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The continuum theory of elasticity has been used for more than a century and has applications in 

many fields of science and engineering. It is very robust, well understood and mathematically 

elegant. In the isotropic case elastic properties are obviously easily represented. However, for non-

isotropic materials, even in the simple cubic symmetry, it can be difficult to visualise how, for 

instance, the Young’s modulus or Poisson’s ration vary with stress/strains orientation. The ElAM 

code carries out the required tensorial operations (inversion, rotation, diagonalisation) and creates 

3D models of an elastic property’s anisotropy. It can also produces 2D cuts in any given plane, 

compute averages following diverse schemes and query a database of elastic constants.  

INTRODUCTION 
In materials science, engineering or physics, the theory of elasticity is your typical undergraduate 

fare: it has been around for a very long time, works very well, is linear, and really is not very 

complicated. It also helps introducing interesting mathematical objects as more often than not, the 

first time someone encounters the magic of tensors is in a course on crystalline elasticity. Despite 

the familiarity, this old warhorse has been given a new life in the last two decades: there are 

materials out there that have very odd elastic properties indeed. 

When a sample is stretched, it usually gets thinner, and materials behaving so familiarly have a 

positive Poisson’s ratio. While negative Poisson’s ratios (hereby NPR) are not theoretically 

prohibited, materials exhibiting them have only been produced or recognised recently. It is s easy to 

convince oneself of the theoretical possibility of NPR by considering the now canonical re-entrant 

honeycomb (see Figure 1). 
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The first NPR material to find wide recognition was indeed of the re-entrant type, a polymeric foam 

which had been compressed to generate concavity[1]. Since then, many other materials have been 

observed or postulated, and it has been observed that many crystals exhibit NPR, including most 

cubic metals[2]. This last result is very striking, and it is even more surprising that it was only 

established in 1998. 

Some even rarer materials exhibit another unusual elastic property: when subjected to hydrostatic 

(isotropic) pressure, they expand in one direction[3, 4]. This property is referred to as Negative 

Linear Compressibility (NLC). It has been observed in only 14 materials. 

Related NTE 

It is not to say that the “negative” properties had not been noticed before… But it is only relatively 

recently that they have captured the imagination of materials scientist and that applications such as 

… have been dreamed of. 

One of the problems with the full anisotropic elasticity theory is that, while beautifully symmetric 

and compact, it is not especially visualisable. First, the link between the interesting stuff (all the 

moduli and ratios) and the available data (usually the stiffness matrix) is not that obvious (it is more 

direct with the compliance matrix), and that is in the case of distortions on the principal axes. Worst 

even, for distortions in less symmetric directions, the number crunching is too dull to be carried by 

hand on a regular basis, and even exceed the potentiality of spreadsheet automation (for typical 

users at any rate). On the other hand, it is well adapted to programming as it is essentially linear 

algebra, for which many efficient algorithm are available. 

It is therefore very surprising to note that there are no easily available code that would transpose the 

cold numbers of the stiffness matrix into 3D or 2D representations of elastic properties. 2D figures 

of, for instance, Poisson’ s ratio have been published, but it is almost certain that they have been 

produced with spreadsheets (limitation to principal planes and perpendicular strains). There are also 

examples in the literature of 3D plots for the young’ s modulus (by far the simplest property), but the 

authors do not indicate how they were produced[5, 6]. 

There lies the main motivation behind the present work: to offer a free, easy to use program capable 

of representing various elastic properties in any direction, for any crystal symmetry. A secondary 

goal is to allow the code to automatically query a database of elastic constants (as can be found in 

reviews such as [7]or [8]), in order to systematically investigate the occurrence of bizarre properties 

or possible correlations or trends. 

The Methodology section first introduces the tensorial formalism behind the crystalline theory of 

elasticity and establishes the convention used for angles. It also presents various averaging scheme 

used in the field. It then details the algorithm used to compute the principal properties, namely 
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tensor rotation and dynamical matrix diagonalisation. The slightly more subtle case of the Poisson’ s 

ratio and shear modulus, which requires some optimisation if the results are to be visualisable in 

3D, are treated separately. 

