next up previous contents
Next: Example 2: Confidence Interval Up: Confidence intervals Previous: Confidence intervals   Contents

Example 1: Confidence Interval for population mean

The sampling distribution for the sample mean tends in the limit of large $ n$ to $ \overline{X}\sim N(\mu,\sigma^2/n)$. Therefore, the pivotal quantity or test statistic $ Z=(\overline{X}-\mu)/(\sigma/\sqrt{n})$ is distributed as $ N(0,1)$. The $ (1-\alpha)100\%$ confidence interval for $ \mu$ can be written

$\displaystyle \overline{x}-Z_c\frac{\sigma}{\sqrt{n}}\leq \mu \leq
\overline{x}+Z_c\frac{\sigma}{\sqrt{n}}$     (5.1)

where $ Z_c(\alpha)=-\Phi^{-1}(\alpha/2)$ is the the half-width of the $ (1-\alpha)100\%$ confidence interval measured in standard errors. $ Z_c$ is sometimes referred to as a critical value. Table 4.1 gives some critical values for various confidence limits:


Table: Critical values for various common confidence levels
$ \alpha$ $ 1-\alpha$ $ Z_c$ Description
0.50 0.50 0.68 50% C.I. $ \pm $ one ``probable error''
0.32 0.68 1.00 68% C.I. $ \pm $ one ``standard error''
0.10 0.90 1.65 90% C.I.
0.05 0.95 1.96 95% C.I. about $ \pm $ two standard errors
0.001 0.999 3.29 99.9% C.I. about $ \pm $ three standard errors



next up previous contents
Next: Example 2: Confidence Interval Up: Confidence intervals Previous: Confidence intervals   Contents
David Stephenson 2005-09-30