
385 

On a time-dependent motion of a rotating fluid 

By H. P. GREENSPAN AND L. N. HOWARD 
- 9  athematics Department, Massachusetts Institute of Technology 

(Received 27 May 1963) 

We consider here the manner in which the state of rigid rotation of a contained 
viscous fluid is established. It is found that the motion consists of three distinct 
phases, namely, the development of the Ekman layer, the inviscid fluid spin-up, 
and the viscous decay of residual oscillations. The Ekman layer plays the signi- 
ficant role in the transient process by inducing a small circulatory secondary 
flow. Low angular momentum fluid entering the layer from the geostrophic 
interior is replaced by fluid with greater angular momentum convected inward 
to conserve mass. The rotational velocity in the interior increases as a conse- 
quence of conservation of angular momentum, and the vorticity is increased 
through the stretching of vortex lines. The spin-up time is 

T = (L'/v!~)*. 

Boundary-layer theory is used to study the phenomenon in the case of general 
axially symmetric container configuration and explicit formulas are deduced 
which exhibit the effect of geometry in spin-up. The special case of cylindrical 
side walls is also investigated by this method. The results of very simple experi- 
ments confirm the theoretical predictions. 

1. Introduction 
We consider here the manner in which the simplest state of rotary fluid motion, 

that of solid body rotation, is established. The specific problem investigated is 
the following: a closed axisymmetric container filled with a viscous incompressible 
fluid rotates with constant angular velocity about its (fixed) axis so that the 
interior motion is steady and rigid. The magnitude of the angular velocity is then 
impulsively changed by a small amount. We intend to describe in detail the 
ensuing transient motion, showing thereby that in the usual case the 'spin-up' 
time is (L2/v!2)*, where L is a characteristic dimension, parallel to the axis, of 
the container and v is the kinematic viscosity. 

Although the initial and final states of rigid rotation are simple, the transition 
is non-trivial because it involves the time dependent motion of a coupled dif- 
fusive and dispersive mechanical system. The motion, in fact, consists of three 
distinct phases; namely, the formation of the Ekman boundary layer, secondary 
flow and fluid spin-up, and finally the viscous decay of small residual modal 
oscillations. 
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2. Formulation 
The equations describing the time dependent motion of a viscous incompres- 

sible fluid, in a co-ordinate system rotating about the z-axis with constant 
angular velocity S Z ,  are 

0 . q  = 0. 

The boundary and initial conditions corresponding to an impulsive change E Q  
in the magnitude of the angular velocity are: q = 0 for t 6 0, and q = cSZf x r 
on the solid boundaries. If the following dimensionless variables (starred) 

r = Lr,, t = SZ-It,, q = ELSZq,, P/p = $SZ~(X~+~~)+EL~SZ~P, , ,  

are introduced, the equations become (upon dropping the asterisks) 

4 + ~ q . V q + 2 f x q + V P =  at R-lAq, V . q  = 0, 

where R = SZL2v-1. R and 6 may be described as Taylor and Rossby numbers, 
respectively. We consider only the case of small E ,  and drop the non-linear terms, 
thereby obtaining the following linear initial-boundary value problem 

3 + 2 k x q + V P =  at R-lAq, 

v - q  = 0 

with q = 0 for t < 0 and q = f x r on all solid boundaries. 

ordinates ( r ,  8, x) and a stream function $ defined by the relationship 
For problems with axial symmetry it is convenient to use cylindrical co- 

q = - v x ($(r, x, t )  0) + V ( T ,  z, t )  0. 
On eliminating p ,  equations (2.2) and (2.3) then reduce to 

where 

The initial and boundary conditions are @ = v = 0 for t < 0, and rc/. = a@@ = 0, 
1) = r on the container boundary. 

3. Limiting cases 
This problem is very easily solved if the container is an infinite circular cylinder 

(of radius L) rotating about its axis. In  this case $ = 0, v = a(r, t )  and r-l(rw)r 
satisfies the ordinary diffusion equation. The mechanism of spin-up is viscous 
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diffusion of vorticity, and the new steady rotation is essentially achieved in a 
dimensionless time of order €2, or a dimensional time of order L2v-1. As we shall 
see, this case is not typical because in almost all cases of physical interest, an 
altogether different physical mechanism is dominant. 

In  the remainder of this section we shall consider the opposite extreme (which 
i s  typical), that of two parallel coaxial infinite disks whose separation distance 
is 2L; thus in dimensionless form the fluid is contained in ( z (  < 1. For this special 
case the radial dependence may be eliminated entirely through the substitutions 

which are also consistent with the prescribed boundary conditions. (The reduc- 
tion to two independent variables leads to a very significant simplification in 
the details of analysis.) The resultant boundary-value problem 

(3.2) 

(3.3) 

V = 1, $ = a$pz = 0 for z = & 1 and V = $ = 0 for t G 0, can be ‘solved’ in 
a straightforward manner. Use of the Laplace transform 

converts this system to a pair of ordinary differential equations with constant 
coefficients, and the solution for the transform functions is 

- iR 
$ = x{E(m,)  (sinhm,z-zsinhm,) -E(m,) (sinhm,z-zsinhm,)}, (3.4) 

(3.6) 

on the 
assumption that R is large; this seems to be the case of greatest physical (and 
mathematical) interest. If R is small, the new state of rigid rotation is attained 
principally by viscous diffusion of vorticity in a dimensionless time of order R;  
on the other hand if R is large, the important physical mechanism is different, 
and rigid rotation is essentially restored in a much shorter time, of order R*. 