We then describe the keywords and input files and present four cases studies, which illustrate some 

of EOAM capabilities. The first two focus on the visualisation aspect and show that the cubic 

symmetry can still surprise and that some materials (Cristobalite, Lanthanum Niobate) have truly 

astonishing elastic properties. The last two examples display the database facilities by revisiting the 

NLC problem (identifying two new materials), and offering insight on how various definitions of 

elastic anisotropy are related. 

METHODOLOGY 

Elasticity Theory 

At its most basic, the theory of elasticity linearly relates stresses to strains. This section introduces 

the various quantities, but without delving into subtleties. The interested reader is invited to consult 

standards text[9, 10]. 

Stress 

The stress describes the surface forces acting on volume element in a continuum. It can be 

represented by a 2nd order tensor, with 6 independent coordinates. 

Strain 

The stain describes the state of deformation of solid body. It can also be represented by a 2nd order 

tensor, with 6 independent coordinates. 

Stiffness 

The stiffness tensor expresses the stress tensor in terms of the strain tensor: 

klijklij C εσ = . (1) 

It is a property of the crystal. As a tensor, its coordinates depend on the choice of axis. Eq. (1) is the 

generalised Hooke’ s law. 

Compliance 

The compliance tensor is the inverse of the stiffness tensor and interprets the strain tensor in terms 

of the stress tensor: 

klijklij S σε = . (2) 

Young’s modulus 

Young’ s modulus, or modulus of elasticity is defined as the ratio of normal stress to linear normal 

strain (both in the direction of applied load). 
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Shear modulus 

The shear Modulus, or modulus of rigidity is defined as the ratio of shear stress to linear shear 

strain. 

Poisson’s ratio 

Poisson’s ratio is defined as the ratio of transverse strain (normal to the applied load), to axial strain 

(in the direction of the applied load). 

Linear compressibility 

When the crystal is submitted to hydrostatic pressure, the linear compressibility is the ratio of the 

induced stretch, along a given line, by the pressure. Except for crystal of cubic or lower symmetry, 

it depends on the direction of the line. 

Sound velocity 

Something on symmetry ? 

Voigt notation 

Six components are sufficient to describe stress and strain. A scheme due to Voigt[11] uses this fact 

and replaces the cumbersome 2nd and 4th order tensors in a 3 dimension vector space by vectors and 

matrices of in a 6 dimension vector space. 

 

Tensor notation 11 22 33 23,32 31,13 12,21 

Voigt’ s notation 1 2 3 4 5 6 
(3) 

 

 

pii εε =  pqijkl SS =  if p and q are 1,2,3 only 

pij εε
2
1=  if i and j are different pqijkl SS

2
1=  if either p or q are 4,5,6 (and the 

other is 1,2 or 3) 

 pqijkl SS =  if p and q are 4,5,6 only 

(4) 

Tensor rotation, Euler angles 
A fourth order tensor transforms in a new basis set following the following rule 

ijkliiii TrrrrT αααααβγδ =/ , (5) 

where Einsteins’ s summation rule is adopted and where the r �  are the components of the rotation 

matrix (or direction cosines). They are expressed as the coordinates of the new basis set vectors in 

the old framework.  

A direction in cartesian space, corresponding to an elastically significant distortion, for instance 

uniaxial stress or response to isotropic pressure, can be represented as a point on the unit sphere 
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(unit vector), and advantageously by two angle. We choose it to be first unit vector in the new basis 

set, a. It is fully characterised by the angles  and , as illustrated in Fig. 1. The determination of 

some elastic properties (shear Modulus, Poisson’ s ratio) requires another, perpendicular, direction. 

This is defined by another unit vector, b, perpendicular to the first, and characterised by the angle . 

The coordinates of the two vectors are  
















=

θ
ϕθ
ϕθ

cos
sinsin

cossin

a , and 
















−
+
−

=
χθ

χθχϕθ
χθχϕθ

cossin
sincoscossincos

sinsincoscoscos

a  

(6) 

 

By definition, the components of the first two columns of the rotation matrix are the coordinates of 

a and b. This is sufficient to obtain all the components of the fourth order in the subvectorial space 

defined by directions 1 and 2, for instance:  

ijkllkjiijkllkji SbbaaSrrrrSS === 2211
/

1122
/

12 , and 

ijkllkjiijkllkji SbabaSrrrrSS === 2121
/

1212
/
66 . 

