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Introduction

This module Fluid Dynamics of the Atmosphere and Oceans comprises 33 hours
of lectures and examples classes.

Outline of course content

The equations of motion in a rotating frame; some conservation properties; circulation
theorem; vorticity equation; potential vorticity equation. Hierarchies of approximate
governing equations; balance and filtering.

Shallow water equations: circulation and potential vorticity; energy and angular mo-
mentum; gravity and Rossby waves; geostrophic balance; geostrophic adjustment;
Rossby radius; quasigeostrophic shallow water equations; quasigeostrophic potential
vorticity; Rossby waves; Kelvin waves.

Boussinesq approximation; gravity waves in three dimensions; mountain waves; non-
linear effects; eddy fluxes.

Shallow atmosphere hydrostatic primitive equations, in different coordinate systems;
conservation properties; Rossby and gravity waves.

Quasigeostrophic theory in three dimensions: ageostrophic equations; quasigeostrophic
potential vorticity equation; omega equation; free Rossby waves; Forced Rossby waves
and the Charney Drazin theorem; eddy fluxes; surface waves on a potential temperature
gradient; the Eady model of baroclinic instability.

The planetary boundary layer; the Ekman spiral; Ekman pumping; Sverdrup balance.
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1 Governing equations in vector form

Du

Dt
+ 2Ω× u = −1

ρ
∇p−∇Φ; (1)

∂ρ

∂t
+∇ · (ρu) = 0; (2)

cv
DT

Dt
+
p

ρ
∇ · u = 0. (3)

2 Governing equations in spherical polar coordi-

nates
Du

Dt
− uv tanφ

r
+
uw

r
− 2Ωv sinφ+ 2Ωw cosφ+

1

ρr cosφ

∂p

∂λ
= 0 (4)

Dv

Dt
+
u2 tanφ

r
+
vw

r
+ 2Ωu sinφ+

1

ρr

∂p

∂φ
= 0 (5)

Dw

Dt
− u2 + v2

r
− 2Ωu cosφ+ g +

1

ρ

∂p

∂r
= 0 (6)

∂ρ

∂t
+∇ · (ρu) = 0 (7)

cv
DT

Dt
+
p

ρ
∇ · u = 0 (8)

where
D

Dt
≡ ∂

∂t
+

u

r cosφ

∂

∂λ
+
v

r

∂

∂φ
+ w

∂

∂r
(9)

∇ · u ≡ 1

r cosφ

(
∂u

∂λ
+
∂(v cosφ)

∂φ

)
+

1

r2
∂(r2w)

∂r
(10)
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3 Hierarchies of approximate equation sets

• (Quasi-)hydrostatic: Neglect Dw/Dt term. One of the thermodynamic
equations then effectively becomes a diagnostic equation for w, so there are
really only three component prognostic equations. The resulting equations
no longer support internal acoustic waves, though they do support purely
horizontally propagating external acoustic waves. Scale analysis shows that
the hydrostatic approximation is valid on horizontal scales large compared
with a typical depth scale for the atmosphere (about 10 km), or, equivalently,
on timescales long compared with 1/N where N is the buoyancy frequency.

• Shallow atmosphere: Neglect the Coriolis terms proportional to cosφ and
certain related nonlinear terms (called the traditional approximation), and
approximate r by the constant a equal to the mean radius of the Earth. These
two approximations must be made together, otherwise the resulting equations
fail to conserve energy and angular momentum.

• Hydrostatic primitive equations: Make both the hydrostatic and shallow
atmosphere approximations.

• Anelastic equations: Essentially, neglect ∂ρ/∂t. Then only two compo-
nents of the momentum equation can be considered as independent prognostic
equations. Moreover, the momentum equations combined with the density
equation imply a diagnostic equation for p and hence ρ, so there are really
only three component prognostic equations. There are various versions of the
anelastic equations. They do not support acoustic waves. They are valid on
short horizontal length scales.

• Boussinesq: Assume the fluid is incompressible ∇.u = 0, and neglect vari-
ations in density except where they appear in the buoyancy term. These
equations do not support acoustic waves.

• Quasigeostrophic: Assume hydrostatic balance, Rossby numberRo = U/(fL)
is small, temperature is not far from some reference profile, and horizontal
length scale is small compared with the Earth’s radius. Usually the geometry
is approximated as a β-plane. The governing equations reduce to a prognostic
equation for the quasigeostrophic potential vorticity (plus another for bound-
ary potential temperature), plus diagnostic equations relating the potential
vorticity to winds and temperature. These equations do not support acoustic
or gravity waves.

• Planetary geostrophic: Assume Rossby number Ro = U/(fL) is small, and
that the horizontal length scale is comparable to the Earth’s radius. Spherical
geometry may be retained. The governing equations reduce to a prognostic
equation for the potential vorticity, plus diagnostic equations relating the po-
tential vorticity to winds and temperature. These equations do not support
acoustic or gravity waves.
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Figure 1: Part of the hierarchy of approximations to the full spherical-geometry
compressible Euler equations.
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• Semi-geostrophic: Assume Rossby number Ro = U/(fL) is small, and hor-
izontal length scale is very small compared with the Earth’s radius so that the
geometry can be approximated as an f -plane. These equations do not support
acoustic or gravity modes.

