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Preface

October 4, 2018

_ese are a set of lecturenotes forECMM719, FluidDynam-
ics of the Atmosphere and Ocean, given at the University
of Exeter. _e notes are not self-contained – you will need
to look in books for a full understanding, and this version
of the notes is quite streamlined.



Chapter 1
Equationswith Rotation
and Stratification
Weeks 1 to 3

1.1 Review of Fluid Equations
First we just write down the equations without deriva-
tion. For dry air, or for a salt-free liquid, the equations of
motion may be written as follows:

_emass continuity equation:

àñ
àt

+ ∇⋅ (ñv) = 0. (1.1)

If density is constant this reduces to ∇⋅ v = 0.
_emomentum equation:

Dv
Dt

= −
∇p
ñ

+ í∇2v + F, (1.2)

whereF represents the eòects of body forces such as gravity
and í is the kinematic viscosity. If density is constant, or
pressure, p, is given as a function of density alone (e.g.,
p = Cñã where ã is a constant), then (1.1) and (1.2) form a
complete system.

_e thermodynamic equation:

DI
Dt

+
p
ñ
∇⋅ v = Q̇, (1.3)

1



1.1 Review of Fluid Equations 2

where Q̇ represents diabatic sources such as heating and
diòusion, I is internal energy. In the ideal gas case the
internal energy is given by I = cvT where T is temperature.

An equation of state:

p = f(I, ñ), (1.4)

wheref is some known function. For example, for an ideal
gas, p = ñRI/cv or,more simply, p = ñRT, where R is the
ideal gas constant for the gas at hand and T is temperature.

_e above four equations have four unknowns: velocity
(a vector), temperature, pressure and density. _e equa-
tions are called the Euler equations if the viscous term is
omitted, and the Navier–Stokes equations if viscosity is
included.1

1.1.1 Ideal Gas
Let us look at the ideal gas case in a littlemore detail. For
�uid dynamical purposes the ideal gas equation of state is
usually written in the form

p = ñRT (1.5)

where R is the gas constant of the gas in question, related
to the universal gas constant Ru by R = Ru/m, wherem is
themolecular weight of the gas.

_e internal energy of an ideal gas is given by I =
cvT where cv is the heat capacity at constant volume. It is
a function of temperature alone, and in fact is almost a
constant. For an ideal gas we also have cp − cv = R, where
cp is the heat capacity at constant pressure.

For an ideal gas the ûrst law of thermodynamics may
be written in either of the two equivalent forms

đQ = cv dT+p dá or đQ = cp dT−á dp, (1.6a,b)

where the second expression is derived using á = RT/p.
Forming the material derivative of the above gives two
forms of the internal energy equation:

cvDT
Dt

+ p
Dá
Dt

= Q̇ or cpDT
Dt

−
RT
p

Dp
Dt

= Q̇.

(1.7a,b)
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Using themass continuity equation, (1.7a) is equivalent to

DT
Dt

+
p
cvñ∇⋅ v = Q̇

cv . (1.8)

Alternatively, again using the ideal gas equation, wemay
eliminate T in favour of p and á and obtain

Dp
Dt

+ ãp∇⋅ v = Q̇
ñR
cv . (1.9)

where ã = cp/cv.
Potential temperature
Using the ideal gas equation we can write (1.6b) as s

dç =
đQ
T

= cp d lnT − R d lnp. (1.10)

where ç is the speciûc entropy, which is a function of state.
Now, let us deûne the potential temperature, è, by the ex-
pression

è ≡ T(
p0
p
)
ê
, (1.11)

where ê = R/cp. It straightforwardly follows that

cp d ln è = cp d lnT − R d lnp, (1.12)

and therefore the ûrst law of thermodynamics can be writ-
ten at

đQ = cp (Tè ) dè. (1.13)

Taking thematerial derivative we have

cpDè
Dt

=
è
T
Q̇. (1.14)

_is is a useful form because it just involves themate-
rial derivative of one quantity. _e potential temperature
is, in the absence of diabatic terms, amaterially conserved
quantity, unlike temperature. It is closely related to entropy,
and in particular

dç = cp d ln è. (1.15)
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_e potential temperature is the temperature that a
�uid would have if moved adiabatically to the reference
pressure p0, but the explicit demonstration of this is le� to
the reader. Indeed, potential temperaturemay be deûned
this way, and for an ideal gas this is equivalent to (1.11).

1.2 The Equations of Motion in a Rotating
Frame of Reference

Newton’s second law ofmotion, that the acceleration on a
body is proportional to the imposed force divided by the
body’s mass, applies in so-called inertial frames of refer-
ence; that is, frames that are stationary or moving only
with a constant rectilinear velocity relative to the distant
galaxies. Now the Earth spins round its own axis with a
period of almost 24 hours (23h 56m) and so the surface of
the Earth manifestly is not an inertial frame. Nevertheless,
it is very convenient to describe the �ow relative to the
Earth’s surface (which in fact is moving at speeds of up
to a few hundreds of metres per second), rather than in
some inertial frame. _is necessitates recasting the equa-
tions into a form that is appropriate for a rotating frame of
reference, and that is the subject of this section.

1.2.1 Rate of change of a vector
Consider ûrst a vector C of constant length rotating rela-
tive to an inertial frame at a constant angular velocity Ø.
_en, in a frame rotating with that same angular velocity
it appears stationary and constant. If in a small interval of
time ät the vector C rotates through a small angle äë then
the change in C, as perceived in the inertial frame, is given
by (see Fig. 1.1)

äC = |C| cos ú äëm, (1.16)

where the vector m is the unit vector in the direction of
change of C, which is perpendicular to both C and Ø. But
the rate of change of the angle ë is just, by deûnition, the
angular velocity so that äë = |Ø|ät and

äC = |C||Ø| sin ú̂m ät = Ø × C ät. (1.17)
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Figure 1.1 A vector C rotating at an angular velocityØ. It ap-
pears to be a constant vector in the rotating frame, whereas in
the inertial frame it evolves according to (dC/dt)I = Ø × C.
using the deûnition of the vector cross product, where
ú̂ = (π/2 − ú) is the angle between Ø and C. _us

(
dC
dt

)I = Ø × C, (1.18)

where the le�-hand side is the rate of change of C as per-
ceived in the inertial frame.