(7) 

But by scanning , , and  over the unit sphere, we can access all the components without having 

to take into account the third unit vector. 

 

Averaging schemes 
Traditionally, and for ease of manipulation, the elastic properties of an anisotropic material have 

been replaced by those of an “equivalent” isotropic material. These processes of averaging are 

especially important to treat materials consisting of crystalline grains of random orientation. There 

are four main schemes: Voigt[11], Reuss[12], Hill[13], and direct. 

The Voigt averaging scheme is based on the stiffness matrix (assuming a given uniform strain) and 

the bulk modulus K and the shear modulus G are given by 

3
2BA

KV

+= , 
5

3CBA
GV

+−= , 
 (8) 

where 

3
332211 CCC

A
++

= , 
3

121323 CCC
B

++
= , 

3
665544 CCC

C
++

= . 

Conversely, the Reuss averaging scheme is based on the compliance matrix (assuming a given 

uniform stress) and: 

ba
K R 63

1
+

= , 
cba

GR 344
5

+−
= , 

 (9) 

where 
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In both case, the Young’ s modulus E and the Poisson’ s ratio  are given by 
1
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 (10) 

The Hill average is the arithmetic average of the Voigt and Reuss values. 

The direct averaging scheme is non analytical. It consists in integrating the desired quantity on the 

unit sphere. For instance, the young’ s modulus is given by 

( ) ϕθϕθ
π

ddEK D ∫∫= ,
4
1

. 
(11) 

Simple properties 
Some properties can be simply expressed in terms of the compliance matrix. 

The Young’ s modulus can be obtained by using a purely normal stress in Eq. 2 in its vector form 

and is given by 

( ) ( ) ijkllkji SaaaaS
E

1
,

1
, /

11

==
ϕθ

ϕθ . 
(12) 

The linear compressibility follows a slightly different scheme but is even simpler to compute. It is 

obtained by applying an isotropic stress (corresponding to pressure p) in tensor form, so that 

ijkkij pS−=ε  and by considering that the extension in direction a is jiij aaε , and that therefore 

( ) jiijkk aaS=ϕθβ , . (13) 

Shear modulus and Poisson’s ratio: optimisation 
Other properties depends on two directions (if perpendicular this corresponds two 3 angles), which 

makes them difficult to represent graphically. A convenient possibility is then to consider three 

representations: minimum, average and maximum. For each  and , and doublet, the angle  is 

scanned and the minimum, average and maximum values are recorded for this direction. 

The shear ratio is obtained by applying a pure shear stress in the vector form of Eq. 2 and is results 

in 

( ) ( )χϕθ
χϕθ

,,4
1

,, /
66S

G = . 
(14) 

Poisson’ s ratio can be obtained by using a purely normal stress in Eq. 2 in its vector form and is 

given by 

( ) ( )
( ) ijkllkji

ijkllkji

Saaaa
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S
S
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χϕθχϕθν
,
,,

,, /
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/
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(15) 
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Sound velocities: diagonalisation 
The dynamic matrix M , which describes the vibrational modes (phonons) in a crystal can be 

written in terms of the stiffness tensor (see for instance [14]) 

ljijklik kkCM = , (16) 

where ( )zyx kkkk ,,  is the wave vector (coordinates). 

The dynamic matrix can be diagonalised, and its eigenvalues w are the square of the frequencies. 

From the w(k) dependence, we can extract the sound wave velocities. 

MANUAL AND CASE STUDIES 
This section introduces various ElAM input files, discusses parameters, and displays some of the 

results. It is hoped that the following examples will prove sufficiently explanatory for most users. 

The full list of Keywords is given in Appendix A. 

Direct mode 

Installation 

Basic operations 
One of the simplest input file is given in Ex. 1. The first line sets the symmetry type, the second line 

contains the corresponding stiffness constants, in the order given by the LB tables (C11, C44, C12 for 

cubic). The third line asks for Young’ s modulus to be graphically represented, and the last line 

finishes the input (stop must be present). The program would still be running in the absence of a 

property requirement. The order of the command is unimportant, with the obvious exception that if 

a keyword requires numerical values, these must be in the line immediately following it. 

