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Abstract

Total kinetic encrgy as well as total vorticity squared are integral quantities which can-
not change in the course of time in a rwodimensional flow of a homogeneous, nondivergent,
and inviscid fluid when the fluid is isolated from the surroundings. The case is considered
where the fluid is defined over the total region of the surface of a sphere. The nature
of the changes in ume of the spectral distribution of kinetic energy is discussed on the
basis of the two conservation requirements mentioned above. Tt is found that only frac-
tions of the initial energy can flow into smaller scales and that a greater fraction simultanc-
ously has to flow to components with larger scales. The upper limits to the flow of
kinetic encrgy into components with scales less than a given one are found. The con-
servation theorcms are also used to discuss the stability of a certain stationary flow for a
twodimensional motion which is not nccessarily spherical. Tt is shown how important it
is for the proof of stability that not only the kinetic energy of the disturbance is supposed
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On the Changes in the Spectral Distribution of Kinetic Energy

to be small but also its vorticitics,

In chapter I molecular viscosity is taken into account for the spherical flow. Finally

and threedimensional flow.

1. Twodimensional spherical flow. Inviscid
fluid

“ - A twodimensional nondivergent flow of a
~homogencous fluid defined over the total sur-
 face of a sphere is considered. Viscosity is neg-
~lected in the first place. The absolute motion
-of the fluid is then governed by the equations

o Vsy — (v V) (1)
~ v=—V,wxk. (2)
Here
v = velocity
Vs = spherical deloperator
y = pressure over density
— (v -V, V), = convective acceleration along
the surface of the sphere
k = unit vectors pcrpcndicular to
the sphere
Tellus V (1953), 3
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some conclusive remarks are offered regarding the fundamental difference between two-

and
y = a univalued and twice dif-
terentiable function of the
space coordinates. (3)

Total kinetic energy is obviously conserved
for our Auid. Hence, with F denoting the total
arca of the surface of the sphere,

S (V)2 dF = const. (4)

F

Eliminating ¥,y from (1) and using (z) one
obtains

e vV, Vi (5)
where V2 represents the component of vortic-
ity perpendicular to the surface of the sphere.

Muldplying (5) with é VZy and integrating
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over F, one also obtains

S (V2y)?dE = const. (6)
£
(4) and (6) express two conservation theorems.
In the following it will be shown that it is
possible to draw considerable information from
them as to the character of the solution of (1),
(2) when the conditions are known initially.
As is well known o may be written as a
generally infinite sum of functions

oo

Y=Y,

g=1

(7)
where 1, satisfies

) Vipgt agp, =0 (8)
with

Gg= st P2, (9)
R == radius of the sphere.

Performing the operation V2 on both sides
of (7) and using (8) one obtains

oo

. \
V= —2 a4
g=1

(x0)
Using

S (V)2 dF= [V 9 VoypdF— fpViydF
and [Vs-pV,pdF=0

one obtains !

Ff(V;lp)"dF =— [ pViypdF.
F

Substituting on the right-hand-side of this equa-
tion from egs. (7), (10) and utilizing the orthog-
onality condition

_r[?pqudF =0, {#p
omne obtains:

[(Va)dF=3 [ayidF

a g=1F

(1)
while on the other hand as is readily seen
f(Vay)edP =T [fagyidE. (12)
F q=1 F
Defining H, from
H,= fa,y2dF
A
one thus gets, combining (11), (12) with (1), (6):

(13)

o0
2 H, = const.

q=1
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o«
>a, H,= const. (14)
q=1 '
The functions v, divide F into areas F,
where v, has all over either a positive or a
negative sign. It is a well established fact that

F, >0  when g+,

The quantity /, defmed from
I

fy~—: (15)
\"'aq

will equal some average diameter of I; and
thus represent a typical scale of the motion
which is determined from the streamfunc-
tion y,.

If, therefore, H, is plotted agamst 1: one

Vi,
has a representation of how the kinetic energy
for a given velocity field is distributed over
the different components %, with the corre-
sponding scales . The problem to be attacked
in the following is to find by the use of the
conservation theorems (13), (14) how given
initial spectral distributions of energy will
change n time, and in particular the morc
precise upper limits for the flow of energy
into components with scales equal to or less
than a given one.

