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Abstract

Intensities of natural hazard events are often represented by maps. The data on
which these maps are based, however, are subject to error. We propose a statisti-
cal framework for estimating the true—or actual—intensities of hazard events that
explicitly accounts for data error and can accommodate various sources of data. Per-
haps most commonly used are observations and simulations from complex computer
models. We combine these through a Gaussian process, which gives an analytical
expression for the joint distribution of a hazard event’s actual intensities, given data.
This formulation allows us to intuitively and explicitly represent various forms of dis-
crepancy, such as measurement error and the difference in spatial structure between
simulated and actual values.

We study windstorm Kyrill and its footprint, which maps its maximum wind gust
speeds over a 72-hour period. Simulated data at 25km and 4km resolution are used,
which are generated by a downscaled version of the Met Office’s Unified model. We
verify the proposed framework’s performance by reliably statistically downscaling
the 25km footprint to 4km resolution, and then proceed to estimate Kyrill’s actual
footprint using the 25km footprint and observations from stations across Europe.
This actual footprint estimate has realistic spatial structure and gust speeds much
closer to the observations than originally simulated. Results for all of a further 47
European windstorms support these findings.

Keywords: Gaussian process; geostatistics; natural hazard; European windstorm; latent
process; wind gusts.
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1 Introduction

Devastating natural hazard events, such as earthquakes, hurricanes, floods and tsunamis,
tend to coincide with extreme environmental events, which seldom occur. However, detailed
quantitative knowledge of such events is vital for disaster prevention and relief. Such
knowledge is often gained by studying past events. For example, intensity of rainfall over
a region during a past event—perhaps from satellite imagery—may be informative for
flooding. Natural hazard event intensities are usually quantified by multiple sources of
data. While different sources will have their own merits, none can ever perfectly represent
the actual intensities of a hazard event—i.e. reality or the ‘unobserved truth’ (Fuentes et al,
2003). We propose a statistical framework for inferring actual intensities of natural hazard
events from multiple data sources. This can benefit various industries, such as catastrophe
modelling (described in Grossi et al) (2005)), where natural hazard data, such as intensity
at a set of locations, are combined with property data, such as value and susceptibility to
damage, to produce estimates of loss to property.

We focus on using output from a computer simulation model and observation data
from stations to infer actual intensities. These are two sources of data commonly available
for natural hazard events. While the long-standing use of observation data offers trust-
worthiness, their accuracy can vary considerably between natural hazard types and also
between measurement methods. Locations of observations are also finite, and usually co-
incide with an irregularly-spread set of stations, which may not be located at a point of
interest. A computer simulation model, such as a variant of a climate model, will typically
offer spatially complete data. Some discrepancy between its output and actual intensities
will always exist, but this may be reduced by improving the calibration and/or increas-
ing the resolution of the model. This work will explicitly account for deficiencies in data
sources, which is necessary for reliable inferences about reality to be made.

The proposed framework uses a Gaussian process to represent actual intensities of
a natural hazard event over space, given the data. This formulation allows the spatial
discrepancy between simulated and actual intensities to be readily incorporated through
spatial covariance functions, which are often used in geostatistics; see Diggle and Ribeiro

(2007). We additionally draw on the statistical emulation literature (Oakley, 2011) by