Now consider a vector B that changes in the inertial
frame. In a small time ät the change in B as seen in the
rotating frame is related to the change seen in the inertial
frame by

(äB)I = (äB)R + (äB)rot, (1.19)

where the terms are, respectively, the change seen in the
inertial frame, the change due to the vector itself changing
as measured in the rotating frame, and the change due to
the rotation. Using (1.17) (äB)rot = Ø × B ät, and so the
rates of change of the vector B in the inertial and rotating
frames are related by

(
dB
dt

)I = (
dB
dt

)R +Ø × B. (1.20)

_is relation applies to a vector B that, as measured at any
one time, is the same in both inertial and rotating frames.
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1.2.2 Velocity and acceleration in a rotating frame
_e velocity of a body is not measured to be the same in
the inertial and rotating frames, so care must be taken
when applying (1.20) to velocity. First apply (1.20) to r, the
position of a particle to obtain

(
dr
dt

)I = (
dr
dt

)R +Ø × r (1.21)

or
vI = vR +Ø × r. (1.22)

We refer to vR and vI as the relative and inertial velocity,
respectively, and (1.22) relates the two. Apply (1.20) again,
this time to the velocity vR to give

(
dvR
dt

)I = (
dvR
dt

)R +Ø × vR, (1.23)

or, using (1.22)

(
d
dt

(vI −Ø × r))I = (
dvR
dt

)R +Ø × vR, (1.24)

or

(
dvI
dt

)I = (
dvR
dt

)R+Ø×vR+ dØ
dt

×r+Ø×(
dr
dt

)I . (1.25)

_en, noting that

(
dr
dt

)I = (
dr
dt

)R +Ø × r = (vR +Ø × r), (1.26)

and assuming that the rate of rotation is constant, (1.25)
becomes

(
dvR
dt

)R = (
dvI
dt

)I − 2Ø × vR −Ø × (Ø × r). (1.27)

_is equation may be interpreted as follows. _e term
on the le�-hand side is the rate of change of the relative
velocity as measured in the rotating frame. _e ûrst term
on the right-hand side is the rate of change of the inertial
velocity as measured in the inertial frame (the inertial
acceleration,which is, byNewton’s second law, equal to the
force on a �uid parcel divided by its mass). _e second and
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third terms on the right-hand side (including theminus
signs) are the Coriolis force and the centrifugal force per
unit mass. Neither of these are true forces — they may
be thought of as quasi-forces (i.e., ‘as if ’ forces); that is,
when a body is observed from a rotating frame it seems
to behave as if unseen forces are present that aòect its
motion. If (1.27) is written, as is common, with the terms
+2Ø× vr and +Ø× (Ø× r) on the le�-hand side then these
terms should be referred to as the Coriolis and centrifugal
accelerations.

Centrifugal force
If r⊥ is the perpendicular distance from the axis of rotation
(see Fig. 1.1 and substitute r for C), then, because Ø is
perpendicular to r⊥,Ø×r = Ø×r⊥. _en, using the vector
identity Ø × (Ø × r⊥) = (Ø ⋅ r⊥)Ø − (Ø ⋅Ø)r⊥ and noting
that the ûrst term is zero, we see that the centrifugal force
per unit mass is just given by

Fce = −Ø × (Ø × r) = Ø2r⊥. (1.28)

_is may usefully be written as the gradient of a scalar
potential,

Fce = −∇Õce. (1.29)

where Õce = −(Ø2r2⊥)/2 = −(Ø × r⊥)2/2.
Coriolis force
_e Coriolis force per unit mass is:

FCo = −2Ø × vR. (1.30)

It plays a central role inmuch of geophysical �uid dynamics
and will be considered extensively later on. For now, we
just note three basic properties.

(i) _ere is no Coriolis force on bodies that are station-
ary in the rotating frame.

(ii) _e Coriolis force acts to de�ect moving bodies at
right angles to their direction of travel.

(iii) _e Coriolis force does nowork on a body because it
is perpendicular to the velocity, and so vR ⋅(Ø×vR) =
0.
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1.2.3 Momentum equation in a rotating frame
Since (1.27) simply relates the accelerations of a particle in
the inertial and rotating frames, then in the rotating frame
of reference themomentum equation may be written

Dv
Dt

+ 2Ø × v = −
1
ñ
∇p − ∇Õ, (1.31)

incorporating the centrifugal term into the potential, Õ.
We have dropped the subscript R; henceforth, unless we
need to be explicit, all velocities without a subscript will
be considered to be relative to the rotating frame.

1.2.4 Mass and tracer conservation in a rotating frame
Let õ be a scalar ûeld that, in the inertial frame, obeys

Dõ
Dt

+ õ∇⋅ vI = 0. (1.32)

Now, observers in both the rotating and inertial frame
measure the same value of õ. Further, Dõ/Dt is simply the
rate of change of õ associated with amaterial parcel, and
therefore is reference frame invariant. _us,

(
Dõ
Dt

)R = (
Dõ
Dt

)I , (1.33)

where (Dõ/Dt)R = (àõ/àt)R + vR ⋅ ∇õ and (Dõ/Dt)I =
(àõ/àt)I+vI⋅∇õ and the local temporalderivatives (àõ/àt)R
and (àõ/àt)I are evaluated at ûxed locations in the rotating
and inertial frames, respectively.

Further, using (1.22), we have that we have that

∇⋅ vI = ∇⋅ (vR +Ø × r) = ∇⋅ vR (1.34)

since ∇⋅ (Ø × r) = 0. _us, using (1.33) and (1.34), (1.32) is
equivalent to

Dõ
Dt

+ õ∇⋅ vR = 0, (1.35)

where all observables aremeasured in the rotating frame.
_us, the equation for the evolution of a scalar whosemea-
sured value is the same in rotating and inertial frames is
unaltered by the presence of rotation. In particular, the
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mass conservation equation is unaltered by the presence
of rotation.

