
Chapter 7

Inference for Multivariate

Clusters

7.0 Introduction

In the previous chapter, new estimators for features of clusters in univariate pro-

cesses were defined. These estimators decomposed clusters into maxima and

strings, where a string defines the points in a cluster relative to the cluster maxi-

mum. In this chapter, the decomposition is extended to the multivariate setting.

Combining the empirical description of strings with an extreme-value distribution

for the maxima provides a model for the multivariate process, including its clus-

tering behaviour, at levels outwith the data. Previous attempts at inference for

multivariate processes have modelled only summaries of clusters, with estimates

depending on the particular summary chosen.
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One important problem in multivariate extremes is the estimation of failure prob-

abilities, that is the probability that an observation falls in some rare region of

the sample space. Such a failure region might, for example, characterise the condi-

tions under which a sea-wall is breached, with respect to wave height, wave period,

surge and tide. See Coles and Tawn (1994) for several other examples. Estimation

of failure probabilities is reviewed in Section 7.1, where shortcomings of current

methods are noted. The decomposition of multivariate clusters into maxima and

strings is presented in Section 7.2 together with methods for fitting the model and

estimating failure probabilities. A simulation study illustrating the benefits of the

new approach is documented in Section 7.3 and a data example is provided in

Section 7.4.

7.1 Estimating Failure Probabilities

Let {Xi}
n
i=1 be a stationary sequence of D-dimensional random variables Xi =

(Xi1, . . . , XiD) with unknown marginal distribution function F . Suppose that it is

of interest to estimate the probability P (X ∈ B) that an arbitrary observation X

falls in some failure region B ⊂ R
D.

Theorem 2.4 motivates a Poisson process model for points Xi on regions bounded

away from the origin when those points are from an independent sequence. For

stationary sequences, such a model is not applicable because extremes will form

clusters, as described by Theorem 3.6. This problem can be avoided by filtering the

sequence to obtain approximately independent observations. For example, Coles
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and Tawn (1994) partition the original data into blocks and retain only the com-

ponentwise maximum from each block, using arguments concerning the physical

process generating the data to justify independence. Similarly, de Haan and Sinha

(1999) retain only the componentwise maxima from subjectively identified storms.

Parametric and semi-parametric methods exist for estimating failure probabilities.

Parametric methods rely on fitting the Poisson process model to the filtered data

on some region bounded away from the origin, as described in Section 2.2. A

model for the dependence structure, such as the logistic model (5.6) or the kernel

estimator of Chapter 5, must be selected. The failure probability can be estimated

by computing the probability that a point of the fitted Poisson process falls in B.

This approach is developed by Coles and Tawn (1991, 1994) and Joe et al. (1992).

A semi-parametric approach has been developed by de Haan and de Ronde (1998)

and de Haan and Sinha (1999). This relies on a homogeneity property of the

Poisson process measure to relate the failure probability to the probability that a

point falls in a set Bc = {x : cx ∈ B}, where c shrinks B until it contains some of

the observations. The latter probability can then be estimated by the proportion

of observations in Bc.

Whether the parametric or semi-parametric approach is followed, the resulting

failure probability estimate depends crucially on the filtering used to obtain in-

dependent observations. For example, consider componentwise maxima. Suppose

that the original data have been partitioned into nb = bn/bc blocks of length b:

{Xj : (i − 1)b + 1 ≤ j ≤ ib} for 1 ≤ i ≤ nb. (7.1)
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The block componentwise maxima, hereafter called the block maxima, are

X∗
i = (X∗

i1, . . . , X
∗
iD) for 1 ≤ i ≤ nb,

where X∗
id = max{Xjd : (i − 1)b + 1 ≤ j ≤ ib}. Note that a block maximum

does not necessarily coincide with any actual observation in the block. Let the

distribution of a block maximum be F ∗ with component distributions F ∗
d . For

failure regions satisfying

X1 ∈ B or X2 ∈ B =⇒ (max{X11, X21}, . . . , max{X1D, X2D}) ∈ B, (7.2)

the probability of a block maximum X∗ falling in B is at least as large as the

probability for an arbitrary observation X in the block. Basing inferences solely

on the block maxima therefore leads to potential over-estimation of the failure

probability.