The singularities of the functions 3 and V in the complex p plane play a 
crucial role, and the first step must be to  locate them. Although m, and m2 have 
branch points at p = 2 2i, it is not difficult to see that these are not branch points 
of the functions $ and V ,  which are in fact meromorphic functions of p .  Although 
f 2i are zeros of the denominator A, they are also of the numerators and are 

where m, = R*(p  + Pi)*, m2 = Ra(p  - 2i)*, 

E(m) = m cosh m - sinh m, 

A = m~E(m,)coshm,+m~E(m,) coshm,. 

We shall investigate the inverse transforms of the functions $ and 
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actually regular points of 3 and V .  The only singularities are simple poles, located 
at the other zeros of A, and at p = 0. In  the case of large R these other zeros of 
A can be readily located approximately; there is a single real one at 

p = -R-!T, 
and two infinite sequences a t  

p = 2i - 6; R-l, 

and the tn are the positive roots of tan.$ = .$. The Laplace inversion integrals 
can now be evaluated by a residue calculation; this gives a representation of the 
solution as a sum of the final steady state, arising from the pole a t p  = 0, a steadily 
decaying normal mode (from (3.7)) which has essentially disappeared in a time 
of order R3, and an infinite number of decaying oscillatory normal modes (from 
(3.8)). These last oscillate with twice the frequency of rotation, and may be 
interpreted as inertial oscillations excited by the initial impulse; the steadily 
decaying mode is essentially the Ekman boundary layer, as will be seen. A large 
number (of the order Rg) of these inertial oscillations persist a t  a significant 
fraction of their initial amplitudes to times of the order of R, and thus outlast 
the steadily decaying mode-nevertheless, from an overall point of view they 
are both individually and collectively unimportant. The reason for this is that 
their initial amplitudes are all very small, of the order of R-1, as the residue 
calculation shows. The details of this residue calculation are simple but some- 
what laborious and will not be given here; the results are 

z 
q5 = i-R-:exp (-R*/t) 9 (1  - i) z - -  exp [ - R$(1 +i) (1 - [ z l ) ] )  

1x1 

B = l-exp(-R*/t[l-exp{-R*(l-lzl)}cosR4(1- IzI)] 

cos Cn z 
n Cost, 

+ R-l sin 2t C (- - 1) exp ( - CR-lt) . (3.10) 

Here terms of order R-4 compared with those written down have been omitted; 
it should also be remarked that terms in the sums with tn > R are not accurately 
given by this analysis. These expressions are useful, in the sense that the sums 
converge rapidly, only for times of order R or larger, when they exhibit the final 
decay of the oscillations. However, we see from (3.9) and (3.10) that the inertial 
oscillations are individually of small amplitude; that they are collectively so 
will be clear from a different representation, valid for t < R, which we shall derive 
presently. This can be seen, roughly, directly from the modal representation as 
follows. We look at  the solution on the time scale of the steadily decaying mode 
by setting t = Rb. Since 

and sec2 Cn = 1 +ti, we see that except for the first few terms, which are anyway 
of order R-l, the terms of the infinite sum in (3.10) are bounded by 

ta K exp ( - 6; R-47) ( K  N- 1).  



Time-dependent motion of a rotating $uid 389 

Since fl, N (n + 4) r, the sum can be estimated by 

thus for r of order unity or larger, the inertial oscillations altogether make 
a contribution no larger than O(R-*) to the right-hand side of (3.10). The inertial 
oscillations are of comparable importance to the other terms only during the 
first few revolutions. Similar considerations apply to (3.9). 

A more useful approximate representation of the solution, valid for 1arge”R 
and for t < R can be developed as follows. The Laplace inversion contour C is 
chosen so that it approaches co in the directions argp = & a, (+T < a < n; say 
a = &) thereby ensuring rapid convergence of the integrals at  co, and so that it 
passes to the right of the poles along the segment (a - 2i, a + Bi), never penetrating 
more than a distance a into the right half-plane, but remaining at  least this 
distance away from f 2i. While the approximation to be derived can be justified 
for any t just short of O(R) ,  it is perhaps sufficient, for definiteness, to take 
t < 0(R1-&) with some positive number 8. In  this case we may take a = R-(l-s), 
and we then see that leptl is bounded along the entire contour (approaching 0 
exponentially for any fixed t > 0 as p -+ co on the contour), and m, and m2 have 
large positive real parts (with an appropriate choice of the square roots) along C. 
The following approximations are then valid, with exponentially small errors, 

along C l z  
2 1.21 

cosh(m,z) = +exp(milzl), sinh(m,z) =--exp(milzl), 
I ,  

E(mi) = +(mi- 1) emi. 

Using these in (3.5) we find, for example, 
- 1  1 
V 2: - +- [ml(m,- 1) [exp{ -ml(l - l z l ) } -  11 

P D(P)  
+m,(m, - 1) (exp { -mz(l - IzI)} - I)], (3.11) 

where D ( p )  = R-l{m?(m, - 1) +m:(m, - l)} 
= [m,(m,- l)+m,(m,- l)]p+2i(mz-m,),  

as an approximation valid along C. It is easy to see that if this is introduced 
into the Laplace inversion integral we obtain an approximation to V valid for 
any fixed t on 0 < t < R1-&, and uniformly for t on (at least) any closed sub- 
interval thereof. The motivation for this approximation (and another to follow) 
is the desire to obtain an integral which can be readily evaluated, but in which 
the character and location of the important singularities at 0 and R-9 is pre- 
served. Note that with this approximation the sequences of poles corresponding 
to the inertial oscillations are replaced by the branch cuts extending hori- 
zontally to the left from f 2i, introduced to make m, and m2 single-valued. 

