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Overview

We report work with data concerning the movement of fish in the
Murray River system in S. E. Australia.

The data comprises a large number of records of individual fish
movements, together with records of a number of environmental
variables such as water temperature, water level, and salinity.

We are interested in discovering causal rules relating the variation
in the environmental variables to fish movement upstream or
downstream.

We searched for such rules systematically using an algorithm
targeted towards discovering rules having a specified form.



States, Processes, Events, and Causation

We take the view (following Galton’s paper in FOIS2012) that
causal relations between events are different in character from
causal relations between processes, and that states can play the
role of enabling conditions for process and event causation.
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Data

We investigate causal rules in relation to data in the form of one or
more history files, which record the occurrences of events and the
values of process variables over a time period T = [0, tmax ].

Events (E) and processes (P) are collectively occurrents (O):

O = E ∪ P, E ∩ P = ∅.

An event-type is represented as a function e : T → Z+ ∪ {0},
where e(t) is the number of distinct occurrences of e at time t.

A process is represented as a function p : T → R giving the values
of the process, considered as the continuous variable of some
quantity over time.



Causal Rules

We work with causal rules of the form

R : [CausesR | ConditionsR ]⇒ effectR after DelayR ,

where

I CausesR ⊂ E is a set of effects functioning as causes,

I ConditionsR is a set of conditions, where each condition is a
triple c = (pc , v

−
c , v+c ) ∈ P × R× R,

I effectR ∈ E \ CausesR is an event distinct from any of the
causes, functioning as an effect,

I DelayR is a delay interval [d−
R , d+

R ], where d−
R , d+

R are
integers such that 0 ≤ d−

R ≤ d+
R .

In a condition, v−c and v+c are the limits of a range within which
the value of pc must fall to satisfy it.



Rule Activation

I The causal rule

R = [CausesR | ConditionsR ]⇒ effectR after DelayR

is activated at time t if and only if both:

1. For every e ∈ CausesR , e(t) > 0.
2. For every c ∈ ConditionsR , v−

c ≤ pc(t) ≤ v+
c .

I An activation of the rule at time t is explanatory if the effect
predicted by the rule does indeed occur, i.e.:

I For some d ∈ DelayR , effectR(t + d) > 0.

I An occurrence of effectR at time t is explained by rule R if
some activation of R is made explanatory by that occurrence
of the effect, i.e.,

I For some d ∈ DelayR , R is activated at t − d .



The Problem

Our algorithm is designed to solve the following problem:

I Given a data set as described, we seek a set of rules R which,
as nearly as possible, accounts fully for the data, in the
following sense:

I No false positives: For each t ∈ T and R ∈ R, if R is
activated at t then it is explanatory, i.e., effectR occurs after
an admissible delay.

I No false negatives: For each occurrence of each effect f in the
data, there is a rule R ∈ R which explains it, i.e., f = effectR
and R is activated within an admissible delay time preceding
the occurrence.



Evaluating a rule set

Because of the delay factor in our causal rules, sensitivity and
precision are defined in a somewhat non-standard way:

I Cause-based precision

c-precision =
cTP

cTP + cFP
where

I cTP is the number of explanatory activations of R
I cFP is the number of non-explanatory activations of R

I Effect-based sensitivity

e-sensitivity =
eTP

eTP + eFN
where

I eTP is the number of occurrences of effectR which are
explained by R.

I eFN is the number of occurrences of effectR that are not
explained by R



Rough Outline of the Rule-Detection Algorithm

The algorithm searches systematically for explanatory rules which
can account for the data. For details see the paper.

I For each effect f and each subset E of the available causes,
we consider whether any of the data for f can be explained by
a rule whose cause-set is E .

I For each subset E which passes certain tests we then
determine a suitable delay interval [d−, d+].

I If for every time at which all the causes in E occur, f occurs
after a delay in the interval [d−, d+], we have an
unconditional rule E ⇒ f after [d−, d+].

I Otherwise, we look for processes that can provide conditions
for conditional rules of the form
[E | v− ≤ p ≤ v+]⇒ f after [d−, d+].



Experiments

We performed three sets of experiments:

1. Extracting causal rules from synthetic data generated using
known rules.
The results (see paper) were very favourable, with 100%
sensitivity and precision in most cases.

2. Extracting unconditional rules from real-world data.
Here we used as candidate causes events defined in terms of
the processes in the data; no conditions were looked for. The
results were disappointing (see paper).

