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What things have shapes?

I Material objects, including
I Chunks of matter
I Organisms
I Assemblies

I Non-material physical objects, including
I Holes
I Faces
I Edges
I Shadows

I Aggregates, collectives, etc.
I Abstract objects, such as

I Geometrical figures
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Talking About Shapes

I The shape of X

I X has such-and-such a shape

I X and Y have the same shape

I X is shaped like a Y

I X is Y-shaped

I The shape of X at time t

I X has such-and-such a shape at time t

I X and Y have the same shape at time t

I X changes shape between times t1 and t2
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Shape as Property

circular
triangular
spherical
cylindrical
rectangular

square
oblong

heart-shaped
pear-shaped

Shape as Thing

circle
triangle
sphere
cylinder
rectangle
square
oblong

heart-shape
pear-shape

Which is logically / ontologically prior?

Antony Galton



I Shape as property
Logical analysis uses shape predicates such as Square(x),
Circular(y).
For generalising over shapes we must quantify over properties
(second-order logic).

I Shape as thing
Logical analysis uses shape terms to reify shape properties.
Objects are related to their shapes by means of a predicate
HasShape, e.g., HasShape(x , square), HasShape(x , circle).

Ontologically, shapes are generically dependent entities
(cf., information).
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x and y have the same shape at t

I Shape as property:

∀Φ(ShapeProperty(Φ) → (Φ(x , t) ↔ Φ(y , t)))

I Shape as thing:

∀s(HasShape(x , s, t) ↔ HasShape(y , s, t))

x changed shape between t1 and t2
I Shape as property:

∃Φ1∃Φ2(ShapeProperty(Φ1) ∧ ShapeProperty(Φ2)∧
Φ1(x , t1) ∧ Φ2(x , t2) ∧ ¬Φ1(x , t2) ∧ ¬Φ2(x , t1))

I Shape as thing:

∃s1∃s2(HasShape(x , s1, t1) ∧ HasShape(x , s2, t2)∧
¬HasShape(x , s2, t1) ∧ ¬HasShape(x , s1, t2))
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The view from modern ontology: BFO and DOLCE

Shape is specifically dependent on its bearer. Different bearers
cannot have the same shape, but their separate shapes may have
the same value.
The shape of x is shape(x), which obeys the rule

∀x∀y(shape(x) = shape(y) → x = y).

The values assumed by shapes are shape qualia, which collectively
constitute shape space.

I x and y have the same shape at t

value(shape(x), t) = value(shape(y), t)

I x changed shape between t1 and t2

value(shape(x), t1) 6= value(shape(x), t2)
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Aristotle’s Four-Category Ontology
(The Ontological Square)

Ball Roundness
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The Primacy of “Same Shape” over “Shape”

Claim: The commonest (only?) way of describing the shape of
something is by comparison with something else whose shape is
assumed known:

I “The table is square” — the table[-top] has the same (or
sufficiently similar) shape as a certain geometrical
construction.

I “The leaf is egg-shaped” — the leaf has the same (or
sufficiently similar) shape as [the outline of] an egg.
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Gottlob Frege (1848–1925)

Die Grundlagen der Arithmetik, 1884

(The Foundations of Arithmetic)

Frege drew attention to a group of con-
cepts X for which the notion of an X is
logically dependent on the notion of a
relation “has the same X as” which can
be defined without reference to X itself.

Examples: Number, Direction, Shape
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Example 1: Number

Frege: die Anzahl, welche dem Begriffe F zukommt = der Umfang
des Begriffes “gleichzahlig dem Begriffe F”.

(the number of F s = the extension of the concept “Has the same
number as the F s”)

In terms of sets:

Set S has the same number as set S ′ if and only if there is a
bijection between the elements of S and the elements of S ′.

The number of elements in S = the set of all sets with the
same number of elements
as S
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Example 2: Direction

“has the same direction as” = “is parallel to”

the direction of line L = the set of all lines parallel to L.

Example 3: Shape

“has the same shape as” = “is geometrically similar to”

the shape of figure F = the set of all figures similar to F
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In general

Definitions like this work so long as:

I A domain of “objects” Z is established for the relation “has
the same X as” to be defined on.

I Within the domain Z, “has the same X as” can be defined as
an equivalence relation.

Then we can say:

the X of y ∈ Z = the set of all elements of Z that have the
same X as y
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“Same shape” for geometrical figures

I A geometrical figure is a set of points in Rn.

I Write ∆(p, q) for the distance between points p, q ∈ Rn.

I Definition of geometric similarity between figures in
Euclidean space:

X ,Y ⊆ Rn are geometrically similar if and only if there is
a bijection φ : X → Y such that, for some constant
κ ∈ R+, the following relation holds:

∀x , x ′ ∈ X : ∆(φ(x), φ(x ′)) = κ∆(x , x ′).

I Thus defined, “geometrically similar” is an equivalence
relation and therefore can be used as the definition of “has
the same shape as”.
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Mathematical vs Physical Distance

I In Rn, the notion of distance is unproblematic because
numbers, i.e., elements of R, are already built into the
definition of the elements of the space.

I But physical space does not come already equipped with
numbers.

I Assigment of numbers to physical space has to be
accomplished by the physical act of measurement.