The failure probability P (X ∈ B) factorises as

P (X ∈ B | X∗ ∈ B)P (X∗ ∈ B) + P (X ∈ B | X∗ /∈ B)P (X∗ /∈ B), (7.3)

which is approximated by P (X∗ ∈ B) if only block maxima are used. The method

described in the following section also begins by estimating P (X∗ ∈ B), but then

estimates the correction factor P (X ∈ B | X∗ ∈ B). If B satisfies condition (7.2)

then P (X ∈ B | X∗ /∈ B) equals zero and nothing more is required. This is likely

to be the case for most failure regions of interest. If condition (7.2) does not hold
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then estimates of the second term in factorisation (7.3) can also be obtained.

7.2 Modelling Multivariate Clusters

7.2.1 Block maxima

Let nc of the nb blocks (7.1) contain points in a region A = {x ∈ R
D : x 6≤ u} for

some choice of high thresholds u = (u1, . . . , uD). For suitably large block length,

these nc collections of points can be considered independent clusters because of the

limiting behaviour described by Theorem 3.6. This motivates the Poisson process

of Theorem 2.4 as a model for block maxima in A if the component distributions

F ∗
d , 1 ≤ d ≤ D, are standard Fréchet. If the component distributions are unknown

then they can be estimated using generalised Pareto forms above thresholds and

empirical distribution functions below thresholds, as detailed in Section 2.2. The

transformation of the d-th component to standard Fréchet scale is −1/ log F ∗
d (·).

Define also the transformation

Ψ∗
d(·) = − log{1 − F ∗

d (·)} (7.4)

of the d-th component to standard exponential scale.



Section 7.2 Modelling Multivariate Clusters 148

7.2.2 Strings

As discussed in Section 7.1, modelling only block maxima can cause failure proba-

bilities to be over-estimated. To obtain unbiased estimates it is necessary to retain

information about the distribution of actual points within a block. For extreme

failure regions, only the most extreme points in a block, such as those that fall in

the region A, are relevant. Suppose again that nc of the nb blocks (7.1) contain

points in A. Denote these nc clusters of points by {Xj : j ∈ Si}, 1 ≤ i ≤ nc,

where Si contains the indices of the points in A for the i-th cluster. It was seen

in Chapter 6 that for univariate clusters the distribution of cluster points relative

to their cluster maximum is described by a string. An analogous decomposition

for multivariate clusters is given below. This characterises the position of extreme

points in a block relative to the block maximum and so provides the necessary

information for estimating failure probabilities accurately.

Recall from Section 6.1 that the marginal distribution, F , must be specified in order

to define strings associated with clusters. Let Ψd transform the d-th component

to have standard exponential distribution: write Zjd = Ψd(Xjd), j ∈ Si, for the

transformed points of the i-th cluster and Z∗
id = Ψ∗

d(X
∗
id) for the transformation

of the block maximum X∗
i . The D-dimensional string point corresponding to

observation Xj in the i-th cluster is defined to be Yij = (Yij1, . . . , YijD), where

Yijd = exp(Z∗
id − Zjd);

the string associated with the i-th cluster is the collection Yi = {Yij : j ∈ Si}.
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This string definition is analogous to the univariate definition (6.3) for each com-

ponent. The treatment of multivariate clusters in this way pre-empts theoretical

developments: no multivariate extension of Theorem 3.3 has yet been published.

The definition of strings seems natural nevertheless, and at least encompasses the

structure of clusters in the M4 process (3.11).

The choice of declustering region A means that clusters can include points below

the threshold in up to D − 1 components. In contrast to the univariate case,

therefore, the transformation Ψd must be applicable above and below ud. The

method of Section 2.2 can be used, that is Ψd(·) = − log{1 − Fd(·)}, where Fd

is modelled with a generalised Pareto distribution above ud and the empirical

distribution function below ud. Note that this transformation is based on all

observations {Xi}
n
i=1, not just the block maxima that were used to estimate the

transformation (7.4).

Identifying clusters by grouping observations into blocks does not accord with the

theoretically motivated intervals declustering scheme proposed in Section 4.2. In-

tervals declustering considers points only in the extreme region A, however, and

so yields only the nc cluster maxima, not the nb block maxima. If only the cluster

maxima are available then estimation of the component distributions required for

the Poisson process model is impossible without making parametric assumptions.