3. Extracting “always” rules from real-world data.
Here we were looking for process-perpetuation, expressed by
rules with a trivial “always” event as cause, and conditions
using the processes in the data. The results were promising
but equivocal.



The Real-World Data

The data-set concerns fish movement in the Murray River system
(Lyon et al. 2011).

I Over 1000 individual fish were tagged with radio transmitters.

I Their movements were monitored by 18 river-side radio
receivers, defining 24 zones in the river system, labelled a–x .

I The movement of tagged fish between zones was tracked over
six years.

I At the same time water temperature, water level, and salinity
data were collected.



Map of the study area, showing zones a–x
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The Data

The data consisted of records of the following types:

I For each environmental variable, a record of its value at each
recording station on each day of the period of study;

I A collection of records of zone-boundary crossings by
individual fish, where each record takes the form “fish i moves
from zone z1 to zone z2 on day d”.

The aim of the study was to determine to what extent the
movement of fish was causally influenced by the variations in the
environmental variables.



Fish-Movement Events

The fish-movement event types were defined using the data as
follows:

For each pair z1, z2 of adjacent zones, where z2 is downstream
from z1,

I event z1\z2 occurs whenever a fish moves from z1 to z2,

I event z2/z1 occurs whenever a fish moves from z2 to z1.

Note that it is possible for there to be several occurrences of any
one of these events on any given day.



Experiment 3: Perpetuation

For this experiment we used the algorithm to look for “always”
rules of the form

[always | Conditions]⇒ effect after Delay

which for clarity we write in shorter form as

Conditions ⇒ effect after Delay.

The conditions are expressed in terms of value-ranges for the
environmental variables.

The effects to be explained were fish-movement events of the
forms x\y and x/y. Understanding these as proxy indicators for
fish-movement processes, these rules identify possible perpetuation
relations between environmental processes and fish movements.



Support

0 20 40 60 80 100

0
20

40
60

80
10

0

c−precision

e−
se

ns
iti

vi
ty

0 20 40 60 80 100

0
20

40
60

80
10

0

c−precision

e−
se

ns
iti

vi
ty

a. Upstream movement b. Downstream movement

< 10 condition instances

< 10 effect instances



Spatial coincidence

Is an effect in any way spatially related to its condition?

I No evidence to support the hypothesis that rules that relate
spatially proximal conditions and effects are associated with
higher F1 scores (p = 0.39 upstream, p = 0.89 downstream).

I May be a consequence of spatial autocorrelation and
granularity effects.



Shuffled data
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Condition value ranges
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Condition value ranges

Best rule found F1 score

2.79 ≤ wl(cd) ≤ 4.72⇒ d/c after [0, 5] 0.32
2.39 ≤ wl(efgh) ≤ 5.03⇒ e/d after [0, 5] 0.32
2.81 ≤ wl(efgh) ≤ 5.03⇒ f/e after [0, 5] 0.38
1.77 ≤ wl(efgh) ≤ 1.92⇒ g/f after [0, 5] 0.25
0.77 ≤ wl(efgh) ≤ 1.55⇒ h/g after [0, 5] 0.30
126.41 ≤ wl(ijklm) ≤ 131.53⇒ i/h after [0, 5] 0.45
126.85 ≤ wl(ijklm) ≤ 128.69⇒ i/j after [0, 5]∗ 0.39
126.98 ≤ wl(ijklm) ≤ 128.16⇒ j/i after [0, 5]∗ 0.36
126.89 ≤ wl(ijklm) ≤ 126.92⇒ j/k after [4, 5] 0.26
124.67 ≤ wl(np) ≤ 124.75⇒ n/i after [0, 5] 0.26
1.60 ≤ wl(or) ≤ 6.75⇒ o/n after [0, 5] 0.46
3.02 ≤ wl(or) ≤ 6.75⇒ r/o after [0, 5] 0.62
2.24 ≤ wl(stuv) ≤ 6.40⇒ s/r after [0, 5] 0.42
2.33 ≤ wl(stuv) ≤ 6.40⇒ u/s after [0, 5] 0.58
2.78 ≤ wl(stuv) ≤ 6.40⇒ v/u after [0, 5] 0.48

The best rules discovered for each upstream movement effect.



Summary and conclusions

We developed an algorithm capable of mining causal rules of a
particular logical form that best fit the data.

I Performance with synthetic data is very good.

I Performance with real data failed to identify strict causation
(possibly granularity effects).

I Perpetuation rules were more successful with real data,
including:

I Perpetuation rules appear to relate to meaningful structure.
I Top-ranked rules compactly describe approximately 20% of fish

movements.


