Prolegomena to an Ontology of Shape

Antony Galton

School of Engineering, Mathematics and Physical Science University of Exeter, UK

Shapes 2.0 Rio de Janeiro, Brazil April 2013

Physical Shape

Mathematical Shape

What things have shapes?

- Material objects, including
 - Chunks of matter
 - Organisms
 - Assemblies
- ▶ Non-material physical objects, including
 - Holes
 - Faces
 - Edges
 - Shadows
- Aggregates, collectives, etc.
- Abstract objects, such as
 - Geometrical figures

Talking About Shapes

- The shape of X
- X has such-and-such a shape
- X and Y have the same shape
- X is shaped like a Y
- X is Y-shaped

Talking About Shapes

- ► The shape of X
- X has such-and-such a shape
- X and Y have the same shape
- X is shaped like a Y
- X is Y-shaped
- ▶ The shape of X at time t
- X has such-and-such a shape at time t
- X and Y have the same shape at time t
- \triangleright X changes shape between times t_1 and t_2

Shape as Property

circular
triangular
spherical
cylindrical
rectangular
square
oblong
heart-shaped
pear-shaped

Shape as Thing

circle
triangle
sphere
cylinder
rectangle
square
oblong
heart-shape
pear-shape

Which is logically / ontologically prior?

▶ Shape as property

Logical analysis uses *shape predicates* such as Square(x), Circular(y).

For generalising over shapes we must quantify over properties (second-order logic).

► Shape as thing

Logical analysis uses *shape terms* to *reify* shape properties. Objects are related to their shapes by means of a predicate HasShape, e.g., HasShape(x, square), HasShape(x, circle).

Ontologically, shapes are *generically dependent* entities (cf., information).

x and y have the same shape at t

Shape as property:

$$\forall \Phi(ShapeProperty(\Phi) \rightarrow (\Phi(x,t) \leftrightarrow \Phi(y,t)))$$

Shape as thing:

$$\forall s(HasShape(x, s, t) \leftrightarrow HasShape(y, s, t))$$

x and y have the same shape at t

Shape as property:

$$\forall \Phi(ShapeProperty(\Phi) \rightarrow (\Phi(x,t) \leftrightarrow \Phi(y,t)))$$

Shape as thing:

$$\forall s(HasShape(x, s, t) \leftrightarrow HasShape(y, s, t))$$

x changed shape between t_1 and t_2

Shape as property:

$$\exists \Phi_1 \exists \Phi_2(ShapeProperty(\Phi_1) \land ShapeProperty(\Phi_2) \land \\ \Phi_1(x,t_1) \land \Phi_2(x,t_2) \land \neg \Phi_1(x,t_2) \land \neg \Phi_2(x,t_1))$$

Shape as thing:

$$\exists s_1 \exists s_2 (\textit{HasShape}(x, s_1, t_1) \land \textit{HasShape}(x, s_2, t_2) \land \\ \neg \textit{HasShape}(x, s_2, t_1) \land \neg \textit{HasShape}(x, s_1, t_2))$$

The view from modern ontology: BFO and DOLCE

Shape is *specifically dependent* on its bearer. Different bearers cannot have the same shape, but their separate shapes may have the same *value*.

The shape of x is shape(x), which obeys the rule

$$\forall x \forall y (shape(x) = shape(y) \rightarrow x = y).$$

The values assumed by shapes are *shape qualia*, which collectively constitute *shape space*.

► x and y have the same shape at t

$$value(shape(x), t) = value(shape(y), t)$$

ightharpoonup x changed shape between t_1 and t_2

$$value(shape(x), t_1) \neq value(shape(x), t_2)$$

Aristotle's Four-Category Ontology (The Ontological Square)

The Primacy of "Same Shape" over "Shape"

Claim: The commonest (only?) way of describing the shape of something is by comparison with something else whose shape is assumed known:

- "The table is square" the table[-top] has the same (or sufficiently similar) shape as a certain geometrical construction.
- "The leaf is egg-shaped" the leaf has the same (or sufficiently similar) shape as [the outline of] an egg.