The first result to be derived is that when the
motion is not a stationary one the kinetic
energy must change at least for three different
components, or what is the same, on at least
three different scales.

To prove this let 4H, be defined from

AH, = (Hg)— (Hq)—o.

Substituting for the constants in (13), (14),
respectively

oo

Y (Hq):—o and an (Hq): - o,

q=1 q=1

these equations may be written

T 4H,

g=1

0 (16)

T a; AHg=o.

q=1

(17)

Let us assute that the changes take place only
for the components numbered g = p, g=r;
with r > p.

Teltus V (1953), 3




CHANGES IN THE SPECTRAL DISTRIBUTION OF KINETIC ENERGY 227

Then (16), (17) reduce to
Vil Hp + AI.{, =0
ay AH, - a, A H, = o.

Having r > p it is seen from (9) that the deter-
minant of this system, a,—a,> 0. Consequently
A Hp = AHr = o. If, however, the changes in
kinetic energy take place for three different
scales numbered with g = p, ¢ =1, ¢ = s with
r>p, s >, the conservation requirements (13),
(14) can always be satisficd as seen from the
tollowing. In this case (16), (17) reduce to

AH,+- 4 Ho+ AH, = o

8
a AH, + o AH, + A, =0, OV

Hence
AH, = — 70 4T,
a5 — ﬂ‘z (19)
ay,—a,
.AH5=—~ T AH,
g~ ap

Because of r > p, s > r and (9) onc obtains

ag—da, a;—dp

) ’
dy——a, ds—dy

Therefore, in consequence of (19) the change in
kinetic encrgy for the component with the
intermediate scale will be opposite of the
changes in kinetic energy of the two other
components. Accordingly a second result has
been obtained which may be formulated as
follows: No single of the three components
can in this case represent a source or a sink
for the both two remaining ones unless this
is represented by a scale intermediate between
the scales of the two other components.

It can also further be understood from

ay—a,
in connection with (18) that the numerical
value of the changes in kinetic energy will be
largest for the component with the inter-
mediate scale, and smallest for the one with
the smallest scale.

As an example consider

“s/“r = 4, ﬂ,-/dp =4

so that the corresponding ratio between the
different scales arc

]x/l,' = 2, l,-/lp = 2.

Tellus V (1953), 3

Then, according to (20),
AH,J AH, = 4.

Therefore, changes in kinetic energy on a
certain scale are distributed in the ratio 4/1 on
the components with the double and half scales,
respectively, if no other components are in-
volved in the energy transformations.

The above result about the nature of the
spectral changes for a two-dimensional flow
is casily extended to the case whete an arbi-
trary number of components arc engaged in
the encrgy transformations.

Writing (16), (17) as

N NP
TA4H, + ZAH, =0
a—1 7==N-1
N N-+1L-+P ) (ZI)
Ya,dH, + T a dH =0
q=1 ra= N1

and assuming
AH, So;9=1,2...N

{I.’.I
A, zo;r=N+1,...N+1+P, (22)

(21) may also be written
N N+1+P
SAH, + Y AH, =0
g1 ra= N1
N NA-14-P
a* T AH, + a** T AH, =0
=1 r==N<4-1

(23)

where now because of (9) and (22)
ay g a* é an
aAN+1 = a** = AN+ 1+ P+

Hence, consulting (9), the determinant of the
system (23) a** —a* > o.

The assumption (22) is therefore not pos-
sible.

A problem of considerable interest now pre-
sents itself in connection with the determination
of an upper limit to the flow of energy into
components having scales equal to or less than
a given one.

We introduce the notations b and f, de-
fined from

(Hptmo= by h= T hy,
g=1

whereas a, ¢*, and a** are defined from the
equations:

o0
Tagh,=aXh, (24)
g=1 g=1
N N
T a,H,=a* ¥ H, (25)
q=1 g=1
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S a,H, = a** T H, (26)
g=N+1-1 g=N+1

Egs. (23) may then be written formally as the
system. of cquations

N
TH,+
q=1 q=N+1

N [} oo
T H 4+ T Hy=aXh,
q=1 g=N-+1 q=1
From a formal solution of these equations one

obtains
N g a®

S H, = 2
'1:1 a7 % g ( 7)
H,, h, being quantities which are all positive
or zero, and a, increasing monotonically with
g, it follows from (24), (25), (26) that

oo
¥ H,:
q=N+-1

a=a (28)

ay é a* ij aN (29)

ANLy ié (l**. (30)
Accordingly -

This, in connection with the fact that the ratio
on the left-hand-side of (27) is positive or zcro
fixes a* and a** to assume values which are
related to the given value of aas
a* << a = a**.

