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The thermocline problem

By P. WELANDERT
Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

1. INTRODUCTION

The main oceanic thermocline, the layer of strong vertical temperature and salinity gradients in
the ocean, and the region below this, where the water asymptotically approaches the deep-sea
state, is still far from explained. There have appeared a series of theoretical studies of this
phenomenon in recent years, starting with a linearized model by P.S. Lineykin and later con-
centrating on the nonlinear problem retaining the important nonlinear density advection.
A summary of the work up to 1969 has been given by Veronis (1969).

It must be admitted that we are still uncertain even about the basic mechanism of the main
thermocline. There appears to be several reasons for such an uncertainty. First, we have few
direct measurements of horizontal velocities, and none of vertical velocity and vertical turbulent
diffusion of heat and saltin the thermocline. The vertical velocities are so small, of order 10-5cm/s
that no known instrument can feel them.

The diffusion coefficients could possibly be measured, by releasing a tracer in the thermocline
and measuring the resulting concentration in space-time. Such an experiment would be a major
operation, and certainly not an easy one. So far, it has not been attempted. Estimates of the
vertical diffusion coefficient have been made from profiles of heat, salt, stable geochemical
tracers and radioactive tracers, such as 1C, assuming that some quasi balance of vertical advection
and diffusion exists. This is not, however, a completely fair method. Certainly, we should not be
impressed if, in our theoretical thermocline models, the vertical profiles come out in good
agreement with nature if the diffusion coefficient used has itself been determined from observed
profiles.

We should, in principle, be able to deduce the diffusion coefficient from theoretical arguments.
We should also be able to produce its dependence on the Richardson number, etc. As is well
known, turbulence theory has not advanced so far. We further fear that the problem of self-
generated turbulence in a stratified shear flow is not the relevant one. Internal waves, generated
at other locations, could be the source of instability, by causing unstable shear-layers or by
direct breaking. It is possible that the so-called ‘salt-finger’ mechanism, described by Stern
(1960), is the main diffusing agency in the thermocline. Then we have a completely new situation
even energetically, as this process releases available potential energy in the mass field.

Finally, there is the possibility that all diffusing agencies are unimportant in the main thermo-
cline, or at least part of it, and that the observed structure results from an ideal fluid advection.
One would think that the two alternatives of (¢) mixing being a dominant factor, and () mixing
being unimportant, could be tested theoretically. Unfortunately, the theoretical solutions that
we have considered so far have failed in this task. Peculiarly enough, the known exact solutions to
the thermocline equations including the vertical diffusion (with a constant diffusivity) are also
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solutions to the ideal fluid problem! One only needs to make a slight change in the boundary
conditions, applied below a top Ekman layer, to transform one problem into the other.

Clearly, the difficulty of theoretical testing hangs on the fact that we do solve only a partial
problem. The solutions we have found for the nonlinear thermocline problem are of similarity
type (some can be worked out exactly, others can be calculated numerically from an ordinary
differential equation). The similarity restriction is, of course, felt also in the boundary conditions.
These solutions cannot satisfy the arbitrary conditions we want to impose on the top and bottom
of the ocean. It seems likely that the solutions that we restrict our attention to are not ‘typical
solutions’. They actually represent a very particular balance of terms. This certainly simplifies
our mathematics. However, this may not represent nature’s way of balancing !

"To come to grips with the problem, a fresh start seems needed. Attempts to obtain more general
solutions by series expansion methods have been made by P. S. Lineykin (unpublished), and the
thermocline problem has also been modelled numerically by Bryan & Cox (1968). However, the
expansion method is not yet fully explored, nor have the numerical calculations been sufficient to
give a definite answer (for one thing, the grids are so coarse in these calculations that details in the
boundary layer cannot be well resolved).

Below is presented a formulation of the problem that reveals some novel features. In parti-
cular, the necessity for an ideal fluid régime is shown, for values of the vertical diffusivities
below 1cm2?s~t. The governing equation cannot be solved analytically, subject to general
boundary conditions, but solutions can be generated effectively by a method of successive
linearization. From such calculations it should be possible to demonstrate conclusively the
different régimes which appear in the thermocline problem.