With some algebraic manipulation, the transform functions assume the form 
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The solutions thus break up into the sum of ‘interior’ parts V,, $ I ,  and ‘boundary- 
layer’ parts V,, $,, which are respectively, the first and second terms of the 
preceding equations. It will be shown that the boundary-layer terms are negli- 
gibly small at distances R-* from the walls at z = _+ 1 during the time 
interval of spin-up. Evidently the interior angular and radial velocities are 
independent of the vertical co-ordinate z, whereas the vertical component is 
linearly dependent on this variable. The interior motion is, in a sense, columnar, 
a fact related to the Taylor-Proudman theorem on motion in a steady rotating 
fluid. 

We consider first the determination of the time-dependent interior motion, 
in particular the function 

(3.14) 

where the choice of contour C has already been discussed. The complexity of the 
integrand denominator precludes an exact integration involving known func- 
tions. Accordingly, an approximation is now developed, based on the fact that 
R is large, which retains the type and location of the important singularities in 
the complex p plane, which has both the correct asymptotic and local (small p )  
behaviour and which, furthermore, is readily integrable. 

The singularities of the integrand in (3.14) are located a t  the zeros of the 
denominator; p = 0,  - R-3, t- 2i + (4R)-l. In addition there are branch points 
at  & 2i .  The small real positive value on the location of the last two poles men- 
tioned is introduced by the nature of the asymptotic estimates and is not a 
property of the original transform function. Although the long-time behaviour, 
t > R, is governed by those singularities located furthest to the right in the 
complex plane, the residue contribution from the ‘apparent’ simple poles at  
& Z i +  (4R)-l is indeed small, O(R-lexptR-l) during spin-up, i.e. for t < R. 
The exact position of these poles to within O(B-l) is then of little importance to 
the phenomenon under study. As a matter of fact, it is the two simple poles at  
the origin and at - R-4 which by virtue of their close proximity produce a 
large residue coptribution and thereby constitute the major part of the solution 
in the significant time interval. Furthermore, we have already shown that the 
singularity a t  the origin truly governs the Iarge-time behaviour of the original 
transform functions and this provides additional justification of the procedure 
to follow. 

The denominator of the integrand in equation (3.14) can be rewritten as 

p[R&(p2+4)p+i ( (p -2 i )&- (p+2i )* ) ]  =pR*(p2+4)*(p+R-i) ( l+B(p)) ,  

where 
i[(p - 2 4 9  - ( p  + 2i)4] - (p2+ 4)) B(p) = 

R*(p2 + 4 ) i  ( p  + R-4) 
(3.15) 

The magnitude of the complex function B(p) is small along the entire integration 
contour; the factor (1 + B(p))-l which then appears in the integrand may be 
expanded in powers of B(p) but only the first term of the resultant series is 
retained. (In this manner B is effectively replaced by zero.) This procedure 
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retains both type and location of the singularities at  the origin and - R-4 and 
the 'extraneous' poles at  f 2i + +R-1 are replaced by stronger branch points 
at t. 2i. The final approximation is then in good agreement with the original 
transform function along the integration contour as well as elsewhere in the 
complex plane. The leading terms of the asymptotic expansions for large p ,  
the location of the significant singularities and also the small p behaviour are all 
essentially the same. The method can then be expected to give a reasonably 
correct description for all t, especially since the residue calculation (3.9) and (3.10) 
has shown that all the other singularities do not contribute significantly com- 
pared to the simple pole at  the origin for t > R. However, a t  present no com- 
pletely rigorous justification of procedure has been attempted. Our intent has 
been deliberately to sacrifice precision accuracy in order to attain easily a 
broader but more qualitative description of the transient state. 

The final reduction is therefore 

the corresponding equation for #,being 

(3.16) 

(3.17) 

Note that these approximations retain the geostrophic balance of the interior motion. 

V, = -29[(2i)-herf(2it)*-(2i- R-t)-*e-tR-'erf((2i-R-f)Bt$)], (3.18) 

(3.19) 

The results of the integration (Foster & Campbell 1948, p. 546) are 

# I  = z R - 4 9 [ ( 2 i -  R-*)-*e-lR-*erf ((2i-R-*)4tg)],  

erfz = - e-x2dx. where 

A clearer understanding of the preceding expressions can be gained by neglecting 
R-* in the term (2i  - R-*)* in which case the formulas reduce to 

774 ' s ;  0 

(3.20) 

where S(z) is the Fresnel integral 

C(z) + iS(z) = (2nt)-4 e"dt. 1: 
We have already remarked upon the fact that the ' correct ' approximations, 

(3.18) and (3.19), satisfy the geostrophic equation &+2#, = 0 in the interior, 
thus verifying the essentially inviscid character of the interior flow. The further 
approximations (3.20) differ from the correct expressions only by small oscil- 
latory terms which are, however, necessary for the exact geostrophic balance. 

For large time, it follows from (3.18) and (3.19) that 

vI - 1 -e-lR-* +Oft-$ ezit), 

$ I  - 42 R-4 e-tR-* + zR-BO(t-4 @it). 
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It is not difficult to determine more accurate representations, but it is already 
clear from all of these results that the ‘spin-up time’ T (the time required for 
the interior flow to approach the final state of rigid rotation within e-l) is RB in 
dimensionless units. Dimensionally 

T = ( L 2 / V Q ) k  ( 3 . 2 1 )  

The boundary-layer contributions are determined using the same basic 
methods. With 5 = R*(1- [ X I ) ,  we find that 

x erfc (+&* - (2i - R-$)* t 4 )  - exp ( ( 2 i  - R-t)*)erfc ( $ 9 - 4  + (2 i  - R-*)* t4))l). 
(3 .22)  

The function $B correctly matches with the interior solution $ I  so that q5 = 0 
on the boundaries x = k 1. A simiIar but more complicated formula for V, which 
also joins properly with its interior solution can be determined with some addi- 
tional effort, but in the interests of brevity we shall omit this calculation. (It is 
quite easy, however, to obtain an approximation for VB which although entirely 
adequate fails to match properly by a small amount. It should also be noted 
that the foregoing approximation ( 3 . 2 2 )  is not entirely accurate either. The 
approximation does not properly account for the small interior radial flow; it is 
the contribution to the radial component arising from the mass influx into the 
Ekman layer which is correctly described by the formula.) 