• Shallow water: Assume an incompressible fluid in hydrostatic balance such
that horizontal velocity is independent of z. The resulting equations are hori-
zontally two dimensional. They do not support acoustic waves but do support
horizontally propagating gravity and Rossby waves.

5



4 Hydrostatic balance

The following tables (based on similar tables in Holton’s book) give typical scales
of terms in the governing equations for mid-latitude synoptic scale flow.

Typical scales for the horizontal momentum equations

u-equation Du
Dt

uv tanφ
r

uw
r

−2Ωv sinφ 2Ωw cosφ 1
ρr cosφ

∂p
∂λ

v-equation Dv
Dt

u2 tanφ
r

vw
r

2Ωu sinφ 1
ρr

∂p
∂φ

Scales U2/L U2/a WU/a f0U f0W δP/ρL

Values (ms−2) 10−4 10−5 10−8 10−3 10−6 10−3

Typical scales for the vertical momentum equation

w-equation Dw
Dt

−u2+v2

r
−2Ωu cosφ g 1

ρ
∂p
∂r

Scales UW/L U2/a f0U g P0/ρH

Values (ms−2) 10−7 10−5 10−3 10 10

For mid-latitude synoptic scale flow, the dominant balance in the vertical mo-
mentum equation is clearly hydrostatic balance:

1

ρ

∂p

∂z
+ g = 0. (11)

We can justify neglecting the Dw/Dt term when

UW

L
≪ δP

ρH
(12)

where δP is typical horizontal variation in p. Assuming, from the horizontal mo-
mentum equation, that

δP

ρ
∼ U2 or

δP

ρ
∼ f0UL = U2R−1

o , (13)

we require
WH

UL
≪ 1 or

WH

UL
Ro ≪ 1. (14)

Assuming further, from the mass continuity equation, that

W

U
∼ H

L
or

W

U
∼ H

L
Ro, (15)

we see that hydrostatic balance will be a good approximation for

H2

L2
≪ 1 or R2

o

H2

L2
≪ 1 (16)

where Ro ≡ U/(f0L) is the Rossby number.
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Figure 2: Schematic for derivation of shallow water equations.

5 The shallow water equations

Although not quantitatively accurate for most atmospheric or oceanic modelling, the
shallow water equations embody many of the same physical ingredients as the full
governing equations, and so are valuable for developing a conceptual understanding,
as well as for testing numerical integration schemes.

5.1 Derivation

Consider a layer of incompressible fluid of constant density ρ in hydrostatic balance
(see figure 2). Assume planar geometry and neglect 2Ω cosφ Coriolis terms. From
hydrostatic balance, the pressure at any point in the fluid is given by

p(x, y, z) =

∫ h

z

ρg dz = ρg(h− z),

so the horizontal pressure gradient is

1

ρ

∂p

∂x
= g

∂h

∂x
.

This is independent of z, so if u and v are initially independent of z then they will
remain so.

Write gh = Φ. Then the horizontal momentum equations become

Du

Dt
− fv +

∂Φ

∂x
= 0 (17)

Dv

Dt
+ fu+

∂Φ

∂y
= 0 (18)

For later, note the vector form:

Dv

Dt
+ f ẑ× v +∇HΦ = 0. (19)

Take the vertical integral of the mass equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0
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to obtain ∫ h

0

∂u

∂x
dz +

∫ h

0

∂v

∂y
dz + w(h)− w(0) = 0

h
∂u

∂x
+ h

∂v

∂y
+
Dh

Dt
= 0.

Multiplying by g gives
DΦ

Dt
+ Φ

∂u

∂x
+ Φ

∂v

∂y
= 0. (20)

or, rearranging,
∂Φ

∂t
+

∂

∂x
(uΦ) +

∂

∂y
(vΦ) = 0. (21)

8



5.2 Vorticity and divergence equations

Take ∂/∂x of (18) minus ∂/∂y of (17) to obtain

Dζ

Dt
+ δζ = 0 (22)

or
∂ζ

∂t
+

∂

∂x
(uζ) +

∂

∂y
(vζ) = 0,

and take ∂/∂x of (17) plus ∂/∂y of (17) to obtain

∂δ

∂t
+∇H ·

[
ẑ× vζ +∇H

(
Φ +

u2 + v2

2

)]
(23)

where ζ = f+ξ is the absolute vorticity, ξ = ∂v/∂x−∂u/∂y is the relative vorticity,
and δ = ∂u/∂x+ ∂v/∂y is the divergence.

5.3 Potential vorticity equation

Combining the vorticity equation (22) with the mass equation (20) gives

DΠ

Dt
= 0 (24)

where Π = ζ/Φ.

5.4 Circulation theorem

Integrating the vorticity equation within a closed material contour shows that

DC
Dt

= 0 (25)

where

C =

∮
vIF · dl =

∫
ζ dA.

5.5 Energy equation

Take uΦ times (17) plus vΦ times (18) plus Φ + (u2 + v2)/2 times (21) to obtain

∂E

∂t
+

∂

∂x

(
uE +

uΦ2

2

)
+

∂

∂y

(
vE +

vΦ2

2

)
= 0 (26)

where

E =
Φ2

2
+ Φ

(
u2 + v2

2

)
.
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5.6 Normal modes: Poincaré waves and Rossby waves

Linearize the shallow water equations about a resting state with mean geopotential
Φ0 and take f to be constant. It is easiest to work with the vorticity and divergence
equations:

∂ξ

∂t
+ fδ = 0,

∂δ

∂t
− fξ +∇2

HΦ = 0,

∂Φ

∂t
+ Φ0δ = 0.