_e individual components of thematerial derivative
diòer in the rotating and inertial frames. In particular

(
àõ
àt

)I = (
àõ
àt

)R − (Ø × r) ⋅ ∇õ (1.36)

because Ø × r is the velocity, in the inertial frame, of a
uniformly rotating body. Similarly,

vI ⋅ ∇õ = (vR +Ø × r) ⋅ ∇õ. (1.37)

Adding the last two equations reprises (1.33).

1.3 ♦ Spherical Coordinates
We write these equations down for reference, but we won’t
derive them or use them in their spherical form.

1.3.1 MassConservation and_ermodynamicEquation
_e mass conservation equation expanded in spherical
co-ordinates, is

àñ
àt

+
u

r cos ú
àñ
àë

+
v
r
àñ
àú

+ w
àñ
àr

+
ñ

r cos ú
[
àu
àë

+
à
àú

(v cos ú) +
1
r
à
àr

(wr2 cos ú)] = 0.

(1.38)

Equivalently this is the same as

àñ
àt

+
1

r cos ú
à(uñ)
àë

+
1

r cos ú
à
àú

(vñ cos ú)+
1
r2 à

àr
(r2wñ) = 0.

(1.39)
_e thermodynamic equation is a tracer advection

equation. _e (adiabatic) potential temperature in spheri-
cal coordinate form is

Dè
Dt

=
àè
àt

+
u

r cos ú
àè
àë

+
v
r
àè
àú

+ w
àè
àr

= 0, (1.40)

and similarly for tracers such as water vapour or salt.
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�
Figure 1.2 (a) On the sphere the rotation vectorØ can be de-
composed into two components, one in the local vertical and
one in the local horizontal, pointing toward the pole. That is,
Ø = Øyj + Øzk where Øy = Ø cos ú and Øz = Ø sinú. In geo-
physical �uid dynamics, the rotation vector in the local vertical
is often the more important component in the horizontal mo-
mentum equations. On a rotating disk, (b), the rotation vector
Ø is parallel to the local vertical k.

1.3.2 Momentum Equation
_emomentum equation is:

Du
Dt

− (2Ø +
u

r cos ú
) (v sin ú − w cos ú) = −

1
ñr cos ú

àp
àë

,

(1.41a)
Dv
Dt

+
wv
r

+ (2Ø +
u

r cos ú
) u sin ú = −

1
ñr

àp
àú

,

(1.41b)
Dw
Dt

−
u2 + v2

r
− 2Øu cos ú = −

1
ñ
àp
àr

− g.

(1.41c)

_e terms involving Ø are called Coriolis terms, and the
quadratic terms on the le�-hand sides involving 1/r are
o�en calledmetric terms.

1.4 ♦ The primitive equations
_e so-called primitive equations ofmotion are simpliûca-
tions of the equations that make three related approxima-
tions:

(i) The hydrostatic approximation. In the vertical mo-
mentum equation the gravitational term is assumed
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to be balanced by the pressure gradient term, so that

àp
àz

= −ñg. (1.42)

_e advection of vertical velocity, the Coriolis terms,
and themetric term (u2 + v2)/r are all neglected.

(ii) The shallow-�uid approximation. We write r = a + z
where the constant a is the radius of the Earth and
z increases in the radial direction. _e coordinate r
is then replaced by a except where it is used as the
diòerentiating argument. _us, for example,

1
r2 à(r2w)àr

→
àw
àz

. (1.43)

(iii) The traditional approximation. Coriolis terms in the
horizontal momentum equations involving the verti-
cal velocity, and the still smaller metric terms uw/r
and vw/r, are neglected.

_e second and third of these approximations should be
taken, or not, together, the underlying reason being that
they both relate to the presumed small aspect ratio of the
motion, so the approximations succeed or fail together.

Making these approximations, themomentum equa-
tions become

Du
Dt

− 2Ø sin úv −
uv
a

tan ú = −
1

añ cos ú
àp
àë

, (1.44a)

Dv
Dt

+ 2Ø sin úu +
u2 tan ú

a
= −

1
ña

àp
àú

, (1.44b)

0 = −
1
ñ
àp
àz

− g, (1.44c)

where

D
Dt

= (
à
àt

+
u

a cos ú
à
àë

+
v
a

à
àú

+ w
à
àz

) . (1.45)

We note the ubiquity of the factor 2Ø sin ú, and take the
opportunity to deûne the Coriolis parameter, f ≡ 2Ø sin ú.
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_e corresponding mass conservation equation for a
shallow �uid layer is:

àñ
àt

+
u

a cos ú
àñ
àë

+
v
a
àñ
àú

+ w
àñ
àz

+ ñ [
1

a cos ú
àu
àë

+
1

a cos ú
à
àú

(v cos ú) +
àw
àz

] = 0,

(1.46)

or equivalently,

àñ
àt

+
1

a cos ú
à(uñ)
àë

+
1

a cos ú
à
àú

(vñ cos ú) +
à(wñ)
àz

= 0.

(1.47)

1.5 CartesianApproximations: TheTangent
Plane

1.5.1 _e f -plane
Although the rotation of the Earth is central for many
dynamical phenomena, the sphericity of the Earth is not
always so. _is is especially true for phenomena on a scale
somewhat smaller than global where the use of spheri-
cal coordinates becomes awkward, and it is more con-
venient to use a locally Cartesian representation of the
equations. Referring to Fig. 1.2 we will deûne a plane
tangent to the surface of the Earth at a latitude ú0, and
then use a Cartesian coordinate system (x, y, z) to describe
motion on that plane. For small excursions on the plane,
(x, y, z) ≈ (aë cos ú0, a(ú − ú0), z). Consistently, the veloc-
ity is v = (u, v, w), so that u,v and w are the components
of the velocity in the tangent plane, in approximately in
the east–west, north–south and vertical directions, respec-
tively.