Gottlob Frege (1848–1925)

Die Grundlagen der Arithmetik, 1884 (The Foundations of Arithmetic)

Frege drew attention to a group of concepts X for which the notion of an X is logically dependent on the notion of a relation "has the same X as" which can be defined without reference to X itself.

Examples: Number, Direction, Shape

Example 1: Number

Frege: die Anzahl, welche dem Begriffe F zukommt = der Umfang des Begriffes "gleichzahlig dem Begriffe F".

(the number of Fs = the extension of the concept "Has the same number as the Fs")

In terms of sets:

Set S has the same number as set S' if and only if there is a bijection between the elements of S and the elements of S'.

The number of elements in S= the set of all sets with the same number of elements as S

Example 2: Direction

"has the same direction as" = "is parallel to" the direction of line L = the set of all lines parallel to L.

Example 3: Shape

"has the same shape as" = "is geometrically similar to" the shape of figure F= the set of all figures similar to F

In general

Definitions like this work so long as:

- A domain of "objects" \mathcal{Z} is established for the relation "has the same X as" to be defined on.
- ▶ Within the domain \mathcal{Z} , "has the same X as" can be defined as an equivalence relation.

Then we can say:

the X of $y \in \mathcal{Z}$ = the set of all elements of \mathcal{Z} that have the same X as y

"Same shape" for geometrical figures

- ▶ A geometrical figure is a set of points in \mathbb{R}^n .
- ▶ Write $\Delta(p,q)$ for the distance between points $p,q \in \mathbb{R}^n$.
- ► Definition of geometric similarity between figures in Euclidean space:

 $X, Y \subseteq \mathbb{R}^n$ are geometrically similar if and only if there is a bijection $\phi: X \to Y$ such that, for some constant $\kappa \in \mathbb{R}^+$, the following relation holds:

$$\forall x, x' \in X : \Delta(\phi(x), \phi(x')) = \kappa \Delta(x, x').$$

▶ Thus defined, "geometrically similar" is an equivalence relation and therefore can be used as the definition of "has the same shape as".

Mathematical vs Physical Distance

- ▶ In \mathbb{R}^n , the notion of distance is unproblematic because numbers, i.e., elements of \mathbb{R} , are already built into the definition of the elements of the space.
- But physical space does not come already equipped with numbers.
- Assignment of numbers to physical space has to be accomplished by the physical act of measurement.
- ▶ But measurements always have finite precision.
- ► The definition of similarity has to be modified to take this into account.

Suppose

- we wish to measure distances between points within some object P of volume v.
- ▶ the smallest distance we can distinguish is h (our measurement process has "resolution h").

Then

- ▶ Within the physical space occupied by P we can distinguish a set $S_h(P)$ containing some $n \approx v/h^3$ points.
- ▶ To each pair x, y of these points we can assign a distance $\Delta_h(x, y) = kh$ (where $k \in \mathbb{Z}$).

Given this, how do we compare distances within two different shapes in order to set up a similarity relation between them?

Definition of "same shape" for physical objects:

Physical objects P and Q (where Q is at least as big as P) have the same shape, at resolution h, if, for some constant $\kappa \geq 1$, the set $S_h(P)$ of points discernible in P at resolution h can be mapped into the set $S_h(Q)$ of such points of Q by means of an injective mapping ϕ , such that the following relations hold:

1.
$$\forall x, y \in S_h(P)$$
. $|\Delta_h(\phi(x), \phi(y)) - \kappa \Delta_h(x, y)| \leq h$

2.
$$\forall x \in S_h(Q)$$
. $\exists y \in S_h(P)$. $\Delta_h(x, \phi(y)) \leq \kappa h$

Some observations

- ▶ Two objects may have the same shape at resolution h but different shapes at some resolution h' < h.
- Therefore, under the Fregean construction, the shape of an object would have to be a function of the resolution at which it is considered.
- ▶ But in fact the Fregean construction cannot be accomplished in this case, since "having the same shape at resolution h" is not an equivalence relation.¹
- ► Therefore the notion of "exact shape" cannot be applied to physical objects

Comparing physical and geometrical shapes

Lake Manicouagan is approximately circular: at some resolution, it has the same shape as a perfect geometrical circle. Neither of our "same shape" definitions can handle this. We need another one!

