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Abstract

We obtain higher order theory for the long term behavior of the transfer
operator associated with the unit interval map f(x) = x(1+2αxα) if 0 < x < 1

2 ,
f(x) = 2x − 1 if 1

2 < x < 1 for the whole range α > 1, which corresponds to
the infinite measure preserving case. Higher order theory for α ≥ 2 is more
challenging and requires new techniques. Along the way, we provide higher
order theory for scalar and operator renewal sequences with infinite measure
and regular variation.

Although the present work considers the unit interval map mentioned above
as a toy model, our interest focuses on finding sufficient conditions under which
the asymptotic behavior of the transfer operator associated to dynamical sys-
tems preserving an infinite measure is ’almost like’ the asymptotic behavior of
scalar renewal sequences associated to null recurrent Markov chains character-
ized by regular variation.

1 Introduction and main results

Understanding the long term behaviour of the transfer operator L : L1(X)→ L1(X)
associated with infinite measure preserving transformations (X, f, µ) is still a chal-
lenging problem. To provide a summary of results in the infinite measure case we
recall the general set up of scalar and operator renewal sequences. Let (X,µ) be a
measure space (finite or infinite), and f : X → X a conservative measure preserving
map. Fix Y ⊂ X with µ(Y ) ∈ (0,∞). Let ϕ : Y → Z+ be the first return time
ϕ(y) = inf{n ≥ 1 : fn(y) ∈ Y } (finite almost everywhere by conservativity). Let
L : L1(X)→ L1(X) denote the transfer operator for f and

Tnv = 1YL
n(1Y v), n ≥ 0, Rnv = 1YL

n(1{ϕ=n}v), n ≥ 1. (1.1)

Thus Tn corresponds to general returns to Y and Rn corresponds to first returns to Y .
The relationship Tn =

∑n
j=1 Tn−jRj generalizes the notion of scalar renewal sequences

(see [12, 7] and references therein).
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Throughout, we assume that the return time function ϕ : Y → Z+ satisfies∫
Y
ϕdµ = ∞, which implies µ(X) = ∞. Also, we assume ϕ is regularly varying

with index β ∈ (0, 1) satisfying a certain asymptotic expansion (see assumption (H)
in Subsection 1.1). Under these assumptions on ϕ, for all β ∈ (0, 1), Theorem 1.1
provides higher order asymptotics for scalar renewal sequences (as explicitly recalled
in Subsection 1.1). Under the same assumption on ϕ, for all β ∈ (0, 1), Theorem 1.3
provides higher order asymptotics for operator renewal sequences Tn associated to
non independent (dynamical) systems (we refer to Subsections 1.1 and 1.2 for the
precise use of terminology). Most of the body of this work is devoted to the proof of
Theorem 1.3.

1.1 Higher order asymptotics for scalar renewal sequences
with infinite mean

In this section, we recall some basic background on scalar renewal theory, focusing
on the infinite mean case. For more details we refer the reader to [12, 7]. Let (Zi)i≥0

be a sequence of positive integer-valued independent identically distributed random
variables with probabilities P (Zi = j) = rj. Define the partial sums Sn =

∑n
j=1 Zj,

set u0 = 1 and define un =
∑n

j=1 rjun−j, n ≥ 1. Then it is easy to see that un =∑n
j=1 P (Sj = n). The sequences (un)n≥0 are called scalar renewal sequences.
To relate to the notions of the previous section, let F = fϕ : Y → Y be the

first return map to Y ⊂ X and rescale such that µ(Y ) = 1. For n ≥ 0, let Zn =
ϕ ◦ F n. If {Zn;n ≥ 0} are independent with respect to µ, one can reduce the study
of the dynamics f : X → X to the setting of scalar renewal theory. To see this,
let rj = µ(Zi = j) and reduce the action of the operator Rj defined in (1.1) to
Rj := rj. In this case, the operator Tn defined in (1.1) coincides with the scalar
sequence un =

∑n
j=1 rjun−j. For general dynamical systems, {ϕ ◦ F n;n ≥ 0} are not

independent and thus, one cannot understand the dynamics by reducing to the scalar
case. Instead, the study of the asymptotic behavior of the operator sequences (Tn)n≥0

defined in (1.1) is helped by the study of scalar renewal sequences (un)n≥0. In what
follows, we let rj = µ(Zi = j) and set u0 = 1, un =

∑n
j=1 rjun−j, n ≥ 1.

The analysis of scalar renewal sequences with infinite mean relies crucially on the
assumption of regularly varying tails:

µ(y ∈ Y : ϕ(y) > n) =
∑
j>n

rj = `(n)n−β,

where ` is slowly varying and β ∈ [0, 1] (see [12, 7] and references therein).
For z ∈ S1 define

Ψ(z) :=
∞∑
j=1

rjz
j =

∫
Y

zϕdµ.
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The asymptotics of scalar renewal sequences un can be obtained by estimating the
Fourier coefficient [(1−Ψ)−1]n of (1−Ψ(z))−1, z = eiθ ∈ S1, that is

un = [(1−Ψ)−1]n =
1

2π

∫ π

−π
(1−Ψ(eiθ))−1e−inθ dθ.

We refer to Garsia and Lamperti [14] and Erickson [11] for further details.
Throughout we let β ∈ (0, 1). Define k = min{j ≥ 2 : β > 1

j
} and assume that

(H) µ(y ∈ Y : ϕ(y) > n) =
∑k−1

j=1 cjn
−jβ +A(n) +B(n), where cj are real constants

with c1 > 0 and the functions A(n), B(n) are such that:

(a) A is a finite sum A(n) =
∑

j `j(n)n−ξj , where for all j, ξj ≥ kβ with
`j(x) = Cj log x+ C ′j, for Cj, C

′
j real constants. We further assume that if

ξj = 2β then Cj = 0, so `j(x) = C ′j.

(b) B is such that n2B(n) is of bounded variation1 and B(n) = O(n−γ), for
some γ > 2.2

Throughout, we set q = max{j ≥ 0 : (j + 1)β − j > 0} and let d0, . . . , dq be
nonnegative real constants that depend only the quantities defined in (H). For a
precise definition of these constants we refer to Section 5. Here, we only mention that
d0 = c−1

1 (Γ(1−β)Γ(1+β))−1 and note that d1, . . . , dq are nonzero only when β > 1/2.
With these specified, we can state our result on higher order expansions for the

coefficients un = [(1−Ψ)−1]n of (1−Ψ(z))−1, z ∈ S1.

Theorem 1.1 Assume that (H) holds and that g.c.d.{ϕ(y) : y ∈ Y } = 1. Let β ∈
(0, 1). Let r = 1 if β 6= 1/2 and r = 2 if β = 1/2. Then

un = [(1−Ψ)−1]n = d0n
β−1 + d1n

2β−2 + d2n
3β−3 + · · ·+ dqn

(q+1)(β−1) +O((log n)r/n).

Remark 1.2 We note that if β ≤ 1/2 then q = 0 and Theorem 1.1 says that un =
d0n

β−1 +O((log n)r/n), so un is given by precisely one exact term plus the error term.
We believe that it is unlikely to obtain more exact terms in the asymptotic expression
of un when β ≤ 1/2 (for this purpose, a stronger assumption (H) will not make any
difference).

We already mentioned that d1, . . . , dq are nonzero only when β > 1/2. The defini-
tion of these constants in Section 5 says that the number of nonzero constants among
d1, . . . , dq increases as β gets larger (closer to 1). Thus, when β > 1/2, the number
of exact terms in the asymptotic expression of un increases as β gets larger.

The error term O((log n)r/n) in the expansion of un in Theorem 1.1 could, most
probably, be considerably improved using the technique introduced in [27] (also used

1Recall that a sequence an is of bounded variation if
∑∞
n=1 |an+1 − an| <∞.

2 We note that the function B includes all terms that are O(n−ρ) with ρ > 3.
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in the current work). However, we do not do this here since (except for the value
β = 1/2) a better error term in Theorem 1.1 does not help us to improve the error
term in Theorem 1.3 below.

To our knowledge, Theorem 1.1 is the first result on first order asymptotic with
rates for for scalar renewal sequences un with the error term O((log n)r/n) for all
β ∈ (0, 1). The only other previous results on higher order asymptotic for scalar
renewal sequences are contained in [23, 27] and do not address the regime β ∈ (0, 1/2].
Also, we note that Theorem 1.1 improves the error terms in [23, 27] for the range
β ∈ (1/2, 1).

1.2 Higher order asymptotics of operator renewal sequences
for infinite measure preserving systems

Operator renewal sequences were introduced by Sarig [26] to study lower bounds for
mixing rates associated with finite measure preserving systems, and this technique
was substantially extended and refined by Gouëzel [16, 19]. In [23], Melbourne and
Terhesiu developed a theory of operator renewal sequences for dynamical systems
with infinite measure, generalizing the results of [14, 11] to the operator case. Under
suitable assumptions on the first return map fϕ, [23] shows that for a (’sufficiently
regular’) function v supported on Y and a constant d0 = 1

π
sin βπ, the following

hold: i) when β ∈ (1
2
, 1) then limn→∞ `(n)n1−βTnv = d0

∫
Y
v dµ, uniformly on Y ; ii)

if β ∈ (0, 1
2
] and v ≥ 0 then lim infn→∞ `(n)n1−βTnv = d0

∫
Y
v dµ, pointwise on Y

and iii) if β ∈ (0, 1
2
) then Tnv = O(`(n)n−β). In [23], the results summarized above

are referred to as first order asymptotics of Tn. In the same work, the authors also
obtain an optimal version of item i) above for the case β = 1. Since the case β = 1
has completely treated in [23] (also in the sense of higher order theory as explained
below), we do not consider this case in the present work. For a different technique for
operator renewal sequences satisfying the general assumption µ(ϕ > n) = `(n)n−β

(and implicitly, for scalar renewal sequences) we refer to [27].
As shown in [23], the above results on Tn extend to similar results on Ln associated

with a large class of systems preserving an infinite measure. We recall that previous
to the results in [23] via operator renewal techniques, Thaler [31] obtained first order
asymptotics of Ln for a rather restrictive class of dynamical systems, which applies
to reasonably large classes of systems (similar to the family of maps (1.2) recalled in
Section 1.3) just in the case β = 1. Prior to the works [23, 18], the result [31] was
the only success on this problem.

The apparently weaker results for the case β < 1/2 are in fact optimal under the
general assumption µ(ϕ > n) = `(n)n−β (see [14]). Under the additional assumption
µ(ϕ = n) = O(`(n)n−(β+1)), Gouëzel [18] obtains first order asymptotics for Lnv
for all β ∈ (0, 1). This additional assumption is satisfied in the setting of Pomeau-
Manneville maps (see Section 1.3 below).
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In this work we obtain higher order asymptotics of Tn for all β ∈ (0, 1) with
excellent error terms. The meaning of higher order asymptotics for Tn will become
clear from the main result below. Comparisons with previous results in this direction
are discussed after the statement of this result.

Theorem 1.3 Assume (H) and assumptions (H1) and (H2) stated in Section 2. Let
B be an appropriate function space (defined by (H1) and (H2)), with norm ‖.‖. Let
r = 1 if β 6= 1/2 and r = 2 if β = 1/2. Then for all β ∈ (0, 1) and for all v ∈ B

Tnv =
(
d0n

β−1 + d1n
2β−2 + d2n

3β−3 + · · ·+ dqn
(q+1)(β−1)

)∫
v dµ+Dnv,

where Dn : B → B is sequence of operators satisfying ‖Dn‖ = O((log n)r/n).

As in [23] we let the notion of mixing rates refer to the case in which there
exists an upper bound for ‖n1−βTnv − d0

∫
v dµ‖. If a lower bound exists and it is

of the same order as the upper bound, we say that the mixing rates are sharp. The
work [23] provides sharp mixing rates for β ∈ (3/4, 1]. The work [18] obtains first
order asymptotics for Ln (but not mixing rates) for all β ∈ (0, 1), and [27] provides
sharp mixing rates for β ∈ (2/3, 1).