(31)
For the ratio between the kinctic energy
contained within the range ¢ = N+1, and the
total energy, we get
o0 a— {l*
S Hyth = 32).
v ax* . g* (32)
The maximum value of this ratio is assumed
when a** = 4. This is, as seen from (31), (30),
only possible if
(33)

AN = d.
Before we proceed to the most intcresting
case with
(34)

we will discuss the first case in connection with
the problem of stability of the stationary mo-

tion %)
P= Y (35)

4, must not necessarily be the “cigen”-function

ANy - 4,

1) The stationarity follows from the fact that ¢ =y,
' aVEy

o.

satisfies eq. (5) with
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with the lowest “eigen”~valuc for the spherical
“eigen”-valueproblem, (8), but may be the
“cigen”-function with the lowest “cigen”’-valuc .
of the most general twodimensional “cigen”-
value problem
Vi + a9 = 0
4, = 0 at a boundary L,

yielding
Apeey S gy A > Q5 = 1o
J g=1-" g g q (36)
l ('lq*—)OO, (1*——}00.

When instead of (35),
o
Y=o = P T pag’on
g=2
we may write

® !/
ho=hy+ X H;
g=:2

(e
ah = ahy + X ahy

4=
yielding o
ahy + T ah;

q=2

@ = ~ (37)
by + 5 aghy
q==2
At any later time we have now according to
(32), when N is put equal to 1:
*

: —a
~
o

a
Hyh=—
- =

q -—

Now, with N

1, eqs. (28), (30) become

ay = a*
N
ay =2 a*k, (38)
Accordingly
x© a—d,
<~ — -
T Hyth= % . (39)
q=2 a —
o0

¥ a i} represents the sun of the squares of the
=2

vorticities of the initial disturbance. Let us as-

sume that !

~o

S ah; > o.

g2

Because of (36) it follows then necessarily that

also
(47)

(40)

le )

< g

¥ k- o.
a2

Using (40) and (41) in (37) one obtains

x>
a = a5, when T ahy - o.
g=t

Telius V' (1933), 3



Therefore it follows from (39) in connection
with (38)

oo o
Y H,:h—o when Tahy—o0. (42)
g=2 g=2

" This expresses the result that the considered
stationary motion ¢ = ¥, is stable in the sensc
~ that the total kinetic energy of the disturbance,

o0
T I, at all times is kept below a limit which

a2 _ .
goes to zero if the sum of the squares of the

" yorticities of the initial disturbance goes to zero.
Let us now on the other hand assume that

o
— 1.7
Thy=e.
q==2
" By concentrating this cnergy on sufficiently
-~ small scales it is possible because of (36) to make

[=¢]
T aghy > P,
=3

" where P may be chosen arbitrarily large, how-
ever small & 1s taken. Consulting the expression
: for ain (37) it is therefore understood that it is
always possible, however small ¢ is taken, to
make a arbitrarily large. Particularly o may
 be made cqual to or larger than a, which
~ accordingly to (38) is a sufficient condition
* for the possibility of getting a** = 4, and then
* also to obtain

oo
T Hy:h=r1,
g4
“however small values are taken for the initial
* kinetic cnergy of the disturbance.
. From this example it is secen how important
it is for the proof of stability that the disturbance
- be assumed to be small also as regards its
vorticities, and not only with regard to its
Cenergy, cven though it is still questionable
whether the stationary flow actually will behave
unstably if this is not the case.

The basic flow 4 ==, rcpresents the com-
ponent with the largest possible scale. The
stability of this flow may therefore also be
interpreted as follows: A necessary condition
for instability of a stationary motion for two-
dimensional flow is that the disturbances be
represented also by components having scales
which are larger than the scale of the-basic
flow. Thus interpreted, the necessary condi-
tion for instability becomes directly connected

with the more general results found for the
Tellus V (1953), 3
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changes in the spectral distribution of energy.
It is also further easily extended to flows
where the boundary condition is not ncces-
sarily u = const, as for instance a flow between
parallel walls. Taking this as granted, we may
apply the result to a linear flow represented

: : 27 )
by a strcamfunction const - cos —f;)—’; oXy<H.