It is of some interest to examine this boundary layer solution more closely 
for large t. Use of the asymptotic expansion of the complementary error func- 
tion yields 

(exp - [R-gt + R*( 1 - I z ~ ) ] )  (cos R*( 1 - 1 21) + sin R*( 1 - j x ]  )) 

R 
- i ( ~ t ) - h  cos 2t exp [ - (1 - l x ] ) z ] )  . ( 3 . 2 3 )  

The last term represents the inertial oscillations, small in amplitude, but 
persistent. It also illustrates the fact that at times of the order of R, viscous 
diffusion has so thickened the two boundary layers that they cover the whole 
flow domain. On the other hand, the first part represents the Ekman boundary 
layers, which are at all times restricted to a distance of order R-4 from the 
boundaries, and which decay in a time of order RS though they are the dominant 
feature of the boundary flow during spin-up. At  a time of the order of R4 the 
boundary-layer thickness is in all respects still small O(R-4) ; nevertheless, the 
final rigid rotation is essentially already established throughout the entire fluid. 
Rigid rotation is thus not established by viscous diffusion of vorticity. 

4. Discussion 
We can now give a complete physical description of the transient approach 

to rigid rotation from the initial phases through spin-up until the final stages of 
motion. For definiteness we suppose the angular velocity has been increased in 
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magnitude. The initial impulsive change in the angular velocity immediately 
produces a Rayleigh shear layer at  each disk, which then starts to thicken by 
viscous diffusion. Within a few revolutions, the effects of rotation have made 
themselves felt, and a quasi-steady Ekman boundary layer develops. In addition 
there are inertial oscillations at twice the rotation frequency, but of very small 
amplitude. The Ekman layer is characterized by an outward radial secondary 
flow of unit dimensionless magnitude due to centrifugal action, and this transport 
is balanced by a small flux into the boundary layer from the essentially geo- 
strophic interior. However, in the presence of the other disk this vertical flow 
into the boundary layer can be maintained only through the establishment of 
an equally small radially inward flow in the interior. In  other words the con- 
vergence of fluid into the Ekman layer, together with the constraints of the 
geometrical configuration, produce a small radial convection in the interior in 
order to conserve mass. 

Now, however, the interior flow being essentially inviscid, the angular momen- 
tum of a ring of fluid moving inward to replace the fluid entering the Ekman layer 
is conserved, and thus the ring must acquire an increased azimuthal velocity. 
The Ekman layer acts as a sink for low angular momentum fluid in the interior, 
this fluid being replaced by higher angular momentum fluid drawn from larger 
radii. As the conditions in the interior approach the values appropriate to the 
final steady state the Ekman layer decays. This happens in a dimensionless time 
of order Ri. In  the meantime, the small oscillations set up by the initial impulse 
have been modified very slightly by viscosity in the interior, and more markedly 
near the boundaries. They persist until they are finally destroyed by viscosity 
a t  a dimensionless time of the order of R. At this late time, the viscous boundary 
layers at  each wall, z = k 1, have been so extended by the diffusion process 
alone that they overlap and there is no longer any interior inviscid domain. 
Viscous forces are then important at all interior positions and act to eliminate 
the residual modal oscillations. Thus the transient phenomenon consists of three 
distinct phases; the development of viscous boundary layers for t N 1; spin-up, 
t N R*; viscous decay of residual effects, t N R. 

Given this basic physical picture, one can of course derive the characteristic 
spin-up time T by relatively simple physical arguments, without any reference 
to error functions of complex argument or the other analytical complications 
of $3 .  The essential point is to recognize that the Ekman layer acts as a sink (or 
source), of strength proportional to R-* times the difference in the (local) 
angular velocities of the boundary and the interior flow. This equivalence was 
deduced by Charney & Eliassen (1949), and they gave the characteristic time T 
in a meteorological context. (The accumulation of tea leaves in the centre of a 
stirred cup is a problem now frequently described qualitatively as an illustration 
of secondary flow.) Bondi & Lyttleton (1948) in a discussion of the secular 
retardation of the earth’s core determined that T is the time-lag of the angular 
velocity near the axis of the core behind the angular velocity possessed by the 
shell at any instant. Their analysis, based on boundary-layer theory, is closely 
related to the more general theory presented in subsequent sections. 

With the appropriate sink strength for the Ekman layer, the description of 
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the mechanism of increase in angular momentum given above readily yields the 
characteristic spin-up time simply by rough estimates of the orders of magnitude 
of the relevant quantities. If  V = EQL is the characteristic transport velocity 
within the Ekman layer of thickness 6 = (v/Q)*, then mass conservation requires 
mass influx into the viscous layer from the geostrophic interior with a velocity 
of magnitude 

w1 = ZV6/L. 