Theorem 1.3 deals with the remaining cases. On the one hand, we obtain sharp
mixing rates for all β ∈ (1/2, 1) and improve the error terms (in the implied con-
vergence) obtained in [23, 27]. More importantly, Theorem 1.3, for the first time,
provides first order asymptotics of Tn along with mixing rates for the whole range
β ∈ (0, 1), so also for the small values of β that were the main obstacle so far. To
deal with these problems, we need to exploit the full strength of (H), a much stronger
assumption than the ones needed for first order theory [18, 23].

The new ingredients of the proof are a decomposition of the operator T̃ (z) −
(1 − Ψ(z))−1P given in (6.2) and the use of derivatives of various operator-valued
power series, for which we need to work on an open set U near 1 in the unit disk
D rather than on the unit circle S1. This allows us to recognize the coefficients of
these derivatives as convolutions integrated over a well chosen contour (see e.g. the
proof of Proposition 6.6) and thus exploit the assumptions on the small tail µ(ϕ = n)
(implicitly written in assumption (H)). We give a more detailed strategy in Section 3.

1.3 Application to Pomeau-Manneville maps

The family of Pomeau-Manneville intermittency maps [25] are interval maps with
indifferent fixed points; that is, they are uniformly expanding except for an indifferent
fixed point at 0. To fix notation, we focus on the version studied by Liverani et al. [22]:

f(x) =

{
x(1 + 2αxα), 0 < x < 1

2

2x− 1, 1
2
< x < 1

. (1.2)
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It is well known that for α ≥ 1 (equivalently β := 1/α ≤ 1) , we are in the situation
of infinite ergodic theory: there exists a unique (up to scaling) infinite, σ-finite,
absolutely continuous invariant measure µ. Our main result in the setting of (1.2)
reads as follows.

Theorem 1.4 Let f be given as in (1.2). Let the observable v : [0, 1]→ R be Hölder
or of bounded variation, and supported on a compact subset of (0, 1].

Let q = max{j ≥ 0 : (j+1)β− j > 0}. Let r = 1 if β 6= 1/2 and r = 2 if β = 1/2.
Then for all β ∈ (0, 1), there exist real constants d0, . . . , dq (depending only on f)
such that

Lnv =
(
d0n

β−1 + d1n
2β−2 + d2n

3β−3 + · · ·+ dqn
(q+1)(β−1)

)∫
vdµ+O((log n)r/n),

uniformly on compact subsets of (0, 1].

Proof Let x0 = 1/2 and xp+1 < xp = f(xp+1) for each p ≥ 0. Set Y = [xp, 1]. Let
the observable v : [0, 1]→ R be Hölder or of bounded variation, and supported on Y.

Let ϕ be the first return to Y . By Proposition B.1 (see Appendix B for the
corresponding proof)3 the sequence µ(ϕ > n) satisfies the assumption (H) with

A(n) =
∑k+N ′

j=k cjn
−jβ +

∑k+N
j=1

(
c̃1
j log n + c̃2

j

)
n−(jβ+1), B(n) =

∑k
j=1

(
ĉ1
j

(logn)2

njβ+2 +

ĉ2
j

logn
njβ+2 + ĉ3

j
1

njβ+2

)
+ O((log n)2/nβ+3) where N ′ = min{` ≥ 2 : β > 3

k+`
}, N =

min{` ≥ 2 : β > 2
k+`
} and cj, c̃

1
j , c̃

2
j , ĉ

1
j , ĉ

2
j , ĉ

3
j are real constants that depend only on f .

Next, Theorem 1.3 applies to this setting since the Banach space B of Hölder or
of bounded variation functions supported on Y is embedded in L∞(Y ). In particular,
it is well-known that hypotheses (H1) and (H2) are satisfied on such sets Y (see for
example [23, Section 11]). Putting these together, we obtain almost sure convergence
at a uniform rate on Y. Redefining sequences on a set of measure zero, we obtain
uniform convergence on Y.

Remark 1.5 Using Theorem 1.3, the statement of Theorem 1.4 can be generalized
to suitable functions supported on the whole of [0, 1] as in, for instance, [23, Theorem
11.14].

As in [23], a result of the type of Theorem 1.4 implies convergence rates in the
Dynkin-Lamperti arcsine law for waiting times. Corollary 1.6 below improves the
convergence obtained in [23, Corollary 9.10] and [27, Corollary 3.5]. It is known that
the arcsine law holds for a large class of interval maps with indifferent fixed points
for all β ∈ (0, 1) [34]. See also [30, 32] for more general transformations.

To state our next result we need to recall the following. Let Y = [xp, 1] as defined
in the proof of Theorem 1.4. For x ∈

⋃n
j=0 f

−jY , n ≥ 1, let Zn(x) = max{0 ≤ j ≤

3 This is an improved version of [24, Proposition C1] and [27, Proposition B.1].
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n : f j(x) ∈ Y } denote the time of the last visit of the orbit of x to Y during the time
interval [0, n]. Let ζβ denote a random variable distributed according to theB(1−β, β)

distribution: P(ζβ ≤ t) = d0

∫ t
0

1
u1−β

1
(1−u)β

du, for t ∈ [0, 1] and d0 = 1
π

sin βπ.

Corollary 1.6 Assume the setting of (1.2) with β = 1/α ∈ (0, 1). Let ν be an
absolutely continuous probability measure on Y with density g. Let B be the space of
Hölder or of bounded variation functions with norm ‖.‖.

Assume that g ∈ B and let r, q and d1, . . . , dq be as defined in Theorem 1.4. Then,
for t ∈ [0, 1],

∣∣ν( 1
n
Zn ≤ t)−P(ζβ ≤ t)

∣∣ =

q∑
j=1

dj
nj(1−β)

∫ t

0

u−(j+1)(1−β)(1−u)−β du+O(‖g‖(log n)rn−β).

Proof The proof goes exactly as the proof of [23, Corollary 9.10], except for the use
of Theorem 1.3 instead of [23, Theorem 11.4].

Remark 1.7 Corollary 1.6 provides optimal convergence rates for β ∈ (1/2, 1).
Corollary [23, Corollary 9.10] and [27, Corollary 3.5] provide optimal convergence
rates for: β > 3/4 in [23] and β > 2/3 in [27]. Here, by optimal convergence rates we
mean that there exists a lower bound of the same order as the upper bound. When
β ≤ 1/2, the involved error rate is only an upper bound. Corollary 1.6 is new even
in the setting of null recurrent Markov chains satisfying (H).

The rest of this paper is organized as follows. In Section 2, we describe the gen-
eral framework and main assumptions required for our results on Ln. In Section 3 we
describe the strategy for the proofs of the main results Theorem 1.1 and Theorem 1.3;
in particular, we state Proposition 3.5 which is the key ingredient for proving Theo-
rem 1.3 via Theorem 1.1. Sections 4, 5 and 6 are devoted to the proofs of Theorem 1.1
and Proposition 3.5. More concisely, Appendix A contains the proofs of several tech-
nical results used in Section 4 for the proof of Theorem 1.1, while Appendix 7 and
Appendix 7.4 contain the proofs of some technical results used in Section 6 for the
proof of Proposition 3.5. In Appendix B we improve the estimate on the tail sequence
µ(ϕ > n) associated with (1.2) obtained in [24, Proposition C2], [27, Proposition B.1].
This result is required in the proof of Theorem 1.4.

Notation We use “big O” and � notation interchangeably, writing an = O(bn) or
an � bn as n→∞ if there is a constant C > 0 such that an ≤ Cbn for all n ≥ 1.

2 Main assumptions and general setup

Let (X, f, µ) be a conservative measure preserving transformation, µ(X) = ∞. Fix
Y ⊂ X, µ(Y ) ∈ (0,∞) and scale such that µ(Y ) = 1. Let ϕ : Y → Z+ be the
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first return time ϕ(y) = inf{n ≥ 1 : fn(y) ∈ Y } and define the first return map
F = fϕ : Y → Y . Throughout we assume that (H) holds. Recall that the transfer
operator R : L1(Y ) → L1(Y ) for the first return map F : Y → Y is defined via the
formula

∫
Y
Rv w dµ =

∫
Y
v w ◦ F dµ, w ∈ L∞(Y ).

Let D = {z ∈ C : |z| < 1} and D̄ = {z ∈ C : |z| ≤ 1}. Given z ∈ D̄, we
define R(z) : L1(Y ) → L1(Y ) to be the operator R(z)v = R(zϕv). Also, for each
n ≥ 1, we define Rn : L1(Y ) → L1(Y ), Rnv = R(1{ϕ=n}v). It is easily verified that
R(z) =

∑∞
n=1Rnz

n.
We need some functional-analytic assumptions on the first return map F : Y → Y .

Our assumption (H1) below is stronger than assumption (H1) in [23, 24, 27]; it is of
the same strength as the one in [18]. We assume that there is a function space
B ⊂ L∞(Y ) containing constant functions, with norm ‖ ‖ satisfying |v|∞ ≤ ‖v‖ for
v ∈ B, such that:

(H1) For all n ≥ 1, Rn : B → B is a bounded linear operator with ‖Rn‖ = O(n−(β+1)).

We notice that z 7→ R(z) is a continuous family of bounded linear operators on B
for z ∈ D̄. Since R(1) = R and B contains constant functions, 1 is an eigenvalue of
R(1). Throughout we assume:

(H2) (i) The eigenvalue 1 is simple and isolated in the spectrum of R(1).

(ii) For z ∈ D̄ \ {1}, the spectrum of R(z) does not contain 1.

In particular, z 7→ (I −R(z))−1 is an analytic family of bounded linear operators
on B for z ∈ D. Define Tn : L1(Y )→ L1(Y ) for n ≥ 0 and T (z) : L1(Y )→ L1(Y ) for
z ∈ D̄ by setting

Tnv = 1YL
n(1Y v), T (z) =

∞∑
n=0

Tnz
n.

(Here, T0 = I.) We have the usual relation Tn =
∑n

j=1 Tn−jRj for n ≥ 1. An
induction argument on n together with the boundedness of Rj (see (H1) above)
shows that ‖Tn‖ grows at most exponentially. Hence, T (z) is well defined for z in a
small disk around 0. Furthermore, T (z) = I + T (z)R(z) on D and thus, the renewal
equation T (z) = (I −R(z))−1 holds for z ∈ D. It follows that T (z) =

∑∞
n=0 Tnz

n can
be analytically extended to the whole of D.

By (H1) and (H2), there exist ε > 0 and a continuous family of simple eigenvalues
of R(z), namely λ(z) for z ∈ D̄ ∩ Bε(1) with λ(1) = 1. Let P (z) : B → B denote
the corresponding family of spectral projections with P (1) = P and complementary
projections Q(z) = I − P (z). Also, let v(z) ∈ B denote the corresponding family of
eigenfunctions normalized so that

∫
Y
v(z) dµ = 1 for all z. In particular, v(1) ≡ 1.

Then we can write

T (z) = (1− λ(z))−1P (z) + (I −R(z))−1Q(z), (2.1)
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for z ∈ D̄ ∩Bε(1), z 6= 1.
As shown in [24], much weaker versions of (H), (H1) and (H2) above are enough

for first order expansion of (1 − λ(z))−1, and consequently of T (z), for z ∈ D, as
z → 1. We recall this result as relevant to our setting.

Lemma 2.1 ([24, Lemma 2.4]) Suppose µ(ϕ > n) = `(n)n−β, where ` is a slowly
varying function. Assume (H1) and (H2). Then, writing z = e−u+iθ, u > 0, θ ∈
[−π, π), the following hold as z → 1{

Γ(1− β)(1− λ(z))−1 ∼ `(1/|u− iθ|)−1(u− iθ)−β,
Γ(1− β)T (z) ∼ `(1/|u− iθ|)−1(u− iθ)−βP.

Higher order expansions for 1 − λ(z), z ∈ D (and thus for T (z), z ∈ D) were
obtained in [24, 27]. The assumptions in [24, 27] are much more modest than the
ones used in this work. For higher order expansions of 1 − λ(eiθ) under very mild
assumptions, we refer the reader to [23]. For first order expansions of 1 − λ(eiθ) we
also refer to [4].