All coefficients in these equations are independent of space and time, so they
will have solutions proportial to ei(kx+ly−ωt). Seeking solutions of this form and
eliminating ξ, δ, and Φ leads to the dispersion relation:

ω
(
ω2 − f 2 −K2Φ0

)
= 0

where K2 = k2 + l2.
There are two kinds of solution, corresponding to the two kinds of root of the

dispersion relation.

1. Rossby waves, corresponding to ω = 0. These have δ ≡ 0, and the wind
field is in geostrophic balance:

v =
1

f

∂Φ

∂x
, u = − 1

f

∂Φ

∂y
.

(Their frequency is zero because there is no β-effect; see later.)

2. Inertio-gravity waves, also called (in the shallow water case) Poincaré

waves. These satisfy ω = ± (f 2 +K2Φ0)
1/2

. The two roots correspond to
eastward and westward propagating waves. The potential vorticity perturba-
tion is zero for these waves.

5.7 Phase velocity

For a wavelike disturbance (in one, two, or three dimensions) proportional to ei(k·x−ωt),
individual wave crests move with the phase velocity cp = kω/ |k|2.

5.8 Group velocity

Wave packets move at the group velocity

cg = ∇kω =

(
∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)
.

It is the velocity at which wave energy propagates.
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Figure 3: Schematic showing velocity components in polar coordinates.

5.9 Geostrophic balance

For small Rossby number Ro ≡ U/fL, the dominant terms in the horizontal mo-
mentum equations are in geostrophic balance:

fv ≈ fvg ≡
∂Φ

∂x
,

fu ≈ fug ≡ −∂Φ
∂y

.

5.10 Gradient wind balance

If the flow is approximately steady but some of the nonlinear terms are non-negligible
we might nevertheless have balanced flow.

Consider a circular vortex, with f constant, and work in polar coordinates (see
figure 3). The vector horizontal velocity in polar coordinates is

v = ur̂+ vθ̂,

so now

Dv

Dt
= r̂

Du

Dt
+ u

Dr̂

Dt
+ θ̂

Dv

Dt
+ v

Dθ̂

Dt

= r̂
Du

Dt
+
uv

r
θ̂ + θ̂

Dv

Dt
− v2

r
r̂

Hence the momentum equation (19) becomes, in component form,

Du

Dt
− v2

r
− fv +

∂Φ

∂r
= 0, (27)
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Dv

Dt
+
uv

r
+ fu+

1

r

∂Φ

∂θ
= 0. (28)

For a steady, circular vortex, ∂/∂θ = 0, u = 0,

v2

r
+ fv =

∂Φ

∂r
.

This is gradient wind balance.
In the limit of large Ro we get cyclostrophic balance:

v2

r
=
∂Φ

∂r
.

5.11 Invertibility

If we know the distribution of potential vorticity, and we know that the flow is in
balance, then we can deduce the mass and wind fields. This is the idea of invertibility.

For example, for linear shallow water flow

ξb
Φ0

− f
Φb

φ2
0

= Π

in geostrophic balance
fξb = ∇2

HΦb

Φb, and hence the balanced windcomponents, can be found by solving the elliptic
equation

a2∇2
HΦb − Φb =

Φ2
0

f
Π. (29)

Here, a =
√
Φ0/f is the Rossby radius, a natural length scale for geostrophically

balanced flow.

5.12 Geostrophic adjustment

A flow that is disturbed away from balance can be considered to be made up of a
superposition of a balanced (vortical or Rossby mode) component, and an unbal-
anced (inertio-gravity mode) component. Note we’re neglecting the possibility of
nonlinear interaction between the balanced and unbalanced components. The flow
can adjust towards balance by radiating away the inertio-gravity wave component
to leave just the balanced component. The final balanced flow can be found from
the initial potential vorticity, using invertibility, since (linear) inertio-gravity modes
have no potential vorticity perturbation. In general the inertio-gravity waves will
carry away energy, so that the final balanced flow will have less energy (locally) than
the initial flow.

5.13 Quasigeostrophic shallow water flow

We make the following three assumptions:

1. the motion is nearly geostrophic: Ro ≪ 1;
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2. fractional changes in the Coriolis parameter f = f0 + βy are small on the
horizontal length scale L of the flow: βL/f0 ≪ 1;

3. fractional changes in the total depth are small: |(Φ− Φ0) /Φ0| ≪ 1, where Φ0

is a constant mean depth.

The evolution of the flow can then be expressed in terms of the quasigeostrophic
potential vorticity equation

Dgq

Dt
= 0 (30)

where
Dg

Dt
≡ ∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

and

q = ζg −
f 2
0

Φ0

ψ

= f0 + βy +∇2
Hψ − 1

a2
ψ (31)

is the quasigeostrophic potential vorticity, with a again the Rossby radius. Here ψ
is the geostrophic stream function; it is related to the wind and mass fields by

ug = −∂ψ
∂y
,

vg =
∂ψ

∂x
,

and
Φ1 = Φ− Φ0 = f0ψ.