_e momentum equations for �ow in this plane are
then

àu
àt

+ (v ⋅ ∇)u + 2(Øyw − Øzv) = −
1
ñ
àp
àx

, (1.48a)

àv
àt

+ (v ⋅ ∇)v + 2(Øzu − Øxw) = −
1
ñ
àp
ày

, (1.48b)

àw
àt

+ (v ⋅ ∇)w + 2(Øxv − Øyu) = −
1
ñ
àp
àz

− g, (1.48c)
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where the rotation vectorØ = Øxi+Øyj+Øzk andØx = 0,
Øy = Ø cos ú0 and Øz = Ø sin ú0. If we make the tradi-
tional approximation, and so ignore the components of Ø
not in the direction of the local vertical, then

Du
Dt

− f0v = −
1
ñ
àp
àx

,

Dv
Dt

+ f0u = −
1
ñ
àp
ày

,

Dw
Dt

= −
1
ñ
àp
àz

− g.

(1.49a)

(1.49b)

(1.49c)

where f0 = 2Øz = 2Ø sin ú0. Deûning the horizontal
velocity vector u = (u, v, 0), the ûrst two equations may
also be written as

Du
Dt

+ f0 × u = −
1
ñ
∇zp, (1.50)

whereDu/Dt = àu/àt + v ⋅ ∇u, f0 = 2Ø sin ú0k = f0k, and
k is the direction perpendicular to the plane (it does not
change its orientation with latitude). _ese equations are,
evidently, exactly the same as themomentum equations
in a system in which the rotation vector is aligned with
the local vertical, as illustrated in the right-hand panel in
Fig. 1.2 (on page 10). _ey will describe �ow on the surface
of a rotating sphere to a good approximation provided the
�ow is of limited latitudinal extent so that the eòects of
sphericity are unimportant; we havemade what is known
as the f-plane approximation since the Coriolis parameter
is a constant. We may in addition make the hydrostatic
approximation, in which case (1.49c) becomes the familiar
àp/àz = −ñg.

1.5.2 _e beta-plane approximation
_emagnitude of the vertical component of rotation varies
with latitude, and this has important dynamical conse-
quences. We can approximate this eòect by allowing the
eòective rotation vector to vary. _us, noting that, for
small variations in latitude,

f = 2Ø sin ú ≈ 2Ø sin ú0 + 2Ø(ú − ú0) cos ú0, (1.51)
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then on the tangent plane wemay mimic this by allowing
the Coriolis parameter to vary as

f = f0 + ây , (1.52)

where f0 = 2Ø sin ú0 and â = àf/ày = (2Ø cos ú0)/a. _is
important approximation is known as the beta-plane, or
â-plane, approximation; it captures the themost important
dynamical eòects of sphericity, without the complicating
geometric eòects, which are not essential to describemany
phenomena. _e momentum equations (1.49) are unal-
tered except that f0 is replaced by f0 + ây to represent a
varying Coriolis parameter. _us, sphericity combined
with rotation is dynamically equivalent to a diòerentially
rotating system. For future reference, we write down the
â-plane horizontal momentum equations:

Du
Dt

+ f × u = −
1
ñ
∇zp, (1.53)

where f = (f0 + ây)k̂. In component form this equation
becomes

Du
Dt

− fv = −
1
ñ
àp
àx

,
Dv
Dt

+ fu = −
1
ñ
àp
ày

. (1.54a,b)

_emass conservation, thermodynamic and hydrostatic
equations in the â-plane approximation are the same as
the usual Cartesian, f-plane, forms of those equations.

1.6 The Boussinesq Approximation
_e density variations in the ocean are quite small com-
pared to themean density, andwemay exploit this to derive
somewhat simpler but still quite accurate equations ofmo-
tion. Let us ûrst examine how much density does vary in
the ocean.

1.6.1 Variation of density in the ocean
_e variations of density in the ocean are due to three
eòects: the compression of water by pressure (which we
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denote as Äpñ), the thermal expansion of water if its tem-
perature changes (ÄTñ), and the haline contraction if its
salinity changes (ÄSñ). How big are these? An appropriate
equation of state to approximately evaluate these eòects is
the linear one

ñ = ñ0 [1 − âT(T − T0) + âS(S − S0) + p
ñ0c2s ] , (1.55)

whereâT ≈ 2×10−4 K−1,âS ≈ 10−3 psu−1 and cs ≈ 1500m s−1.
_e three eòects may then be evaluated as follows.

Pressurecompressibility.WehaveÄpñ ≈ Äp/c2s ≈ ñ0gH/c2s .
whereH is the depth and the pressure change is quite
accurately evaluated using the hydrostatic approxi-
mation. _us,

|Äpñ|
ñ0 ≪ 1 if

gH
c2s ≪ 1, (1.56)

or if H ≪ c2s /g. _e quantity c2s /g ≈ 200 km is the
density scale height of the ocean. _us, the pressure
at the bottom of the ocean (say H = 10 km in the
deep trenches), enormous as it is, is insuõcient to
compress the water enough to make a signiûcant
change in its density. Changes in density due to dy-
namical variations of pressure are small if theMach
number is small, and this is also the case.

Thermal expansion. We have ÄTñ ≈ −âTñ0ÄT and there-
fore

|ÄTñ|
ñ0 ≪ 1 if âTÄT ≪ 1. (1.57)

For ÄT = 20K, âTÄT ≈ 4 × 10−3, and evidently we
would require temperature diòerences of order â−1T ,
or 5000K to obtain order one variations in density.

Saline contraction. We have ÄSñ ≈ âSñ0ÄS and therefore
|ÄSñ|
ñ0 ≪ 1 if âSÄS ≪ 1. (1.58)

As changes in salinity in the ocean rarely exceed 5
psu, forwhich âSÄS = 5× 10−3, the fractional change
in the density of seawater is correspondingly very
small.
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Evidently, fractional density changes in the ocean are very
small.

