
Two Approaches to Event Definition

Antony Galton1 and Juan Carlos Augusto2

1 School of Engineering and Computer Science, University of Exeter, UK
A.P.Galton@exeter.ac.uk

2 Department of Electronics and Computer Science, University of Southampton, UK
jca@ecs.soton.ac.uk

Abstract. We compare two approaches to event definition, deriving from the
Active Database and Knowledge Representation communities. We relate these
approaches by taking a system of the former kind, displaying some of its short-
comings, and rectifying them by remodelling the system in the latter style. We
further show the extent to which the original system can be recreated within the
remodelled system. This bridge between the two approaches should provide a
starting point for fruitful interaction between the two communities.

1 Events in Knowledge Representation and Databases

Events are ubiquitous in both life and computing. In both areas we frequently classify
events, considering many individual events together as instances of some class, or event-
type, to which we give a name (for example “plane crashes” or “user interrupts”). Each
event-type gives rise to its own particular set of problems, but we may identify two as
fundamental: ‘How is the event-type defined?’ and ‘How can we detect when an event
of that type has occurred?’. These two questions are clearly closely interrelated, but
they are emphatically not the same question.

There are many areas of computing where event definition and detection are impor-
tant. In this paper we focus on two areas representing two different approaches to events,
which we have found it instructive to compare. These are knowledge representation and
active databases. The former is generally more familiar to the AI community, the latter
to the database community, but from our investigations it is clear that the concerns of
both areas are relevant to both communities. Despite this, work in the two areas has for
the most part proceeded separately, leading to divergence of notation and terminology.
We believe it will benefit both areas to attempt to bridge this gap.

A database in the traditional, ‘passive’ sense is merely a repository (albeit perhaps
highly structured) of information, which provides answers to queries posed by the user.
The ‘events’ in the life of such a database are essentially the user-initiated updates and
queries, and the responses to both types of events follow a rigid preprogrammed pattern.
In particular, the database system itself is unable to produce behaviour except in direct
response to individual external triggers. By contrast, anactivedatabase monitors the
succession of events impinging on it from outside, and is endowed with the ability to
detect not only events but also significantpatternsof events, and to respond to these
in accordance with some set of ‘event-condition-action’ (ECA) rules. Thus an active



database endowed with a set of ECA rules is in a certain sense capable of independent
action, only indirectly triggered by inputs from its users.

A key feature of any active database system is its capacity to detect composite
events of various descriptions. Systems may differ with respect to the available classes
of primitive events, the variety of operators used for defining composite events from
primitive ones, and the mechanisms by which composite events are detected. For ex-
ample, the COMPOSE system of [1] provides four classes of primitive event (object
state events, method execution events, time events, andtransaction events), and a set of
event-composition operators. The operators are selected so that their expressive power
is exactly the same as that of regular grammars; this enables the event-detection mech-
anism to be implemented using finite automata, each event being associated with an
automaton which reaches an accepting state exactly when that event occurs.

Another system, SAMOS [2, 3], combines active and object-oriented features in a
single framework. Primitive events aretime events, method events, transaction events,
andabstract events, while composite events are built up from these using operators such
as disjunction, conjunction, and sequential composition. Associated with each kind of
primitive event is a method by which events of that kind are detected. These methods
are used as the basis for a coloured Petri net which enables the detection of composite
events. For each operator of the event algebra there is an associated structure in the
net; these structures can be combined recursively as needed. When the primitive-event
detector is activated the corresponding node in the net is activated and certain transi-
tions fire. If as a result of these firings the node associated with some composite event
acquires a token, then the composite event has been detected. The behaviour of the net
is implemented by means of matrix-processing algorithms.

SNOOP [4] is another system emanating from the database community. We defer
a description of this system to section 3, as it will provide the starting-point for the
investigations reported in this paper.

Finally, we mention the work of [5], which provides a language for expressing
event-based conditions in an OODB framework. As usual, basic and composite events
are considered, the latter obtained by means of a predefined set of event constructors
applied to other basic or composite events. Database events can be classified asinstan-
taneousor persistent, while temporal events can beabsolute(e.g., the first hour of a
specific day),periodic(e.g., each working day), orrelative(e.g., five hours after a mod-
ification to the database). The language resembles that of SNOOP, although the authors
claim that it is strictly more expressive.