3 Strategy of the proofs of Theorems 1.1 and 1.3

3.1 Strategy of the proof of Theorem 1.1

Theorem 1.1 is proved using the main idea of [27]. Since the Fourier coefficients of
(1 − Ψ(z))−1, z ∈ S1 coincide with the Taylor coefficients of (1 − Ψ(z))−1, z ∈ D
(see Corollary 3.2 below), and (1 − Ψ(z))−1 is analytic on D, we estimate the latter
by understanding the asymptotics of the first derivative d

dθ
(1 − Ψ(z))−1, z ∈ D (see

Section 5).
The asymptotics of Ψ(z) is entirely determined by the expansion of µ(ϕ > n);

for higher order expansion of 1 − Ψ(z), z ∈ D under the assumption (H) stated
below we refer to Proposition 4.2. Under more mild assumptions, the asymptotics of
1−Ψ(z), z ∈ D was (implicitly) obtained in [24, 27] in the process of understanding
the asymptotics of 1 − λ(z), z ∈ D. First order expansion of 1 − Ψ(eiθ) under
the assumption µ(ϕ > n) = `(n)n−β was obtained in several other works (see, for
instance, [14]).

The next two results justify that the Taylor coefficients of (1 − Ψ(z))−1, T (z),
z ∈ D coincide with the Fourier coefficients of (1−Ψ(z))−1, T (z), z ∈ S1.

By, for instance, the argument of [23, Corollary 4.2],

Lemma 3.1 Let A(z) be a function from D̄ to some Banach space B, continuous on
D̄ \ {1} and analytic on D. For u ≥ 0, θ ∈ [−π, π), write z = e−u+iθ. Assume that

|A(e−u+iθ)| � |A(eiθ)| � |θ|−γ,
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for some γ ∈ (0, 1) as z → 1. Then the Fourier coefficients An coincide with the
Taylor coefficients Ân, that is

An = Ân =
1

2π

∫ π

−π
A(eiθ)e−inθ dθ.

Corollary 3.2 Suppose µ(ϕ > n) = `(n)n−β for β ∈ (0, 1) and ` a slowly varying
function. Then,

a) The Taylor coefficients of (1−Ψ(z))−1, z ∈ D coincide with the Fourier coeffi-
cients of (1−Ψ(z))−1, z ∈ S1.

b) The Taylor coefficients of T (z), z ∈ D coincide with the Fourier coefficients of
T (z), z ∈ S1.

Proof As shown in [24], 1−Ψ(z) ∼ `(1/|u− iθ|)(u− iθ)β, as z → 1. Item a) follows
from Lemma 3.1.

Item b) follows from Lemma 2.1 and Lemma 3.1.

3.2 Strategy of the proof of Theorem 1.3

Roughly, Theorem 1.3 says that the coefficients of T (z), z ∈ D̄, behave ’almost’ like
the coefficients of (1−Ψ(z))−1, z ∈ D̄. A key result used in the proof of this theorem is
Proposition 3.5 below, which gives the asymptotic behaviour of the Fourier coefficients
of the function T̃ (z) = (I − R̃(z))−1, z ∈ S1. Here, R̃(z) denotes an operator with
several good properties mentioned below. To provide a rough idea of the use of R̃(z) in
the proof of Theorem 1.3, we mention that its leading eigenvalue λ̃(z) coincides with
λ(z) on a neighborhood of 1 and it is different from 1 on S1 \ {1}. As a consequence,
the corresponding eigenprojection P̃ (z) and eigenfunction ṽ(z) are functions that are
well defined on the whole of S1 and one can speak of the Fourier coefficients of P̃ (z)
and ṽ(z).

In what follows we recall all the properties of the function R̃(z) constructed in [16,
Step 3 of proof of Lemma 3.1] which we will use in the sequel. Throughout this section,
we assume that (H1) and (H2) hold.

Proposition 3.3 [16, Step 3 of proof of Lemma 3.1] For any δ > 0, there exists
ε > 0, a continuous function R̃(z) : S1 → B and a compact set K ⊂ C\{1} such that

i) There exists a continuous family λ̃(z) of simple isolated eigenvalues for R̃(z)
with λ̃(1) = 1 and λ̃(z) 6= 1 for z ∈ S1 \ {1}.

ii) The spectrum of R̃(z) is a subset of {λ̃(z)} ∪K for all z ∈ S1.

iii) ‖R̃(z)−R(1)‖ < δ for all z ∈ S1.
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iv) R̃(z) = R(z) for all z ∈ Bε(1).

v) ‖R̃n‖ � |n|−(β+1), for all n.

Proposition 3.4 [16, 18] Let R̃(z) be an operator that satisfies the conclusions of
Proposition 3.3. Let λ̃(z) and P̃ (z) be the associated eigenvalue and corresponding
spectral projection.

Suppose that (H1) and (H2) hold. Then λ̃(z), P̃ (z) are continuous functions on
S1, whose Fourier coefficients satisfy |λ̃n| � |n|−(β+1) and ‖P̃n‖ � |n|−(β+1), for all
n.

We can now state our result on the asymptotics of T̃n.

Proposition 3.5 Assume the setting of Proposition 3.4. Suppose that (H) holds.
Define T̃ (z) = (I − R̃(z))−1, z ∈ S1 and let T̃n be its n-th Fourier coefficient. Then,

T̃n = [(1−Ψ)−1]nP +Dn

where ‖Dn‖ = O((log |n|)/|n|).

To conclude we need to show that the general case reduces to the case where λ(z)
is well defined and close to 1 for all z ∈ S1. This follows by the partition of unity
argument in [16, 18].

Proof of Theorem 1.3 By Proposition 3.5, the n-th Fourier coefficient of the
function T̃ (z) = (I− R̃(z))−1, z ∈ S1 satisfies T̃n = [(1−Ψ)−1]nP +O((log n)/n). By
the argument in [16, 18], the n-th Fourier coefficient of T (z), z ∈ S1 satisfies Tn = T̃n+
O(n−(β+1)). These facts together with Theorem 1.1 imply that the Fourier coefficients
of T (z), z ∈ S1, have the desired asymptotics. This together with Corollary 3.2
implies the same asymptotics for the coefficients of T (z), z ∈ D.

So far, we have reduced the proof of Theorem 1.3 to the proofs of Theorem 1.1 and
Proposition 3.5. As already mentioned at the beginning of this section, Theorem 1.1 is
proved using the main idea of [27] (see Sections 4 and 5). The proof of Proposition 3.5
is the most difficult part of this paper. Roughly, our idea is to estimate the Fourier
coefficients of each term/function in the expression of T̃ (z) − (1 − Ψ(z))−1P (see
equation (6.2)). As explained in Section 6 (see the paragraph after equation (6.2)),
this comes down to estimating the Fourier coefficients of the functions of the form
(1−Ψ(z))−1(R̃(z)−R(z)), (1−Ψ(z))−1(R(z)−R(1)) and variants of them.

To estimate the coefficients of (1 − Ψ(z))−1(R̃(z) − R(z)) we use the fact that
R̃(z) = R(z) on a small neighborhood of 1 (see Proposition 6.3 and its proof). In this
part, we need to exploit the full force of (H).

To estimate the coefficients of (1− Ψ(z))−1(R(z)− R(1)) (and variants of them)
we use the fact that this function is analytic on D, so we can exploit the use of
the derivatives. In the process, we recognize the coefficients of some derivatives
as convolutions integrated over a well chosen contour. This allows us to exploit
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the strength of (H) and (H1). For details we refer to the statements and proofs of
Proposition 6.6 and Proposition 6.5.

4 Higher order expansion of the scalar part 1−Ψ(z)

In this section we obtain higher order expansions for 1 − Ψ(z) = 1 −
∫
Y
e(−u+iθ)ϕdµ,

z ∈ D, using the full strength of (H).
We first fix some notation that will be used throughout the rest of this work.

Notation Recall that µ(y ∈ Y : ϕ(y) > n) =
∑k−1

j=1 cjn
−jβ +A(n) +B(n), where cj

and A(n), B(n) are the constants and the functions defined in (H).
Recall that k = min{j ≥ 2 : β > 1

j
}. For j = 1, . . . , k − 1, define ∆j(x) =

bxc−jβ−x−jβ. Define H1(x) =
∑k−1

j=1 cj∆j(x)+A(bxc)+B(bxc). With the convention

A(0) = B(0) = 0 and 0−β = 0, the functions A(x), B(x) and ∆j(x), j = 1, . . . , k − 1
are well defined on [0,∞). We set cH =

∫∞
0
H1(x) dx if β > 1/2 and cH = 0 otherwise.

First, we state a simple form of the expansion of 1 − Ψ(z) that will be used
throughout the paper (mainly in Section 5).

Proposition 4.1 Assume (H). Write z = e−u+iθ, u > 0 and θ ∈ (−π, π). Then, as
z → 1,

1−Ψ(z) = c1Γ(1− β)(u− iθ)β + cH(u− iθ) +D(z),

where

(i) For β 6= 1/2, |D(z)| � |u−iθ|2β. Also, | d
dθ
D(z)| � |u−iθ|2β−1 and | d2

dθ2
D(z)| �

|u− iθ|2β−2 + uγ1−1 for some γ1 ∈ (0, 1).

(ii) For β = 1/2, |D(z)| � |u− iθ| log(1/|u− iθ|), | d
dθ
D(z)| � log(1/|u− iθ|) and

| d2
dθ2
D(z)| � |u− iθ|−1 log(1/|u− iθ|).

Proposition 4.1 is an immediate consequence of Proposition 4.2 below, which gives
a more precise (but more complicated) expansion of 1−Ψ(z).

Proposition 4.2 Assume (H). Write z = e−u+iθ, u > 0 and θ ∈ (−π, π). Set
c̃H =

∫∞
0
H1(x)dx. Then, as z → 1,

1−Ψ(z) =
K∑
j=1

cjΓ(1− jβ)(u− iθ)jβ + c̃H(u− iθ) +D(z),

where for all k ≥ 2, K = k − 1 if β−1 /∈ Z+ and K = k − 2 if β−1 ∈ Z+ and D(z)
satisfies the following estimates:

(i) For β−1 /∈ Z+, there exists γ0 ∈ (1, 2) with γ0 ≥ 2β such that |D(z)| � |u−iθ|γ0.
Also, | d

dθ
D(z)| � |u− iθ|γ0−1 and | d2

dθ2
D(z)| � uγ0−2| log u|.
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(ii) For β−1 ∈ Z+, |D(z)| � |u− iθ| log(1/|u− iθ|), | d
dθ
D(z)| � log(1/|u− iθ|) and

| d2
dθ2
D(z)| � |u− iθ|−1 log(1/|u− iθ|).

Proof Define the distribution function G(x) = µ(ϕ ≤ x). Then 1−Ψ(z) =
∫∞

0
(1−

e(−u+iθ)x) dG(x), where 1−G(x) =
∑k−1

j=1 cjx
−jβ +H1(x). Integration by parts gives∫ ∞

0

(1− e(−u+iθ)x) dG(x) = −
∫ ∞

0

(1− e(−u+iθ)x) d(1−G(x))

= (u− iθ)
∫ ∞

0

(1− e(−u+iθ)x)(1−G(x)) dx

=
k−1∑
j=1

cj(u− iθ)jβ
∫ ∞

0

e−(u−iθ)x

((u− iθ)x)jβ
(u− iθ) dx

+ (u− iθ)
∫ ∞

0

e−(u−iθ)xH1(x) dx.

By [24, Proposition B1], Ij :=
∫∞

0
e−(u−iθ)x((u− iθ)x)−jβ(u− iθ) dx = Γ(1− jβ), for

all j < 1/β. In particular this is the case when j ≤ K where K is as in the statement
of the proposition. The remainder of the proof is divided in two cases β−1 /∈ Z+ and
β−1 ∈ Z+.

Proof of (i). The case β−1 /∈ Z+. First, we note that in this case, Ij = Γ(1−jβ)
for all j = 1, . . . , k − 1 and put

D(z) = (u− iθ)
∫ ∞

0

e−(u−iθ)xH1(x) dx− c̃H(u− iθ).