As is, this input produces two output files, ElAM.log and ElAM_young.wrl. The first file is a 

text summary of the calculations. It starts by the stiffness and compliance matrices, which is useful 

to check that the order of elastic constants was correct. It then recalls the meshing parameters and 

finally summarises the elastic properties in terms of averages, minimum/maximum values and their 

directions. The second file is in VRML (virtual reality modelling language) format and can be 

visualised and explored with a VRML capable browser. A screen copy is shown in Fig. 3. 

 

It is not an especially good figure, and for many reasons. In fact, the previous input makes use of 

many default values, which are perfectly fine to obtain averages and quick indications in the .log 

files, but lack detail to produce good figures. This can be improved, as in Ex. 2 and the resulting 

Fig. 4. The first four lines give a title and an output root name. While the title is relatively 

unimportant, the output root name ease the organisation of files, now called Ag_fcc.log and 

Ag_fcc_young.wrl. The main difference with Ex. 1 is the refinement of the angular scanning 
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steps: thet and phi controls the steps for the calculations of optimum values and average, while 

3dth and 3dph define the grid used for the graphical representation. The default values for these 

are 24, 24 ,12 and 12. The 3daxes keyword facilitates orientation by adding arrows and labels for 

the three cartesian axes. Finally, the background color is changed to white with the color_bg 

keyword. Generally speaking, colour is coded in ElAM with four values (0. to 1.), red, green, blue, 

and transparency. Transparency being meaningless for the background, it is ignored in that case. 

The other property codes are shear, poisson, compress and sound. The symmetry codes are 

self explanatory and are cubi, hexa, tetr, trig, orth, mono and tric. (Something on 

subtleties with tetr) 

By default, the code interprets the elastic constants following the symmetry keyword as being 

components of the stiffness matrix. In order to force them to be components of the compliance 

matrix, one has to add the compli keyword to the input. It is also possible to input the elastic 

constant directly in 6x6 matrix form, following the keyword d C or S (note the capital). 

This type of input file is sufficient to explore the elastic properties of a given materials and can 

already shed light on some interesting phenomena. 

Case study 1: Poisson’s ratio of cubic crystals 

In 1998, B et al. did show that around two thirds of cubic metals (and alloys) do have negative 

poisson’ s ration, in the (110) direction. Up to this point, this property (also known as auxeticity) had 

been considered very rare. Fig. 5a and 5b displays screen copies of the VRML representation of 

Poisson’ s ratio for two cubic metals, Cesium and Aluminium. 

 

The basic ElAM colour convention (transparent blue, maximum; green, minimum if positive, red, 

minimum when negative) makes it clear that these two metals have different elastic behaviour. Not 

only does aluminium appear much more isotropic, it also does not show any sign of auxeticity, 

which is confirmed by the numerical summary in the .log file. The convoluted shape for cesium is 

very interesting as it shows auxeticity, but also because it strongly hints that a visual inspection of 

this sort, even without the colour scheme could have identified negative Poisson’ s ratio in cubic 

metals a lot earlier than 1998. 

The humble cubic symmetry is not without surprises, and the story does not stop here. From simple 

calculations, it was assumed that the extrema of Poisson’ s ratio for the cubic symmetry were along 

the [110] directions and permutations (for instance see [2]). If we consider the AuCd alloy in Fig. 

5c, we can see that the negative minimum surface is concave at [110], and that therefore this 

direction is not the one of minimum Poisson’ s ratio. Recent analytic calculations[15, 16] have 

tackled this problem and pushed it even further, and shown that in some rare cases, the optima can 

occur in directions around [111]. Once again, this peculiarity (referred to as the “Ting & Chen 
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effect”) could have been discovered much earlier, tipped off by graphical representations, such as 

Fig. 5d and 6d for InTl alloy (27% Tl). 

Fine tuning and 2D graphics 

As previously mentioned, the simplest properties are easy to represent, and a two-colour scheme is 

enough. The shear modulus and Poisson’ s ratio are more complex, with maximum, minimum and 

average surfaces. ElAM produces all four surfaces in a single VRML file, which could lead to 

overly rich 3D models. Control over which surfaces are represented is done by using the colour 

options. By default, the average surface colour is fully transparent and only maximum and 

minimum appear, minimum following the red/negative, green/positive convention, and maximum 

being blue and semi-transparent (to reveal the minimum surface underneath).The colour options are 

color_bg, color_axis, color_pos, color_neg, color_max, color_minp, 

color_minn, color_aven, and color_avep. They are followed by a line containing RGB 

numbers, and, with the exception of the first two, a transparency number (0 –opaque– to 1 –

transparent–). 