A feature that is common to all these systems is that all events, whether primitive
or composite, are considered to be instantaneous, that is, the time associated with the
event is an instant rather than an interval. In the case of a composite event built up from
events occurring at different times, the associated instant is usually the time of thelast
of its contributory primitive events. This constraint is natural enough in a context where
the prime focus of interest is on event detection, since typically a composite event will
be detected at the time that its last contributory component is detected. However, this
does lead to logical difficulties in the case of some composite event-types, as will be
explained below. The only work on active databases we are aware of in which events
are treated as having positive duration is [6]



Turning now to knowledge representation, one of the best-known proposals for the
formalisation of temporal reasoning is the Interval Calculus [7, 8]. Hereall events are
regarded as durative, that is taking time, and accordingly intervals (rather than instants)
are considered to be the basic temporal concept. A set of 13 basic relations between in-
tervals is defined, and the rules governing the composition of such relations is regarded
as a key factor in controlling temporal reasoning. Allen distinguishes betweenproper-
ties, processes, andevents, the latter being related to intervals by means of a predicate
Occurs(E, i) which is used to assert that an event of typeE occurs on the intervali.
Events are assumed to be unitary in the sense of the formulaOccurs(E, i)∧In(i′, i) →
¬Occurs(E, i′), whereIn(i′, i) means thati′ is apropersubinterval ofi. The main fo-
cus of this work is on the development of axioms to formalise the notions of action and
causality. Event types are characterised in terms of necessary and sufficient conditions
for their occurrence.

Event definition in terms of occurrence conditions also plays a prominent part in
the Event Calculus of [9] (which is connected with temporal deductive databases rather
than active databases), and in the work of Galton [10]. Rather than detection of events
as they occur, the knowledge representation work on events has mainly concentrated
on what inferences can be made from the fact that certain events are known to have
occurred. These inferences may extend to the possibility of future events occurring,
thus providing a link to another important theme of AI, planning. An exception is the
work of [11], whose IxTeT system detects the occurrence ofchroniclesspecified as
conjunctions of instantaneous events together with constraints on their relative times of
occurrence.

In the remainder of the paper, we first set up a simple discrete temporal framework
(this is for convenience; the same issues arise in continuous time), then examine the
SNOOP system in some detail as representative of the active database systems in which
events are regarded as occurring at their time of detection and hence as instantaneous.
In effect, events are defined in terms of theirdetection conditions. We next illustrate the
problems that arise from the decision to treat events in this way, and go on to show that
the problems do not arise if we adopt instead the assumption widespread in the knowl-
edge representation community that events should be treated as durative and defined
in terms of theiroccurrence conditions. We then investigate how far it is possible to
reconcile the two accounts of events; we associate each event with a ‘detection event’
in such a way that detection of an event, in the database sense, can be exactly identified
with the occurrence, in the knowledge representation sense, of its associated ‘detection
event’. The key question is whether the occurrence conditions of the latter can be pre-
cisely given; by determining precisely when they can and when they cannot, we provide
a measure of the extent of the disagreement between the two approaches. Although this
is only a beginning, we believe that this work can provide the foundation for a produc-
tive dialogue between the active database and knowledge representation communities.

2 A Temporal Framework

Whereas time is commonly conceptualized as a continuum, it is sufficient for many
applications to treat it as a discrete system modelled by the integers under their usual



ordering. In such a model, individual integers representatomic intervals, chunks of time
that are regarded as indivisible. It is assumed that no change can take place within an
atomic interval. Longer intervals are specified by their initial and final atomic intervals;
thus the interval [4,7] is composed of the atomic intervals 4, 5, 6, and 7. It is sometimes
convenient to allow the notation [4,4] to refer to the atomic interval 4.

The main focus of interest in this paper will be onevents. We distinguish the occur-
rence of an event from its detection. Typically an event is, or can be, detected at the end
of the interval over which it occurs. We shall assume that event detection always occurs
at an atomic interval, whereas the event itself may occur over an extended interval. We
shall use the notationD(E, t) to mean that an event of typeE is detected at timet, and
O(E, [t, t′]) to mean that such an event occurs over the interval[t, t′]. An event-type
which can only occur on an atomic interval will be called anatomic event. Events may
be characterized either in terms of their detection conditions, or in terms of their occur-
rence conditions. These two approaches lead to rather different conceptions of events,
which it will be one purpose of this paper to reconcile.