Recall that A is a finite sum A(n) =
∑

j `j(n)n−ξj , where for all j, ξj ≥ kβ > 1
and `j(x) = Cj log x + C ′j for real constants Cj, C

′
j with Cj = 0 if ξj = 2β. In the

case β > 1/2 (so k = 2), we choose γ0 = 2β. For β < 1/2 (so k ≥ 3), we choose
γ0 ∈ (1, kβ). With this choice of γ0 we have A(bxc) = O(x−γ0).

Since B(n) = O(n−γ), γ > 2 > γ0, we have B(bxc) = O(x−γ0). Clearly, ∆j(x) =
O(x−(β+1)) = O(x−γ0). Thus, H1(x) = O(x−γ0). By Proposition A.1 (a), (u −
iθ)
∫∞

0
e−(u−iθ)xH1(x) dx = c̃H(u− iθ) +O(|u− iθ|γ0) and thus,

|D(z)| � |u− iθ|γ0 .

We continue with the asymptotics of the first and second derivative (in θ) of D(z).
Recall H1(x) =

∑k−1
j=1 cj∆j(x) + A(bxc) +B(bxc). Hence,∫ ∞

0

e−(u−iθ)xH1(x) dx =
k−1∑
j=1

cj

∫ ∞
0

e−(u−iθ)x∆j(x) dx+

∫ ∞
0

e−(u−iθ)xA(bxc) dx

+

∫ ∞
0

e−(u−iθ)xB(bxc) dx.
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For j = 1, . . . , k − 1, set

Wj(u, θ) =

∫ ∞
0

e−(u−iθ)x∆j(x) dx.

Put c∆j
=
∫∞

0
∆j(x) dx. By Proposition A.6 (b), (c), |

d
dθ

(
(u− iθ)Wj(u, θ)− c∆j

(u− iθ)
)
| � |u− iθ|jβ

| d2
dθ2

(
u− iθ)Wj(u, θ)

)
| � ujβ−1.

Let Â(u, θ) =
∫∞

0
e−(u−iθ)xA(bxc) dx and B̂(u, θ) =

∫∞
0
e−(u−iθ)xB(bxc) dx. Set

cA+B =
∫∞

0
(A(bxc) + B(bxc)) dx. Recall that A(bxc) + B(bxc) = O(x−γ0), where

γ0 ∈ (1, 2). By Proposition A.1 (b),

| d
dθ

(
(u− iθ)(Â(u, θ) + B̂(u, θ))− cA+B(u− iθ)

)
| � |u− iθ|γ0−1.

Next, we estimate the second derivative of terms associated with A and B. Recall
that xA(bxc) is of bounded variation. By Proposition A.4,

| d
2

dθ2

(
(u− iθ)(Â(u, θ)

)
| � | log u|uγ0−2.

Recall that n2B(n) is of bounded variation and that B(n) = O(n−γ), where γ > 2. So,
x2B(bxc) is of bounded variation and B(bxc) = O(x−γ), γ > 2. By Proposition A.1
(c),

| d
2

dθ2

(
(u− iθ)B̂(u, θ)

)
| � 1.

Recall c̃H =
∫∞

0
H1(x) dx and note that c̃H =

∑k−1
j=1 cjc∆j

+ cA+B. Putting the
above together, we have that∣∣∣ d
dθ

(
(u−iθ)

∫ ∞
0

e−(u−iθ)xH1(x) dx−cH(u−iθ)
)∣∣∣� |u−iθ|β+|u−iθ|γ0−1 � |u−iθ|γ0−1

and that ∣∣∣ d2

dθ2

(
(u− iθ)

∫ ∞
0

e−(u−iθ)xH1(x) dx
)∣∣∣� uβ−1 + uγ0−2| log u|

� uγ0−2| log u|.

Altogether, {
| d
dθ
D(z)| � |u− iθ|γ0−1

| d2
dθ2
D(z)| � uγ0−2| log u|,

which ends the proof of (i).
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Proof of (ii). The case β−1 ∈ Z+. This is identical to case i) except for the
term

I(u, θ) =

∫ ∞
0

e−(u−iθ)xx−1 dx.

By Proposition A.5, we have |(u − iθ)I(u, θ)| � |u − iθ| log(1/|u − iθ|), | d
dθ

(u −
iθ)I(u, θ)| � log(1/|u− iθ|) and | d2

dθ2
(u− iθ)I(u, θ)| � |u− iθ|−1 log(1/|u− iθ|). This

together with the estimates obtained in case (i) completes the proof.

5 Proof of Theorem 1.1

The notation below provides the exact formulas for the constants d0, . . . , dq in Theo-
rem 1.1.

Notation Recall β ∈ (0, 1) and q = max{j ≥ 0 : (j + 1)β − j > 0}. Recall
cH =

∫∞
0
H1(x) dx if β > 1/2 and cH = 0 otherwise. Set CH = −cHc−1

1 Γ(1− β)−1.
With the convention (CH)0 = 1, define Cp = (CH)p((p+ 1)β − p) for p = 0, . . . , q.

Set dp = Cp(c1Γ(1− β))−1Γ((p+ 1)β − p+ 1)−1. We note that when β ≤ 1/2, q = 0
and the only non zero constant is d0 = (c1Γ(1− β))−1Γ(β + 1)−1.

The first result below is instrumental in the proof of Theorem 1.1.

Lemma 5.1 Assume the setting of Proposition 4.2. Write z = e−u+iθ. Then, the
following holds for all β ∈ (0, 1) as z → 1:

c1Γ(1− β)
d

dθ

(
(1−Ψ(z))−1

)
= i

q∑
p=0

Cp(u− iθ)(p−1)−(p+1)β + E(z),

where

|E(z)| �

{
|u− iθ|−1, if β 6= 1/2,

|u− iθ|−1 log(1/|u− iθ|), if β = 1/2.

Proof Note that

d

dθ
(1−Ψ(z))−1 = (1−Ψ(z))−2 d

dθ
Ψ(z). (5.1)

By Proposition 4.1 and the definition of CH ,

1−Ψ(z) = c1Γ(1− β)(u− iθ)β(1− CH(u− iθ)1−β +D(z)),

where

|D(z)| �

{
|u− iθ|β, if β 6= 1/2,

|u− iθ|1/2 log(1/|u− iθ|), if β = 1/2.
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We recall that q = max{j ≥ 0 : (j + 1)β − j > 0} and compute that

c1Γ(1− β)(1−Ψ(z))−1 =

q∑
p=0

(CH)p(u− iθ)p−(p+1)β + F (z),

where

|F (z)| �

{
1, if β 6= 1/2,

log(1/|u− iθ|), if β = 1/2.

Based on the asymptotic expansion of (1−Ψ(z))−1 above we compute that

(c1Γ(1− β))2(1−Ψ(z))−2 =
( q∑
p=0

(CH)p(u− iθ)p−(p+1)β
)2

+G(z), (5.2)

where

|G(z)| �

{
|u− iθ|−β, if β 6= 1/2,

|u− iθ|−1/2 log(1/|u− iθ|), if β = 1/2.

Next, by Proposition 4.1 and the definition of CH , we obtain that

(c1Γ(1− β))−1 d

dθ
Ψ(z) = iβ(u− iθ)β−1 − iCH +H(z), (5.3)

where

|H(z)| �

{
|u− iθ|2β−1, if β 6= 1/2,

log(1/|u− iθ|), if β = 1/2.

By (5.1), (5.2) and (5.3), we compute that

c1Γ(1− β)
d

dθ

(
(1−Ψ(z))−1

)
= i

q∑
p=0

Cp(u− iθ)(p−1)−(p+1)β + E(z),

where
|E(z)| � |u− iθ|β−1G(z) + |u− iθ|−2βH(z).

This ends the proof since

|E(z)| �

{
|u− iθ|−1, if β 6= 1/2,

|u− iθ|−1 log(1/|u− iθ|), if β = 1/2.

Remark 5.2 For use below (in the proof of Proposition 6.5) we note that differ-
entiating in (5.3) once more and using the information on the second derivative (in
θ) of D(z) provided by Proposition 4.1, one can easily show that for all u > 0 and

θ ∈ (−π, π),
∣∣∣ d2dθ2((1−Ψ(z))−1

)∣∣∣� |u−iθ|−(β+2)+|u−iθ|−2βuγ1−1 for some γ1 ∈ (0, 1).
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Remark 5.3 For use below (in the proof of Proposition 6.6) we note the following.

Since
∣∣∣ ddθ((1 − Ψ(z))−1/2

)∣∣∣ � ∣∣∣(1 − Ψ(z))−3/2 d
dθ

Ψ(z)
∣∣∣, one can easily check that

Proposition 4.1 ( using just the information on the first derivative (in θ) of D(z))

implies that
∣∣∣ ddθ((1−Ψ(z))−1/2

)∣∣∣� |u− iθ|−(β/2+1). Moreover, since∣∣∣ d2

dθ2

(
(1−Ψ(z))−1

)∣∣∣� ∣∣∣(1−Ψ(z))−5/2
( d
dθ

Ψ(z)
)2∣∣∣+

∣∣∣(1−Ψ(z))−3/2 d
2

dθ2
Ψ(z)

∣∣∣
one can easily check that using the information on the first and second derivative

(in θ) of D(z),
∣∣∣ d2dθ2((1−Ψ(z))−1/2

)∣∣∣� |u− iθ|−(β/2+2) + |u− iθ|−3β/2uγ1−1 for some

γ1 ∈ (0, 1).

We can now proceed to the

Proof of Theorem 1.1 By Corollary 3.2 the Taylor coefficients of (1 − Ψ(z))−1,
z ∈ D, coincide with the Fourier coefficients of (1−Ψ(z))−1, z ∈ S1.

We estimate the Taylor coefficients of (1 − Ψ(z))−1, z ∈ D, on the circle Γ =
{e−ueiθ : −π ≤ θ < π} with e−u = e−1/n, where n ≥ 1. Write

[(1−Ψ)−1]n =
1

2πi

∫
Γ

(1−Ψ(z))−1

zn+1
dz =

e

2π

∫ π

−π
(1−Ψ(e−1/neiθ))−1e−inθdθ.

Integration by parts gives

2π

e
[(1−Ψ)−1]n = − i

n

∫ π

−π

d

dθ

(
(1−Ψ(e−1/neiθ))−1

)
e−inθdθ. (5.4)

By Lemma 5.1 and (5.4),

2π

e
[(c1Γ(1− β))[(1−Ψ)−1]n =

1

n

q∑
p=0

Cp

∫ π

−π
(
1

n
− iθ)(p−1)−(p+1)βe−inθdθ

+
i

n

∫ π

−π
E(e−1/neiθ)e−inθdθ

=
1

n

q∑
p=0

Cp

∫ π

−π

e−inθ

( 1
n
− iθ)(p+1)β−p+1

dθ +
1

n
J.

If β 6= 1/2, using the asymptotics of E(z) provided in Lemma 5.1, we compute that

1

n
|J | � 1

n

(∫ 1/n

0

+

∫ π

1/n

)
| 1
n
− iθ|−1dθ � 1

n

(
1 +

∫ π

1/n

θ−1dθ
)
� log n

n
.

If β = 1/2, using again Lemma 5.1 we have

1

n
|J | � 1

n

∫ π

0

log(| 1
n
− iθ|−1)| 1

n
− iθ|−1dθ

� log n

n

(∫ 1/n

0

n dθ + log n

∫ π

1/n

|θ|−1dθ
)
� (log n)2

n
.
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By [24, Corollary B.3] with ρ = (p+ 1)β − p, for p = 0, . . . , q, we have

1

n

q∑
p=0

Cp

∫ π

−π

e−inθ

( 1
n
− iθ)(p+1)β−p+1

dθ =
2π

e

q∑
p=0

Cp
Γ((p+ 1)β − p+ 1))

n(p+1)(β−1) +O
( 1

n

)
.

The result follows putting the above together and using the definition of dp.

Remark 5.4 For use below (in the proof of Proposition 6.5) we note that the coef-
ficients of (1 − Ψ(z))−1/2, z ∈ D̄ satisfy [(1 − Ψ)−1/2]n � nβ/2−1. To see this recall

from Remark 5.3 that
∣∣∣ ddθ (1−Ψ(z))−1/2

∣∣∣� |u− iθ|−(1+β/2). Hence, the result follows

by the argument used in the proof of Theorem 1.1.