using checks derived for Gaussian process emulators (Bastos and O’Hagan, 2009) to verify
the appropriateness of model assumptions. Our reliance on Gaussian processes means that
the joint distribution of actual intensities is fully and analytically characterised.
Estimating actual intensities of natural hazard events over regions is closely related to
the work of Guttorp and Walden (11987) and Fuentes et al, (2003). In the latter observations
on particulate matter and simulated data are related through a Gaussian model to the
‘unobserved truth’, whose posterior distribution can be sampled (Fuentes and Raftery,
2005). Our approach is related to Fuentes et al] (2003) by explicitly accounting for sources
of discrepancy in model output and observations and incorporating these through Gaussian
processes. We differ by offering an alternative treatment of aggregation in the model output,
which leads to an off-the-shelf approach to inference for actual intensities of hazard events.
Part of the Extreme Wind Storms (XWS) catalogue (Roberts et al}, 2014) had the same aim:
to combine observations and simulated footprints to give ‘recalibrated footprints’, which
were estimated as linear functions of simulated footprints using a mixed effects model. Our
work may be seen as an extension that derives actual intensities using a variant of kriging,
which relaxes the assumption of linearity between actual and simulated values. Kriging
was used to derive the E-OBS gridded datasets (Haylock et al), 2008; van den Besselaar
et all, 2011)) from observations. Unlike the E-OBS data, we also consider simulated data.
Section 2 of this paper gives details of the proposed framework for estimating actual
intensities of natural hazard events. Sections E presents two analyses of the footprint of
windstorm Kyrill, i.e. analyses of a map of its maximum gust speeds for a 72-hour period
over Europe. Specifically, Section @ gives a proof-of-concept study in which its 25km
footprint is downscaled to 4km resolution and then Section B.3 gives estimates of its actual

footprint. Section @ summarises the proposed framework.

2 Statistical framework

This section proposes a statistical framework for estimating actual intensities of natural

hazard events over regions, using observations and computer simulation model data.



2.1 Hazard event model outline

Let Z(s) denote the unobservable actual value of a natural hazard event at location s in
region R and Y'(s) denote an observation on Z(s). We assume that Y (s) = Z(s) + €(s),

where €(s) are independent Gaussian measurement errors, so that
Y(s)| Z(s) ~ N(Z(s),07). (1)

Let x(s) denote a simulated estimate of the hazard event at location s. A key aspect
of this framework, which differs Fuentes et al| (2003), is to assume that simulator output,
x(s), forms a covariate, and is therefore fixed. To estimate Z(s), x(s) is required for any
location s. As x(s) is typically represented on a grid, if a location s does not exactly
correspond to a grid cell centroid, interpolation may be used. We assume that Z(s) and
x(s) are related by

Z(s) =m(z(s)) +e(s), (2)

where m and ¢ are systematic and random discrepancy terms, respectively. The discrepancy
captures various deficiencies in the simulator, in particular its inability to perfectly represent
reality and its representation of a continuous process at finite resolution. This aggregation
effect is mimicked in Fuentes et al| (2003) by averaging higher-resolution simulations over
grid cells, whereas here a discrepancy term is introduced. We assume a Gaussian process

(GP) model for Z(s) given its simulated counterpart, x(s), so that
Z(s) |z(s) ~ GP(m(z(s)),oxcx(, ), (3)

where m() and o%cx(, ) are its mean and covariance functions, respectively. The co-
variance function can allow some smooth spatial variation in how actual and simulated
intensities differ.

Relation (a) represents [Z(s) | X (s), ©], where [] denotes ‘distribution of” and © repre-
sents an arbitrary parameter set. Guttorp and Walden| (1987) propose a similar decompo-
sition to equation (E) for [X(s) | Z(s), ©]. Adopting the uniform prior [Z(s) | ©] o 1 unites
our approach with that of Guttorp and Walden ([1987) for symmetric discrepancy terms,
as then [X(s) | Z(s), O] «x [Z(s)|X(s), ©]. For simulation models that act as ‘smoothers’,

i.e. fail to capture small-scale processes, the conditioning direction of Relation (E) offers
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the interpretation that Z(s) is a function of X (s) plus some noise, as in Equation (E) Part
of rationale behind this is that we believe adjusting z(s) through m and e will provide suf-
ficient information about Z(s). This, however, is likely to require that x(s) corresponds to
a simulator of moderate resolution or higher, or one in which coupling z(s) with additional
covariates in m, such as elevation or entities related to sub-grid-scale information, provides
sufficient information about Z(s). Furthermore, the conditioning direction of Relation
() leads to the marginal model of Relation (@), the form of which matches downscaling

approaches classed as ‘regression methods’ in Wilby and Wigley (1997).