We assume that we are provided with a stock ofprimitive event types; we say noth-
ing about how these are specified (although the primitive event types recognised by
SNOOP are briefly described below), but shall assume that for each primitive event
typeE all facts of the formO(E, [t, t′]) andD(E, t) are known. Our main interest in
this paper will be incomposite event types, which are constructed from the primitive
event types by means of a set of operators. In the literature many such operators have
been considered. In this paper we shall discuss those of the system SNOOP introduced
by Chakravarty et al. [4].

3 Detectable Event-types

An event-type defined in terms of its detection condition will be called adetectable
event-type. To illustrate the use of detectable event types we describe the SNOOP sys-
tem of [4]. In this system events are either primitive or composite, the latter being con-
structed from the former using the operators defined in the paper. Amongst primitive
events are distinguished

1. database events, corresponding to database operations such asretrieve, insert,
update, anddelete;

2. temporal events, which pick elements of the passage of time itself, either absolutely
(e.g., calendar dates, clock times) or relatively (in terms of some reference event,
e.g., 3 seconds after a database update);

3. explicit events, which include any events detected by other application programs
and input as primitive events into the DBMS.

The reader is referred to [4] for the original definitions of the operators used to form
composite events. Here we attempt to provide equivalent definitions within the formal-
ism laid out in the previous section; in cases where we found the original definitions
ambiguous or unclear, we have resorted to informed guesswork in formulating the ex-
act equivalents in our system. We consider the operators in the order they appear in the
original paper.



or Disjunction of events:D(E15E2, t)
def= D(E1, t) ∨D(E2, t).

and Conjunction of events. The events are not required to be simultaneous.

D(E1 4 E2, t)
def= ∃t′ ≤ t((D(E1, t

′) ∧D(E2, t)) ∨ (D(E1, t) ∧D(E2, t
′))

any The original definition of this operator used a second-order condition, with a vari-
able number of quantifiers depending on the number of events considered; in order to
work within first-order logic, we define a series of “any” operators. Form ≤ n, the
eventANYm

n (E1, . . . , En) occurs whenm events out ofn distinct specified events oc-
cur, in any order:

D(ANYm
n (E1, . . . , En), t) def= ∃t1 ≤ . . . ≤ tm = t∃i1, . . . , im ∈ {1, . . . , n}

(#{i1, . . . , im} = m ∧D(Ei1 , t1) ∧ · · · ∧D(Eim
, tm)).

The first conjunct on the right-hand side ensures that theEij
are all distinct (here#X

is the cardinality ofX).
seqThe sequential composition of two events:

D(E1;E2, t)
def= ∃t′ < t(D(E1, t

′) ∧D(E2, t)).

A According to Chakravarthy et al., the ‘aperiodic’ operatorA allows one to express the
occurrence of an eventE2 within the interval defined by two other eventsE1 andE3.
Their definition seems to express something different, however, namely thatE2 occurs
within an interval beginning withE1 at a time whenE3 has not yet occurred. There is
no requirement for the eventE3 to occur at all. We thus have the definition:

D(A(E1, E2, E3), t)
def=

D(E2, t) ∧ ∃t′ < t(D(E1, t
′) ∧ ∀t′′(t′ ≤ t′′ ≤ t → ¬D(E3, t

′′)))

This can be expressed more simply by the introduction of a new predicateDin which
says that an event is detected atsomepoint within a stated interval:

Din(E, [t1, t2])
def= ∃t(t1 ≤ t ≤ t2 ∧D(E, t)).

We can then put

D(A(E1, E2, E3), t)
def= D(E2, t) ∧ ∃t′ < t(D(E1, t

′) ∧ ¬Din(E3, [t′, t]))

P The ‘periodic’ operatorP caused us even more difficulty thanA. However, we believe
thatP(E1, n, E3) is an event type which occurs everyn time-steps after an occurrence
of E1 so long asE3 does not occur. Note that, contrary to what one might think at first,
the periodic operator does not express the periodic recurrence of some detectable event,
but only that a certain period of time has elapsed a whole number of times since a given
detectable event. It is thus a ‘virtual’ event rather than a ‘real’ one.