6 Main steps in estimating the Fourier coefficients

of T̃ (z)− (1− Ψ(z))−1P , z ∈ S1

6.1 Preliminaries on the use of Wiener’s lemma

An important ingredient in our proofs in the next sections are the versions of Wiener’s
lemma for commutative and non-commutative Banach algebras recalled below. We
first recall the standard Wiener lemma: Let f : S1 → C be a continuous function,
everywhere non-zero with absolutely summable Fourier coefficients. Then the Fourier
coefficients of f−1 are also absolutely summable (see, for instance, [20]).

To formulate the versions of Wiener’s lemma used here we introduce some nota-
tion. Let A be the Banach algebra of continuous functions f : S1 → C such that
their Fourier coefficients f̂n are absolutely summable, with norm ‖f‖A =

∑
n∈Z |f̂n|.

Given γ > 1, define the commutative Banach algebra Aγ = {f ∈ A :

supn∈Z |n|γ|f̂n| < ∞} with norm ‖f‖Aγ =
∑

n∈Z |f̂n| + supn∈Z |n|γ|f̂n|. We can now
state a Wiener lemma for commutative Banach algebras; for further details and proof
we refer to, for instance, [13, Chapter 2].

Lemma 6.1 Suppose that f : S1 → C is a continuous function, everywhere non-zero
and that f belongs to Aγ. Then the function f−1 belongs to Aγ.

A similar version holds for operator-valued functions F : S1 → B, where B is a
Banach space with norm ‖ ‖. In this case, let Â be the non-commutative Banach
algebra of continuous functions F : S1 → B such that their Fourier coefficients F̂n
are absolutely summable, with norm ‖F‖Â =

∑
n∈Z ‖F̂n‖. Given γ > 1, define the

non-commutative Banach algebra Âγ = {F ∈ Â : supn∈Z |n|γ‖F̂n‖ < ∞} with norm

‖F‖Âγ =
∑

n∈Z ‖F̂n‖ + supn∈Z |n|β‖F̂n‖. The result below can be obtained from [8];

see also [15, Chapter 2] (in particular [15, Theorem 2.2.16]) for a concise exposition.
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Lemma 6.2 Suppose that F : S1 → B is a continuous function, everywhere non-zero
and that F belongs to Âγ. Then the function F−1 belongs to Âγ.

6.2 Main terms of T̃ (z)− (1−Ψ(z))−1P

We first recall that P (z) : B → B is the family of spectral projections associated
with the eigenvalue λ(z), and P (1) = P . By (H2)(i), we can choose a closed loop
Γ ⊂ C \ specR(1) separating 1 from the remainder of the spectrum of R(1); that is,
there exists ε > 0 such that the spectrum of R(z) does not intersect Γ for z ∈ D̄∩Bε(1).
For z ∈ Bε(1) we can define the spectral projection

P (z) =
1

2πi

∫
Γ

(ψI −R(z))−1dψ. (6.1)

Also, we recall that one main property from Proposition 3.5 is: the eigenvalue λ̃(z)
of the new operator R̃(z) is well defined and close to 1 for all z ∈ S1 (hence, P̃ (z) is
well defined and close to P for all z ∈ S1). Since R̃(1) = R(1) = R, equation (6.1)
with P̃ , R̃ instead of P,R, holds for all z ∈ S1.

Let v(z) = P (z)1/
∫
P (z)1 and ṽ(z) = P̃ (z)1/

∫
P̃ (z)1 be the normalised eigen-

functions associated with λ(z) and λ̃(z) respectively.
Recall that 1 − Ψ(z) =

∫
Y

(1 − zϕ) dµ (the function dealt with in the previous
sections). Using the formalism in [17], a simplification of [4], we write 1 − λ(z) =
1−Ψ(z)−

∫
Y

(R(z)−R(1))(v(z)− v(1))dµ. Proceeding similarly we compute that

1− λ̃(z) = 1−Ψ(z)−
∫
Y

(R(z)−R)(ṽ(z)− ṽ(1))dµ−
∫
Y

(R̃(z)−R(z))ṽ(z) dµ.

Put Ṽ (z) = −
∫
Y

(R(z)−R(1))(ṽ(z)− ṽ(1))dµ and define W̃ (z) = (1−Ψ(z))−1Ṽ (z).

Also, let Ã(z) = −(1−Ψ(z))−1
∫
Y

(R̃(z)−R(z))ṽ(z) dµ. Hence,

(1− λ̃(z))−1 = (1−Ψ(z))−1(1 + W̃ (z) + Ã(z))−1

= (1−Ψ(z))−1 − (1−Ψ(z))−1(W̃ (z) + Ã(z))(1 + W̃ (z) + Ã(z))−1.

Recall that Q(z) = I − P (z) denotes the complementary spectral projection of P (z).
Let Q̃(z) = I− P̃ (z) be the complementary spectral projection of P̃ (z). The previous
displayed equation together with equation (2.1) (with tilde everywhere) implies that

T̃ (z)− (1−Ψ(z))−1P = (1−Ψ(z))−1(P̃ (z)− P )

− (1−Ψ(z))−1(W̃ (z) + Ã(z))(1 + W̃ (z) + Ã(z))−1P̃ (z)

+ (I − R̃(z))−1Q̃(z). (6.2)

Under (H1), the Fourier coefficients of R(z), z ∈ D̄, and R̃(z), z ∈ S1, satisfy
‖Rn‖, ‖R̃n‖ = O(|n|−(β+1)); the latter estimate is given by Proposition 3.3 v). This
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property along with (H) and the decomposition (6.2) will be exploited in the next
sections.

To begin we summarize the estimates for the Fourier coefficients of all the terms
in (6.2) obtained in the next sections and as such provide

Proof of Proposition 3.5 By the argument in [16, 18](based on Wiener lemma 6.2),
‖[(I−R̃)−1Q̃]n‖ = O(|n|−(β+1)). Also, the coefficients of the first term (1−Ψ)−1(P̃−P )
are O(1/|n|) by Proposition 6.9.

It remains to estimate the Fourier coefficients of the second term in (6.2), which
we split in three factors. First, the Fourier coefficients of the third factor P̃ (z) are
O(|n|−(β+1)) by Proposition 3.4.

Next, by Corollary 6.4 (with m = 1), the Fourier coefficients of Ã(z) are
O(|n|−(β+1)). By Corollary 6.8, the coefficients of W̃ (z) are O(|n|−(1+τ)) for some
τ > 0. Since 1 + W̃ (z) + Ã(z) is continuous and non vanishing on S1, Wiener
lemma 6.1 applies. Hence, the coefficients of (1 + W̃ (z) + Ã(z))−1 are O(|n|−(1+τ)).
This takes care of the middle factor.

By Corollary 6.4 (with m = 2), the coefficients of (1 − Ψ(z))−1Ã(z) are
O(|n|−(β+1)). By Corollary 6.10, the coefficients of (1−Ψ)−1W̃ (z) are O(log |n|)/|n|.
This takes care of the first factor.

Convolving the coefficients of the above three factors deals with the second term
and hence completes the proof.

6.3 Estimating the coefficients of Ã(z) and (1−Ψ(z))−1Ã(z)

Proposition 6.3 Let m ∈ Z+. The Fourier coefficients of the operator-valued func-
tion (1−Ψ(z))−m(R̃(z)−R(z)), z ∈ S1 are O(|n|−(1+β)) (in norm ‖.‖).

Proof By Proposition 3.3 i), there exists ε > 0 such that R̃(eiθ) = R(eiθ) for all
eiθ ∈ Bε(1). By (H1) and Proposition 3.3 v), ‖Rn‖, ‖R̃n‖ � |n|−(β+1). Consider a
C∞ partition of unity on S1 given by φ and 1 − φ with φ : S1 → [0, 1] such that for
ε > 0 as above, φ(z) = 1, for all z ∈ Bε/2(1) and φ(z) = 0, for all z ∈ S1 \Bε(1).

Define Φ = φ+ (1− φ)(1−Ψ)m, m ∈ Z+. By construction, (1−Ψ)−m(R̃−R) =
Φ−1(R̃−R). Recall that the coefficients of 1−Ψ are O(n−(β+1)). Hence, the coefficients
of (1−Ψ)m, and thus of Φ, are O(n−(β+1)).

Next, note that Φ is continuous and nonvanishing on S1. To see that it is nonvan-
ishing, suppose the contrary. Splitting into real and imaginary parts, it is easy to see
that Φ vanishes only if φ = 0. But that means that 1−Ψ = 0 which is impossible.

Putting the above together, the coefficients of Φ−1 are O(|n|−(β+1)), by Wiener
lemma 6.1. Thus, the coefficients of Φ(z)−1(R̃(z) − R(z)) are O(|n|−(β+1)), as re-
quired.

Corollary 6.4 Let m ∈ Z+. The Fourier coefficients of the the operator-valued
function (1−Ψ(z))−m(R̃(z)−R(z))ṽ(z) are O(|n|−(1+β)) (in norm ‖.‖).
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Proof By Proposition 3.4, the Fourier coefficients of P̃ (z) satisfy ‖P̃n‖ =
O(|n|−(1+β)). Since ṽ(z) = P̃ (z)1/

∫
P̃ (z)1, the coefficients of ṽ(z) are O(|n|−(1+β)).

The conclusion follows from this together with Proposition 6.3.

To justify the title of this subsection note that the estimates on the coefficients
of Ã(z) and (1 − Ψ(z))−1Ã(z) follow by Corollary 6.4 with m = 1 and m = 2,
respectively.

6.4 Some abstract results

In this subsection we state some general results from which all the required estimates
on the coefficients of the remaining terms in (6.2) are obtained. The corresponding
proofs are postponed to Section 7.

Proposition 6.5 Suppose that B(z) is an operator-valued function (on some Banach
space B with norm ‖.‖) continuous on S1 with B(1) = 0. Assume that its Fourier
coefficients satisfy ‖Bn‖ = O(|n|−(β+1)).

Define C(z) = (1 − Ψ(z))−1B(z). Then the Fourier coefficients of C(z) satisfy
‖Cn‖ = O(|n|−1).

Proposition 6.6 Suppose that B(z) is an operator-valued function (on some Banach
space B with norm ‖.‖) continuous on S1 with B(1) = 0. Assume that its Fourier
coefficients satisfy ‖Bn‖ = O(|n|−(β+1)).

Define C(z) = (1 − Ψ(z))−1/2B(z). Then the Fourier coefficients of C(z) satisfy
‖Cn‖ = O(|n|−(τ+1)), for some τ > 0.

6.5 Estimating the Fourier coefficients of W̃ (z)

Recall that Ṽ (z) = −
∫
Y

(R(z)−R(1))(ṽ(z)− ṽ(1))dµ and W̃ (z) = (1−Ψ(z))−1Ṽ (z).

Clearly, the desired estimate for |W̃n| cannot be obtained by convolving the coefficients
of (1−Ψ(z))−1 and Ṽ (z). Moreover, using any other information about the function
(1−Ψ(z))−1Ṽ (z) as a whole is bound to fail. For instance, the upper bound O(|u−
iθ|β) is useless by itself and the function is not analytic on D. In fact, the knowledge
about analyticity on D would not be sufficient either; estimating the coefficients of
the somewhat nicer (analytic) function (1−Ψ(z))−1

∫
Y

(R(z)−R(1))(v(z)− v(1))dµ
without decomposing it into appropriate factors provides an unsatisfactory result for
the present purpose.

To deal with the difficulties mentioned above, we write

W̃ (z) = −
∫
Y

(
(R(z)−R(1))(1−Ψ(z))−1/2

)(
(ṽ(z)− ṽ(1))(1−Ψ(z))−1/2

)
dµ. (6.3)

The above decomposition of W̃ (z) allows us to exploit some immediate consequences
of Proposition 6.6.
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Proposition 6.7 The Fourier coefficients (in the norm ‖‖) of the operator valued
functions (1−Ψ(z))−1/2(R(z)−R(1)) and (1−Ψ(z))−1/2(ṽ(z)−ṽ(1)) are O(|n|−(1+τ)),
for some τ > 0.