2.2 Inference
2.2.1 Parameter estimation

Relations (lil) and (H) in Section @ imply the marginal model
Y(s)|x(s),0%, 8,0 ~ GP(m(z(s)),o%c(, )), (4)

where m( ) is as in Relation (B) and o?¢(, ) = o%cy(, ) +o0%ex(, ), as Relation @) may be
written as a GP with covariance function oicy(, ). For tractability, suppose that m(x) =
h”(2)3, where h() comprises ¢ basis functions (e.g. h(z) = (1,2)") and B comprises ¢
regression coefficients. Depending on the forms chosen for the correlation functions, not
all their parameters, collectively denoted @, may be identifiable without prior knowledge,
in particular if both cx(, ) and ¢y (, ) contain nugget terms. We address this in Section
H by specifying the measurement error. Relation (@) allows us to directly establish the
relationship between the observations and simulator output and in turn perform inference.
A possible drawback to this tractability is that only observation locations are used to infer
Z(s), whereas in Fuentes et al] (2003) all simulator output locations are used. Careful
consideration must be given as to whether observation locations are sufficient for inferring
Z(s) for any s of interest.

Lety = (y(sl), o ,y(sn))/ denote observations on a hazard event at locations s1, ..., S,,
and let x = (x(sl), e ,m(sn))/ denote corresponding simulator output. Construct n x ¢
matrix H with ith row h” (z(s;)) for i = 1,...,n, and the n x n matrix A (@) with (4, j)th

element c(s;, sj). The restricted log-likelihood, obtained by integrating over a uniform prior



for B (Harville, 1974), is given by

a(0) =~ (log(2r) +1085%) — L|AO)| ~ S[HT{A®) H,  (3)

where
B= (HT{A(0))'H) 'HT{A®)} y. (0
7=y~ HA)'{A(B)} 'y ~ HB). (7

We choose 8 to maximise Equation (E)

2.2.2 Actual process estimation

We can use an estimate of 0, é, and the assumptions made in Section El! to infer Z(s) for

the hazard event for any s € R. Noting that

( Y >~MVN ( HJ3 A)(&"’A(é) 52t(s) ) | )
Z(s) hT(x(s))ﬁ o3tT(s) 0%cx(s,s)

where t7(s) = (cx(s1,5),...,cx(sn,5)), it follows that
Z(s)|Y =y ~ GP(m*(z(s)),c*(,)), 9)
where
m* (x(s)) = b (2(5)) B + 63t" (s){67A(6)} ' (v — HB), (10)
*(s,8) = 6% [ex(s,8) — 0%tT (s){52A ()} 't(s))]. (11)

Implementation of equations (g)—() may be simplified by noting that

{6A(0)} ' = {Ex(6) + 671,) ! (12)
= 57" [Ex(0)] {[Zx(0)] " +67°L) (13)

where I, is the n x n identity matrix and the (i, j)th elements of Sx(6) are given by

axcx(Si, sj).



2.3 Model checking

Diagnostics originally designed for statistical emulators offer robust methods for assessing
the assumptions of Section El] These are summarised here; for fuller details see Bastos and
O’Hagan (2009). For a hazard event consider 7 validation points Y = (Y(51), ... ,Y(Eﬁ))T
at locations 3y, ...,3; with simulator output z(3),...,2(3;). Define matrix V to have
(i, j)th element 6%¢(§;, 5;), for i, 7 = 1,..., 7 and the vector m = (mf(z(51)),...,m! (m(én)))T,

where

m! (w(s)) = b (2(5)) 8 — t"(5){A(0)} (v — HB),
I(s,8) = c(s,s") — t7(s){AO)}1t(s").

These alternative GP mean and covariance functions, in comparison to equations (@)
and (), account for the fact that the observations that form the validation data are
subject to measurement error, unlike the actual values. It follows from model (@) that
Y ~ MV Ni(m, V).