D(P(E1, n, E3), t)
def= ∃t′ < t∃i ∈ Z+(t = t′ + ni ∧D(E1, t

′)∧
¬Din(E3, [t′ + 1, t]))

not The non-occurrence of the eventE2 in an interval delimited by occurrences ofE1

andE3:

D(¬(E2)[E1, E3], t)
def= ∃t′ < t(D(E1, t

′) ∧D(E3, t) ∧ ¬Din(E2, [t′, t]))



4 Why Detection Conditions are Inadequate

All the event-types defined in the previous section are detectable, assuming that all
the event-typesE1, E2, E3 occurring in the definitions are detectable. This is because
the events are defined in terms of detection conditions and not in terms of occurrence
conditions. However, this leads to some problems; it means that the events that are
defined are not always exactly the events that are, presumably, intended.

This is revealed when we consider a composite event such asE1; (E2;E3). Intu-
itively, since ‘;’ expresses sequential composition, we should expect this event to oc-
cur whenever an occurrence ofE1 is followed by an occurrence ofE2 which is in
turn followed by an occurrence ofE3. It should therefore be a different event from
E2; (E1;E3). Now consider the detection conditions for the two events:

D(E1; (E2;E3), t) ⇐⇒ ∃t′ < t(D(E1, t
′) ∧D(E2;E3, t))

⇐⇒ ∃t′ < t(D(E1, t
′) ∧ ∃t′′ < t(D(E2, t

′′) ∧D(E3, t)))
⇐⇒ ∃t′ < t, t′′ < t(D(E1, t

′) ∧D(E2, t
′′) ∧D(E3, t))

D(E2; (E1;E3), t) ⇐⇒ ∃t′ < t(D(E2, t
′) ∧D(E1;E3, t))

⇐⇒ ∃t′ < t(D(E2, t
′) ∧ ∃t′′ < t(D(E1, t

′′) ∧D(E3, t)))
⇐⇒ ∃t′ < t, t′′ < t(D(E2, t

′) ∧D(E1, t
′′) ∧D(E3, t))

The two detection conditions are equivalent, which means that as detectable events
defined according to SNOOP,E1; (E2;E3) andE2; (E1;E3) are equivalent. This in
turn means that ‘;’ so defined does not, after all, express sequential composition but
something different.

For another example, consider the event¬(E2 4 E′
2)[E1, E3], the negation of a

conjunction. Intuitively, one might expect this to occur so long as at least one ofE2

andE′
2 fails to occur in the interval delimited byE1 andE3. Consider, however, the

detection conditions:

D(¬(E2 4 E′
2)[E1, E3], t)

⇐⇒ ∃t′ ≤ t(D(E1, t
′) ∧D(E3, t) ∧ ∀t′′(t′ ≤ t′′ ≤ t → ¬D(E2 4 E′

2, t
′′)))

⇐⇒ ∃t′ ≤ t(D(E1, t
′) ∧D(E3, t) ∧ ∀t′′(t′ ≤ t′′ ≤ t →

¬∃t∗ ≤ t′′((D(E2, t
∗) ∧D(E′

2, t
′′)) ∨ (D(E2, t

′′) ∧D(E′
2, t

∗)))))
⇐⇒ ∃t′ ≤ t(D(E1, t

′) ∧D(E3, t) ∧ ∀t′′(t′ ≤ t′′ ≤ t →
∀t∗ ≤ t′′¬((D(E2, t

∗) ∧D(E′
2, t

′′)) ∨ (D(E2, t
′′) ∧D(E′

2, t
∗)))))

We need not spell this out any further to see that it imposes a very strong condition
on the detection of events of typesE2 andE′

2: a condition which refers toall times
t∗ earlier than some timet′′ in the interval of interest. This takes us right outside the
interval to a consideration of the entire past history, clearly not in keeping with the
intuitive meaning.