1.6.2 _e Boussinesq equations
_e Boussinesq equations are a set of equations that exploit
the smallness of density variations in many liquids.We
write

ñ = ñ0 + äñ(x, y, z, t) (1.59a)

where ñ0 is a constant and we assume that

|äñ| ≪ ñ0. (1.60)

Associated with the reference density is a reference
pressure that is deûned to be in hydrostatic balance with
it. _at is,

p = p0(z) + äp(x, y, z, t) (1.61a)

where
dp0
dz

≡ −gñ0 (1.62)

Note that ∇zp = ∇zäp.
Momentum equations
To obtain the Boussinesq equations we use ñ = ñ0 + äñ,
and assume äñ/ñ0 is small. Without approximation, the
momentum equation can be written as

(ñ0 + äñ)(
Dv
Dt

+ 2Ø × v) = −∇äp −
àp0
àz

k − g(ñ0 + äñ)k,
(1.63)

and using (1.62a) this becomes, again without approxima-
tion,

(ñ0 + äñ)(
Dv
Dt

+ 2Ø × v) = −∇äp − gäñk. (1.64)

If density variations are small this becomes

Dv
Dt

+ 2Ø × v = −∇õ + bk, (1.65)
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where õ = äp/ñ0 and b = −g äñ/ñ0 is the buoyancy. Note
that we should not and do not neglect the term g äñ, for
there is no reason to believe it to be small (äñmay be small,
but g is big). Equation (1.65) is themomentum equation
in the Boussinesq approximation, and it is common to say
that the Boussinesq approximation ignores all variations
of density of a �uid in the momentum equation, except
when associated with the gravitational term.

Formost large-scalemotions in the ocean the deviation
pressure and density ûelds are also approximately in hy-
drostatic balance, and in that case the vertical component
of (1.65) becomes

àõ
àz

= b. (1.66)

A condition for (1.66) to hold is that vertical accelerations
are small compared to g äñ/ñ0, and not compared to the
acceleration due to gravity itself. For more discussion of
this point, see section 1.7.

Mass Conservation
_e unapproximatedmass conservation equation is

Däñ
Dt

+ (ñ0 + äñ)∇⋅ v = 0. (1.67)

Provided that time scales advectively— that is to say that
D/Dt scales in the same way as v ⋅ ∇— then we may ap-
proximate this equation by

∇⋅ v = 0 , (1.68)

which is the same as that for a constant density �uid. _is
absolutely does not allow one to go back and use (1.67)
to say that Däñ/Dt = 0; the evolution of density is given
by the thermodynamic equation in conjunction with an
equation of state, and this should not be confused with the
mass conservation equation. Note also that in eliminating
the time-derivative of density we eliminate the possibility
of sound waves.
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_ermodynamic equation and equation of state
[_is section is evenmore informal and non-rigorous than
other sections.]We write the thermodynamic equation as

DI
Dt

+
p
ñ
∇⋅ v = Q̇ (1.69)

We neglect the second term on the le�-hand side (because
the �uid is incompressible), and write the ûrst term in
terms of temperature

C
DT
Dt

= Q̇ (1.70)

where c is the heat capacity of the �uid. We further sup-
pose that the temperature is linearly related to the buoy-
ancy, b. _at is, we assume a linear equation of state,
b = b0 (1 + A(T − T0)) where A is a constant coeõcient
of thermal expansion. _e thermodynamic equation be-
comes

Db
Dt

= Qb, (1.71)

where Qb = AQ̇/C. _emomentum equation (1.65),mass
continuity equation (1.68) and thermodynamic equation
(1.71) then form a closed set, called the Boussinesq equa-
tions.

♦ Mean stratiûcation and the buoyancy frequency
_e processes that cause density to vary in the vertical o�en
diòer from those that cause it to vary in the horizontal. For
this reason it is sometimes useful to write ñ = ñ0 + ñ̂(z) +
ñ�(x, y, z, t) and deûne b̃(z) ≡ −gñ̂/ñ0 and b� ≡ −gñ�/ñ0.
_e thermodynamic equation (1.69) becomes

Db�
Dt

+N2w = 0, (1.72)

where D/Dt remains a three-dimensional operator and

N2(z) = db̃ò
dz

, (1.73)

_e quantityN2 is ameasure of themean stratiûcation of
the �uid. N is known as the buoyancy frequency, some-
thing we return to later on.
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Summary of Boussinesq Equations

_e simple Boussinesq equations are, for an inviscid �uid:

momentum equations: Dv
Dt

+ f × v = −∇õ + bk, (B.1)

mass conservation: ∇⋅ v = 0, (B.2)

buoyancy equation: Db
Dt

= ḃ. (B.3)

Amore general form replaces the buoyancy equation by:

thermodynamic equation: Dè
Dt

= ̇è, (B.4)

salinity equation: DS
Dt

= ̇S, (B.5)

equation of state: b = b(è, S, z). (B.6)

1.6.3 Energetics of the Boussinesq system
In a uniform gravitational ûeld but with no other forcing
or dissipation, we write the simple Boussinesq equations
as

Dv
Dt

+ 2Ø × v = bk − ∇õ, ∇⋅ v = 0,
Db
Dt

= 0.

(1.74a,b,c)
From (1.74a) and (1.74b) the kinetic energy density evolu-
tion is given by

1
2
Dv2
Dt

= bw − ∇⋅ (õv), (1.75)

where the constant reference density ñ0 is omitted. Let us
now deûne the potential Õ ≡ −z, so that ∇Õ = −k and

DÕ
Dt

= ∇⋅ (vÕ) = −w, (1.76)

and using this and (1.74c) gives

D
Dt

(bÕ) = −wb. (1.77)
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Adding (1.77) to (1.75) and expanding thematerial deriva-
tive gives

à
àt

(
1
2
v2 + bÕ) + ∇⋅ [v(

1
2
v2 + bÕ + õ)] = 0. (1.78)

_is constitutes an energy equation for the Boussinesq
system. _e energy density (divided by ñ0) is just v2/2+bÕ.
What does the term bÕ represent? Its integral,multiplied
by ñ0, is the potential energy of the �ow minus that of
the basic state, or ∫g(ñ − ñ0)z dz. If there were a heating
term on the right-hand side of (1.74c) this would directly
provide a source of potential energy, rather than internal
energy as in the compressible system. Because the �uid is
incompressible, there is no conversion from kinetic and
potential energy into internal energy.

