Prolegomena to an Ontology of
Shape

Antony Galton

School of Engineering, Mathematics and Physical Science
University of Exeter, UK

UNIVERSITY OF

Shapes 2.0
Rio F;Ie Janeiro, Brazil E ETER

April 2013

Antony Galton



Physical Shape Mathematical Shape

Antony Galton



What things have shapes?

» Material objects, including
» Chunks of matter
» Organisms
> Assemblies
» Non-material physical objects, including
» Holes
» Faces
» Edges
» Shadows
» Aggregates, collectives, etc.
» Abstract objects, such as
» Geometrical figures
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Talking About Shapes

The shape of X

X has such-and-such a shape
X and Y have the same shape
X is shaped like a Y

X is Y-shaped
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Talking About Shapes

The shape of X

X has such-and-such a shape

X and Y have the same shape

X is shaped like a Y

X is Y-shaped

The shape of X at time t

X has such-and-such a shape at time t

X and Y have the same shape at time t

vV vV V. VvV VvV vV VvV VY

X changes shape between times t; and t
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Shape as Property

circular
triangular
spherical
cylindrical
rectangular
square
oblong
heart-shaped
pear-shaped

Shape as Thing

circle
triangle
sphere
cylinder
rectangle
square
oblong
heart-shape
pear-shape

Which is logically / ontologically prior?

Antony Galton



» Shape as property
Logical analysis uses shape predicates such as Square(x),
Circular(y).
For generalising over shapes we must quantify over properties
(second-order logic).

» Shape as thing
Logical analysis uses shape terms to reify shape properties.
Objects are related to their shapes by means of a predicate
HasShape, e.g., HasShape(x, square), HasShape(x, circle).

Ontologically, shapes are generically dependent entities
(cf., information).
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x and y have the same shape at t

> Shape as property:
V®(ShapeProperty () — (®(x,t) « P(y, t)))
» Shape as thing:

Vs(HasShape(x, s, t) <« HasShape(y, s, t))
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x and y have the same shape at t

» Shape as property:
V& (ShapeProperty(®) — (P(x, t) « d(y,t)))
» Shape as thing:
Vs(HasShape(x, s, t) < HasShape(y, s, t))

x changed shape between t; and t,
» Shape as property:

313D, (ShapeProperty(P1) A ShapeProperty (P2) A
¢1(X, 1.'1) A ¢2(X, t2) A ﬂ(bl(X, 1.'2) A —\¢2(X, 1.'1))

» Shape as thing:

ds13sp(HasShape(x, s1, t1) A HasShape(x, s, t2) A
—HasShape(x, sz, t1) A ~HasShape(x, s1, t2))
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The view from modern ontology: BFO and DOLCE

Shape is specifically dependent on its bearer. Different bearers
cannot have the same shape, but their separate shapes may have
the same value.

The shape of x is shape(x), which obeys the rule

VxVy(shape(x) = shape(y) — x = y).

The values assumed by shapes are shape qualia, which collectively
constitute shape space.

» x and y have the same shape at t
value(shape(x), t) = value(shape(y), t)

» x changed shape between t; and t,
value(shape(x), t1) # value(shape(x), t2)
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Aristotle’s Four-Category Ontology
(The Ontological Square)
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The Primacy of “Same Shape” over “Shape”

Claim: The commonest (only?) way of describing the shape of
something is by comparison with something else whose shape is
assumed known:

» “The table is square” — the table[-top] has the same (or
sufficiently similar) shape as a certain geometrical
construction.

» “The leaf is egg-shaped” — the leaf has the same (or
sufficiently similar) shape as [the outline of] an egg.
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Gottlob Frege (1848-1925)

Die Grundlagen der Arithmetik, 1884
(The Foundations of Arithmetic)

Frege drew attention to a group of con-
cepts X for which the notion of an X is
logically dependent on the notion of a
relation “has the same X as” which can
be defined without reference to X itself.

Examples: Number, Direction, Shape
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Example 1: Number

Frege: die Anzahl, welche dem Begriffe F zukommt = der Umfang
des Begriffes “gleichzahlig dem Begriffe F”.

(the number of Fs = the extension of the concept “Has the same
number as the Fs")

In terms of sets:

Set S has the same number as set S’ if and only if there is a
bijection between the elements of S and the elements of S’

The number of elements in S = the set of all sets with the
same number of elements
as S
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Example 2: Direction

“has the same direction as” = "is parallel to"
the direction of line L = the set of all lines parallel to L.

Example 3: Shape

“has the same shape as” = "“is geometrically similar to

the shape of figure F = the set of all figures similar to F
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In general

Definitions like this work so long as:

» A domain of “objects” Z is established for the relation “has
the same X as” to be defined on.

» Within the domain Z, “has the same X as” can be defined as
an equivalence relation.

Then we can say:

the X of y € Z = the set of all elements of Z that have the
same X as y
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“Same shape” for geometrical figures

» A geometrical figure is a set of points in R”.
» Write A(p, q) for the distance between points p, g € R".

» Definition of geometric similarity between figures in
Euclidean space:

X,Y CR" are geometrically similar if and only if there is
a bijection ¢ : X — Y such that, for some constant
k € RT, the following relation holds:

Vx,x" € X : A(p(x), (X)) = kA(x, x).