5 Event-types Defined in Terms of Occurrence

The problems encountered in the previous section all arise from the fact that the time
associated with an event by theDetect predicate is an atomic interval; the event itself



may occur over an extended interval, but in this case theDetect predicate carries no
information about how far into the past that interval extends. To remedy this, we shall
redefine the SNOOP operators in terms of occurrence conditions rather than detection
conditions; this is more in keeping with the approaches to events in the Knowledge
Representation tradition, as described above. We shall refer to the system of redefined
operators as O-SNOOP (‘Occurrence-based SNOOP’) as distinct from the original sys-
tem which we shall refer to as D-SNOOP (‘Detection-based SNOOP’).

or O(E15E2, [t1, t2])
def= O(E1, [t1, t2]) ∨O(E2, [t1, t2]).

and O(E1 4 E2, [t1, t2])
def= ∃t, t′(t1 ≤ t ≤ t2 ∧ t1 ≤ t′ ≤ t2 ∧

((O(E1, [t1, t]) ∧O(E2, [t′, t2])) ∨ (O(E1, [t′, t2]) ∧O(E2, [t1, t]))∨
(O(E1, [t1, t2]) ∧O(E2, [t, t′])) ∨ (O(E1, [t, t′]) ∧O(E2, [t1, t2])))

any O(ANYm
n (E1, . . . , En), [t1, t′m]) def=
∃t2, . . . , tm, t′1, . . . , t

′
m−1 ∈ [t1, t′m]∃i1, . . . , im ∈ {1, . . . , n}

(#{i1, . . . , im} = m ∧O(Ei1 , [t1, t
′
i1

]) ∧ · · · ∧O(Eim
, [tm, t′im

])).
seqWe assume the events do not overlap:

O(E1;E2, [t1, t2])
def= ∃t, t′(t1 ≤ t < t′ ≤ t2 ∧O(E1, [t1, t]) ∧O(E2, [t′, t2]))

A The occurrence time forA(E1, E2, E3) is the occurrence time forE2—an occurrence
of the event is an occurrence ofE2 in a certain context determined byE1 andE3. The
rest of the occurrence condition specifies the context. There must be no occurrence of
E3 wholly within the interval between the occurrences ofE1 andE2. To enable us to
express this more concisely, we introduce a predicateOin defined as follows:

Oin(E, [t1, t2])
def= ∃t′1, t′2(t1 ≤ t′1 ≤ t′2 ≤ t2 ∧O(E, [t′1, t

′
2])).

It will also be useful to define the end of an event by the rule:

O(E↓, t) def= ∃t′ ≤ t O(E, [t′, t]).

We now have

O(A(E1, E2, E3), [t1, t2])
def= O(E2, [t1, t2]) ∧

∃t < t1(O(E1↓, t) ∧ ¬Oin(E3, [t, t2])).

P As noted above, this operator expresses a virtual event which occurs at the moment
of its detection; the occurrence time is therefore the same as the detection time. The
non-occurrence ofE3 is handled as in the aperiodic case.

O(P(E1, n, E3), t)
def=

∃t′ < t∃i ∈ Z+(t = t′ + ni ∧O(E1↓, t′) ∧ ¬Oin(E3, [t′ + 1, t]))

not What is the time of a non-occurrence? Since it is non-occurrence ofE2 in a pre-
defined interval, the only credible time to assign to it is just that interval. The interval
extends from immediately afterE1 finishes to immediately beforeE2 starts. To help us
express the occurrence condition, we define the start of an event by the rule

O(↑E, t) def= ∃t′(t ≤ t′ ∧O(E, [t, t′])).



We can now put

O(¬(E2)[E1, E3], [t1, t2])
def= O(E1↓, t1) ∧O(↑E3, t2) ∧ ¬Oin(E2, [t1, t2]).

The problems we encountered with the D-SNOOP operators do not arise for O-SNOOP:

O(E1; (E2;E3), [t1, t2])
⇐⇒ ∃t, t′(t1 ≤ t < t′ ≤ t2 ∧O(E1, [t1, t]) ∧O(E2;E3, [t′, t2])
⇐⇒ ∃t, t′(t1 ≤ t < t′ ≤ t2 ∧O(E1, [t1, t])∧

∃t∗, t∗∗(t′ ≤ t∗ < t∗∗ ≤ t2 ∧O(E2, [t′, t∗]) ∧O(E3, [t∗∗, t2])))
⇐⇒ ∃t, t′, t∗, t∗∗(t1 ≤ t < t′ ≤ t∗ < t∗∗ ≤ t2 ∧