It is also possible to plot sections of the curves, in postscript format. The principles are very similar 

to those of the 3D curves. Whether a property is plotted or not is controlled by the following 

keywords: 2dyoun, 2dshea, 2dpois, 2dcomp and 2dsoun. The plane in which the section is 

cut is defined by either plane_xy followed by a line containing the miller indices, or by 

plane_an followed by two angles defining the unit vector perpendicular to the plane. Other 

related keywords are of the type 2dyoung_tick and 2dyoung_circ; they control the presence 

of ticks on the axes or of circles to guide the eyes (see Ex. X and Fig. 7). 

Case study 2: extreme crystalline auxeticity 

Monoclinic Lanthanum niobates is remarkable for being one of few materials exhibiting negative 

linear compressibility, but it is also the crystal with the lowest observed Poisson’ s ratio (-3.01). It 

also has a very large maximum (3.96), interestingly in the same direction, along the y axis (see 

Fig.6a). -Cristobalite is also an auxetic crytals, as can be seen from Fig. 7. The extreme values are 

more modest, at .10 and -.51, but for almost all direction, the absolute value for the minimum is 

larger than for the maximum (the reverse in transparency in Fig. 7b was achieved with the ElAM 

input from Ex. 3). 

 

Both these crystals are considered very auxetic, yet their properties are strikingly different. Fig. 7c 

and 7d display the average Poisson’ s ratio (using input shown in Ex. 4). This value gives an 

indication of whether the section perpendicular to the stretch increases or decreases in area. It can 

be seen that while for -Cristobalite, stretches in any direction results in decreasing section area, 
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Lanthanum niobate follows a much more normal pattern as the section area increases for any 

stretch. Both materials are certainly interesting, but would have different applications. 

Database mode 

This mode is geared towards the systematic discovery of unusual elastic properties. It does not use 

graphical representation; although the graphical keyword discussed previously can still be present, 

they will be ignored. The database mode requires an additional file, containing a list of materials 

name and elastic constants, as well as a list of properties to be tabulated. A simple input files is 

given in Ex. 5. The database keyword triggers the database mode and is followed by the 

database file name. The data_prop keyword is followed (on the same line) by the number of 

properties to appear in the output, and the next line contains their codes. The codes list is detailed in 

Appendix 2. In this example, the minimum and maximum of Young’ s modulus, linear 

compressibility, Poisson’ s ratio, as well as the bulk compressibility (inverse of bulk modulus) are 

requested. 

The syntax of the database file is simple and is illustrated in Ex. 6. Each line contains first a 

identifier, then the type of data (C if stiffnesses, S if compliances), followed by a symmetry code 

and finally by the data (following the same order convention as LB, maybe in appendix ???). 

Anything after the last elastic constant will be ignored by the program, but can be used for 

comments or references. The last line must be stop. 

ElAM has no sorting or parsing facilities, and the entirety of a database will be treated, which can 

take some time. We advise the user to keep their master database in a spreadsheet format to benefit 

from superior editing and sorting capabilities, and to export the relevant section in a text file when 

required. 

Please note that the default value for the ,  grid is used (24, 24). If increased accuracy is desirable, 

thet and phi can still be used. 

Case study 3: negative linear compressibility 

In a celebrated article[3], Baughmann and coworkers used an early version of the ElAM 

methodology to scan a database of known elastic constants in order to identify those materials 

which exhibit negative linear compressibility. Out of around five hundred compounds, they 

suggested that thirteen did show negative linear compressibility: two trigonal, two tetragonal, six 

orthorhombic and three monoclinic, but no triclinic. The procedure was strangely indirect and 

consisted in looking for linear compressibility that exceeds the bulk compressibility (sign of 

negative area compressibility in the perpendicular plane). The reason for this choice are not clear, 

one can only postulate that as this methods samples a full plane for the cost of one direction, it is 

efficient if only the principal axis are investigated (which is implied, but never spelt in the article). 