Now define é(s;) = (Y (5;) — mi(2(5;)))/\/62ct (si, ;) for i = 1,... 7. Test 1 is based
on the approximate distributional result that é(s;) ~ N (0, 1); thus large é(s;) relative to the
standard Gaussian distribution highlight model inadequacy. In the present case, plotting
¢(s;) against ¢ or spatially against §; may help show regions in which the predictions are
poor. Now consider the pivoted Cholesky decomposition of V so that permutation matrix
P and upper triangular matrix U satisfy PTVP = UTU. Define G = PU?. Elements
of the vector e’® = G™'(Y — m), where e’C = (e, ... ,e,{fc)T, are independent and
approximately satisfy e’® ~ N(0,1). Test 2 is a quantile-quantile plot of these errors and
Test 3 plots el against i. Model inadequacy is indicated in Test 2 with points deviating
from the line with zero intercept and unit slope, and in Test 3 with large absolute or
non-random values. Test 4 uses the Mahalanobis distance Dy = (eP“)Té"“, for which
Dy ~ Fi p—g has the F-Snedecor distribution with degrees of freedom 7 and n —q. Large

Dy relative to I -, indicates model inadequacy.



3 Extreme European windstorm footprints

3.1 Data

We study windstorm Kyrill, which caused the largest insured loss of any European wind-
storm since 2000 ($6.7bn, indexed to 2012 prices) . Windstorm Kyrill reached its peak
intensity on 18th January 2007. We define a windstorm by a 72-hour period centred on
the time of its peak intensity. Figure m shows two footprints for windstorm Kyrill, which
are defined as maxima of maximum 3 second wind gusts at 10 metres above ground. The
footprints in Figure m have approximate resolutions of 25km and 4km (Roberts et al., 2014;
WIS(, 2017). Both are obtained from a dynamic downscaling of the ERA Interim re-
analysis using the Met Office Unified Model (Dee et al), 2011; Davies et al), 2005). Figure
m also shows gust speed observations, maximised over the 72-hour period defining wind-
storm Kyrill, for 752 stations, which are obtained from the NOAA Global Summary of
the Day (GSOD) databasell. The observations show the highest gust speeds to occur in
similar regions to the footprints, although a less smooth structure in spatial variation is
evident. The observations will be used in Section @ to derive Kyrill’s actual footprint
using the methodology of Section E Figure m also shows a comparison of the observed and
simulated gust speeds, and reveals a discrepancy between gust speeds from all three data
sources. (Bi-linear interpolation is used to match simulated gust speeds to station locations
throughout this section.) Figure m shows that simulated gust speeds tend to be lower than
those measured and also that speeds simulated from the 25km model tend to be lower than
from the 4km model, especially when high gust speeds are simulated. This suggestion of
bias is also evident in Figure m from the footprints. The main motivation for estimating
actual intensities of windstorms is to overcome such biases. This is particularly important
for understanding risk, as underestimation of gust speeds can lead to underestimation of

losses, or to buildings being designed to insufficient criteria.

thttp://www7.ncdc.noaa.gov/CD0/cdoselect . cmd
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Figure 1: Maximum wind gust speeds for windstorm Kyrill in ms™. Footprints simulated
at 25km (upper left) and 4km (upper right) resolutions. Station-based observed wind gust
speeds (lower left) and footprint versus observed wind gust speeds (lower right) at station

locations. (Footprint speeds are bi-linearly interpolated to coincide with station locations.)



3.2 Proof-of-concept: downscaling from 25km to 4km

To indicate whether actual footprints may be derived from the simulated 25km footprint, an
intermediate example in which the 25km footprint is downscaled to 4km is first considered.
In terms of Relation (@), Y (s) and z(s) are 4km and 25km wind gust speeds at location s,

respectively. The mean function of Relation (@) is chosen as

m(s) = ¢ (x(s)) + go (eleUT(s)) + g3 (orogT(s)), (14)

where g4, d = 1,2,3, are cubic regression splines of basis dimension five, elev’(s) =
elev(s), where elev(s) is the elevation in metres of location s, and orogf(s) = log(1 +
orog(s)), where orog(s) measures the variation in the orography near location s. Splines
are used to accommodate a fairly broad range of relationships, e.g. in the mean discrepancy
between Y'(s) and z(s). A relatively low basis dimensions of five ensures that overly wiggly
relationships are avoided. Knots for splines are placed at evenly distributed quantiles of
x(s), elevi(s) and orog'(s). If greater generality is required, higher basis dimensions can
be chosen and smoothing parameters introduced to optimise wiggliness, which is common
in generalised additive models; see Wood (2017)).
The covariance function for the GP of Relation (@) is defined for a transformed space.
Let st = (slon,slat)T be a location defined by geographical coordinates. Then its corre-

sponding location s in transformed space is given by s = (s, s2)T = (Rs")®, where

cosw Ssinw 1/¢; 0
R= and @ = /@i , (15)