O(E1, [t1, t]) ∧O(E2, [t′, t∗]) ∧O(E3, [t∗∗, t2]))

O(E2; (E1;E3), [t1, t2])
⇐⇒ ∃t, t′(t1 ≤ t < t′ ≤ t2 ∧O(E2, [t1, t]) ∧O(E1;E3, [t′, t2])
⇐⇒ ∃t, t′(t1 ≤ t < t′ ≤ t2 ∧O(E2, [t1, t])∧

∃t∗, t∗∗(t′ ≤ t∗ < t∗∗ ≤ t2 ∧O(E1, [t′, t∗]) ∧O(E3, [t∗∗, t2])))
⇐⇒ ∃t, t′, t∗, t∗∗(t1 ≤ t < t′ ≤ t∗ < t∗∗ ≤ t2 ∧

O(E2, [t1, t]) ∧O(E1, [t′, t∗]) ∧O(E3, [t∗∗, t2]))

These two occurrence conditions are obviously inequivalent, and equally clearly in ac-
cordance with our intuitive understanding of triple sequential compositions.

In preparation for the next case, note that

Oin(E1 4 E2, [t1, t2]) ⇐⇒ Oin(E1, [t1, t2]) ∧Oin(E2, [t1, t2]).

The proof is straightforward but rather tedious. We now have

O(¬(E2 4 E′
2)[E1, E3], [t1, t2])

⇐⇒ O(E1↓, t1) ∧O(↑E3, t2) ∧ ¬Oin(E2 4 E′
2, [t1, t2])

⇐⇒ O(E1↓, t1) ∧O(↑E3, t2) ∧ ¬(Oin(E2, [t1, t2]) ∧Oin(E′
2, [t1, t2]))

⇐⇒ O(E1↓, t1) ∧O(↑E3, t2) ∧ (¬Oin(E2, [t1, t2]) ∨ ¬Oin(E′
2, [t1, t2]))

which unlike in D-SNOOP does not involve reference to times indefinitely far into the
past, and is clearly in accord with our intuitive understanding of the logic of this case.

6 D-SNOOP and O-SNOOP Compared

The time associated with any event by D-SNOOP is the time at which the event is
detected; in almost every case this is the time of its last constituent, so that eventE is
detected at the time of its terminationE↓. We could regardE↓ as thedetection event
of E, making the detection of any event equivalent to the occurrence of its detection
event. D-SNOOP rests on the premiss that reasoning about composite events can be
satisfactorily accomplished using detection events only. In order for this to work, it
would be necessary for every event-composition operatorOp to obey a rule of the form

Op(E1, . . . , En)↓ ↔ Op(E1↓, . . . , En↓)↓



(Note that the final↓ operator can be omitted in those cases when the composite is
already instantaneous.) The D-SNOOP operators automatically obey this rule, but as
we have seen, their interpretation is problematic. An exact measure of the extent to
which our remodelled O-SNOOP operators agree with those of D-SNOOP is furnished
by what proportion of them obey the above rule.

For four of the operators it can be straightforwardly verified that the rule does indeed
hold; the following are all theorems of O-SNOOP:

(E15E2)↓ = E1↓5E2↓
(E1 4 E2)↓ = (E1↓ 4 E2↓)↓

ANYm
n (E1, . . . , En)↓ = ANYm

n (E1↓, . . . , En↓)↓
P(E1, n, E3)↓ = P(E1↓, n, E3↓)

That part of D-SNOOP which handles these operators can thus be exactly recreated
within O-SNOOP.

This leaves three problematic cases, namely sequential composition, the aperiodic
operator, and negation—two of these are, not surprisingly, the operators we had trouble
with earlier. In all these cases, the fact that in O-SNOOP events are, in general, durative,
whereas detection events are always instantaneous, vitiates any attempt to express de-
tection of the composite event in terms of detection of its components. For example, it is
not possible to define(E1;E2)↓ in terms ofE1↓ andE2↓. The reason for this is that in
order forE1;E2 to occur, it is necessary forE1 to finish—and thus to be detectable—
beforeE2 starts. But the start ofE2 cannot be expressed in terms of the detection of
E2, which only refers to its end. Thus the closest we can come to such expressions is