1.7 Scaling for Hydrostatic Balance
We now look in more detail at the conditions required for
hydrostatic balance to hold. Along with geostrophic bal-
ance, considered in the next section, it is one of themost
fundamental balances in geophysical �uid dynamics. _e
corresponding states, hydrostasy and geostrophy, are not
exactly realized, but their approximate satisfaction has pro-
found consequences on the behaviour of the atmosphere
and ocean.

1.7.1 Preliminaries
Consider the relative sizes of terms in (1.48c):

W
T

+
UW
L

+
W2
H

+ ØU ∼
!!!!!!!!

1
ñ
àp
àz

!!!!!!!!
+ g. (1.79)

For most large-scalemotion in the atmosphere and ocean
the terms on the right-hand side are orders ofmagnitude
larger than those on the le�, and thereforemust be approxi-
mately equal. Explicitly, supposeW ∼ 1 cm s−1, L ∼ 105 m,
H ∼ 103 m, U ∼ 10m s−1, T = L/U. _en by substituting
into (1.79) it seems that the pressure term is the only one
which could balance the gravitational term, and we are led
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to approximate (1.48c) by,

àp
àz

= −ñg. (1.80)

_is equation, which is a vertical momentum equation, is
known as hydrostatic balance.

However, (1.80) is not always a useful equation! Let us
suppose that the density is a constant, ñ0 . We can then
write the pressure as

p(x, y, z, t) = p0(z) + p�(x, y, z, t), (1.81)

where
àp0
àz

≡ −ñ0g. (1.82)

_at is, p0 and ñ0 are in hydrostatic balance. On the f-
plane, the inviscid vertical momentum equation becomes,
without approximation,

Dw
Dt

= −
1
ñ0 àp�

àz
. (1.83)

_us, for constant density �uids the gravitational term has
no dynamical eòect: there is no buoyancy force, and the
pressure term in the horizontal momentum equations can
be replaced by p�. Hydrostatic balance, and in particular
(1.82), is certainly not an appropriate vertical momentum
equation in this case. If the �uid is stratiûed, we should
therefore subtract oò the hydrostatic pressure associated
with themean density before we can determine whether
hydrostasy is a useful dynamical approximation, accurate
enough to determine the horizontal pressure gradients.
_is is automatic in the Boussinesq equations, where the
vertical momentum equation is

Dw
Dt

= −
àõ
àz

+ b, (1.84)

and the hydrostatic balance of the basic state is already
subtracted out. In themore general equation,

Dw
Dt

= −
1
ñ
àp
àz

− g, (1.85)
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we need to compare the advective term on the le�-hand
side with the pressure variations arising from horizontal
�ow in order to determine whether hydrostasy is an appro-
priate vertical momentum equation. Nevertheless, if we
only need to determine the pressure for use in an equation
of state then we simply need to compare the sizes of the dy-
namical terms in (1.48c)with g itself, in order to determine
whether a hydrostatic approximation will suõce.

1.7.2 Scaling and the aspect ratio
In a Boussinesq �uid we write the horizontal and vertical
momentum equations as

Du
Dt

+ f × u = −∇zõ, Dw
Dt

= −
àõ
àz

+ b. (1.86a,b)

With f = 0, (1.86a) implies the scaling

õ ∼ U2. (1.87)

If we usemass conservation, ∇z ⋅ u + àw/àz = 0, to scale
vertical velocity then

w ∼ W =
H
L
U = áU, (1.88)

where á ≡ H/L is the aspect ratio. _e advective terms in
the vertical momentum equation all scale as

Dw
Dt

∼
UW
L

=
U2H
L2 . (1.89)

Using (1.87) and (1.89) the ratio of the advective term to
the pressure gradient term in the vertical momentum equa-
tions then scales as

|Dw/Dt|
|àõ/àz|

∼
U2H/L2
U2/H ∼ (

H
L
)
2
. (1.90)

_us, the condition forhydrostasy, that |Dw/Dt|/|àõ/àz| ≪
1, is:

á2 ≡ (
H
L
)
2
≪ 1 . (1.91)
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_e advective term in the vertical momentum may then
be neglected. _us, hydrostatic balance is a small aspect
ratio approximation.

We can obtain the same result more formally by non-
dimensionalizing themomentum equations. Using upper-
case symbols to denote scaling values we write

(x, y) = L(x̂, ŷ), z = Hẑ,

u = Uû, w = Wŵ =
HU
L

ŵ,

t = Tt̂ =
L
U
t̂, õ = Õõ̂ = U2õ̂, b = Bb̂ =

U2
H

b̂,

(1.92)
where the hatted variables are non-dimensional and the
scaling for w is suggested by themass conservation equa-
tion, ∇z ⋅u+àw/àz = 0. Substituting (1.92) into (1.86) (with
f = 0) gives us the non-dimensional equations

Dû
Dt̂

= −∇õ̂, á2Dŵ
Dt̂

= −
àõ̂
àẑ

+ b̂, (1.93a,b)

where D/Dt̂ = à/àt̂ + ûà/àx̂ + v̂à/àŷ + ŵà/àẑ and we use
the convention that when ∇ operates on non-dimensional
quantities the operator itself is non-dimensional. From
(1.93b) it is clear that hydrostatic balance pertains when
á2 ≪ 1.

1.8 GeostrophicandThermalWindBalance
We now consider the dominant dynamical balance in the
horizontal components of themomentum equation. In the
horizontal plane (meaning along geopotential surfaces)
we ûnd that the Coriolis term is much larger than the
advective terms and the dominant balance is between it
and the horizontal pressure force. _is balance is called
geostrophic balance, and it occurswhen theRossby number
is small, as we now investigate.