—sinw cosw 0 1/
which corresponds to a clockwise rotation through w followed by a scaling of ¢;,, and ¢4
relative to the x and y axes, respectively. This transformation reflects that windstorms
may follow tracks in directions not necessarily parallel to the longitude or latitude axes;
these direction tends to coincide with any directionality in spatial discrepancy, i.e. in ¢(, ).

The correlation function, ¢(, ) in Relation (@), is chosen as
1 if s=4¢,

c(s,s) = (16)
(1 — 7)exp(—||s — s'||°) otherwise,

where 0 < 7 < 1,0 < § < 2 and 7 is a nugget effect. A powered exponential form for
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Figure 2: Diagnostic checks for downscaling model. See § for definitions of standardised

prediction, pivoted Cholesky errors and test details.

c(, ) offers similar flexibility to a Matérn form, but greater analytical tractability when
numerically maximising restricted log-likelihood (E)

Prior to assessing the model’s performance, the validity of assumptions made is tested.
Figure E shows fours diagnostics plots proposed in Bastos and O’Hagan (2009), which are
described in Section @ and based on withholding 7 = 50 stations’ data for validation,
which leaves 702 stations for model fitting. The plots indicate adequacy of the GP’s
assumptions as the 4km validation data are consistent with their predictive distribution.
Specifically, the standardised residuals and pivoted Cholesky errors match the standard
Gaussian distribution, and the Mahalanobis distance its F5 ,,—, distribution. More generally
the diagnostics offer good support that the form of GP of Relation (@) and its specifications
in equations (@)f() capture the discrepancy between the 25km and 4km footprints.
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Figure 3: Further diagnostic checks for downscaling model. Predicted wind gusts (e) with
95% uncertainty bounds (grey) versus observations (left); mapped standardised residuals

(centre); visual representation of correlation function c(s, s’) centred on Paris (right).

Summaries of fit more relevant to the application are shown in Figure B The plot
of observed versus predicted wind gusts shows good agreement between the two, once
uncertainties are taken into account. In particular there are no obvious signs of systematic
bias. The correlation map in Figure a represents ¢(s, s’), which shows a fairly quick decay
in spatial discrepancy; i.e. any difference between the 4km and 25km footprints tends to
be fairly localised.

The downscaling model is represented in Figure @, which shows the mean estimate of
the downscaled 25km footprint and its standard error. Estimates assume that oy = Oms™.
Visual agreement between the 4km and downscaled 25km footprints is clearly good. The
standard error estimates highlight greater precision near to where 4km data have been used.
The increase in standard errors away from the 4km data locations is fairly rapid, as reflected
in the correlation function shown in Figure a The standardised residual errors of Figure @
are perhaps most informative, showing errors to be concentrated at zero. Greatest absolute
errors tend to occur by the boundary of the study region, i.e. where station data become
scarce. This finding, coupled with Figure @, highlights that, although standard errors tend
to grow as stations become more distant, the method might be seen as an approach to
interpolation, i.e. relied upon within the range of data, which here corresponds to in the

vicinity of stations.
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Figure 4: Downscaling model estimates. Mean 4km footprint estimate (left) and its stan-
dard error (center) based on downscaling of 25km footprint. Standardised residuals for

4km versus downscaled 25km footprints (right).