The dynamics is determined by the advection (30) and inversion (31) of quasi-
geostrophic potential vorticity. The quasigeostrophic equations do not support grav-
ity waves: they have been filtered out by neglecting the Dv/Dt term at leading
order.

5.14 The “omega” equation

The “omega” equation provides a robust way to determine the divergence δ, by
asking what δ is needed to maintain geostrophic balance as the flow evolves. Taking
the time derivative of

f0ξg = ∇2
HΦ1

and substituting from the vorticity and mass equations leads to the “omega” equa-
tion. (

a2∇2
H − 1

)
δ =

1

f0
(vg · ∇Hξg + βvg)−

1

f 2
0

∇2
H (vg · ∇HΦ1) . (32)

The operator on the left hand side is an elliptic operator, implying that the response
to the right-hand-side forcing will be nonlocal. The first term on the right hand side
comes from vorticity advection; the second term on the right hand side comes from
mass advection.

The analogous problem in the three-dimensional pressure-coordinate case is to
determine the vertical velocity ω; hence the name “omega” equation.
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5.15 QG Rossby waves

Consider small perturbations to a state of rest, so that we can linearize the QGPV
equation

∂q′

∂t
+ βv′ = 0.

Seeking wavelike solutions
ψ′ = ψ̂ei(kx+ly−ωt),

q′ = −
(
K2 +

1

a2

)
ψ′,

leads to the Rossby wave dispersion relation

ω = − kβ

K2 + 1/a2
. (33)

Rossby waves propagate westwards (relative to any background flow).
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6 Gravity waves

6.1 The Boussinesq approximation

The Boussinesq approximation involves assuming the fluid to be incompressible
(∇ · u = 0), and neglecting variations in density except where they appear in a
buoyancy term, i.e. multiplied by g. Here we will also approximate the geometry as
Cartesian.

Du

Dt
− fv + Fw = − 1

ρ0

∂p′

∂x
, (34)

Dv

Dt
+ fu = − 1

ρ0

∂p′

∂y
, (35)

Dw

Dt
− Fu = − 1

ρ0

∂p′

∂z
− g

ρ′

ρ0
, (36)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (37)

Dρ′

Dt
+ w

∂ρ0
∂z

= 0. (38)

Here, f = 2Ω sinφ and F = 2Ω cosφ, and we approximate φ as a fixed latitude.
It is convenient to work in terms of the buoyancy b = −gρ′/ρ0, so that (38)

becomes
Db

Dt
+ wN2 = 0, (39)

where

N2 = − g

ρ0

∂ρ0
∂z

is a measure of the stratification.

6.2 Internal gravity waves

Linearize the Boussinesq equations (34)-(39) about a state of rest, and neglect the
Coriolis terms. [Ex: leave the Coriolis terms in!]

∂u

∂t
= − 1

ρ0

∂p′

∂x
, (40)

∂v

∂t
= − 1

ρ0

∂p′

∂y
, (41)

∂w

∂t
= − 1

ρ0

∂p′

∂z
− b, (42)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (43)

∂b

∂t
+ wN2 = 0. (44)
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Seek wavelike solutions proportial to ei(kx+ly+mz−ωt), and eliminate u, v, w, b and p
to obtain the dispersion relation

ω2 =
K2N2

K2 +m2
, (45)

where K2 = k2 + l2 is the total horizontal wavenumber squared.
It can be shown that

1. these waves are transverse i.e., k · u = 0;

2. the buoyancy b is in quadrature with the vertical velocity w;

3. the vertical components of cp and cg have opposite sign—upward energy prop-
agation requires downward phase propagation;

4. cp · cg = 0—energy propagation is orthogonal to phase propagation.

6.3 Mountain waves

So far we have considered free waves : given a disturbance with wave vector (k, l,m),
how does it evolve? We now consider forced waves : given an imposed disturbance
pattern with horizontal wave vector (k, l) and frequency ω at a bottom boundary,
how does the disturbance propagate away from the boundary?

Retain the Boussinesq equations, but now linearize about a mean flow (U, 0, 0)
with U a constant. The dispersion relation becomes

ω̃2 ≡ (ω − kU)2 =
K2N2

K2 +m2
. (46)

ω̃ is called the intrinsic frequency.
Suppose we have a solid bottom boundary at height z = hM(x). The no-normal-

flow boundary condition becomes, assuming that hM(x) is small so that we can
linearize,

w(z = 0) = U
dhM
dx

. (47)

Now suppose the bottom boundary forcing is wavelike hM = ℜ
{
ĥMe

ikx
}
, with

frequency ω = 0. The flow will then have a wavelike response, with the same k,
l = 0, ω = 0, and m determined by the need to satify the dispersion relation:

m2 =
N2

U2
− k2.

Two types of solution are possible.

1. Propagating waves. Provided k2U2 < N2, m2 will be positive and m will be
real; the solution will be wavelike in the vertical direction. Physically, we must
choose the root that gives upward group velocity and energy propagation.

