, 1973.

[9] V. I. Krinsky and Yu. M. Kokoz. Analysis of equations of excitable mem-

branes II: Method of analysing the elextrophysiological characteristics of the

Hodgkin-Huxley membrane from graphs of the zero-isoclines of a second or-

der system. Biofizika, 18(5):887–885, 1973.

246



[10] V. I. Arnold, V. S. Afrajmovich, Yu. S. Il’yashenko, and L. P. Shil’nikov. Dy-

namical Systems V, Bifurcation Theory And Catastrophe Theory. Springer-

Verlag, 1994.
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