Here L is the characteristic vertical length of the container so that wI is also the 
typical transport velocity of the interior circulation. An annular ring of interior 
fluid of mass M and angular momentum MLzQ acquires an increased angular 
velocity (1 + E )  i2 by moving radially inward a distance &L. Angular momentum 
is conserved because the interior flow is inviscid. The time required for the fluid 
ring to traverse this distance and thus to acquire the angular velocity of the new 
steady state is 

Another approach, which also clarifies a different aspect of the physical pic- 
ture, is to consider the vorticity. With our dimensionless variables, the curl of 
the momentum equation (linearized) is a/at(V x q) - 2(aq/az) = 0; the time- 
dependent form of the Taylor-Proudman theorem. The vertical velocity in- 
duced by the Ekman convergence being of order R-4 and of opposite signs at 
the two boundaries, its vertical gradient is also of order R-*, and thus the 
(relative) vertical vorticity will be increased (by 'stretching') from zero to its 
final value of 2 in a dimensionless time of order R:. 

The calculation of the essential quantitative features of the flow can also be 
done more easily, given the basic physical picture as a guide, by the methods of 
boundary-layer theory. Much of this has been done for essentially the present 
case by Bondi & Lyttleton (1948) and also by Stern (1960) in connexion with his 
study of Ekman instabilities; the complete detailed solution, in the case of the 
parallel disk configuration, provides us with a verification of the basic physical 
picture and a convincing mathematical justification for the use of boundary- 
layer methods. These methods appear to be the only feasible ones to use in the 
general case of an axisymmetric container of arbitrary shape which is taken up 
in the next section. In  addition, the special case details the role played by the 
inertial oscillations and the manner in which all three time scales, the rotation 
period, the viscous decay time, and their geometric mean T, enter into the 
problem ; these finer details are suppressed by boundary-layer theory. 

In a case of practical interest, L = 4cm, i2 = 2007rsec-l; the following table 
illustrates the characteristic times involved. The difference between the viscous 
diffusion time and the spin-up time is rather striking. 

V 

Material (cmz sec-l) (set) (set) R = .QL2v-1 

Lubricating oil (40°C) 1.00 16 0.16 1.0 x 104 
Water 0.0 1 1,600 1.60 1.0 x 106 
Mercury 0.001 16,000 5.05 1.0 x 107 
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5. Containers of arbitrary shape 
The detailed discussion of the case of parallel infinit,e disks has verified the 

boundary-layer character of the motion, and has shown that the essential 
features of interest in the time-dependence occur on a time scale of order RiQ-l. 
We now use these results as a guide to study the case of an arbitrary axisymmetric 
container, using the methods of singular perturbation theory. We introduce 
a new time variable 7 = R-gt, and set $ = R-gx in the equations (2.4) and (2 .5 ) ,  
thus obtaining 

We now set v = vI + v,, x = xI + xB,  where the boundary layer parts vB and 
x B  are to be transcendentally small away from the boundary. For the interior 
flow we then get, to lowest order, 

(5 .3 )  

(5.4) 

and thus (5.5) 

( 5 . 6 )  

This gives the interior flow in terms of the (as yet) arbitrary functions vI and 
x! of r and r .  

To investigate the boundary layers, we suppose the fluid is contained in 
- f ( r )  < z 6 g(r ) .  For the lower boundary layer we introduce new variables p 
and 5 bY 

and for the upper boundary layer we take 

Thus in both cases, p is a normal co-ordinate, scaled by R-8, and p is r ,  on the 
boundary. It is then readily verified that the operator 2, which is essentially 
the Laplacian, is R(a2/a[2) + O(Rg),  while a t  the lower boundary, 

at  the upper, 
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The boundary-layer equations thus become 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

These are to be solved with vB = xB = 0 for <+ 00 and, on p = 0, v,+v, = p, 
xB + xZ = 0, a X B p c  = o (since axz/a[ = O ( R - ~ ) ) .  

Considering first the lower boundary layer, we have 

__- 2(1 +f’”-4xB = 0 and __ a3xB + 2( 1 +f’”-$ vB = 0; ac ac3 
ac4 

a4vB 
__ + 4( 1 +f”)-’vB = 0. eliminating x,, 

Using the boundary conditions V,(CO) = 0, ~ ~ ( 0 )  = p-vz ,  and a%B/a<’[l, = 0, it 
follows that 

vB = (p  - vz(p, 7 ) )  exp { - 511 +f’Z)-&) eos <( 1 +ff2)-$. (5.11) 

The same formula, withfreplaced by g, applies a t  the upper boundary. From the 
first integrals of (5.7) and (5.9) we then find 

on z = -f: xB(0) = - & ( I  +f’’)& (p -vz) ,  (5.12) 

and, on z = g:  xB(0)  = +(1+g’2)t(p-vI).  (5.13) 

Finally, using x B + x Z  = 0 on the boundaries we obtain from (5.12), (5.13) 
and (5.6) 

M p )  W) + x”,p, 7) = +( 1 +f’”% (p  - ? I I ) ,  (5.14) 

Thus 

so that 

or 

,41so, 

( [ - (1 +f’”&+ (1 +g’2)$ 

W f  + 9 )  
vz(r ,  t )  = r 1 - exp (5.17) 
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Remarks 

is simply replaced by 
(a )  If the motion of the boundary is v = rh(7) instead of v = r7 equation (5.16) 

The analysis of Bondi & Lyttleton (1948) on the secular retardation of the 
earth’s core is a special case of the preceding formula for which h(t)  = 1 -Kt,  
K < 1. Then principal interest was in the steady rBgime that results after the 
initial transients decay. In  this case the motion consists of steady time lag (the 
spin-up time) of the interior angular velocity behind that of the shell, which is 
slowing down at a uniform but extremely small rate. 

Although the boundary-layer analysis allows the function vI to satisfy the 
correct initial condition, this is not the case for the stream function $I .  Here the 
resultant or ‘initial’ value of $ I  corresponds to the state of motion just after 
the establishment of the Ekman layer. This is not surprising inasmuch as the 
entire boundary analysis is valid only in the interval 1 < t < R, i.e. just after 
the Ekman layer forms until the viscous boundary layers meet by diffusion 
processes alone. 