2. Trapped waves. If, on the other hand, k2U2 > N2, m2 will be negative
and m purely imaginary. We must choose the root with ℑ{m} > 0 so that
the disturbance amplitude decays away from the boundary. Wave energy is
trapped near the boundary.
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6.4 Mountain wave drag

Intuitively we might expect the presence of hills to slow the flow, i.e. to exert a drag.
This will happen if a pressure gradient exists across the hills.

The eastward force exerted by the ground on the atmosphere per unit length is

τ0 = −p′dhM
dx

= −
(
k

2π

)∫

one wavelength

p′
dhM
dx

dx,

=
1

2
ℜ
{
ikp̂ĥ∗M

}
(48)

where the integral is taken at z = 0, and asterisk means complex conjugate.
From the linearized bottom boundary condition and the continuity equation we

can relate p̂ to ĥM:
p̂ = ρ0imU

2ĥM.

Then subtituting in (48) gives an expression for τ0 in terms of the mountain height
and the mean wind:

τ0 = −1

2
ρ0U

2ℜ
{
mk

∣∣∣ĥM
∣∣∣
2
}
.

For upward propagating waves with U > 0 m is real and positive, so τ0 < 0: the
ground exerts a drag on the flow.

It can be shown that the upward flux of eastward momentum

τ = ρ0uw

= ρ0

(
k

2π

)∫

one wavelength

uw dx,

=
1

2
ρ0ℜ{ûŵ∗}

is equal to τ0 and is independent of z. Thus, for the linear, conservative flow de-
scribed by these equations, the wave-induced upward flux of eastward momentum
is conserved. At some altitude, however, dissipative effects or nonlinear effects will
become important, and there the waves exert a drag on the mean flow given by

− 1

ρ0

∂τ

∂z
.

7 The hydrostatic primitive equations

7.1 The shallow atmosphere approximation

Motivated by the fact that H ≪ a (here a is the Earth’s radius) we make the
following approximations:

1. drop the 2Ω cosφ Coriolis terms (the traditional approximation);
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2. drop the “spherical metric terms”;

3. replace r by the constant a (the Earth’s mean radius) and ∂/∂r by ∂/∂z.

This appears to be a good approximation for the earth’s atmosphere, except
possibly for deep, diabatically forced motions, or when N2 is very small.

Note we must make all three approximations together to retain conservation laws
for energy, angular momentum, and potential vorticity.

7.2 The quasi-hydrostatic approximation

We make the quasi-hydrostatic approximation by neglecting the ∂w/∂t term in the
vertical momentum equation. One of the thermodynamic equations then becomes,
in effect, a diagnostic equation for w. This approximation filters out internal acoustic
modes. We retain conservation laws for energy, angular momentum and potential
vorticity, but the conserved energy no longer includes the w2/2 contribution. Scaling
arguments suggest that the quasi-hydrostatic approximation should be valid for
H2/L2 ≪ 1, or ω2 ≪ N2.
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7.3 The hydrostatic primitive equations

The shallow atmosphere and quasi-hydrostatic approximations are independent of
each other. If we make them both together we obtain the hydrostatic primitive

equations, which are widely used for climate modelling and numerical weather pre-
diction.

Du

Dt
− uv tanφ

a
− 2Ωv sinφ+

1

ρa cosφ

∂p

∂λ
= 0 (49)

Dv

Dt
+
u2 tanφ

a
+ 2Ωu sinφ+

1

ρa

∂p

∂φ
= 0 (50)

g +
1

ρ

∂p

∂z
= 0 (51)

∂ρ

∂t
+∇ · (ρu) = 0 (52)

cv
DT

Dt
+
p

ρ
∇ · u = 0 (53)

where
D

Dt
≡ ∂

∂t
+

u

a cosφ

∂

∂λ
+
v

a

∂

∂φ
+ w

∂

∂z
(54)

∇ · u ≡ 1

a cosφ

(
∂u

∂λ
+
∂(v cosφ)

∂φ

)
+
∂w

∂z
(55)

7.4 Hydrostatic primitive equations in a pressure coordi-
nate

Under the hydrostatic approximation, the pressure difference across a layer of fluid
is proportional to the mass per unit area of fluid in the layer. Using p as a vertical
coordinate helps bring out conservation properties, especially in numerical models.

The z-coordinate hydrostatic primitive equations appear to have four prognos-
tic variables. However, the hydrostatic equation implies a relation between two
thermodynamic variables: one of the thermodynamic prognostic equations must be
re-interpreted as a diagnostic equation for w. This issue is much clearer in a pressure
coordinate, where the mass continuity equation is a purely diagnostic equation.

We can transform to a pressure coordinate using the transformation rules:

∂ψ

∂s

∣∣∣∣
z

=
∂ψ

∂s

∣∣∣∣
p

− ∂ψ

∂z

∂z

∂s

∣∣∣∣
p

and
∂ψ

∂z
=
∂ψ

∂p

∂p

∂z
,

where s stands for any of x, y, or t, and ψ may be any field of interest.
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Du

Dt
− uv tanφ

a
− 2Ωv sinφ+

1

a cosφ

∂Φ

∂λ
= 0 (56)

Dv

Dt
+
u2 tanΦ

a
+ 2Ωu sinφ+

1

a

∂φ

∂φ
= 0 (57)

∂Φ

∂p
= −RT

p
(58)

1

a cosφ

(
∂u

∂λ
+
∂(v cosφ)

∂φ

)
+
∂ω

∂p
= 0 (59)

DT

Dt
+
κωT

p
= 0 (60)

where
D

Dt
≡ ∂

∂t
+

u

a cosφ

∂

∂λ
+
v

a

∂

∂φ
+ ω

∂

∂p
, (61)

ω ≡ Dp

Dt
, (62)

and horizontal derivatives are now understood to be taken at constant p rather than
constant z.