2. THE THERMOGLINE EQUATIONS AND THE M-EQUATION

It will be assumed, as is usual, that the Earth is spherical with a spherical-symmetric field of
(apparent) gravity, that the ocean characteristic depth H is small compared to the radius of
Earth R, and to the horizontal scales L involved. The Boussinesq approximation is made, and it
is assumed that the vertical diffusion of heat and salt are characterized by the same constant
eddy coeflicient. It is then possible to translate the salinity effect into an equivalent temperature
effect.

Finally, it is assumed that the Rossby number is small enough to justify the geostrophic balance
equations in the horizontal, and that the Ekman depth is small compared to the thermal boundary
layer depths that may appear under these conditions. The steady-state equations, away from
frictional top and bottom layers and away from eventual side boundaries are then:

1 1
o=~ Feosgle Se=—gbs B=gT, (1,2,3)
1
Roosg it eos )+, =0, <4>
u v
Roosg atglotul=«le (5)

A, ¢, z arelongitude, latitude and vertical distance upward, measured from a horizontal surface at
the bottom of the top Ekman layer. (u, v, w) is the velocity, P perturbation pressure (divided by p),
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and 7 a perturbation temperature. g is the acceleration of gravity, « the thermal expansion
coefficient, « the vertical diffusivity, and f = 22sin ¢ the Coriolis parameter.

Solving u, v, T'in terms of P from (1, 2, 3), and then w in terms of Pfrom (5), and inserting these
expressions into (4) gives a single nonlinear equation for the pressure, derived earlier by Needler
(1967). It is of the fourth order and second degree (products of the highest derivatives occur).
The following derivation gives a simpler equation. Define the function:

A
M, ¢,2) = f *Pdz+20R?sin? f wydA, (6)
0 0
where w, = w(A, ¢, 0). Then
1 1
Y= T 30Rsn ¢M¢Z’ = 20Rsin ¢ cos ¢MM’
1
w

1

= 2.QR2SiI12¢M/\’ P =A42’ T:g_a%z’
where w is obtained from combining (1, 2, 3) and integrating after z. Inserting these expressions
into (5) gives the M-equation:

20R%csin ¢ cos 9 M,,,,, + %— cotpM, M, = 0. (7)
This is similar to the integrated pressure equation used earlier (Welander 1959; Robinson &
Welander 1963), but it is more general, since there is no assumption made about the behaviour
of the solution at great depth. The function w, that appears in the definition of A is prescribed,
this is the vertical velocity produced at the bottom of the top Ekman layer by the wind-stress.
One boundary condition in A is thus:

A
M = 20QR?sin? ¢f wydA at z=0. (8)
0

Further, one must have a thermal condition specified at the top. This could be temperature,
heat flux or a relation between heat flux and a difference in air-sea temperature. Taking the
simplest case, with a prescribed temperature, we have

M,, = gaTo(A, ¢). (9)

At the bottom of the ocean, z = —H (A, @), we require that the normal velocity and heat flux
vanish (there will, of course, be a frictional boundary layer also here, but this is neglected in the
interior ocean, the case considered here. In a complete model, including side boundaries, it must
be kept). One usually requires that the bottom is thermally insulating. However, as it turns out,
a more natural thermal condition is to put the bottom temperature at a constant value, say,

T = 0.7 Then we have
cot$ M, = %)l M, =o. (10, 11)

Scale these equations, for convenience, according to the following transformation:
H->H.H, z-68,z, P- (20R*WgaT)%.P,

7\%
(u,v) - (%) (w0), w>W.w, T->I.T, M-20RW.M,

1 The explanation for this is involved and will not be discussed here. In short, the insulating condition will not
give enough formation of deep water. Atleast in thermocline models with constant k, and driven by time-independent
heating, some ‘faking’ with the bottom condition seems needed to obtain a realistic deep circulation.
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where W and ™ are the amplitudes of w, and 7, His a mean ocean depth, and
8, = (2QR2W|gaT )%,
a characteristic (advective) depth.
Then the equations (1, 2, 3, 4) contain no parameters. A parameter, € = 84/0,, with §; = /W,
a second characteristic (diffusive) depth, appears in the diffusion term. The problem in terms of
the scaled M takes on the form:

esin ¢ cos ¢Z|/[zzzz+—a—(a—ﬂ(/[}"zz~’£)li)—cot¢MAﬂlzzz =0 (12)
with boundary conditions
2
M = sin? ¢f wedA, M,=T, at z=0, (13,14)
0
_ 0(H, M) _ __1
’)/COt¢M,\ = '—W, Alzz =0 at z= ’)_;H, (15, 16)

where 7y is a second parameter, y = 8,/H. This constitutes the mathematical problem. The
purpose is to discuss this on a sphere, or part of a sphere, without introducing the complications
of side boundaries. Horizontal scales are assumed to be everywhere given by the forcing functions,
and of order R in the dimensional equations.