A final simple summary of the downscaling is achieved by comparing the root mean
squared error (RMSE) between the 4km footprint, the 25km footprint, and its estimate
downscaled from the 25km footprint, which reduces from 3.15ms™ to 2.70ms™. Figure E of
Appendix @ shows RMSE values obtained similarly for 47 of the 52 footprints in the XWS
catalogue (which are those that coincide with WISC footprints, excluding the November
1981 storm, which had only 40 available observations). For every storm a reduction in
RMSE from downscaling the 25km footprint, as opposed to using its raw values, can be
seen. Furthermore an average RMSE reduction of approximately 24% offers more robust

support of the model’s performance.

3.3 Actual footprint estimation

The ultimate aim of this work is to estimate the actual footprint for windstorm Kyrill,
which, given the downscaling of Section @, corresponds to an estimate at infinitely high
resolution, or effectively Okm. This is achieved by relating the 25km footprint to the
observations, which are both shown in Figure EI Given that Figure EI shows a tendency for
the 25km footprint’s gust speeds to be lower than those observed, we may anticipate that

estimating actual intensities for windstorm Kyrill will raise some of its higher gust speeds,
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which coincide with those that cause greatest damage. For Relation (lil) we assume that
oy = 2ms™, i.e. that measured gust speeds deviate from reality on average by 2ms™. This
is intended to be a fairly conservative choice, which is partially informed by 762 placing an
upper bound on ¢%. Remaining model specifications are the same as those of Section @

The model of Relation (@) is again fitted to 702 stations’ data, leaving n = 50 valida-
tion data points. Figure B shows diagnostics plots for the 50 validation data points based
on Section @ Again the diagnostic plots indicate good agreement between assumptions
in the GP model and predictions of observations from the model, which support the GP
providing an adequate representation of the actual intensities, given the simulated and
observation data. The further diagnostic plots of Figure B offer further support of the
model’s assumption in the context of mapping actual wind gust speeds, as good agreement
between predictions and observations given uncertainties is seen, and systematic patterns
in standard errors do not appear evident. Larger prediction uncertainty in the actual gusts
speeds, compared to those downscaled to 4km in Section @, is primarily a consequence of
the increase to 02 = 2ms™ to allow for measurement error in the observations. The corre-
lation map of Figure a, which represents c(s, '), shows the estimated spatial discrepancy
to extend further than in Section @ This indicates discrepancy between the simulated
and actual footprint to be less localised than between the 4km and 25km footprints.

Figure H shows the results of estimating actual intensities for Kyrill’s footprint. The
mean actual footprint estimate qualitatively resembles that simulated at 25km resolution.
The plot of their difference, however, reveals increases in gust speeds over central England
and Ireland. Additional increases, for example over Iberia and the Balkans, coincide with
large standard error estimates; these occur where observations are distant, which effectively
reduces m*(s) to m(s). This is further discussed in Section @

Finally, we repeat and similar analysis for actual values for the additional 47 European
windstorms described in Section @ The analysis differs as now comparison is made to
observations at validation stations, as opposed to over an entire footprint. For most storms,
50 validation stations are used, unless this corresponds to more than 10% of the stations
for which data are available; then the latter number is used. RMSE plots that compare

25km footprints and actual footprint estimates to observations at the validation stations
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are shown in Figure E of Appendix @ This, coupled with an average decrease in RMSE
of approximately 35% over all storms, offers further support for the gain in estimating
the actual footprint using the methods of Section E, in comparison to using the original

footprints.

4 Discussion

We have presented a spatial framework for estimating actual intensities of natural hazard
events from observations and simulated data. The framework is based on assuming that,
given simulated and observed data, actual intensities may be represented by a Gaussian
process. This formulation offers various benefits: actual intensities can exhibit some degree
of smoothness over space if geostatistical covariance functions are adopted; discrepancies
between data and actual intensities can often be specified intuitively, such as the formu-
lation for measurement error in sections @ and @; and the joint distribution of actual
intensities over a region is fully characterised. The framework is also an off-the-shelf ap-
proach to inference for actual intensities. It is implemented in the R package recalibrate,
which is provided as Supplementary Material (R Core Team, 2017)).