1.8.1 _e Rossby number
_e Rossby number characterizes the importance of rota-
tion in a �uid. It is, essentially, the ratio of themagnitude
of the relative acceleration to the Coriolis acceleration, and
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Variable Scaling Meaning Atmos. value Ocean value
symbol

(x, y) L Horizontal length scale 106 m 105 m
t T Time scale 1 day (105 s) 10 days (106 s)

(u, v) U Horizontal velocity 10m s−1 0.1m s−1
Ro Rossby number, U/fL 0.1 0.01

Table 1.1 Scales of large-scale �ow in atmosphere and
ocean. The choices given are representative
of large-scale mid-latitude eddying motion
in both systems.

it is of fundamental importance in geophysical �uid dy-
namics. It arises from a simple scaling of the horizontal
momentum equation, namely

àu
àt

+(v ⋅ ∇)u + f × u = −
1
ñ
∇zp, (1.94a)

U2/L fU (1.94b)

where U is the approximatemagnitude of the horizontal
velocity and L is a typical length scale over which that
velocity varies. (We assume that W/H ≲ U/L, so that
vertical advection does not dominate the advection.) _e
ratio of the sizes of the advective and Coriolis terms is
deûned to be the Rossby number,

Ro ≡
U
fL

. (1.95)

If the Rossby number is small then rotation eòects are
important, and as the values in Table 1.1 indicate this is the
case for large-scale �ow in both ocean and atmosphere.

Another intuitive way to think about the Rossby num-
ber is in terms of time scales. _e Rossby number based
on a time scale is

RoT ≡
1
fT

, (1.96)

where T is a time scale associated with the dynamics at
hand. If the time scale is an advective one,meaning that
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T ∼ L/U, then this deûnition is equivalent to (1.95). Now,
f = 2Ø sin ú,whereØ is the angular velocity of the rotating
frame and equal to 2π/Tp whereTp is the period of rotation
(24 hours). _us,

RoT =
Tp

4πT sin ú
=

Ti
T
, (1.97)

whereTi = 1/f is the ‘inertial time scale’, about three hours
in mid-latitudes. _us, for phenomena with time scales
much longer than this, such as the motion of the Gulf
Stream or amid-latitude atmospheric weather system, the
eòects of the Earth’s rotation can be expected to be impor-
tant, whereas a short-lived phenomena, such as a cumulus
cloud or tornado,may be oblivious to such rotation. _e ex-
pressions (1.95) and (1.96) are, of course, just approximate
measures of the importance of rotation.

1.8.2 Geostrophic balance
If theRossbynumber is suõciently small in (1.94a) then the
rotation term will dominate the nonlinear advection term,
and if the time period of themotion scales advectively then
the rotation term also dominates the local time derivative.
_e only term that can then balance the rotation term is
the pressure term, and therefore wemust have

f × u ≈ −
1
ñ
∇zp, (1.98)

or, in Cartesian component form

fu ≈ −
1
ñ
àp
ày

, fv ≈
1
ñ
àp
àx

. (1.99)

_is balance is known as geostrophic balance, and its conse-
quences are profound, giving geophysical �uid dynamics
a special place in the broader ûeld of �uid dynamics. We
deûne the geostrophic velocity by

fug ≡ −
1
ñ
àp
ày

, fvg ≡
1
ñ
àp
àx

, (1.100)

and for low Rossby number �ow u ≈ ug and v ≈ vg.
Geostrophic balance has a number of immediate rami-

ûcations:
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Figure 1.3 Schematic of geostrophic �owwith a positive value
of the Coriolis parameter f. Flow is parallel to the lines of con-
stant pressure (isobars). Cyclonic �ow is anticlockwise around a
low pressure region and anticyclonic �ow is clockwise around
a high. If f were negative, as in the Southern Hemisphere,
(anti)cyclonic �ow would be (anti)clockwise.

∙ Geostrophic �ow is parallel to lines of constant pres-
sure (isobars). If f > 0 the �ow is anticlockwise
round a region of low pressure and clockwise around
a region of high pressure (see Fig. 1.3).

∙ If the Coriolis force is constant and if the density
does not vary in the horizontal the geostrophic �ow
is horizontally non-divergent and

∇z ⋅ ug =
àug
àx

+
àvg
ày

= 0. (1.101)

Wemay deûne the geostrophic streamfunction, ÷, by

÷ ≡
p

f0ñ0 , (1.102)

whence
ug = −

à÷
ày

, vg =
à÷
àx

. (1.103)

_e vertical component of vorticity, æ, is then given
by

æ = k ⋅ ∇ × v =
àv
àx

−
àu
ày

= ∇2z÷. (1.104)
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∙ If the Coriolis parameter is not constant, then cross-
diòerentiating (1.100) gives, for constant density geo-
strophic �ow,

vg àfày + f∇z ⋅ ug = 0, (1.105)

which, using themass continuity equation ∇z ⋅ ug =
−àw/àz,

âvg = f
àw
àz

. (1.106)

where â ≡ àf/ày = 2Ø cos ú/a. _is geostrophic
vorticity balance is sometimes known as ‘Sverdrup
balance’, although that expression is better restricted
to the case when the vertical velocity from a wind
stress.

1.8.3 Taylor–Proudman eòect
If â = 0, then (1.106) implies that the vertical velocity is
not a function of height. In fact, in that case none of the
components of velocity vary with height if density is also
constant. To show this, in the limit of zero Rossby number
we ûrst write the three-dimensional momentum equation
as

f0 × v = −∇õ − ∇ö, (1.107)

where f0 = 2Ø = 2Øk, õ = p/ñ0, and ∇ö represents other
potential forces. If ö = gz then the vertical component
of this equation represents hydrostatic balance, and the
horizontal components represent geostrophic balance. On
taking the curl of this equation, the terms on the right-hand
side vanish and the le�-hand side becomes

(f0 ⋅ ∇)v − f0∇⋅ v − (v ⋅ ∇)f0 + v∇⋅ f0 = 0. (1.108)

But ∇ ⋅ v = 0 by mass conservation, and because f0 is
constant both ∇⋅ f0 and (v ⋅ ∇)f0 vanish. Equation (1.108)
thus reduces to

(f0 ⋅ ∇)v = 0, (1.109)

which, since f0 = f0k, implies f0àv/àz = 0, and in partic-
ular we have

àu
àz

= 0,
àv
àz

= 0,
àw
àz

= 0. (1.110)
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A diòerent presentation of this argument proceeds as
follows. If the �ow is exactly in geostrophic and hydrostatic
balance then

v =
1
f0 àõàx , u = −

1
f0 àõày ,

àõ
àz

= −g. (1.111a,b,c)

Diòerentiating (1.111a,b)with respect to z, and using (1.111c)
yields

àv
àz

=
−1
f0 àg

àx
= 0,

àu
àz

=
1
f0 àgày = 0. (1.112)

Noting that the geostrophic velocities are horizontally non-
divergent (∇z ⋅u = 0), and using mass continuity then gives
àw/àz = 0, as before.