Proof Let B(z) = R(z) − R(1) and C(z) = (1 − Ψ(z))−1/2B(z). Since ‖Rn‖ =
O(n−(β+1)), we have ‖Bn‖ = O(|n|−(β+1)). Also, we know that B(z) is continuous on
S1 and B(1) = 0. Hence, the assumptions of Proposition 6.6 on the function B hold
and the statement on the Fourier coefficients of C(z) follows. The other part of the
statement follows similarly by taking B(z) = ṽ(z)− ṽ(1), C(z) = (1−Ψ(z))−1/2B(z)
and noticing that the the assumptions of Proposition 6.6 on the function B are again
satisfied (using the formula ṽ(z) = P̃ (z)1/

∫
P̃ (z)1 and Proposition 3.4).

We can now deal with the Fourier coefficients of W̃ (z).

Corollary 6.8 The Fourier coefficients of the function W̃ (z) are O(|n|−(1+τ)) for
some τ > 0.

Proof This follows from equation (6.3) together with Proposition 6.7.

6.6 Estimating the Fourier coefficients of the functions (1 −
Ψ(z))−1(P̃ (z)− P ) and (1−Ψ(z))−1W̃ (z)

Proposition 6.9 The Fourier coefficients (in the norm ‖ ‖) of the operator valued
functions (1−Ψ(z))−1(R(z)−R(1)), (1−Ψ(z))−1(P̃ (z)−P (1)) and (1−Ψ(z))−1(ṽ(z)−
ṽ(1)) are O(|n|−1).

Proof The proof goes exactly as the proof of Proposition 6.7, except that this time
we use Proposition 6.5 (instead of Proposition 6.6) to estimate the Fourier coefficients
of the function C(z) = (1−Ψ(z))−1B(z) with B(z) = R(z)−R(1), B(z) = P̃ (z)−P (1)
and B(z) = ṽ(z)− ṽ(1), respectively.

Corollary 6.10 The Fourier coefficients of the function (1 − Ψ(z))−1W̃ (z) are
O(log |n|)/|n|).

Proof Note that (1−Ψ(z))−1W̃ (z) = (1−Ψ(z))−2Ṽ (z), so we can write

(1−Ψ(z))−1W̃ (z) = −
∫
Y

(
(R(z)−R(1))(1−Ψ(z))−1

)(
(ṽ(z)− ṽ(1))(1−Ψ(z))−1

)
dµ.

By Proposition 6.9 we know that the Fourier coefficients (in the norm ‖ ‖) of (1 −
Ψ(z))−1(R(z)−R(1)) and (1−Ψ(z))−1(ṽ(z)− ṽ(1)) are O(|n|−1).

By a convolution argument (see, for instance, [16, Lemma 4.4]) the n-th coef-

ficient of the function
(

(1 − Ψ(z))−1(R(z) − R(1))
)(

(1 − Ψ(z))−1(ṽ(z) − ṽ(1))
)

is

O(log |n|)/|n|), ending the proof.
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7 Proofs of Proposition 6.5 and Proposition 6.6

7.1 Some preliminary results assuming analyticity

In this subsection we assume that B(z) is an operator-valued function (on some
Banach space B with norm ‖.‖) continuous on D̄, analytic on D with B(1) = 0.
Moreover, we assume that the coefficients Bn of B(z) satisfy ‖Bn‖ � |n|−(β+1).

The next result is an immediate consequence of our assumptions. We recall the
standard argument only for completeness (see, for instance, [23, Proposition 2.7]).

Proposition 7.1 For all u ≥ 0, θ ∈ [−π, π), ‖B(e−u+iθ)‖ � |u− iθ|β.

Proof Using ‖Bn‖ ≤ C|n|−(β+1) for some C > 0, compute that

‖B(e−u+iθ)‖ = ‖B(e−u+iθ)−B(1)‖ ≤ C|u− iθ|
∑
n<M

|n|−β + 2C
∑
n≥M

|n|−(β+1).

The conclusion follows by taking M to be the integer part of |u− iθ|−1.

The analyticity of B(z), z ∈ D together with ‖Bn‖ � n−(β+1) imply that

Lemma 7.2 Write z = e−u+iθ. Then, for all u > 0,
∥∥∥ d
dθ
B(e−u+iθ)

∥∥∥� uβ−1.

Proof The result follows by standard computations. We provide the argument for
completeness (see also [27, Proposition 4.6] for a more general statement). Compute
that∥∥∥ d

dθ
B(z)

∥∥∥� ∞∑
j=0

j‖Bj‖e−(j−1)u �
∑
j

j−βe−uj � uβ−1

∫ ∞
0

σ−βe−σdσ � uβ−1.

Lemma 7.3 For k = 1 and k = 1/2, define C(z) = (1 − Ψ(z))−kB(z). Then the
coefficients Cn of C(z), z ∈ D̄ satisfy

Cn =
ei

2π

1

n
Jn +Dn,

where

Jn =

∫ π

−π
B(e−1/neiθ)

d

dθ

(
(1−Ψ(e−1/neiθ))−k

)
e−inθdθ

and Dn is a sequence of operators such that

‖Dn‖ =

{
O(n−1), if k = 1;
O(n−(1+τ)), if k = 1/2, for some τ > 0.
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Proof We estimate the coefficients Cn of the function C(z), z ∈ D, on the circle
Γ = {e−u+iθ : −π ≤ θ < π} with e−u = e−1/n, where n ≥ 1. Write

Cn =
1

2πi

∫
Γ

C(z)

zn+1
dz =

e

2π

∫ π

−π
C(z)e−inθdθ =

e

2π

i

n

∫ π

−π

d

dθ
C(e−1/neiθ)e−inθdθ.

Compute that

d

dθ
C(e−1/neiθ) = (1−Ψ(e−1/neiθ))−k

d

dθ
B(e−1/neiθ)

+B(e−1/neiθ)
d

dθ

(
(1−Ψ(e−1/neiθ))−k

)
.

Put B∗(e−1/neiθ) = d
dθ
B(e−1/neiθ). Thus,

Cn =
i

n

e

2π

∫ π

−π
(1−Ψ(e1/neiθ))−kB∗(e−1/neiθ)e−inθdθ +

i

n

e

2π
Jn.

Note that B∗(e−1/neiθ) = ie−1/neiθB′(e−1/neiθ) where B′(z) := d
dz
B(z). Hence,

e

2π

∫ π

−π
(1−Ψ(e1/neiθ))−kB∗(e−1/neiθ)e−inθdθ =

ei

2π

∫ π

−π
e−1/neiθ(1−Ψ(z))−kB′(z)e−inθdθ

=
1

2π

∫
Γ

z(1−Ψ(z))−kB′(z)

zn+1
dz.

But 1
2πi

∫
Γ
z(1−Ψ(z))−kB′(z)

zn+1 dz is precisely the n-th coefficient of the function z(1 −
Ψ(z))−kB′(z), z ∈ D.

We claim that the n-th coefficient of z(1−Ψ(z))−kB′(z) satisfies

‖[z(1−Ψ(z))−1B′(z)]n‖ = O(1), ‖[z(1−Ψ(z))−1/2B′(z)]n‖ = O(n−β/2).

The conclusion follows. It remains to prove the claim.
By assumption, ‖Bn‖ � n−(β+1). Thus, ‖B′n‖ � n−β. Also, the function z(1 −

Ψ(z))−k, k = 1/2 , 1 is analytic on D.
By Theorem 1.1 we know that [(1−Ψ(z))−1]n � nβ−1. Hence, [z(1−Ψ(z))−1]n �

nβ−1. The claim for the case k = 1 follows by a convolution argument applied to B′n
and [z(1−Ψ(z))−1]n (see, for instance, [16, Lemma 4.3]).

By Remark 5.4, |[z(1 − Ψ(z))−1/2]n| � nβ/2−1. The claim for the case k = 1/2
follows by a convolution argument applied to B′n and [z(1 − Ψ(z))−1/2]n (see, for
instance, [16, Lemma 4.3]).

7.2 Reducing the proofs of Propositions 6.5 and 6.6 to the
analytic case

Recall that in the statements of Proposition 6.5 and Proposition 6.6 we only require
that B(z) is an operator-valued function (on some Banach space B with norm ‖.‖)
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continuous on S1 with B(1) = 0. Moreover, we assume that the Fourier coefficients
Bn of B(z) satisfy ‖Bn‖ � |n|−(β+1). In this paragraph, we argue that without loss
of generality, during the proofs of these results we can restrict to the case where B is
a one sided Fourier series, that is B(eiθ) =

∑∞
n=0Bne

inθ.
If B(eiθ) also contains negative index coefficients, we write B(eiθ) =∑−1
n=−∞Bne

inθ +
∑∞

n=0Bne
inθ := B−(eiθ) + B+(eiθ). Note that B+(1) + B−(1) = 0.

Hence if we define B̃+(eiθ) = B+(eiθ) − B+(1) and B̃−(eiθ) = B−(eiθ) − B−(1) then
we still have B = B̃+ + B̃− = B+ +B− and moreover B̃+(1) = 0, B̃−(1) = 0.

Note that B̂−(eiθ) := B̃−(e−iθ) =
∑−1

n=−∞Bne
−inθ − B+(1) =

∑∞
n=1 B−ne

inθ −
B+(1). Since we assume that ‖B±n‖ = O(|n|−(β+1)) (hence, the coefficients of B̂− are
summable) we can analytically extend B̂− to the unit disk D. Moreover, B̃+ is clearly
analytic on the unit disk D. Therefore, we can work with B̃+ and B̂− separately and
the proof for both cases goes similarly.

7.3 Proof of Proposition 6.5

Proof of Proposition 6.5 By Subsection 7.2, it suffices to deal with the case
B(eiθ) =

∑∞
n=0Bne

inθ. That is, during the proof we can work as if B was also
analytic on D. By Lemma 7.3 with k = 1,

Cn =
ei

2π

1

n
Jn +Dn,

where ‖Dn‖ = O(n−1) and

Jn =

∫ π

−π
B(e−1/neiθ)

d

dθ

(
(1−Ψ(e−1/neiθ))−1

)
e−inθdθ.

It remains to show that ‖Jn‖ = O(1). Write Jn =
∫ 0

−π +
∫ π

0
= J− + J+. We estimate

J+. The estimate for J− follows by a similar argument.

Write J+ =
∫ 1/n

0
+
∫ π

1/n
= J1 + J2. By Proposition 7.1, ‖B(e−1/neiθ)‖ � | 1

n
− iθ|β.

By Lemma 5.1,
∣∣∣ ddθ((1−Ψ(e−1/neiθ))−1

)∣∣∣� | 1n − iθ|−(β+1). Thus,

‖J1‖ �
∫ 1/n

0

| 1
n
− iθ|−1dθ � 1.

Next, put M(e−1/neiθ) := d
dθ

(
(1 − Ψ(e−1/neiθ))−1

)
. We already know that

|M(e−1/neiθ)| � | 1
n
− iθ|−(β+1). By Proposition 7.2,

∥∥ d
dθ
B(e−1/neiθ)

∥∥ � n1−β. Com-

25



pute that

J2 =
i

n

∫ π

1/n

B(e−1/neiθ)M(e−1/neiθ)
d

dθ
(e−inθ)dθ

= − i
n

∫ π

1/n

M(e−1/neiθ)
d

dθ
B(e−1/neiθ)e−inθdθ

− i

n

∫ π

1/n

B(e−1/neiθ)
d

dθ
M(e−1/neiθ)e−inθdθ +O(1)

= − i
n
J1

2 −
i

n
J2

2 +O(1).

To justify the boundary term recall that ‖B(e−1/neiθ)‖ � | 1
n
− iθ|β and that

|M(e−1/neiθ)| � | 1
n
− iθ|−(β+1). Hence, for θ = 1

n
and θ = π we have

1
n
‖M(e−1/neiθ)B(e−1/neiθ)‖ � 1.

Next, using the estimates recalled above on
∥∥ d
dθ
B(e−1/neiθ)

∥∥ and |M(e−1/neiθ)|,

‖J1
2‖ � n1−β

∫ π

1/n

| 1
n
− iθ|−(β+1)dθ � n.