The proposed framework has relied upon Gaussian assumptions. Although these are
adequate for the windstorm models of sections @ and , their suitability for other natural
hazard phenomena or other sources of data is not guaranteed. For example, given simulated
values, a natural hazard’s actual intensities could be heavy tailed. A possible solution to
overcome this is to consider transformed Gaussian processes (Diggle and Ribeirg, 2007,
Section 3.8), whereby data undergo a transformation prior to fitting Gaussian processes.
The Box-Cox transformation is a natural candidate; whether it is applied, or its power
transform parameter, can differ between data sources. Such transforms may reduce some
intuitiveness of the measurement error, oy; in particular, constant oy may no longer be
suitable. A greater challenge may arise if bias in observations is expected, as constraints
may be needed to ensure identifiability between any specified bias and m(s). This could
be achieved through prior specifications, if a Bayesian approach to inference is adopted.

We have suggested in Section P that, because it does not explicitly account for ag-

gregation that leads to model output, the proposed framework is best suited to models
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of moderate resolution or higher, unless additional information able to disaggregate the
output is available. This is in contrast to Fuentes et al| (2003) in which averaging over
cells is used to mimic effects of aggregation. By allowing for discrepancy, our approach
does not ignore aggregation effects, and gives estimates that are valid at any resolution,
given accompanying uncertainty estimates. We see allowing for discrepancy, as opposed
to mimicking effects of aggregation, as a fair trade-off given the tractability that it brings,
e.g. by allowing a REML approach to inference.

Estimates of actual intensities for windstorm Kyrill show that uncertainties away from
observation locations can be relatively large. This indicates that observations are likely to
be required close to any location of interest; otherwise the mean actual intensity estimate,
m*(s), reverts to m(s). Setting m(s) = z(s) will cause m*(s) to revert to z(s), which
may be benefit some problems, and if observations are plentiful may have little effect on
regions of interest. The flexibility of this may be improved by partitioning cx(, ): for ex-
ample, cx (s, s, z(s),z(s")) = cxa(s, s )exao(x(s), x(s")) separates the discrepancy between
the actual and simulated intensities into a spatial component and a component related
to the intensity itself, which would essentially govern the overall bias in the simulated
intensity (which is governed by g¢;(z(s)) in sections @ and @) For the modelling of
windstorms, further improvement may be gained by partitioning the spatial component of
the discrepancy to reflect that windstorms tend to decelerate over land, due to drag, and
then accelerate over sea, where drag reduces; see, for example, Wallace and Hobbs (2006,
Chapter 7). Finally, although the transformation of s* — s used in sections @ and @
allows anisotropy in the spatial discrepancy, it does not allow for misalignment, e.g. if the
highest gust speeds were in slightly the wrong place. Different transformations can accom-
modate this feature, some of the most general being those based on spatial deformations;

see Sampson and Guttorp (1992) and Schmidt and O’Hagan (2003).
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Figure 5: Diagnostic checks for actual footprint estimation model. See Figure E for plot

descriptions.
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Tl " " Spatial discrepancy correlation
Predictions vs. observations Map of standardised residuals (centred on Paris)
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Figure 6: Further diagnostic checks for actual footprint estimation model. See Figure H for

plot descriptions.
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Figure 7: Actual footprint estimation model. Actual footprint estimate (left) and its stan-
dard error (center) based on 25km footprint. Standardised differences between estimated

actual and 25km footprints (right).
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RMSEs: downscaled vs. original 25km gusts RMSEs: predicted actual vs. original gusts
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Figure 8: RMSE values comparing the 25km footprint to the 4km footprint with the 25km
footprint downscaled to 4km across the entire domain (left). RMSE values comparing the
25km footprint and actual gust predictions to observations for validation stations (right).

The line y = z is superimposed.

22



	Introduction
	Statistical framework
	Hazard event model outline
	Inference
	Parameter estimation
	Actual process estimation

	Model checking

	Extreme European windstorm footprints
	Data
	Proof-of-concept: downscaling from 25km to 4km
	Actual footprint estimation

	Discussion
	RMSE values for additional European windstorms