We use ElAM to re-examine the data, with a full directional scan. We focus on the lower symmetry 
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crystals, and show that out of six triclinic present in LB, two do show clear signs of negative linear 

compressibility: ammonium tetroxalate dihydrate and potassium tetroxalate dihydrate. These 

compounds had been missed by the computationally simpler but less complete previous 

methodhology. The linear compressibility for ammonium tetroxalate dihydrate is shown in 3D and 

2D in Fig. 8 and 9.  

Case study 4: anisotropy measures 

The original motivation for (and reason for the acronym of) ElAM’s precursor was in fact an article 

by Ledbetter and Migliori[17] describing an extension to Zener’ s anisotropy measure[18]. They 

describe a straightforward method were the anisotropy is described by the ratio of ... and …  which 

corresponds to the Zener measure for cubic crystals. It is for this reasons that the output contains a 

few lines with anisotropy results. But what is meant by elastic anisotropy? The Ledbetter definition 

is attractive for historical reasons as it links well with the Zener ratio (itself also a measure of shear 

...),but also because it i of relevance in the field of geosciences, where transverse wave velocities in 

different rock layers help locating or predicting earthquakes[19] for instance. But other measures of 

anisotropy also suggests themselves, for instance a ration of maximum and minimum of Young's or 

shear modulus. Are these measures correlated and does “elastic anisotropy” means anything in the 

absence of reference to a given property? The analytical mathematical derivation might be doable 

for the higher symmetries, but are certainly very involved for hexagonal onwards. The database 

capabilities of ElAM permit a relatively pain free (once a database has been created) way of 

investigating this topic. 

 

CONCLUSION 
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Appendix 1: List of Keywords/options 
Keywords are either stand alone (SA), require data on the following line(s) or (DFL), or must be 

accompanied by an integer on the same line AND data on following lines (I+FL) 

Generic keywords 

Keyword Use Default 

titl FL, title of the study, only appears in .log file ‘’  

outpu FL, root name for output files ‘ElAM’  

verbose SA, triggers verbose mode and output too much information in .log False 

stiff SA, elastic constants are read as components of stiffness matrix True 

compli SA, elastic constants are read as components of compliance matrix False 

thet FL,  24 

Phi  24 

cubi FL, 3 elastic constants for cubic symmetry (C11, C44, C12)  

hexa FL, 5 elastic constants for cubic symmetry (C11, C44, C12)  

tetr   

trig   

orth   

mono   

tric   

C   

S   

stop   

 

3D keywords 
Keyword Use Default 

young  False 

shear  False 

compress  False 

poisson  False 

sound  False 

3daxes  False 

color_bg  (0 0 0) 

color_front  (1 1 1) 

color_pos  (0 .8 0 0) 
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color_neg  (.8 0 0 0) 

color_max  (0 0 .8 .5) 

color_minp  (.8 0 0 0) 

color_minn  (0 .8 0 0) 

color_avep  (0 0 0 1) 

color_aven  (0 0 0 1) 
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Appendix B: Elastic property codes 
The property codes used in the database modes range from 1 to 999. With few exceptions, they 

consist in a three figure code. The first number refers to the property itself, as in Table B1. 

The second two numbers refine the definition, see Table B2. 

The leading 0 must be ommited for the stifnesses and compliances. Codes 1 to 21 comprise the 

stiffnesses in order 11, …  16, 22, …  26, … 66. Codes 51 to 1 are the equivalent for the compliances. 

 

 

 

 

Table B1: First figure code definition, for a code of the form Xnn 

X=0 X=1 X=2 X=3 X=4 

Stiffnesses or 

compliances 

Young’ s 

modulus 

Shear 

modulus 

Compressibility Poisson’ s 

ratio 

 

Table B2: Second part code definition, for a code of the form Xnn 

nn=00 nn=01 nn=02 nn=03 nn=04  

Direct average Reuss average Voigt average Hill average Bulk compressibility (only 304) 

nn=10 nn=11 nn=12 nn=13 nn=14 nn=15 

minimums  at minimum  at minimum x at minimum y at minimum z at minimum 

nn=20 nn=21 nn=22 nn=23 nn=24 nn=25 

maximum  at maximum  at maximum x at maximum y at maximum z at maximum 
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Figure captions 
Fig. 1: (a) 2D structure with positive (top) and negative (bottom) Poisson’ s ratio; (b) 2D illustration 

of one mechanism of NTE, increasing thermal agitation of linked, rigid squares reduces total area 

 

Fig. 2: Definitions of angles used to describe directions in ElAM 

 

Fig. 3: 3D representation of Young’ s modulus of Silver, using default setup. 

