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SECTION A

1. (a) The horizontal momentum equation for a Boussinesq fluid may be written as
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Define the Rossby number, and show that if the Rossby number is small then
the flow can be expected to be close to geostrophic balance. Suppose that the
flow is in hydrostatic balance, which we write as
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where b is the buoyancy, which you may think of as temperature. By
combining geostrophic balance with equation (A), show that a horizontal
gradient of buoyancy is associated with a vertical shear. [11]

(b) The shallow water equations may be written as
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in Cartesian coordinates .x; y/. Here u and v are the velocity components, h
is the layer thickness, f is the Coriolis parameter, and g is a constant. Derive
the energy conservation law
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and give explicit expressions for the components of the energy flux
.F .x/; F .y//. [15]

(c) In a rotating frame of reference the rate of change of a vector B in an inertial
frame is related to its rate of change in the rotating frame by the formula�
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Use this relation to obtain an expression for the second derivative, namely�
d2B

dt2

�
I

in terms of rotating frame quantities. If B D r then identify the Coriolis
force and the centrifugal force in your expression and briefly give a physical
interpretation.
Can we apply equation (B) directly to velocity? That is, is it correct to say
that the acceleration a D dv=dt in the rotating frame and in the inertial frame
are related by

aI D aR C˝ � v:

Explain your answer. [12]

(d) Consider the vertical momentum equation in the form
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Is it always correct to say that the hydrostatic approximation is appropriate
when the vertical acceleration is much less than g? That is, whenˇ̌̌̌

Dw
Dt

ˇ̌̌̌
� g:

Explain your answer. In general, under what circumstances does hydrostatic
balance hold?
Suppose that the density is constant with � D �0. Show that equation (C) can
be written in the form
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where p0 D p C �0gz. Can the hydrostatic approximation be valid here?
Briefly explain. [12]

[50]

End of Part A
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SECTION B

2. (a) Begin with the shallow water potential vorticity equation,

D
Dt
� C f

h
D 0

where � is the relative vorticity, h is the height field and f D f0Cˇy, where
jˇyj � f0. By supposing that the flow is nearly in geostrophic balance, and
that the perturbations in the height field are small (that is, h D H C � where
H is a constant and j�j � H ) derive the quasi-geostrophic potential vorticity
equation
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where  is the streamfunction and r2 D @2
x C @

2
y . What is kd ? [9]

(b) Let kd D 0 and linearize the system about a state of rest. By considering
perturbations of the form

 D Re f	 exp Œi.kx C ly � !t/�g ;

or otherwise, show that the dispersion relation for this system is

! D �
ˇk

k2 C l2
;

and hence obtain an expression for the y–component of the group velocity. [7]

(c) The meridional component of the eddy momentum flux (per unit mass) is
given by:
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where L is one wavelength. Using this, show that

uv D �
1

2
kl j	 j2:

Hence infer that the meridional component of the group velocity has the
opposite sign to the momentum flux. Briefly explain how this can produce
westerly jets in midlatitude atmospheres. [9]

[25]
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3. Consider a layer of fluid of constant density in the upper ocean that satisfies the
Ekman-layer equations:
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where �x; �y are components of the stress, �, in the x- and y-directions and
f D f0 C ˇy. Assume that the pressure, �, is not a function of z, that the Ekman
layer has some finite depth, HE , below which the stress is zero, and that the
vertical velocity is zero at the top of the ocean, z D 0, and at the bottom.

(a) Define the geostrophic velocity, .ug ; vg/, in terms of the components of the
pressure. Show that the divergence of the geostrophic velocity satisfies
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Show also that equations (E) may be written as

f .vg � v/ D
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; f .u � ug/ D
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: (F)

[6]
(b) Suppose that the stress is imposed at the top of the layer (z D 0) such that

�x D �x0; �y D �y0 at z D 0:

At the bottom of the Ekman layer suppose that the stress is zero.
By integrating equations (F) over the depth of the Ekman layer show that the
transport induced by the stress (i.e., the ageostrophic mass flux) is at right
angles to the direction of the surface stress. [6]

(c) By integrating the mass continuity equation over the depth of the Ekman
layer show that the vertical velocity at the base of the Ekman layer, wE , is
given by
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[7]
(d) By cross-differentiating equations (E) and vertically integrating over the total

depth of the ocean, or otherwise, derive the Sverdrup relation,Z
ˇv dz D
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where v is the meridional component of the total velocity (i.e. geostrophic
and ageostrophic). [6]

[25]
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4. (a) A planet rotates with angular velocity ˝. Write down an expression for the
absolute angular momentum of a fluid parcel at a distance r from the centre
of the planet and latitude � with relative velocity u.
An air parcel is initially at rest relative to the rotating Earth at the surface
on the equator. Calculate its absolute angular momentum per unit mass.
(Assume the Earth to be spherical with radius a D 6:4 � 106 m and
˝ D 7:292 � 10�5 s�1.) [5]

(b) The air parcel rises to a height of 10 km while conserving its absolute angular
momentum. What is the velocity u acquired by the the parcel and in what
direction is this? The parcel then moves to 30° N at the same height, again
conserving its absolute angular momentum. What is its final value of u, and
in what direction is the flow? [7]

(c) Suppose that at the ground the velocity of the air is zero, and that it increases
linearly to its value at 10 km at 30° N, as calculated above. Suppose also that
the flow obeys the thermal wind relation in the form

f
@u

@z
D �

g

T0

@T

@y
;

where f D 2˝ sin� where � is latitude, T is temperature, T0 D 300K and
g D 10m s�2. Calculate the meridional temperature gradient at 30° N. Using
this value, or otherwise, estimate the temperature fall off between the equator
and 30° N. (You may assume � is small and sin� � �.) [8]

(d) Are the values you obtained in parts (b) and (c) realistic for the Earth’s
atmosphere? Explain you answer, and discuss the relevance of this to the
extent of Earth’s Hadley circulation. [5]

[In your answers above, clarity of explanation and the correct methodology carry
more weight than the correct numerical answers.] [25]
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