Definition of a physical object's having the "same shape" as a geometrical object

At resolution h, a physical object P has the same shape as a geometrical object Q if there is an injective mapping ϕ from the set of points $S_h(P)$ discernible in P at resolution h into the set of points in Q such that, for some constant $\kappa > 0$:

1.
$$\forall x, y \in S_h(P)$$
. $\Delta(\phi(x), \phi(y)) = \kappa \Delta_h(x, y)$

2.
$$\forall x \in Q$$
. $\exists y \in S_h(P)$. $\Delta(x, \phi(y)) \leq \kappa h$.

Instrinsic vs **Embedded Distance**

Intrinsic vs Embedded Distance

Given a geometrical object P embedded in a space S, the P-intrinsic distance between two points x, y in P is

$$\Delta_P(x,y) =$$
 the length of the shortest path between x and y which lies wholly within P

For Physical objects, as before, we modify this to take resolution into account, writing $\Delta_{P,h}(x,y)$ for the P-intrinsic distance between x and y at resolution h.

Intrinsic distance is contrasted with the *S-embedded distance* $\Delta(x,y)$ (or $\Delta_h(x,y)$) we used earlier.

Definition of "same intrinsic shape" for physical objects

Physical objects P and Q (where Q is at least as big as P) have the same intrinsic shape, at resolution h, if, for some constant $\kappa \geq 1$, the set $S_h(P)$ of points discernible in P at resolution h can be mapped into the set $S_h(Q)$ of such points of Q by means of an injection ϕ , such that the following relations hold:

1.
$$\forall x, y \in S_h(P)$$
. $|\Delta_{Q,h}(\phi(x), \phi(y)) - \kappa \Delta_{P,h}(x, y)| \le h$

2.
$$\forall x \in S_h(Q)$$
. $\exists y \in S_h(P)$. $\Delta_{Q,h}(x,\phi(y)) \leq \kappa h$

Scope of "Instrinsic Shape"

For what class of objects is there a significant contrast between intrinsic and embedded shape?

Examples

- Sheets of paper
- Strands of wool
- Human bodies

Non-examples

- Rigid objects
- Arbitrarily deformable objects (e.g., lumps of clay)

The positive examples are objects which have a "canonical" interrelationship of their parts which is preserved across the typical spatial transformations that the object undergoes.

Wanted: A more exact characterisation of the classes of objects for which the distinction between embedded and intrinsic shape applies.

Extension: The "shape" of a process

Metaphorical "distance" leads to metaphorical "shape", e.g., the "shape" of a process (using distance in time, quality spaces)

(R. B. Prime, C. Michalski and C. M. Neag, 'Kinetic analysis of a fast reacting thermoset system', *Thermochimica Acta* **429** (2005) 213–217)

The Shape of a Musical Phrase

Johannes Brahms, Piano Quintet in F minor, Op.34

Conclusions

- ► The ontological status of shape is problematic because of its dependent character: shapes do not exist "in their own right", but only as qualities of objects.
- For geometrical figures, "same shape" is defined as geometrical similarity, providing a criterion of identity for geometrical shapes.
- ► For physical objects, we can only define "same shape at resolution h", which is not an equivalence relation and so does not supply a robust criterion of identity for shape.
- "Same shape" relations are based on a notion of "distance": either in the embedding space, or within the object itself, leading to the notion of intrinsic shape.
- ▶ Metaphorical "distance" leads to metaphorical "shapes", e.g., temporal process profiles, the shape of a musical phrase.