The problem is the estimation below thresholds: empirical distributions are inap-

propriate because any points with one component below threshold have at least

one other component above threshold; furthermore, points with components be-

low thresholds could be sparse. For this reason, blocks declustering is used in this
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chapter. As a compromise, the block length b is chosen to yield the same number

of clusters in A as would be identified by intervals declustering.

7.2.3 Failure probabilities

Block maxima have been modelled with a Poisson process and clusters of extreme

points within blocks have been identified with strings. If a block maximum X∗ is

simulated from the fitted Poisson process and transformed to a block maximum

Z∗ = Ψ∗(X∗) with standard exponential components then an observed string Yi =

{Yij : j ∈ Si} can be attached to form cluster points Zj with Zjd = Z∗
d − log Yijd.

These points can then be transformed back to the original space by inverting Ψ∗.

This enables the failure probability P (X ∈ B) to be estimated in the following

way.

First simulate a large number, ns, of block maxima from the Poisson process

model in a region B0 containing the failure region B. This is perhaps most easily

done in standard Fréchet space. Let B̃ be the failure region B transformed to

standard Fréchet space using the transformations −1/ log F ∗
d (·). Block maxima

can then be simulated in a region B̃0 = {x ∈ R
D : x1 + . . . + xD > r0} with

r0 chosen so that B̃ ⊂ B̃0 (Nadarajah, 1999). Clusters can be constructed by

transforming to standard exponential space, attaching the nc observed strings

to each of the simulated block maxima and transforming back to the original

space. The probability that a block maximum falls in B̃0 is 1 − exp{−Λ(B̃0)} =

1−exp(−D/r0), where Λ is the intensity measure of the Poisson process; see Coles
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and Tawn (1994). If nm of the simulated block maxima fall inside B then a Monte

Carlo estimate of P (X∗ ∈ B) is (nm/ns){1− exp(−D/r0)}. To each maximum, nc

strings are attached, creating nmnc blocks with block maximum in B. Nominally,

there are b points in each block, but the strings only describe the extreme cluster

points; the remaining points in a block are assumed to be negligible. If nx is the

total number of points in B summed over all nmnc blocks with block maximum in

B then an estimate of the correction factor P (X ∈ B | X∗ ∈ B) is nx/(bnmnc). If

P (X ∈ B | X∗ 6∈ B) is non-zero then a similar Monte Carlo approximation can be

found for the second term in the factorisation (7.3).

In Chapter 6, it was noted that attaching strings to maxima outside the range

of the data leads to a truncation of clusters above the threshold. The same issue

arises in the multivariate case and can cause under-estimation of the correction

factor. One remedy is to model strings in censored regions, as was done for the

SWAP estimator in Section 6.3, but this will not be attempted here. Instead, the

performance of the method will be investigated with a simulation study, ignoring

the issue of censoring.

7.3 Simulation Study

To illustrate the practical effect of estimating the correction factor, the model of

the previous section is applied to data simulated from five M4 processes (3.11).
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Bivariate processes are used, with form

Xid = max
1≤l≤L

max
1≤j≤J

(αljdZl,i−j) for i ≥ 1 and d = 1, 2,

where the Zl,i are independent, standard Fréchet random variables. The coeffi-

cients are constrained to ensure that the component distributions of the Xi are

also standard Fréchet, and L = 1 so that limiting clusters have only a single de-

terministic shape. The coefficients of the five processes are listed in Table 7.1

together with a sketch of the limiting cluster shape. The coefficients are such that

cluster maxima tend to lie on the line x1 = x2 and are not members of clusters,

except for process 1 where clusters comprise just single points. Processes 2 and 3

have two points per cluster, each of which contributes a coordinate to the cluster

maximum. The distance between the cluster points and the cluster maximum is

greater in process 3. Processes 4 and 5 are the same as processes 2 and 3 except

that clusters have an additional point that does not contribute to the maximum.