The hydrostatic equations in a pressure coordinate, or in a terrain-following
variant of the pressure coordinate, are often used in numerical models.

7.5 Log-pressure coordinate

Closely related is the use of a log-pressure coordinate

z̃ = −Hρ ln(p/pref)

where Hρ = RTref/g is a reference density scale height, with Tref a constant mean
temperature and pref a constant mean surface pressure.

Du

Dt
− uv tanφ

a
− 2Ωv sinφ+

1

a cosφ

∂Φ

∂λ
= 0 (63)

Dv

Dt
+
u2 tanΦ

a
+ 2Ωu sinφ+

1

a

∂φ

∂φ
= 0 (64)

∂Φ

∂z̃
=
RT

Hρ

= g
T

Tref
(65)

1

a cosφ

(
∂u

∂λ
+
∂(v cosφ)

∂φ

)
+

1

p

∂

∂z̃
(pw̃) = 0 (66)

Dθ

Dt
= 0 (67)
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where
D

Dt
≡ ∂

∂t
+

u

a cosφ

∂

∂λ
+
v

a

∂

∂φ
+ w̃

∂

∂z̃
(68)

and

w̃ ≡ Dz̃

Dt
. (69)

8 Thermal wind relation

The geostrophic relation

fvg =
∂Φ

∂x
; fug = −∂Φ

∂y
,

may be combined with the hydrostatic relation (65) to obtain the thermal wind
relation

f
∂vg
∂z̃

=
R

Hρ

∂T

∂x
; f

∂ug
∂z̃

= − R

Hρ

∂T

∂y
, (70)

or, in vector form,

f ẑ× ∂vg

∂z̃
=

R

Hρ

∇T =
g

Tref
∇T. (71)
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9 Quasigeostrophic theory

Starting from the hydrostatic primitive equations in a log-pressure coordinate, (for
which we require H2 ≪ L2), we make the following further scaling assumptions:

1. small Ro, so that v ≈ vg +O(Ro);

2. mid-latitude β-plane geometry, and βL/f0 = O(Ro) ≪ 1;

3. θ ≈ θ0(z̃) + θ′(x, y, z̃, t), with θ′/θ0 = O(Ro) ≪ 1.

(Compare what we assumed in deriving the quasigeostrophic shallow water equa-
tions.)

The leading terms in the momentum equations are purely diagnostic:

f0vg =
∂Φ

∂x
; f0ug = −∂Φ

∂y
.

(Recall the horizontal derivatives are at constant z̃.)
Since vg is non-divergent we can introduce a stream function ψ = Φ′/f0, where

Φ = Φ0(z̃) + Φ′(x, y, z̃, t), Φ0 is in hydrostatic balance with θ0, and Φ′ is the hori-
zontally varying part of Φ. Then

vg =
∂ψ

∂x
; ug = −∂ψ

∂y
.

To obtain prognostic equations we need to go to higher order. The next order
terms in the mass continuity equation are

∂ua
∂x

+
∂va
∂y

+
1

p

∂

∂z
(pw̃) = 0.

Thus, w̃ is smaller, by order Ro, than the obvious scaling UH/L. This means we
can neglect vertical advection terms

D

Dt
≡ ∂

∂t
+ u ∂

∂x
+ v ∂

∂y
+ w̃ ∂

∂z̃

≈ ∂
∂t
+ ug

∂
∂x

+ vg
∂
∂y

≡ Dg

Dt

except in the θ equation.
The next order terms in the momentum equations give

Dgug
Dt

− f0va − βyvg = 0, (72)

Dgvg
Dt

+ f0ua + βyug = 0, (73)

while the leading non-trivial terms in the θ equation are

Dgθ
′

Dt
+ w̃

∂θ0
∂z̃

= 0
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or, equivalently,
Dg

Dt

(
θ′

θref

)
+ w̃

N2
ref

g
= 0, (74)

where

N2
ref =

g

θref

∂θ0
∂z̃

; θref(z̃) = Tref

(
p

pref

)κ

.

9.1 Quasigeostrophic vorticity equation

Take ∂/∂x (73) minus ∂/∂y (72), and use the fact that ∂ug/∂x + ∂vg/∂y = 0 to
obtain the quasigeostrophic vorticity equation

Dgξg
Dt

+ βvg = −f0
(
∂ua
∂x

+
∂va
∂y

)
,

where ξg = ∂vg/∂x− ∂ug/∂y is the geostrophic approximation to the vertical com-
ponent of relative vorticity. This may be re-written as

Dgζg
Dt

= −f0δ,

where ζg = f0 + βy+ ξg is the geostrophic approximation to the vertical component
of absolute vorticity, and δ = ∂ua/∂x+ ∂va/∂y is the horizontal divergence. Then,
substituting from the mass continuity equation, we have

Dgζg
Dt

=
f0
p

∂

∂z̃
(pw̃) . (75)

The term on the right hand side is the quasigeostrophic vortex stretching term.