3. REGIMES OoF THE M-EQUATION

The previous scaling represented only a formal transformation, with no assumptions intro-
duced. The scaling demonstrating the different possible régimes of the equation requires,
however, certain assumptions that, of course, should be verified a posteriori.

In the vertical direction an unknown length-scale & is introduced. It is assumed that the
horizontal velocity (#,v) can have a barotropic component (P, v?) (independent of depth), that
is at most of order unity in the scaled equations. (This means, itis at most of order of the baroclinic
velocity, calculated over the advective depth 8,.)

When estimating M, we must accordingly write:

M, ~ AM[6+M?, MP<1.
Now, starting at the top let us examine the régimes. The top boundary conditions require:

AM
'—é—'z:L

M=~ 1, 5

In the M equation, it will be necessary to keep the €, -term to meet the diffusive boundary
condition. Two possible balance conditions exist (one cannot obviously have the M, -term
alone):

(i) eM,,,, and [9(M,,, M,)]/[0(A, §)] are of the same order. Then:

AM AM[AM
It follows: el 8+ MDP, e <d<eh, e<AM <68,

MM, 1.AM/[63 1
~ I~ >1
o(M,, M)~ AM (AM ) 00+ MP)

e w (e

But then




THE THERMOCLINE PROBLEM 419

and the case is inconsistent. (It should be noted that our scaling excludes the pole and equator.
We always assume sin ¢ &~ cos ¢ = 1. The other cases have to be looked at separately.)
(ii) eM,,,, and M, M, are of the same order. Then:

e%—lzl.% and 0~ e AM ~ €2
a(%z: ]M.:z) AM (AM b)
NG (T+M :

Now

~ ~ b
MM, 1.AM]5® SO+ M) < 1.

This case is thus consistent.

winds

Ficure 1. A schematic picture of the circulation and the thermocline régimes in an ocean driven by wind-stress and
differential heating. The section is along a mid-oceanic longitude. The western boundary currents may
represent an additional diffusive régime. D, diffusive régime; A, advective régime.

The third case where all three terms eM,,,,, [0(M,,, M,)]/[0(A, )], and M, M,,, are of the same
order is, of course, inconsistent.

In the régime found, the scale depth is e (§; in dimensional variables). M does not vary
essentially in vertical direction and can be replaced by the value at the boundary. The M equation
reduces to eM,,,, = wyM,,,, with the solution M = a+ bz + ¢z? + de*?le, The boundary conditions
give A
a+d = sin? ¢jo wy dA, 2¢+d(wyle)? = T,

Further, when w, < 0 one must choose d = 0. This régime represents a diffusive boundary layer,
with heat diffusion balancing an upward Ekman vertical velocity. When the vertical velocity is
downward, it just gives vertically constant temperature.

Below this diffusive régime, the vertical velocity is of the same order as at the top. There will
still be horizontal temperature variations of the same order as at the surface (this follows already
from the fact that the temperature is vertically unchanged in the downwelling regions). Thus,
we must have another thermal boundary layer below that can bring the temperature down to
the deep constant value.

In this boundary layer we should have

~ 1, AM|S ~ 1,
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Which new régime can be found consistent with such conditions? The only possible new balance
is between [0(M,,, M,)][[0(A, ¢)] and M, M,,,. (Since we are now away from the boundary, the
diffusive term must not necessarily be included.)

This gives
5 MMM ) <1 A
02\ ¢ z 03
Since M} < 1, this means that & ~ 1. Further AM ~ 1 and eM,,,,|M; M,,, ~ ¢ < 1, making this
ideal fluid régime consistent. Note that the dimensional scale is the advective depth 8, introduced
earlier.

or 0+Mp ~1/d.

The need for this régime can be seen in another way, that may be more physical. Returning
to the dimensional equations, we have for the ‘classical’ thermocline problem the following

balance requirements, across a thermocline of thickness D, set up by temperature variations of
order AT (Robinson 1960):

SV gaAT
A (

thermal wind relation),

D
14 w ..
%D (continuity),
WAT kAT

D~ e (balance of vertical advection and diffusion).