I But measurements always have finite precision.

I The definition of similarity has to be modified to take this into
account.
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Suppose

I we wish to measure distances between points within some
object P of volume v .

I the smallest distance we can distinguish is h (our
measurement process has “resolution h”).

Then

I Within the physical space occupied by P we can distinguish a
set Sh(P) containing some n ≈ v/h3 points.

I To each pair x , y of these points we can assign a distance
∆h(x , y) = kh (where k ∈ Z).

Given this, how do we compare distances within two different
shapes in order to set up a similarity relation between them?
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Definition of “same shape” for physical objects:

Physical objects P and Q (where Q is at least as big as
P) have the same shape, at resolution h, if, for some
constant κ ≥ 1, the set Sh(P) of points discernible in P
at resolution h can be mapped into the set Sh(Q) of such
points of Q by means of an injective mapping φ, such
that the following relations hold:

1. ∀x , y ∈ Sh(P). |∆h(φ(x), φ(y))− κ∆h(x , y)| ≤ h

2. ∀x ∈ Sh(Q).∃y ∈ Sh(P).∆h(x , φ(y)) ≤ κh
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Some observations

I Two objects may have the same shape at resolution h but
different shapes at some resolution h′ < h.

I Therefore, under the Fregean construction, the shape of an
object would have to be a function of the resolution at which
it is considered.

I But in fact the Fregean construction cannot be accomplished
in this case, since “having the same shape at resolution h” is
not an equivalence relation.1

I Therefore the notion of “exact shape” cannot be applied to
physical objects

1It is a relation of indiscernibility, not of identity.
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Comparing physical and geometrical shapes

&%
'$

Lake Manicouagan is approximately circular: at some resolution, it
has the same shape as a perfect geometrical circle. Neither of our
“same shape” definitions can handle this. We need another one!
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Definition of a physical object’s having the “same
shape” as a geometrical object

At resolution h, a physical object P has the same shape
as a geometrical object Q if there is an injective mapping
φ from the set of points Sh(P) discernible in P at
resolution h into the set of points in Q such that, for
some constant κ > 0:

1. ∀x , y ∈ Sh(P).∆(φ(x), φ(y)) = κ∆h(x , y)

2. ∀x ∈ Q.∃y ∈ Sh(P).∆(x , φ(y)) ≤ κh.
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Instrinsic vs Embedded Distance

Embedded
distance

Intrinsic 
distance

Intrinsic
(and embedded)
distance
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Intrinsic vs Embedded Distance

Given a geometrical object P embedded in a space S , the
P-intrinsic distance between two points x , y in P is

∆P(x , y) = the length of the shortest path
between x and y which lies
wholly within P

For Physical objects, as before, we modify this to take resolution
into account, writing ∆P,h(x , y) for the P-intrinsic distance
between x and y at resolution h.

Intrinsic distance is contrasted with the S-embedded distance
∆(x , y) (or ∆h(x , y)) we used earlier.
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Definition of “same intrinsic shape” for physical objects

Physical objects P and Q (where Q is at least as big as
P) have the same intrinsic shape, at resolution h, if, for
some constant κ ≥ 1, the set Sh(P) of points discernible
in P at resolution h can be mapped into the set Sh(Q) of
such points of Q by means of an injection φ, such that
the following relations hold:

1. ∀x , y ∈ Sh(P). |∆Q,h(φ(x), φ(y))− κ∆P,h(x , y)| ≤ h

2. ∀x ∈ Sh(Q).∃y ∈ Sh(P).∆Q,h(x , φ(y)) ≤ κh
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Scope of “Instrinsic Shape”

For what class of objects is there a significant contrast between
intrinsic and embedded shape?

Examples

I Sheets of paper

I Strands of wool

I Human bodies

Non-examples

I Rigid objects

I Arbitrarily deformable objects
(e.g., lumps of clay)

The positive examples are objects which have a “canonical”
interrelationship of their parts which is preserved across the typical
spatial transformations that the object undergoes.

Wanted: A more exact characterisation of the classes of objects
for which the distinction between embedded and intrinsic shape
applies.
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Extension: The “shape” of a process

Metaphorical “distance” leads to metaphorical “shape”, e.g., the
“shape” of a process (using distance in time, quality spaces)

( R. B. Prime, C. Michalski and C. M. Neag, ‘Kinetic analysis of a fast

reacting thermoset system’, Thermochimica Acta 429 (2005) 213–217)
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The Shape of a Musical Phrase

Johannes Brahms, Piano Quintet in F minor, Op.34
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Conclusions

I The ontological status of shape is problematic because of its
dependent character: shapes do not exist “in their own right”,
but only as qualities of objects.

I For geometrical figures, “same shape” is defined as
geometrical similarity, providing a criterion of identity for
geometrical shapes.

I For physical objects, we can only define “same shape at
resolution h”, which is not an equivalence relation and so does
not supply a robust criterion of identity for shape.

I “Same shape” relations are based on a notion of “distance”:
either in the embedding space, or within the object itself,
leading to the notion of intrinsic shape.

I Metaphorical “distance” leads to metaphorical “shapes”, e.g.,
temporal process profiles, the shape of a musical phrase.
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