Process J {α1j1}
J
j=1 {α1j2}

J
j=1 Shape

1 1 {1} {1} •

2 2 {1, 2}/3 {2, 1}/3 •
•

3 2 {1, 4}/5 {4, 1}/5
•

•

4 3 {1, 1, 2}/4 {2, 1, 1}/4 •
•
•

5 3 {1, 1, 4}/6 {4, 1, 1}/6
•

•

•

Table 7.1: Coefficients and cluster shapes for the five M4 processes.
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For each of the five processes, N = 100 sequences of length 1000 are simulated and

a failure probability P (X ∈ B) is estimated for each data-set. The failure region

is B = {x ∈ R
2 : x1 + x2 > v} with v chosen so that the true failure probability

is p0 = 1 − exp(−2/v) = 0.001. To estimate p0, intervals declustering is applied

with the region A = {x ∈ R
2 : x 6≤ u}, where u = (u1, u2) is defined by the

empirical 95% quantiles of the two components. The block length is then chosen

to produce the same number of clusters in A. Instead of fitting the full Poisson

process model to the block maxima, the component distributions are estimated

separately and the limiting dependence structure, for which block maxima fall on

the line x1 = x2, is assumed known.

For each data-set, Monte Carlo estimates of P (X∗ ∈ B) and P (X ∈ B) are com-

puted by simulating one-thousand block maxima from the fitted Poisson process.

Their performances as estimates of p0 are summarised with two measures: relative

bias and relative standard deviation, defined for estimates {p̂i}
N
i=1 as

1

N

N
∑

i=1

(

p̂i − p0

p0

)

and

√

√

√

√

1

N

N
∑

i=1

(

p̂i − p̄

p0

)2

,

where p̄ =
∑N

i=1 p̂i/N . The simulation results are presented in Tables 7.2 and 7.3.

They show that P (X∗ ∈ B) vastly over-estimates p0 and that this is greater when

the distance from actual points to the block maximum is larger. Estimating the

correction factor removes the bias almost completely and reduces the variance.

The correction is equally effective for all five processes.
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Process 1 2 3 4 5
P (X∗ ∈ B) 1.32 6.09 7.11 6.57 9.14
P (X ∈ B) 0.02 0.09 0.11 −0.01 0.04

Table 7.2: Relative bias

Process 1 2 3 4 5
P (X∗ ∈ B) 2.98 6.25 6.88 7.93 8.91
P (X ∈ B) 0.70 0.90 0.88 0.99 0.96

Table 7.3: Relative standard deviation

7.4 Data Example

In this section, the model for multivariate clusters is applied to an oceanographic,

bivariate time series. The variables, both measured in metres, are surge (X1)

and significant wave height (X2). Surge is the measured sea-level with the tidal

component removed; significant wave height is approximately equal to the mean

height of the highest one-third of the waves, and is hindcast. The data were

recorded hourly at Christchurch on the south coast of England between 1 April

1978 and 31 March 1990. See Hawkes et al. (1998) for additional information and

analysis. The raw data exhibit strong seasonality, removal of which is achieved

here by using data from only the months December and January. Missing values

are avoided by restricting attention to the period December 1980 to January 1987.

The two variables are plotted separately in Figure 7.1, and jointly in Figure 7.2.

The first step is to select thresholds over which the two series exhibit stable ex-

tremal behaviour. To aid this selection, estimates of the extremal index, the mean

excess and the parameters (σ, ξ) of the generalised Pareto distribution are plotted

over a range of thresholds in Figures 7.3 and 7.4. The scale parameters of the



Section 7.4 Data Example 155

Year

W
av

e 
H

ei
gh

t

1981 1982 1983 1984 1985 1986 1987

0
1

2
3

4
5

Year

S
ur

ge

1981 1982 1983 1984 1985 1986 1987

−
0.

5
0.

5

Figure 7.1: Significant wave height (above) and surge (below) recorded hourly in
metres at Christchurch. The first observation in each year is labelled.

generalised Pareto distributions have been modified to σ − ξu, since this quantity

should be approximately constant across thresholds: see Section 6.4. For surge,

stability appears to be achieved at u1 = 0.4 if the rogue estimates of the generalised

Pareto parameters at threshold 0.6 are ignored. For wave height, the estimates of

the scale parameter are confusing. The threshold u2 = 3.0 is tentatively selected.

