Theorem

Antony Galton has an Erdös number of at most 6.

Proof

6. Antony Galton

Derek Partridge and Antony Galton, 'The specification of "specification"'.
Minds and Machines, 5 (1995) 243-255.

5. Derek Partridge

W.J.Krzanowski and D.Partridge, 'Software diversity: practical statistics for its measurements and exploitation'.
Information and Software Technology, 39 (1997) 707-717

4. Wojtek Krzanowski

J.C.Gower and W.J.Krzanowski, 'Analysis of distance for structured multivariate data'. Applied Statistics, 48 (1998) 505–519.

3. John C. Gower

 Rosemary A.Bailey and J.C.Gower, 'Approximating a symmetric matrix'.  Psychometrika 55 (1990) 665--675.

2. Rosemary A. Bailey

 R.A.Bailey, P.J.Cameron, A.G.Chetwynd, D.E.Daykin, A.J.W.Hilton, F.C.Holroyd, J.H.Mason, R.Nelson, C.A.Rowley and D.R.Woodall,
'On the intricacy of combinatorial construction problems'. Discrete Mathematics,. 50 (1984) 71-97.

1. Peter J. Cameron

P.J.Cameron and P.Erdös, 'On the number of sets of integers with various properties'.
In R.A.Mollin (ed.), Number Theory, de Gruyter, Berlin (1990), 61-79.

0. Paul Erdös


Any help towards lowering the upper bound would be appreciated.

An earlier version of this page.

Antony Galton
, 4/3/03