 

Fig. 4: Improved 3D representation of Young’ s modulus of Silver, with finer angle mesh, white 

background and axes. 

 

Fig. 5: 3D representation of Poisson’ s ratio for Aluminium (a), Cesium (b), AuCd alloy (c) and InTl 

alloy (d). maximum (blue), minimum positive (green) and minimum negative (red). 

 

Fig. 6:2D representation of Poisson’ s ratio in the (-110) plane for Aluminium (a), Cesium (b), AuCd 

alloy (c) and InTl alloy (d). maximum (blue), minimum positive (green) and minimum negative 

(red). 

 

Fig. 7: 3D representation of Poisson’ s ratio for lanthanum niobate (D��F��DQG� -Cristobalite (b, d). 

The top figures (a, b) show the maximum and minimum curves for each direction, while the bottom 

ones (c, d) show the rotationally averaged value. The scale, indicated by the length of the axes, is 

conserved for each material. The standard colour convention is used (note the, forced, reverse in 

transparency in the top left figure).  

 

Fig.8: 3D representation of linear compressibility for ammonium tetroxalate dehydrate. 

 

Fig.9: 2D representation of linear compressibility for ammonium tetroxalate dehydrate in the x-z 

plane. 
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Fig. 1 

 

 

 

 

 
Fig. 2 
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Fig. 3 

 

 
Fig. 4 
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(a) (b) 

  
(c) (d) 

Fig. 5 
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(a) (b) 

  

(c) (d) 

Fig. 6 
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(a) (b) 

 
 

(c) (d) 

Fig. 7 

 

 

 

 
Fig. 8 
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Fig. 9 
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Examples Captions 
 

Ex. 1: Basic ElAM input for Young’ s modulus of Silver. 

 

Ex. 1: Improved ElAM input for Young’ s modulus of Silver, with title, named outup, finer angle 

mesh, white background and axes. 

 

Ex. 3 : Use of colour keywords for transparency reversal. 

 

Ex.  4: 8VH�RI�FRORXU�NH\ZRUGV�WR�UHYHDO�DYHUDJH�FXUYHV�� -Cristobalite). 

 

Ex. 5: Typical database mode input file. 

 

Ex. 6: Database file 
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cubi 
 12.20 4.46 9.20  
young 
stop 

Ex. 1 

 

 

title 
Silver fcc 
output 
Ag_fcc 
cubi 
 12.20 4.46 9.20 
thet 
200 
phi 
200 
3dth 
99 
3dph 
99  
young 
3daxes 
color_bg 
0. 1. 1. 

Stop 
Ex. 2 

 

 

… 
color_max 

0. 0. .8 0. 
Color_minp 
.0 .8 .0 .5 
color_minn 
.8 .0 .0 .5 
stop 

Ex. 3 
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title 
xtobal 
tetr 
59.4 42.4 67.2 25.7 3.8 -4.4 0.0 
… 
poisson 
3daxes 
color_bg 
 1. 1. 1. 
Color_max 

0. 0. .8 1. 
Color_minp 
.0 .8 .0 1. 
Color_minn 
.8 .0 .0 1. 
Color_avep 
.0 .8 .0 0. 
Color_aven 
.8 .0 .0 0. 
Stop 

Ex. 4 

 

 

title 
TST_DATABASE 
database 
triclinicLB.txt 
data_prop 7 
110 120 304 310 320 410 420 
stop. 

Ex. 5 

 

 

 

Cristoballite C 5 59.4 42.4 67.2 25.7 3.8 -4.4 0.0 
AuCd_Alloy C 7  110.8  40.7 104.9 
Ag_FCC C 7 122 45.5 92.0 
Cd_HCP C 6 114.1  49.9  19.0  41.0  40.3   
Aluminium_pentaiodate_sexahydrate  C  6  42.9  38.7  16  15.7  21.9 
stop. 

Ex. 6 
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