By Remark 5.2,∣∣∣ d
dθ

(
M(e−1/neiθ)

)∣∣∣ =
∣∣∣ d2

dθ2

(
(1−Ψ(e−1/neiθ))−1

)∣∣∣
� | 1

n
− iθ|−(β+2) + | 1

n
− iθ|−2βn1−γ1(log n),

for some γ1 ∈ (0, 1). Using the estimates above on ‖B(e−1/neiθ)‖ and∣∣∣ ddθ(M(e−1/neiθ)
)∣∣∣,

‖J2
2‖ �

∫ π

1/n

| 1
n
− iθ|β

(
| 1
n
− iθ|−(β+2) + n1−γ1(log n)| 1

n
− iθ|−2β

)
dθ

�
∫ π

1/n

θ−2 dθ + n1−γ1(log n)� n.

Putting these together, we obtain ‖J+‖ � ‖J1‖+ 1
n
‖J1

2‖+ 1
n
‖J2

2‖+ 1� 1. Similarly,
‖J−‖ � 1. Thus, ‖Jn‖ � 1, which ends the proof.

7.4 Proof of Proposition 6.6

Proof of Proposition 6.6 By Subsection 7.2, it suffices to deal with the case
B(eiθ) =

∑∞
n=0Bne

inθ. That is, during the proof we can work as if B was also
analytic on D. By Lemma 7.3 with k = 1/2,

Cn =
ei

2π

1

n
Jn +Dn,
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where ‖Dn‖ = O(n−(1+τ)) for some τ > 0, and

Jn =

∫ π

−π
B(e−1/neiθ)

d

dθ

(
(1−Ψ(e−1/neiθ))−1/2

)
e−inθdθ.

Thus, to complete the proof of Proposition 6.6 we need show that ‖Jn‖ = O(n−τ ) for

some τ > 0. Write Jn =
∫ 0

−π +
∫ π

0
= J− + J+. We estimate J+. The estimate for J−

follows by a similar argument. Write J+ =
∫ 1/n

0
+
∫ π

1/n
= J1 + J2.

By Proposition 7.1, ‖B(e−1/neiθ)‖ � | 1
n
− iθ|β. Put F (z) = d

dθ

(
(1 − Ψ(z))−1/2

)
.

By Remark 5.3, |F (e−1/neiθ)| � | 1
n
− iθ|−(β/2+1). Hence, ‖B(e−1/neiθ)F (e−1/neiθ)‖ �

| 1
n
− iθ|−(1−β/2). Since 0 < 1− β/2,

‖J1‖ �
∫ 1/n

0

| 1
n
− iθ|−(1−β/2)dθ � n−β/2.

It remains to estimate ‖J2‖. Compute that

J2 =
i

n

∫ π

1/n

B(e−1/neiθ)F (e−1/neiθ)
d

dθ
(e−inθ)dθ

= − i
n

∫ π

1/n

F (e−1/neiθ)
d

dθ
B(e−1/neiθ)e−inθdθ

− i

n

∫ π

1/n

B(e−1/neiθ)
d

dθ
F (e−1/neiθ)e−inθdθ +O(n−β/2)

= − i
n
J1

2 −
i

n
J2

2 +O(n−β/2).

To justify the boundary term recall that ‖B(e−1/neiθ)‖ � | 1
n
− iθ|β and that

|F (e−1/neiθ)| � | 1
n
− iθ|−(β/2+1). Hence, for θ = 1

n
and θ = π we have

1
n
‖F (e−1/neiθ)B(e−1/neiθ)‖ � n−β/2.

By Proposition 7.2,
∥∥ d
dθ
B(e−1/neiθ)

∥∥� n1−β. This together with the estimate on

|F (e−1/neiθ)| gives

‖J1
2‖ � n1−β

∫ π

1/n

| 1
n
− iθ|−(β/2+1)dθ � n1−β

∫ π

1/n

θ−(β/2+1)dθ � n1−β/2.

By Remark 5.3,∣∣∣∣ ddθF (e−1/neiθ)

∣∣∣∣� | 1n − iθ|−(β/2+2) + n1−γ1| 1
n
− iθ|−3β/2,

for some γ1 ∈ (0, 1). This together with the estimate on ‖B(e−1/neiθ)‖ gives

‖J1
2‖ �

∫ π

1/n

|u− iθ|β/2−2dθ + n1−γ1
∫ π

1/n

|u− iθ|−β/2dθ

�
∫ π

1/n

θβ/2−2dθ + n1−γ1
∫ π

1/n

θ−β/2dθ � n1−β/2 + n1−γ1 .
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Putting these together, we obtain ‖J+‖ � ‖J1‖+ 1
n
‖J1

2‖+ 1
n
‖J2

2‖+ n−β/2 � n−τ

for τ = min{β/2, γ1}. Similarly, ‖J−‖ � n−τ . Thus, ‖Jn‖ � n−τ , which ends the
proof.

A Proof of several results used in the proof of

Proposition 4.2

Propositions A.1 and A.5 provide similar results for different regimes of ρ ≥ 1.

Proposition A.1 Let M : [0,∞] → R be such that M(x) = M ∈ R for x ∈ [0, 1)
and M(x) = O(x−ρ), for all x ≥ 1 and some ρ > 1. For u > 0, θ ∈ (−π, π), define

J(u, θ) :=

∫ ∞
0

e−(u−iθ)xM(x) dx. (A.1)

Put cM =
∫∞

0
M(x) dx. The following hold for all u > 0, θ ∈ (−π, π).

(a) If ρ ∈ (1, 2) then (u− iθ)J(u, θ) = cM(u− iθ) +O(|u− iθ|ρ).

(b) If ρ ∈ (1, 2) and xM(x) has bounded variation then d
dθ

(
(u− iθ)J(u, θ)− cM(u−

iθ)
)

= O(|u− iθ|ρ−1).

(c) If ρ > 2 and x2M(x) has bounded variation, then∣∣∣ d2

dθ2

(
(u− iθ)J(u, θ)

)∣∣∣ = O(1).

Remark A.2 We notice that since u > 0, dk

dθk
Integrand(J(u, θ)) is bounded for any

k ≥ 1, hence we can move derivatives. This type of argument will be used in the
proofs of several results below without further explanation.

Proof Items (a) and (b) are covered by [27, Proposition A.1]. Item (c) follows by
the argument used in the proof of [27, Proposition A.1 (b)].

The following technical result will be used in the proofs of Propositions A.4 and A.6
below.

Lemma A.3 Let γ ∈ (0, 1). Then for all u > 0 and θ ∈ (−π, π).

(a) For r = 0, 1, set Ir(u, θ) =
∫∞

1
e−(u−iθ)x{x}(log(bxc))rx−γ dx. Then |(u −

iθ)Ir(u, θ)| = O(1).

(b) Let I(u, θ) =
∫∞

1
e−(u−iθ)x{x}x1−γ dx. Then |(u− iθ)I(u, θ)| � uγ−1.
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Proof (a) Changing coordinates x→ x− 1,

Ir(u, θ) =

∫ ∞
0

e−(u−iθ)(x+1){x}(log(bx+ 1c))r(x+ 1)−γ dx.

But,

(1− e−(u−iθ))Ir(u, θ) =

∫ ∞
1

e−(u−iθ)(x+1){x}(log(bx+ 1c)r(x+ 1)−γ − log(bxc)rx−γ) dx

+

∫ 1

0

e−(u−iθ)(x+1){x} log(bx+ 1c)r(x+ 1)−γ dx.

When r = 1,

|(1− e−(u−iθ))I1(u, θ)| �
∫ ∞

1

(log x)x−(γ+1) dx+

∫ ∞
1

(
log(x+ 1)− log x

)
x−γ dx

+

∫ 1

0

log(x+ 1)(x+ 1)−γdx <∞.

When r = 0,

|(1− e−(u−iθ))I0(u, θ)| �
∫ ∞

1

x−(γ+1)dx+

∫ 1

0

1dx <∞.

Altogether, |(u− iθ)Ir(u, θ)| � 1, as required.
(b) Proceeding as in the proof of (a) above, we compute that

|(1− e−(u−iθ))I(u, θ)| =
∣∣∣∣∫ ∞

1

e−(u−iθ)(x+1){x}((x+ 1)1−γ − x1−γ) dx

+

∫ 1

0

e−(u−iθ)(x+1){x}x1−γ) dx

∣∣∣∣� ∫ ∞
0

e−uxx−γ dx� uγ−1.

Item (b) follows.

The next result provides the second derivative of a function similar to the one
considered in Proposition A.1 for the range ρ ∈ (1, 2). In this sense, our assumption
are stronger than the ones in Proposition A.1.

Proposition A.4 Let M : [0,∞] → R be such that M(x) = M ∈ R for x ∈ [0, 1)
and for all x ≥ 1, M(x) = `(bxc)bxc−ρ, where `(x) = C1 log x + C2 for C1, C2 real
constants and ρ ∈ (1, 2).

With the function M defined as above, let J(u, θ) be defined by equation (A.1).
Then for all u > 0 and θ ∈ (−π, π),∣∣∣ d2

dθ2

(
(u− iθ)J(u, θ)

)∣∣∣� | log u|uρ−2.
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Proof Compute that

d2

dθ2

(
(u− iθ)J(u, θ)

)
= −2i

d

dθ
J(u, θ)− (u− iθ)

∫ ∞
0

e−(u−iθ)xx2M(x) dx

= −2i
d

dθ
J(u, θ)− (u− iθ)J1(u, θ).

By Proposition A.1 (b), (u− iθ) d
dθ
J(u, θ)− iJ(u, θ) + icM = O(|u− iθ|ρ−1). Together

with Proposition A.1 (a) this implies that | d
dθ
J(u, θ)| = O(|u− iθ|ρ−2). It remains to

estimate |(u− iθ)J1(u, θ)|.
Write (u− iθ)J1(u, θ) = (u− iθ)

∫ 1

0
+(u− iθ)

∫∞
1

= O(|u− iθ|) + (u− iθ)J2(u, θ).
Let {x} denote the fractional part of x and compute that

x2 `(bxc)
bxcρ

= `(bxc)x2−ρ + ρx2{x}`(bxc)
xρ+1

+O(
`(bxc)
xρ

).

Since `(bxc)− `(x) = C1(logbxc − log x) = −C1{x}x−1 +O(1/x2),

J2(u, θ) =

∫ ∞
1

e−(u−iθ)x`(x)x2−ρ dx− C1

∫ ∞
1

e−(u−iθ)x{x}x−(ρ−1) dx

+ ρ

∫ ∞
1

e−(u−iθ)x`(bxc){x}x−(ρ−1) dx+

∫ ∞
1

e−(u−iθ)xg(x) dx,

where |g(x)| = O(x−(ρ−δ)), for any δ > 0. Since ρ > 1, |(u− iθ)
∫∞

1
e−(u−iθ)xg(x) dx| =

O(|u− iθ|).
Next, by Lemma A.3 (a) (with r = 0 and τ = ρ− 1)

|(u− iθ)
∫ ∞

1

e−(u−iθ)x{x}x−(ρ−1) dx| = O(1).4

Also, using the definition of ` and Lemma A.3 (a) (with r = 1 and τ = ρ− 1),

|(u− iθ)
∫ ∞

1

e−(u−iθ)x`(bxc){x}x−(ρ−1) dx| = O(1).

To conclude, we need to estimate (u − iθ)J3(u, θ), where J3(u, θ) :=∫∞
1
e−(u−iθ)x`(x)x2−ρ dx.
First we consider the case |θ| ≤ u. Substituting ux = σ,

|(u− iθ)J3(u, θ)| � u

∫ ∞
1

e−ux`(x)x2−ρ dx = uρ−2

∫ ∞
u

e−σσ2−ρ(C1(log σ − log u) + C2) dσ

� | log u|uρ−2

∫ ∞
u

e−σσ2−ρ dσ + uρ−2

∫ ∞
u

e−σσ2−ρ log σ dσ

+ uρ−2

∫ ∞
u

e−σσ2−ρ dσ � | log u|uρ−2.