The scale of this basic flow is determined from
4 7*

1% whercas
the scales of the components of the disturb-
ances are determined from the »eigen-valucs
47 4nig?
Ir (2 1)?
posed for the dependence upon the direction
along the walls. Thus the lincar flow con-
sidered will possibly be unstable only if

the corresponding »eigenr-value
g rag

when a wavelength L s sup-
g

We now proceed to the case (34). The upper
limit of the ratio in (32) is then reached when
@* and a** assume their smallest possible values,
which according to (29), (30) are 4, and ang1s
respectively. Accordingly

d—dy
S H,h= -
g= N AN 1
ay
a a a
= e . (44—)
AN4-g I d1 aN+1
AN+

To apply (44) to a scemingly important case,
assume

L

b= T hy,

a=1
The quantity a defined from (24) will now lay
between the limits

(43)

To ensure (34) it is therefore sufficient to assume
L < N 1. We may now write (44)

i !/\\

a, = a s ag.

[

B
i . d—dy ay —-dy
L& A O T S oSS,
; a o =

g N1 AN dy ANp1— @

i

h\®
e . <I“ Z‘\r,\ 1)3
Iy
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having introduced the scales defined in (15).
In the considered case, therefore, the fraction
of the total energy which can How to compo-
nents with scales equal to or less than a certain
scale I, is less than the squarc of the ratio
between the smallest scale [;, represented ini-
tially, and Ing.. If thercfore the initial flow
is represented by a typical large-scale velocity
field (L = relatively small), the flow of kinetic
energy into the smaller cddies will rapidly be-
come unimportant.

Obviously it is not nccessary to assume h,=o
for all ¢ > L to obtain this result. It is sufficient
only to have

a ::: ar,
and L sufficiently small to get the corresponding
field to be characterized as a “typical” large-

scale-field.

2. Twodimensional flow of a viscous fluid
With molecular friction the cquations gov-
erning the motion become

a
7‘: el Ve)’ - (V - Vs V)s + v vg v
[

v=—Vp xk
Eliminating V,y one obtains the vorticity
equation

AV .
Z: Y vV Vit v Vi

The changes per unit time of total kinetc
energy and total vorticity squared now become

d
4 [(prae-—v [ (29 dr
. i
4
d 72,02 2 4 .
7 (V2y)2 dF = v[f_V;'w- VipdE.
F
Making use of (8) and (9) onc may write these
equations as

d

7 (V)2 dF = — vAl[(V_;w)ﬁa’F; A= o. (46)
Y

d 2 2 P 2

5| (Viy)r=-- vBF/(V;?/’)“ dF;B>o0. (47)
I .

RAGNAR FJOGRTOFT

Here P
B() = 4, (48)
where the equality sign is to be taken only
when  is represented by a single component,
o=, This follows easily from the defining
equations for A and B

T a,Hy= AT H,
g1 g1
o [ )
2 . )
T a2H,=BX a,H,
g1 a=1

together with (9). From (46), (47), (48) one
now gets:

‘-’° o 1

Y Hy:TaHy=nlh: ah] = —

g1 g1 a

where

(49)

It is now easily demonstrated that eq. (27) now
has to be written

# << 1 according as B= A.

it N 1
S H,: T Hy= e,
q=N-+1 g=1

Since now the upper limit to this ratio decreases
. . a

with decreasing -, apart from the steady de-
f

crease in kinetic energy and vorticity because
of friction, a flow of cnergy to smaller scales
should so far (because 1> 1) have a smaller
chance to be realized than for the inviscid fluid,
for which afn = a << ajn.

3. Conclusion.

The naturc of the changes in the spcctral
distribution of kinetic energy in a twodimen-
sional flow differ radically from the changes
taking place when real turbulence devclops. It
is natural to believe that this discrepancy is due
to the fact that for the development of real
tarbulence it is essential to consifer the motion
in three dimensions in which case as is well
known no conservation requirement regarding
the square of vorticities has to be fulfilled.

The implications of (43) and its relation
to earlier works of the author and others
will be discussed more thoroughly in an
article to appear later.

Tellus V (]953), 3