(E1;E2)↓ = (E1↓;E2)↓
A(E1, E2, E3)↓ = A(E1↓, E2, E3)↓
¬(E2)[E1, E3]↓ = ¬(E2)[E1↓, ↑E3]↓

Crucially, it isE2, and notE2↓, which is required on the right-hand side in each case.3

7 Conclusions and Further Work

We have drawn a contrast between two styles of event definition: the active database
approach in which events are regarded as instantaneous and defined in terms of the con-
ditions for their detection at an instant, and the knowledge representation approach in
which events are for the most part regarded as durative and are defined in terms of the
conditions for their occurrence over an interval. The contrast is starkly drawn in order
to make a point; it is not suggested that there has beenno dialogue and no common-
ality between the two approaches. We have explored this contrast in some detail by
examining SNOOP, a system proposed within the active database community, display-
ing some of its shortcomings, and showing that these can be rectified by remodelling

3 This gives the finishing time for¬(E2)[E1, E3]; but this event cannot bedetecteduntil the
time of E3↓—the only mismatch between time of detection and time of finishing, a subtlety
that doesn’t arise for instantaneous events.



the system in the knowledge representation style. We further showed that SNOOP in its
original form can be partially, but not totally, recreated within the remodelled system
by mapping each event onto its associated detection event.

We regard this result as establishing a preliminary bridge between the approaches
to events espoused by the two communities. To make further progress it will be nec-
essary, from the active database side, to investigate the effect on their applicability of
the remodelling of the event-forming operators, and, on the knowledge representation
side, to investigate the relation of the SNOOP-style operators to the event-constructors
already in common use in knowledge representation contexts. We believe that there is
scope for fruitful dialogue between the two communities in these endeavours.

Acknowledgments

We should like to thank Brian Lings and Jonas Mellin for useful feedback on this paper,
and Pernilla R̈onn for pointing out an error in our original definition of4.

References

1. N. Gehani, H. Jagadish, and O. Shmueli. Event specification in an active object-oriented
database. InProc. ACM SIGMOD Int. Conf. on Management of Data, pages 81–90, San
Diego, Calif., 1992.

2. Stella Gatziu and Klaus R. Dittrich. Events in an active object-oriented database system. In
Proc. 1st Int. Conf. on Rules in Database Systems, Edinburgh, 1993.

3. Stella Gatziu and Klaus R. Dittrich. Detecting composite events in active database sytems
using Petri nets. InProc. 4th Int. Workshop on Research Issues in Data Engineering: Active
Database Systems, pages 2–9, Edinburgh, 1994.

4. S. Chakravarty, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite events for active
database: Semantics, contexts, and detection. In20th International Conference on Very Large
Databases, pages 606–617, Santiago, Chile, September 1994.

5. Elisa Bertino, Elena Ferrari, and Giovanna Guerrini. An approach to model and query event-
based temporal data. InProceeedings of the Fifth International Workshop on Temporal Rep-
resentation and Reasoning (TIME’98), pages 122–131. IEEE Computer Science Press, 1998.

6. Claudia L. Roncancio. Towards duration-based, constrained and dynamic event types. In
Sten F. Andler and J̈orgen Hansson, editors,Active, Real-Time, and Temporal Database Sys-
tems (Proc.2nd Int. Workshop ARTDB-97, Como, Italy, September 1997), pages 176–193.
Springer-Verlag, 1997.

7. James Allen. Towards a general theory of action and time.Artif. Intell., 23:123–54, 1984.
8. James Allen and George Ferguson. Actions and events in interval temporal logic.Journal of

Logic and Computation, 4:531–79, 1994.
9. R. A. Kowalski and M. J. Sergot. A logic-based calculus of events.New Generation Com-

puting, 4:67–95, 1986.
10. Antony P. Galton. Space, time and movement. In Oliviero Stock, editor,Spatial and Tempo-

ral Reasoning, pages 321–352. Kluwer Academic Publishers, Dordrecht, 1997.
11. Malik Ghallab. On chronicles: Representation, on-line recognition, and learning. In

Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors,Principles of Knowledge
Representation and Reasoning (Proceedings of KR’96), pages 597–606, San Francisco, CA,
1996. Morgan Kaufmann.

c©Springer-Verlag 2002