The horizontal scale is again assumed of order R. These conditions determine D and the charac-
teristic horizontal and vertical velocities ¥ and W:
R2\% aAT\3
Dx K%(;;’AT) , VzRK%(‘g]W)
. (g AT\
wx (G

In terms of the diffusive and advective depths 8, and 8, used earlier, we find D ~ 83683, Therefore,
this thermocline has an intermediate scale depth. Further one finds that W is of order ¢? relative
to the prescribed Ekman vertical velocity. The classical thermocline scaling cannot be used because the
resulting vertical velocity, internally determined, is too small to maich the prescribed Ekman vertical velocity.
This régime can only be applied after the vertical velocity value has been reduced. The top
diffusive layer is of no help, but an ideal fluid régime must be placed in between.

What actually happens at the bottom of the ideal thermocline is still not clear. Will the
velocities and temperature decay in such a way to keep the diffusive terms small (except in a
bottom boundary layer), or will diffusion again become a dominant term? Studies of some exact.
solutions (Welander 1971), indicates that the diffusive term will come in again in a deep régime
It is not known, however, how general this result is.

In conclusion, this discussion suggests a picture reversed from the one commonly assumed. The
thermocline may not be a diffusive boundary layer but rather an ideal fluid régime imbedded
between diffusive régimes.

2

Of course, in the application to the ocean, all hangs on the value of «. If one assumes that
k= lcm?s™! andsets R = 6 x 108cm, f = 107457, ¢ = 103cms™2, a7 = 1073, W = 10~4cm s,
the result is 8; ~ 100m, &, ~ 600 m.

In this case, the ideal fluid régime should be seen, but the different régimes are not strongly
separated. Decreasing « to 0.1 cm?s~ gives 8, & 10m, 6, & 600m, ¢ & ¢5. In this case, the ideal

fluid thermocline should stand out very clearly.
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In the numerical experiments by Bryan & Cox (1968), the separation is not strong and, as has
been said, the boundary layers are not resolved in any detail. Still in his picture for the balance of
terms in the heat transport equation, at subtropical latitudes, signs of an ideal fluid régime can
be traced. (See Bryan & Cox, Fig. 44, p. 972.)

4. NUMERICAL TREATMENT OF THE M-EQUATION

The solution to the boundary-value problem is considered for a region on the spherical Earth,
between two latitudes ¢ = ¢, and ¢,, which are considered as slip-boundaries. w,y(2A, @), Ty (A, ¢),
or T (A, ¢), are prescribed at the top, care being taken that total mass and heat flux are balanced.
The forcing functions and the bottom topography function H (A, ¢) are further chosen such that
no side boundary layers are induced. It is necessary to go to a numerical technique to solve this
problem, in a general case. Time-stepping has been attempted, adding a term M, to (12). (This
represents the local rate of change of temperature in a time-dependent, geostrophic thermocline
model.) The method is not good, because the numerical stability requires small time steps com-
pared to the overall relaxation time. An iteration of the M equation in the form

oM, ME)
(A, ¢)

has also been attempted. A similar method was used by Stommel & Webster (1962) for a
simplified thermocline model. The method is convergent, at least for a certain range of e-values,

esin ¢ cos MV + — cot pM P M@ = 0

but the convergence is slow in the present case. The best method found so far is a successive
linearization, starting from an approximation M, = A(A, @) + B(A, ¢) z+ C(A, ¢) exsiné, This is
actually an exact solution to (12), with 4 and C arbitrary functions and £ an arbitrary constant.
B is related to 4 and C by a first-order differential equation. This solution, given by Needler
(1967), and earlier by Welander (1959) for the ideal fluid case, is the most general exact solution
for the thermocline equation found so far.

In numerical procedure 4, B and C are determined from the boundary conditions (13, 14, 15).
The condition (16) is approximately satisfied when the ocean is deep enough. The value of £ is
chosen to be unity (possibly a different value would give a better convergence). The second
approximationis obtained by writing M = M, + M, and linearizing around M,, etc. The boundary
conditions are satisfied for each approximation. Already in the second approximation, all three
régimes mentioned earlier appear. The results of these numerical experiments, which are not yet
completed, will be published elsewhere.
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