9.2 Quasigeostrophic potential vorticity equation

Use (74) to eliminate w̃ from the (75) and use the hydrostatic relation

θ′

θref
=

T ′

Tref
=

1

g

∂Φ′

∂z̃

to eliminate θ′:
Dgζg
Dt

= −f0
p

∂

∂z̃

{
p

N2
ref

Dg

Dt

(
∂Φ′

∂z̃

)}
.

Finally use the fact that
∂vg

∂z̃
· ∇z̃

(
p

N2
ref

∂Φ′

∂z̃

)
= 0

to re-write the right hand side as

Dgζg
Dt

= −Dg

Dt

{
f0
p

∂

∂z̃

(
p

N2
ref

∂Φ′

∂z̃

)}
.

In other words
Dgq

Dt
= 0 (76)
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where

q = ζg +
f0
p

∂

∂z̃

(
p

N2
ref

∂Φ′

∂z̃

)

= f0 + βy +∇2
z̃ψ +

1

p

∂

∂z̃

(
pf 2

0

N2
ref

∂ψ

∂z̃

)

or, defining ρref = p/RTref ,

= f0 + βy +∇2
z̃ψ +

1

ρref

∂

∂z̃

(
ρref

f 2
0

N2
ref

∂ψ

∂z̃

)
. (77)

The quantity q is the quasigeostrophic potential vorticity. Note that it is conserved
following the geostrophic flow.

9.3 Invertibility

If we know the three-dimensional distribution of q and the profiles of ρref(z̃) and
N2

ref(z̃) then, with suitable boundary conditions, we can solve the elliptic problem
(77) for ψ, and hence determine

ug = −∂ψ
∂x

; vg =
∂ψ

∂y
;

T ′

Tref
=
f0
g

∂ψ

∂z̃
.

Many GFD problems can be understood qualitatively (and even quantitatively) in
terms of advection and inversion of QGPV.

9.4 Omega equation

How can we determine the vertical velocity robustly from quantities that are rela-
tively straightforward to observe?

We can ask what vertical velocity is required to ensure that the flow remains
close to hydrostatic and geostrophic balance as it evolves (compare what we did in
the shallow water case).

From the geostrophic vorticity equation

∂

∂t

(
∇2

z̃ψ
)
+ vg · ∇z̃ξg + βvg =

f0
p

∂

∂z̃
(pw̃)

or, taking the vertical derivative,

∂

∂t

[
∂

∂z̃

(
∇2

z̃ψ
)]

+
∂

∂z̃
(VA) = f0

∂

∂z̃

(
1

p

∂

∂z̃
(pw̃)

)
,

where VA = vg · ∇z̃ξg + βvg is the vorticity advection term. At the same time, from
the thermodynamic equation,

∂

∂t

(
θ′

θref

)
+ vg · ∇z̃

(
θ′

θref

)
+
N2

ref

g
w̃ = 0,
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or
∂

∂t

(
∂ψ

∂z̃

)
+
g

f0
(TA) +

N2
ref

f0
w̃ = 0,

where TA = vg · ∇z̃

(
θ′

θref

)
is the thermal advection term. Taking the horizontal

Laplacian of this last equation and eliminating the time derivative term leads to the
“Omega equation”

∇2
z̃w̃ +

f 2
0

N2
ref

∂

∂z̃

(
1

p

∂

∂z̃
(pw̃)

)
=

g

N2
ref

∇2
z̃(TA)−

f0
N2

ref

∂

∂z̃
(VA).

This is an elliptic equation for w̃ in terms of the vorticity advection and thermal
advection. Suitbale boundary conditions will be required to solve this equation. The
response in w̃ will not be localized exactly where the forcing is. Note the elliptic
operator is closely related to that relating q and ψ.

10 Vertical propagation of planetary waves

The summer stratosphere has very symmetrical, undisturbed westard flow, but the
winter stratosphere’s mean eastward flow is strongly disturbed by planetary scale
waves (zonal wavenumbers 1 and 2).

Linearize the QGPV equation about a constant zonal flow (U, 0):

∂q′

∂t
+ U

∂q′

∂x
+ βv′ = 0

and seek stationary ω = 0 wavelike solutions

ψ′ = ℜ
{
Ψ(z̃)ei(kx+ly)

}

etc. Substituting solutions of this form, the linearized PV equation becomes

1

ρref

∂

∂z̃

(
ρref

∂Ψ

∂z̃

)
+
N2

ref

f 2
0

(
β

U
− (k2 + l2)

)
Ψ = 0,

where we have assumed N2
ref to be constant for simplicity.

Noting that ρref ∝ e−z̃/Hρ , we can find solutions of the form

Ψ = Ψ0e
(im+1/2Hρ)z̃

where m must satisfy

m2 =
N2

ref

f 2
0

(
β

U
− (k2 + l2)

)
− 1

4H2
ρ

.

Vertically propagating solutions, with real m, can exist provided the RHS is greater
than zero. This will be true for U in the range

0 < U <
β

k2 + l2 +
f2
0

N2

ref

1
4H2

ρ

.
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It may be verified that the upward propagating solution hasm > 0. Thus, stationary
planetary waves can propagate upward into the stratosphere only for U > 0 and
provided U is not too strong. This is the Charney-Drazin theorem.