Diagnostic plots for the fit of the generalised Pareto distribution to the 402 surge

exceedances and to the 625 wave exceedances are shown in Figure 7.5. Allowing

for discreteness, the fit is acceptable for both variables.

Multivariate intervals declustering with extreme region A = {x ∈ R
2 : x 6≤ u}

yields an extremal index estimate of 0.07 and 61 clusters. Blocks declustering also

yields 61 clusters if the block length is b = 82. This partitions the data into 128
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Figure 7.2: Significant wave height against surge, both recorded hourly in metres
at Christchurch.

blocks, of which the maxima are plotted in Figure 7.6.

The Poisson process model is fitted to the block maxima with logistic dependence

structure (5.6). The parameter estimates for the generalised Pareto components

are (0.20, 0.02) for surge and (1.55,−0.67) for wave height; the dependence param-

eter estimate is 0.45.

The failure region B = {x ∈ R
2 : x1 + x2/8 > v} with v = 2 is used to illustrate

the estimation of failure probabilities. This form of failure region approximates

the conditions under which certain types of sea-wall are breached: see Coles and

Tawn (1994). One-thousand cluster maxima are simulated from the fitted model

in a region containing B, and superimposed on Figure 7.6. Note the upper limit of

u2−σ2/ξ2 = 5.32 metres for the estimated significant wave height distribution. The
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Figure 7.3: Estimates (–•–) for surge of the extremal index, mean excess, and pa-
rameters of the generalised Pareto distribution with bootstrapped 90% confidence
intervals (· · · ).

estimate of P (X∗ ∈ B) is 0.0039. For nmnc = 38 918 clusters with a maximum in

B, 163 955 out of the nominal bnmnc = 3 191 276 points are in B. So the estimate

of the correction factor is 163 955/3 191 276 = 0.051 and the estimate of P (X ∈ B)

is 0.00020.

The estimate of P (X∗ ∈ B) is in accordance with the data: there are 128 blocks

in the sample, none of which has maximum in B, suggesting that the probability

should be less than 1/128 = 0.0078. There are 10 416 observations in the sample,

and again none of these is in B, which suggests that P (X ∈ B) should be less

than 1/10 416 = 0.0001. Although the estimate is double this value, it is not at

odds with the data because points will tend to occur in B in clusters. Indeed, the
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Figure 7.4: Estimates (–•–) for significant wave height of the extremal index, mean
excess, and parameters of the generalised Pareto distribution with bootstrapped
90% confidence intervals (· · · ).

average number of points in B among the simulated clusters that have a point in

B is about 4.

7.5 Discussion

The technique described in this chapter allows failure probabilities to be estimated

without prior filtering of the data, which can lead to over-estimation. Only simple

failures, caused by a single observation falling in a failure region, have been con-

sidered, but failures might result from more complex events. For example, failure

may occur only if two consecutive observations fall in the failure region. The prob-

abilities of such failures cannot be estimated using filtered data, but are handled
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Figure 7.5: Quantile plots (left) and probability plots (right) for the generalised
Pareto fit at the chosen thresholds for significant wave height (top) and surge
(bottom).

naturally when clusters are modelled.

Obtaining confidence intervals for failure probabilities using the method of this

chapter is complicated. In order to account for uncertainty in the block length,

the strings and the Poisson process model, it is perhaps simplest to apply a block

bootstrap to the original multivariate sequence. Using the block length identified

by the declustering procedure would appear to be a natural choice for bootstrap-

ping, but this issue has not been explored here.

Finally, estimates of the failure probability P (X ∈ B) can be obtained from

P (X∗ ∈ B) in another way if B has a particular form. Suppose that the se-
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Figure 7.6: Block maxima (•), component thresholds (- - -), boundary of the failure
region (—–) and simulated cluster maxima (·).

quence has multivariate extremal index θ(·) satisfying limit (3.2). Then, for

B = {x ∈ R
D : x 6≤ u}, and a suitably large block length b,

P (X∗ 6∈ B) ≈ P (X 6∈ B)θ(u)b.

Combining an estimate of θ(u), perhaps obtained using one of the methods de-

scribed in Section 4.2, with an estimate of P (X∗ 6∈ B) yields an estimate of

P (X ∈ B). Whether or not such approximations can be exploited for general

failure regions B remains an open question.