4By the argument used in the proof of [27, Proposition A.4] (in estimating I1 there), we obtain
the better estimate |(u− iθ)

∫∞
1
e−(u−iθ)x{x}x−(ρ−1) dx| = O(|u− iθ|ρ−1). This improved estimate

is not needed during this proof.
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In the last inequality we have used that all integrands are independent of u and well
behaved at 0 and at infinity.

It remains to consider the case u ≤ |θ|. Substituting ux = σ and recalling that
`(x) = C1 log x+ C2 (so, differentiable on [1,∞)),

J3(u, θ) =
uρ

u3

∫ ∞
u

e−σeiθσ/uσ2−ρ`(σ/u) dσ =
1

iθ
uρ−2

∫ ∞
u

d

dσ
(eiθσ/u)e−σσ2−ρ`(σ/u) dσ

=
1

iθ
uρ−2

∫ ∞
u

eiθσ/ue−σ
(
σ2−ρ`(σ/u)− C1σ

2−ρ 1

σ
− (2− ρ)

`(σ/u)

σρ−1

)
dσ + O(|θ|−1).

Writing `(σ/u) = log σ − log u + C and proceeding as in the case |θ| ≤ u,∫∞
u
e−σ
(
σ2−ρ`(σ/u)−C1σ

2−ρ 1
σ
−(2−ρ) log(σ/u)

σρ−1

)
dσ � | log u|. Therefore, |(u−iθ)J3| �

|θJ3| � | log u|uρ−2 and the conclusion follows.

Proposition A.5 Let M : [0,∞] → R be such that M(x) = M ∈ R for x ∈ [0, 1)
and for all x ≥ 1, M(x) = x−1. Let I(u, θ) =

∫∞
0
e−(u−iθ)xM(x) dx. Then, for all

u ∈ (0, 1), θ ∈ (−π, π),

(a) |(u− iθ)I(u, θ)| = O(|u− iθ| log(1/|u− iθ|)).

(b) d
dθ

(
(u− iθ)I(u, θ)

)
= O(log(1/|u− iθ|)).

(c)
∣∣∣ d2dθ2((u− iθ)I(u, θ)

)∣∣∣ = O(|u− iθ|−1 log(1/|u− iθ|)).

Proof Item (a) is contained in the proof of Lemma [24, Lemma A.4].
(b) Compute that

d

dθ

(
(u− iθ)I(u, θ)

)
= −iI(u, θ) + i(u− iθ)

∫ ∞
0

e−(u−iθ)x dx.

By item (a), |I(u, θ)| = O(log(1/|u− iθ|)). The result follows since
∫∞

0
e−(u−iθ)x dx =

(u− iθ)−1.
(c) Compute that

d2

dθ2

(
(u− iθ)I(u, θ)

)
= (u− iθ)

∫ ∞
0

e−(u−iθ)xx dx− 2i
d

dθ
I(u, θ).

Integrating by parts gives

(u− iθ)
∫ ∞

0

e−(u−iθ)xx dx =

∫ ∞
0

e−(u−iθ)x dx = (u− iθ)−1.

From (a) and (b) above, we know that | d
dθ

(I(u, θ))| = O(|u − iθ|−1 log(1/|u − iθ|)).
Putting the above together,

∣∣∣ d2dθ2((u− iθ)I(u, θ)
)∣∣∣� |u− iθ|−1, ending the proof.
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Proposition A.6 For ρ ∈ (0, 1), set ∆(x) = bxc−ρ−x−ρ, x ≥ 0 (with the convention
0−ρ = 0) . For u ∈ (0, 1), θ ∈ (−π, π) define

W (u, θ) :=

∫ ∞
0

e−(u−iθ)x∆(x) dx.

Put c∆ =
∫∞

0
∆(x) dx. The following hold for all u > 0, θ ∈ (−π, π).

(a) (u− iθ)W (u, θ) = c∆(u− iθ) +O(|u− iθ|ρ+1),

(b)
∣∣∣ ddθ((u− iθ)W (u, θ)− c∆(u− iθ)

)∣∣∣ = O(|u− iθ|ρ) and

(c)
∣∣∣ d2dθ2((u− iθ)W (u, θ)

)∣∣∣� uρ−1.

Proof First we note that with the convention 0−ρ = 0, ∆(x) = x−ρ for x ∈ [0, 1).
Items (a), (b) are covered by [27, Proposition A.4]. In what follows, we prove (c).
Compute that

d2

dθ2

(
(u− iθ)W (u, θ)

)
=− 2i

d

dθ
W (u, θ)− (u− iθ)

∫ ∞
1

e−(u−iθ)xx2∆(x) dx

− (u− iθ)
∫ 1

0

e−(u−iθ)xx2∆(x) dx.

By items (a) and (b), the first term is O(|u − iθ|ρ−1). Clearly, the third term is
O(|u− iθ|). Next, we estimate W2(u, θ) :=

∫∞
1
e−(u−iθ)xx2∆(x) dx. Put {x} = x−bxc

and note that

bxc−ρ − x−ρ = x−ρ
(

1− {x}
x

)−ρ
− x−ρ = ρ

{x}
xρ+1

+ g(x),

where g(x) = O(x−(ρ+2)). Hence

(u− iθ)W2(u, θ) = ρ(u− iθ)
∫ ∞

1

e−(u−iθ)x{x}x1−ρ dx+ (u− iθ)
∫ ∞

1

e−(u−iθ)xx2g(x) dx.

For the second term we note that

|(u− iθ)
∫ ∞

1

e−(u−iθ)xx2g(x) dx| � |(u− iθ)|
∫ ∞

0

e−uxx−ρ dx� uρ−1|(u− iθ)|.

It remains to estimate (u − iθ)I(u, θ) = (u − iθ)
∫∞

1
e−(u−iθ)x{x}x1−ρ dx. By

Lemma A.3 (b) (with γ = ρ), |(u− iθ)I(u, θ)| � uρ−1, ending the proof.
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B Tail sequence for (1.2)

The following proposition is an improved version of [24, Proposition C1] and [27,
Proposition B.1]. Recall that h denotes the density of the measure µ.

Proposition B.1 Suppose that f : [0, 1]→ [0, 1] is given as in (1.2) with β = 1/α ∈
(0, 1). Set k = min{j ≥ 2 : β > 1

j
} and set N = min{` ≥ 2 : β > 2

k+`
} and

N ′ = min{` ≥ 2 : β > 3
k+`
}.

Let Z be a compact subset of (0, 1]. Then there exists Y ⊂ (0, 1] compact with
Z ⊂ Y , such that the first return function ϕ : Y → Z+ satisfies

µ(ϕ > n) =
k+N ′∑
j=1

cjn
−jβ +

k+N∑
j=1

(
c̃1
j log n+ c̃2

j

)
n−(jβ+1)

+
k∑
j=1

(
ĉ1
j

(log n)2

njβ+2
+ ĉ2

j

log n

njβ+2
+ ĉ3

j

1

njβ+2

)
+O((log n)2/nβ+3),

where cj, c̃
1
j , c̃

2
j , ĉ

1
j , ĉ

2
j , ĉ

3
j are real constants that depend only on f .

Proof First take Y = [1
2
, 1]. Let xn ∈ (0, 1

2
] be the sequence with x1 = 1

2
and

xn = f(xn+1) so xn → 0. It is well known (see for instance [22]) that xn ∼ 1
2
ββn−β. In

fact, as shown in [27, Proposition B.1]5, xn = 1
2
ββn−β+C1(log n)n−(β+1)+C2n

−(β+1)+
O((log n)2n−(β+2)), where C1, C2 are real constants that depends only on β. To prove
item i), we need an improved higher order expansion of xn. We claim that

xn =
1

2
ββ

1

nβ
+ C1

log n

nβ+1
+ C2

1

nβ+1
+ C3

(log n)2

nβ+2
+ C4

log n

nβ+2
+ C5

1

nβ+2
+O

((log n)2

nβ+3

)
,

where C1, C2, C3, C4, C5 are real constants that depend only on β = 1/α and whose
values will change from line to line.

Recall xn = 1
2
ββn−β(1+C1(log n)n−1+C2n

−1+O((log n)2n−2)). Put g(x) = 2αxα.
So, g(xn) = 2αxαn = βn−1 + C1(log n)n−2 + C2n

−2 + O((log n)2n−3). Next, put
d(x) = 1/g(x). Since xn = f(xn+1) = xn+1(1 + g(xn+1)), we compute that

d(xn) =
1

2αxαn
= d(xn+1)(1 + g(xn+1))−α

= d(xn+1)
(

1− αg(xn+1) + C1g(xn+1)2 + C2g(xn+1)3 +O(g(xn+1)4)
)

= d(xn+1)− α + C1g(xn+1) + C2g(xn+1)2 +O(n−3).

5The claim in the third line of the proof of [27, Proposition B.1] is missing a logarithmic factor,
but the rest of the proof uses the correct formula, and the statement of the result is correct.
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It follows that for n ≥ 1

d(xn+1)− d(xn) = α + C1g(xn+1) + C2g(xn+1)2 +O(n−3)

= α + C1
1

n
+ C2

log n

n2
+ C3

1

n2
+O

((log n)2

n3

)
.

Recalling that d(x1) = 1 and summing from 1 to n− 1,

d(xn) = 1 + (n− 1)α +
n−1∑
j=1

(
C1

1

j
+ C2

log j

j2
+ C3

1

j2
+ b(j)

)
,

where b(j) = O( (log j)2

j3
). For r = 0, 1, one can easily check that

∑∞
j=n(log j)r/j2 =∫∞

n
(log x)r/x2 +O((log n)r/n2). Hence,

∑∞
j=n

(log j)r

j2
= (logn)r

n
+ 1

n
+O

(
(logn)r

n2

)
. Sim-

ilarly,
∑∞

j=n
1
j2

= 1
n

+O( 1
n2 ) and

∑∞
j=n b(j) = O((log n)2/n2).

As shown in [10],
∑n−1

j=1
1
j

= γ+log n+ 1
2n

+O(n−2), where γ is the Euler constant.
Putting these together,

d(xn) = nα + C1 log n+ C2 + C3
log n

n
+ C4

1

n
+O

((log n)2

n2

)
= nα

(
1 + C1

log n

n
+ C2

1

n
+ C3

log n

n2
+ C4

1

n2
+O

((log n)2

n3

))
.

Since β = 1/α and xn = 1
2
d(xn)−β, we have

xn =
1

2
ββn−β

(
1 + C1

log n

n
+ C2

1

n
+ C3

log n

n2
+ C4

1

n2
+O

((log n)2

n3

))−β
and the claim follows.

It is known that the density h ∈ C∞ (this follows, for instance, from the argument
of [29, Lemma 2]). Hence for x ∈ [1

2
, 1] and k and N ′ ≥ N defined as in the statement

of the proposition, we can write

h(x) = h(1
2
) + h

′
(1

2
)(x− 1

2
) + . . .+

h(k+N ′−1)(1
2
)

(k +N ′)!
(x− 1

2
)k+N ′−1 +O

(
(x− 1

2
)k+N ′

)
.

Set yn = 1
2
(xn+1) (so f(yn) = xn). Then ϕ = n on (yn, yn−1], hence {ϕ > n} = [1

2
, yn].

It follows that

µ(ϕ > n) =

∫ yn

1/2

h(x) dx =
k+N ′−1∑
j=0

1

(j + 1)!

h(j)(1
2
)

2j+1
xj+1
n +O(xk+N ′+1

n )

=
k+N ′∑
j=1

cj
njβ

+
k+N∑
j=1

(
c̃1
j

log n

njβ+1
+ c̃2

j

1

njβ+1

)
+

k∑
j=1

(
ĉ1
j

(log n)2

njβ+2
+ ĉ2

j

log n

njβ+2
+ ĉ3

j

1

njβ+2

)
+O

((log n)2

nβ+3

)
,
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where cj, c̃
1
j , c̃

2
j , ĉ

1
j , ĉ

2
j , ĉ

3
j are real constants that depend only on β and h(j)(1/2).6 This

ends the proof for the choice Y = [1
2
, 1]. The conclusion follows since the same

estimates are obtained by inducing on Y = [xq, 1] for any fixed q ≥ 1.
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non uniformément dilatantes, Ph. D. Thesis, Ecole Normale Supérieure, 2004.
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