» Thus defined, “geometrically similar” is an equivalence
relation and therefore can be used as the definition of “has
the same shape as”.
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Mathematical vs Physical Distance

» In R", the notion of distance is unproblematic because
numbers, i.e., elements of R, are already built into the
definition of the elements of the space.

» But physical space does not come already equipped with
numbers.

» Assigment of numbers to physical space has to be
accomplished by the physical act of measurement.

» But measurements always have finite precision.

» The definition of similarity has to be modified to take this into
account.
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Suppose

» we wish to measure distances between points within some
object P of volume v.

> the smallest distance we can distinguish is h (our
measurement process has “resolution h").

Then

» Within the physical space occupied by P we can distinguish a
set S;,(P) containing some n = v/h3 points.

» To each pair x, y of these points we can assign a distance
Ap(x,y) = kh (where k € Z).

Given this, how do we compare distances within two different
shapes in order to set up a similarity relation between them?
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Definition of “same shape” for physical objects:

Physical objects P and Q (where Q is at least as big as
P) have the same shape, at resolution h, if, for some
constant k > 1, the set Sp(P) of points discernible in P
at resolution h can be mapped into the set Sy(Q) of such
points of Q@ by means of an injective mapping ¢, such
that the following relations hold:

L Vx,y € Sa(P)-|An(¢(x), d(y)) — KAn(x,¥)| < h
2. Vx € Sh(Q). dy € Sh(P). Ah(X, gb(y)) < kh
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Some observations

» Two objects may have the same shape at resolution h but
different shapes at some resolution A’ < h.

» Therefore, under the Fregean construction, the shape of an
object would have to be a function of the resolution at which
it is considered.

» But in fact the Fregean construction cannot be accomplished
in this case, since “having the same shape at resolution h” is
not an equivalence relation.!

» Therefore the notion of “exact shape” cannot be applied to
physical objects

It is a relation of indiscernibility, not of identity.
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Comparing physical and geometrical shapes

Lake Manicouagan is approximately circular: at some resolution, it
has the same shape as a perfect geometrical circle. Neither of our
“same shape” definitions can handle this. We need another one!
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Definition of a physical object’s having the “same
shape” as a geometrical object

At resolution h, a physical object P has the same shape
as a geometrical object Q if there is an injective mapping
¢ from the set of points Sy(P) discernible in P at
resolution h into the set of points in Q such that, for
some constant Kk > 0:

L. Vx,y € Sp(P). A(¢(x), 8(y)) = Dn(x,y)
2. ¥x € Q.3y € Sy(P). A(x, d(y)) < Kh.
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Instrinsic vs Embedded Distance

Intrinsic
(and embedded)
distance

@_ Embedded
distance

Intrinsic
distance
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Intrinsic vs Embedded Distance

Given a geometrical object P embedded in a space S, the
P-intrinsic distance between two points x,y in P is

Ap(x,y) = the length of the shortest path
between x and y which lies
wholly within P

For Physical objects, as before, we modify this to take resolution
into account, writing Ap p(x, y) for the P-intrinsic distance
between x and y at resolution h.

Intrinsic distance is contrasted with the S-embedded distance
A(x,y) (or Ap(x,y)) we used earlier.
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Definition of “same intrinsic shape” for physical objects

Physical objects P and Q (where Q is at least as big as
P) have the same intrinsic shape, at resolution h, if, for
some constant k > 1, the set Sp(P) of points discernible
in P at resolution h can be mapped into the set Sp(Q) of
such points of Q by means of an injection ¢, such that
the following relations hold:

1 ¥x,y € Sn(P). |Aq(@é(x), 6(y)) — b a(x, V)| < h
2. Vx € Sh(Q). dy € Sh(P). AQh(X, (Z)(y)) < kh
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Scope of “Instrinsic Shape”

For what class of objects is there a significant contrast between
intrinsic and embedded shape?

Examples Non-examples
» Sheets of paper » Rigid objects
» Strands of wool » Arbitrarily deformable objects
» Human bodies (e.g., lumps of clay)

The positive examples are objects which have a “canonical”
interrelationship of their parts which is preserved across the typical
spatial transformations that the object undergoes.

Wanted: A more exact characterisation of the classes of objects
for which the distinction between embedded and intrinsic shape
applies.
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Extension: The “shape” of a process

Metaphorical “distance” leads to metaphorical “shape”, e.g., the
“shape” of a process (using distance in time, quality spaces)

Process Temperature Profile

o 1 2 3 4 5
Time (minutes)

( R. B. Prime, C. Michalski and C. M. Neag, ‘Kinetic analysis of a fast
reacting thermoset system’, Thermochimica Acta 429 (2005) 213-217)
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The Shape of a Musical Phrase

Johannes Brahms, Piano Quintet in F minor, Op.34
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Conclusions

» The ontological status of shape is problematic because of its
dependent character: shapes do not exist “in their own right”,
but only as qualities of objects.

» For geometrical figures, “same shape” is defined as
geometrical similarity, providing a criterion of identity for
geometrical shapes.

» For physical objects, we can only define “same shape at
resolution h", which is not an equivalence relation and so does
not supply a robust criterion of identity for shape.

» “Same shape” relations are based on a notion of “distance”:
either in the embedding space, or within the object itself,
leading to the notion of intrinsic shape.

» Metaphorical “distance” leads to metaphorical “shapes”, e.g.,
temporal process profiles, the shape of a musical phrase.
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