(b)  If part of the boundary is vertical, a different kind of boundary layer, to 
be described in 5 6, is formed on this part. However, after a time of the order of 
RgQ-1 such boundary layers can have influenced only a distance from the boun- 
dary of order (vRtQ-1)B = R-aL, and thus the interior flow is still given by (5.17). 
It is clear from (5.17) that if the typical time scale is to be RBSZ-l, we should 
choose L to make f and g of order 1, i.e. L should be the characteristic vertical 
dimension of the container. If the horizontal dimension is D, then diffusion from 
vertical boundaries becomes important when LR-k = D ,  i.e. if the container is 
sufficiently elongated in the vertical direction that LID 2 Ra. Then the descrip- 
tion of the motion we have given must be modified; the spin-up begins to resemble 
more closely the purely diffusive mechanism illustrated by an infinite vertical 
cylinder. 

(c) If the upper and lower parts of the container have different angular 
velocities, say v = Ar on z = - f and v = Br on x = g, the solution can be found 
by essentially the same methods, and is 

vI = r A(1 +f’”a+ B(l +g’2)* (1-exp[- 
(1 + f ’2)k + (1 + g’2)k 
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The final steady state is no longer a rigid rotation, but we may still speak of the 
spin-up time as the time required to approach the final state within e-1; in general 
it  is still of order R*SZ-l. The only situation in which this is not true occurs for 
f ( r )  = g(r)  and A = -B;  the angular velocity of one-half of the container is 
increased but that of the other half (the mirror image) is decreased a like amount. 
The effects of each thus cancel to a large extent, and the original distribution of 
angular momentum is also appropriate for the final steady state. Since no 
interior radial motion is required, only a vertical velocity is induced to satisfy 
the requirement of mass conservation. However, this is set up during the forma- 
tion of the Ekman layers, in the time SZ2-I. 

(d )  If the container is open at the top and the fluid held in it by gravity, the 
treatment at the upper surface must of course be modified. There are two effects 
of having such a free surface: first, the viscous effects at  the top surface are 
removed, to lowest order, and we may take the interior flow as extending to the 
surface (in higher order, boundary-layer corrections appear, of course, and lowest 
order viscous effects would be present if there should be a significant wind-stress 
on the free surface). Secondly, the change in shape of the free surface between 
the initial and final parabolas induces a radial motion in addition to that pro- 
duced by the Ekman layer on the bottom, and this modifies the spin-up process. 
The importance of this effect, relative to that of the convergent Ekman layer, is 
measured by the Froude number F = SZ2D2/gL based on the characteristic velocity 
SZD of the basic rotation and the characteristic depth L. If F is very small, the 
upper boundary may be taken to be essentially z = 0, and the upper boundary 
condition xI = 0. Thus x! = 0, and the solution to (5.14) is 

vI(r ,  7 )  = r [ 1 -exp ( - (1 ~- +;”F7)] (5 .22)  

While it is not difficult to formulate the appropriate upper boundary con- 
ditions for arbitrary F ,  it is here perhaps sufficient to state the first-order 
correction for small F. Writing v1 = via) + Fvi’) + . . . , and assuming that the total 
volume of fluid corresponds to the free surface being a t  x = 0 for F = 0 (hence 
approximately at z = $F(L/B)2  [r2 - &(D/L)2] for F > 0) we find that via) is given 
by the right-hand side of (5 .22 ) ,  while vp) is to be obtained from: 

(m(r) = f -1(1 +f’”i) 

with vi1) = 0 at  T = 0. For example, iff = 1, m(r) = 1 and (5.23) gives 

~$1) = - @7 e-7. (5.24) 

This effect of the free surface on the spin-up was studied, in the constant 
depth case, by Stern (1960). 
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6. Vertical side walls 
The boundary layers formed on vertical side walls during the spin-up process 

have no important effect on the main features of the flow, but nevertheless are 
both mathematically and physically rather interesting. However, a reasonably 
complete analysis of such boundary layers is rather complicated and we give 
here only a description of the results in the case of a cylindrical container 
IzI < 1, r < ro (ro = D / L  = O(1)). The details of this and more general cases will 
be presented elsewhere. 

In  the case of the cylindrical container, the side boundary layer has a double 
structure rather similar to that of the vertical boundary layers in steady rotating 
flow which have been studied previously: cf. Proudman (1956), Stewartson 
(1958), Robinson (1960). There is an outer boundary layer of thickness R-* and 
an inner one of thickness R-4, each of which is terminated at the top and bottom 
by an Ekman layer. We introduce the variables p and 7 defined by 

r = ro + R-fp = ro + R-*q, (6.1) 

and retain the variable 5 = R&(z+ 1) appropriate to the lower Ekman layer, 
leaving the upper Ekman layer out of consideration because of the symmetry. 
We describe the flow separately in each of the following 6 domains: D,: r < r,,, 
IzI < 1 (the interior); D,: 1zI < 1 ,p  = O(1) (the part ofthe R-isidelayerwhichis 
interior with respect to the Ekman layer); D,: 1x1 < 1, 7 = O(1); D,: r < ro, 
5 = O(1); D24: p = O(l) ,  6 = O(1); D,,: 7 = O(l ) ,  6 = O(1). For each of these 
domains we obtain asymptotic expansions (for R + 00) in terms of the variables 
appropriate to that domain, and the asymptotic expansions for adjacent domains 
are 'matched', in the sense of systematic boundary-layer theory (cf. for example, 
Kaplun 1957). The results are 

in D,: 
(6.2) I v - r (  1 - ec7) + R-f [ $ r ~  e-.] + . . . , 

w N r + r  e-T (e-c cos f;- 1) + 22-4 [PrT e-7 + e-5 (...)I + .. ., 
x - +r e-T [ 1 - e-5 (cos 6 + sin c)] 

+ R-i [sr  ecT (1  - 7 )  - &[re+ + e-5 (. . .)] + . . . ; 
v - ro[ 1 - e+ erf ( - + p ~ - * ) ]  + R-f {p( 1 - e-.) 