If the RHS is less than zero then m will be purely imaginary; waves are vertically
trapped.

For any given U > 0 waves can propagate only for

k2 + l2 <
β

U
− f 2

0

N2
ref

1

4H2
ρ2

,

that is, only the waves of largest horizontal scale.
Finally, note that, because of the exponential growth with height, nonlinear

effects must become important at some height, and then the linear analysis will no
longer be valid.

10.1 QG waves on a boundary temperature gradient

Neglect β and vertical variations in ρref so that Hρ → ∞ (a kind of Boussinesq
approximation). Then the quasigeostrophic PV is given by

q = f0 + βy +∇2
z̃ψ +

f 2
0

N2
ref

∂2ψ

∂z̃2
. (78)

Consider a basic state with a constant vertical shear ∂U/∂z̃ in balance with a
constant northward temperature gradient

∂U

∂z̃
= − g

f0

1

θref

∂Θ

∂y
.

Look for solutions in which the interior potential vorticity perturbation van-
ishes, but there may be non-zero potential temperature perturbations at the bot-
tom boundary at z̃ = 0. These are simply advected by the surface geostrophic wind,
since w̃ = 0 there:

Dg

Dt

(
θ′

θref

)
= 0.

(Compare (74).)
Linearize the θ equation at the bottom boundary about the basic flow, and seek

wavelike solutions ∝ ei(kx+ly+mz̃−ωt). The condition of zero interior PV perturbation
implies

k2 + l2 +
f 2
0

N2
ref

m2 = 0,

so, for real k and l, m must be purely imaginary—solutions will be trapped in the
vertical. Physically, we need ℑ{m} > 0 so that the solution decays away from the
bottom boundary. The linearized θ equation then gives

(ω − kU(0))m = ik
∂U

∂z̃
.
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These waves propagate at zonal phase speed

cp =
ω

k
= U(0) +

i

m

∂U

∂z̃

= U(0) +HR
∂U

∂z̃
= U(HR),

where

HR =
i

m
=

f0
Nref(k2 + l2)1/2

is the Rossby height.
Thus, a boundary temperature gradient can support boundary-trapped Rossby

waves. The temperature gradient plays a role somewhat analogous to β. It can be
shown that the circulation is cyclonic above a warm surface temperature anomaly.

At a bottom boundary, f0∂Θ/∂y > 0 implies westward wave propagation (rel-
ative to the surface wind), while f0∂Θ/∂y < 0 implies eastward wave propagation
(relative to the surface wind). At a top boundary the direction of propagation would
be reversed.

10.2 Baroclinic instability: The Eady model

Again neglect β and vertical variabtions of ρref , so that again the QGPV is given by
(78). Again consider a constant background zonal shear and northward temperature
gradient, but now bounded by lower and upper boundaries at z̃ = ±H.

Again, seek solutions with zero potential vorticity perturbation in the interior.
The general solution for ψ is most conveniently written

ψ = ℜ
{
ψ̂ei(kx+ly)

[
A sinh

(
z̃

HR

)
+B cosh

(
z̃

HR

)]}
,

where ψ̂ is a constant.
At the bottom boundary the θ equation becomes

−i [ω − kU(−H)]

[
A

HR

cosh

(−H
HR

)
+

B

HR

sinh

(−H
HR

)
+

]

−ik∂U
∂z̃

[
A sinh

(−H
HR

)
+B cosh

(−H
HR

)
+

]
= 0,

while at the top boundary it becomes

−i [ω − kU(H)]

[
A

HR

cosh

(
H

HR

)
+

B

HR

sinh

(
H

HR

)
+

]

−ik∂U
∂z̃

[
A sinh

(
H

HR

)
+B cosh

(
H

HR

)
+

]
= 0.

Using the fact that

U(±H) = ±H∂U

∂z̃
,
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and eliminating A and B leads to the dispersion relation

ω2 = k2
∣∣∣∣
∂U

∂z̃

∣∣∣∣
2 [
H coth

(
H

HR

)
−HR

] [
H tanh

(
H

HR

)
−HR

]
.

For H ≫ HR (i.e. k or l large—the short wave limit), coth(H/HR) ≈ 1,
tanh(H/HR) ≈ 1,

ω ≈ ±k
∣∣∣∣
∂U

∂z̃

∣∣∣∣ (H −HR),

and

cp ≈ ±
∣∣∣∣
∂U

∂z̃

∣∣∣∣ (H −HR).

These are just the boundary waves we met in section 10.1.
For H ≪ HR (the long wave limit)

ω2 ≈ −1

3
k2H2

∣∣∣∣
∂U

∂z̃

∣∣∣∣
2

< 0;

ω is purely imaginary—we have solutions that grow or decay exponentially with
time. The growing solutions are unstable. By considering the signs of the factors in
the dispersion relation we can see that unstable solutions will exist for

H tanh

(
H

HR

)
< HR,

i.e.,
H

HR

< 1.2.

The maximum growth rate occurs for l = 0 and H ≈ 0.8HR, i.e., 1/k ≈ 1.2a where
a is the Rossby radius.
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