- +p e-7 erfc ( - +p~-&) }  + . . . , 
x - - Qzro ecT erf ( - +p~-&)  - R-i+zp e-7[ 1 + 4 erfc ( - + p ~ - * ) ]  + . . . ; 
v - ro - r o  e-7 erf ( - +p~-+ )  (1 - e-5 cos 5) 

+ R - ~ [ p - p e - ' ( l + ~ e r f c ( - ~ p ~ - ~ ) ( l - e - ~ c o s ~ ) j + . . . ,  

x - +ro e-7 erf ( - + p d )  11 - e-5 (cos 6 + sin 

+ i R - 2 ~  e-r [ 1 + + erfc ( - + p ~ - * ) ]  (1 - e-T (cos 6 + sin 5))  + . . . ; 
v N ro{l+ R+ e-7 (m-1-4 7 

+ R-fe' (ET)-*[ -&r1q3+g(7, z )]}+ ..., 

x N -1zre-7 , + R-* [szr ec7 (T - l)] + . . . ; 

1 (6.3) 

in D,: 

J 
(6.4) i 

in D,: 

(6.5) 

(6.6) 

I in D2,: 

in D,: 

x N +R-~i*q-,p--~(rjr7)-& C-l-2 1 2  7 -f (7,z)l+ - * * ,  
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in B2,: v N ro + R*r0 (777)-4 (1 - e-5 cos 6) \ 

- R-f[&3r0 e-7 77-47-8 - ro e+ (777)-* g(7 ,  - 1 )I (1 - e-5 cos 6) + . . . , i x N *ro e+ (777)-4 [ - R-i'q - R-f( - &737-1+ g(7, - I))] 

x [l - e-5 (cos c+ sin c)] + . . . . 
(6.7) 

Remarks 

(a)  In  addition to the above six regions there is a small square in the corner, 
DZ2: 6 = O(l) ,  r - r o  = O(R-t), in which the asymptotic expansion takes a still 
different form. In  this region the bottom boundary layer finally ceases to  be an 
Ekman layer, i.e. the lowest order equations are no longer the ordinary Ekman- 
layer equations as they are in 023, DZ4, and D,, and these lowest order equations 
in fact give a problem which is a sixth-order partial differential equation in both 
horizontal and vertical variables. The lowest approximation in D, also gives 
true partial differential equations (in the space variables) but only of second order 
in x and a simple representation of the solutions is available in terms of Fourier 
series (this is the source of the functionsf and g in (6.6)); simple representations 
of the solutions in B,, do not seem to be so readily accessible. In  all of the other 
boundary-layer regions one of the space variables appears only parametrically, 
though one must deal with partial differential equations in T and p in D,; these 
can, however, be readily handled with the Laplace transform. 

(b )  Mathematically, one may describe the occurrence of the double structure 
of the side boundary layer as due to the fact that the R-f layer solutions cannot 
satisfy all the boundary conditions on the side wall, and the R-* layer solutions 
(which can) are not capable of being matched to the interior geostrophic flow. 
Physically, one anticipates the R-k layer because viscous diffusion acting for a 
time of order 1 (in 7) on W, more or less as in the case of the infinite cylinder, will 
have affected a region of this thickness near the side wall. However, such a layer 
is too thick to provide sufficient viscous stresses on the vertical motion along the 
wall (if there were no R-4 layer) to balance the strong centrifugal effects driving 
the secondary flow. 

It is perhaps of interest to notice a difference between the R-* layer considered 
here and that investigated by Stewartson (1960), who examined the steady flow 
in a cylinder whose plane and curved surfaces rotate at slightly different angular 
velocities. The R-f layers are qualitatively similar in the two cases, but the 
modifications introduced in the R-* layer are smaller in our case than they are 
in Stewartson's by a factor of O(R-1%). This is because in our case the radial 
velocity, as well as the azimuthal velocity, happens to be reduced to zero in the 
R-4 layer, and only the vertical velocity remains to be adjusted in the R-4 layer. 
This bonus with respect to boundary conditions occurs when the bottom and 
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side walls have the same angular velocity, essentially because the Ekman layer 
communicates the motion of the bottom to the fluid above it through the 
relation v + 231 = r ,  applicable at  the top of the Ekman layer, so that if v = r on 
the side walls as well as on the bottom, x = 0 there also. 

(c) One might perhaps intuitively expect that the radially outward flow in the 
Ekman layers would be turned upward at  the side walls, to replace the fluid 
drifting inward in the interior, essentially for reasons of continuity. But it seems 
difficult to reconcile this view with the fact that the upward motion occurs in a 
much thicker layer than the Ekman layer. In fact the mechanism seems to be 
different. The convergence or divergence of fluid into or from the Ekman layer 
depends on the difference between the vertical vorticity of the bottom plate and 
that of the fluid above it. In  the case of spin-up, the vorticity of the plate is 
larger than that of the fluid, in the interior, and we have convergence into the 
Ekman layer. But at  the outer edge, the initially infinite vorticity is diffused 
by viscosity over the R-3 layer, producing there a high fluid vorticity, greater 
than that of the lower plate. This reverses the Ekman layer, producing divergence 
out of it. Thus the fluid does not simply run into the side wall and then go up, 
but is, so to speak, sucked up out of the Ekman layer by the high vorticity above 
it which has been produced by viscosity. Thus even in the side boundary layers 
viscosity has some effects which constitute active participation in the driving 
mechanism for the secondary flow. This provides another illustration of the fact 
that rotating fluids seldom behave in the manner to be expected on the basis of 
intuition derived from experience with non-rotating flows. 

(d )  If the container bottom has a step, or if the container is re-entrant, shaped 
like an hour-glass, for example, it  is clear from the formulas of 5 5 that the interior 
flow will have discontinuities along the vertical cylindrical surfaces on which the 
vertical height changes discontinuously. In  such cases, free boundary layers 
must also be expected; they will in general have a double structure similar to 
the vertical side wall case since the same limit processes will be relevant, and will 
no doubt be essentially similar to the steady free layers studied by Stewartson 
(1958) and Proudman (1956). 

7. Experiments 
In  our experiments we have attempted to observe the spin-up of the interior 

flow by following the motion of a marker relative to the container. The simplest 
case is a container of uniform depth, since then the spin-up time T is independent 
of position. If a closed container completely filled with fluid is used it is probably 
easiest to mark the fluid with dye, but the difficulties of introducing a small 
patch of dye into a rotating container in such a way that it will remain small 
enough during the spin-up process to make possible reasonably precise measure- 
ments of its position are not insignificant. Almost all of our experiments were 
consequently done with a free top surface, the position being marked with a small 
float. The main disadvantage of this method is that one must correct for the free 
surface effects mentioned at the end of 3 5; the experiments were performed at 
small Froude numbers so that this correction was never more than about 10 yo. 
The rotating tank had a radius of 14.4 cm, and was partially filled with water. 

26 Fluid Mech. 17 
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It was covered with a transparent lid to eliminate wind-stress due to the absolute 
rotation; wind-stress due to the relative motion was estimated, and found to be 
negligible under the conditions of our experiments unless the cover should be 
considerably closer than 1 cm to the free surface, which was never the case. In  
a typical uniform depth experiment, the depth L was 15.1 cm, the initial angular 
velocity Q, = 3.668 see-l, and the final angular velocity Ql = 3.033 sec-l. (This 
was a case of ‘spin-down’.) After changing the angular velocity, the times at  
which the float passed a diameter marked on the bottom of the tank were noted; 
thus we obtained the times corresponding to values of 8,, 8, + n-, 8, + 2n-, . . . , in the 

t (sec) 

FIGURE 1. Position of float in constant depth experiment as a function of time. 

angular position 8 of the interior fluid relative to the tank. The initial angle 8, 
was only very roughly known. These data were analysed as follows: neglecting 
the free surface correction, the relation between 8 and t is easily shown from 
(5.22) to be 

where 8, is the final position relative to the tank. Letting To = (Q,v)-gL be 
the theoretical value of T and setting 8 = 8,+kn- we then plotted k against 
e-t/To for the observed points, using the resulting approximate straight line to 
extrapolate to e--t’To = 0, thus determining k ,  = n--l(Om--8,). We could then 
compute values of n-l(8, - 6 )  = k, - k corresponding to the observed times t,. 
When the free surface correction (cf. (5.24)) is included one finds that the 
logarithm of (6.1) should be approximately replaced by 

8,-8 = (Qo-Ql)Te-tlT,  (7.1) 

ln(k,-k) = ln[n--l(Qo-Ql)T]+$F-(t/T) (I+$F). (7.2) 

We then plotted In ( k ,  - k )  against t ;  the resulting rather good straight line is 
shown, for the case mentioned above, in figure 1. The value of T determined from 
the intercept was 79.6 sec; that from the slope was 78.6 sec. Their close agreement 
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provides some confirmation of the value of k, determined by the initial extra- 
polation. The theoretical value To calculated for this case, with v = 0.01, is 
78.8 sec. A change of T by 1 % corresponds to a change of somewhat less than 
1 "C in the water temperature; in this experiment the water temperature was 
only known to be within about 2" of 20 "C, so the agreement between theory and 
experiment is probably a little better than could reasonably be expected. 
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experiment; ~ theoretical curve, 0 experiment. 
FIGURE 2 .  The characteristic time T as a function of radius in the conical bottom 

In order to examine experimentally the predictions of (5.22) in the case of 
variable depth, a right circular cone of vertex angle 110" was placed on the bottom 
of the rotating tank, and a system of polar co-ordinates was drawn on the inside 
of the transparent top. The water surface was kept fairly close to the top to 
minimize parallax in the determination of the radial position of the float. The 
float, which was a bit of balsa wood weighted with a short piece of a paper clip, 
could be readily moved about and set at any required radius (while the covered 
tank was rotating) with the aid of a magnet. We then measured the characteristic 
time T(r) for several different radii by the same method as in the uniform depth 
case, using essentially the same angular speed (2.41sec-1) at each radius. If 
the slope of the bottom is not too great, one can show from (5.23) that the free 
surface correction is almost the same in the uniform depth case provided the 
local value Q2D2/gLf of the Froude number is used; the corrections were cal- 
culated on this basis. The results of this experiment are shown in figure 2. The 

26-2 
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solid line is the theoretical value T(r)  = R&Q-lf[l+ f'2]-:, which is linear in r 
for a conical bottom. The principal source of error is in the determination of the 
radial position of the float, which is probably not much better than 5 icm.  
The depth of the water should be accurate to about & 1 mm; however, had it 
been only 2mm shallower than measured, the line in figure 2 would have been 
very nearly the ' best' straight line through the experimental points. Thus this 
experiment does not seem to indicate any significant difference between theory 
and observation. 
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