If there is a solid horizontal boundary anywhere in the
�uid, for example at the surface, then w = 0 at that surface
and thus w = 0 everywhere. Hence themotion occurs in
planes that lie perpendicular to the axis of rotation, and the
�ow is eòectively two dimensional. _is result is known
as the Taylor–Proudman eòect, namely that for constant
density �ow in geostrophic and hydrostatic balance the ver-
tical derivatives of the horizontal and the vertical velocities
are zero. At zero Rossby number, if the vertical velocity is
zero somewhere in the �ow, it is zero everywhere in that
vertical column; furthermore, the horizontal �ow has no
vertical shear, and the �uidmoves like a slab. _e eòects
of rotation have provided a stiòening of the �uid in the
vertical.

In neither the atmosphere nor the ocean dowe observe
precisely such vertically coherent �ow,mainly because of
the eòects of stratiûcation. However, it is typical of geo-
physical �uid dynamics that the assumptions underlying
a derivation are not fully satisûed, yet there aremanifes-
tations of it in real �ow. _us, one might have naïvely
expected, because àw/àz = −∇z ⋅u, that the scales of the var-
ious variables would be related byW/H ∼ U/L. However,
if the �ow is rapidly rotating we expect that the horizon-
tal �ow will be in near geostrophic balance and therefore
nearly divergence free; thus ∇z ⋅u ≪ U/L, andW ≪ HU/L.
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1.8.4 _ermal wind balance
_ermalwind balance arises by combining the geostrophic
and hydrostatic approximations, and this is most easily
done in the context of the anelastic (or Boussinesq) equa-
tions, or in pressure coordinates. For the anelastic equa-
tions, geostrophic balancemay be written

− fvg = −
àõ
àx

= −
1

a cos ú
àõ
àë

, fug = −
àõ
ày

= −
1
a
àõ
àú

.

(1.113a,b)
Combining these relationswithhydrostatic balance, àõ/àz =
b, gives

−f
àvg
àz

= −
àb
àx

,

f
àug
àz

= −
àb
ày

.

(1.114a)

(1.114b)

_ese equations represent thermal wind balance, and
the vertical derivative of the geostrophic wind is the ‘ther-
mal wind’.

If the density or buoyancy is constant then there is
no shear and (1.114b) gives the Taylor–Proudman result.
But suppose that the temperature falls in the poleward
direction. _en thermal wind balance implies that the
(eastward) wind will increase with height— just as is ob-
served in the atmosphere! In general, a vertical shear of
the horizontal wind is associated with a horizontal tem-
perature gradient, and this is one of themost simple and
far-reaching eòects in geophysical �uid dynamics. _e
underlying physical mechanism is illustrated in Fig. 1.4.

1.8.5 Vertical velocity and hydrostatic balance
Scaling for vertical velocity
If the Coriolis parameter is constant then the horizontal
component of �ows that are in geostrophic balance have
zero horizontal divergence (∇x ⋅ u = 0) and zero vertical
velocity. We can therefore expect that any �ow with small
Rossby number will have a ‘small’ vertical velocity. Let
us make this statement more precise using the rotating
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-
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Higher pressure Lower pressure

Higher pressureLower pressure

Warm,
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Cold,
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Figure 1.4 The mechanism of thermal wind. A cold �uid is
denser than a warm �uid, so by hydrostasy the vertical pressure
gradient is greaterwhere the �uid is cold. Thus, the pressure gra-
dients form as shown, where ‘higher’ and ‘lower’ mean relative
to the average at that height. The horizontal pressure gradients
are balanced by the Coriolis force, producing (forf > 0) the hor-
izontal winds shown (⊗ into the paper, and ⊙ out of the paper).
Only the wind shear is given by the thermal wind.

Boussinesq equations, (1.86) with constant Coriolis param-
eter. Let u = ug + ua where the geostrophic �ow satisûes
f0 × ug = −∇õ. _e horizontal momentum equation, with
corresponding scales for each term, then becomes

àu
àt

+ u ⋅ ∇u + w
àu
àz

+ f0 × ua = 0, (1.115)

U2
L

U2
L

WU
H

f0Ua. (1.116)

_is equation suggests a scaling for the ageostrophic �ow
of

Ua =
U
f0LU = RoU. (1.117)

_at is, the ageostrophic �ow is Rossby number smaller (at
least) than the geostrophic �ow. To obtain a scaling for the
vertical velocity we look to themass continuity equation
written in the form

àw
àz

= −∇⋅ ua, (1.118)
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since only the ageostrophic �ow has a divergence. Equa-
tions (1.117) and (1.118) suggest the scaling

W = Ro
HU
L

. (1.119)

_at is, the vertical velocity is order Rossby number smaller
than an estimate based purely on themass continuity equa-
tion would suggest.

If the Coriolis parameter is not constant then the geo-
strophic �ow itself is divergent and this induces a vertical
velocity, as in (1.106). _e scaling for vertical velocity is
now

W =
â
f
HU = RoâHU

L
. (1.120)

where Roâ = âL/f is the beta Rossby number. It is less
than one for all �ows except those with a truly global scale.

Scaling for hydrostatic balance
Let us non-dimensionalize the rotating Boussinesq equa-
tions, (1.86), by writing

(x, y) = L(x̂, ŷ), z = Hẑ, u = Uû,

t = Tt̂ =
L
U
t̂, f = f0f̂,

w =
åHU
L

ŵ, õ = Õõ̂ = f0ULõ̂,
b = Bb̂ =

f0UL
H

b̂,

(1.121)

_ese relations are almost the same as (1.92), except for the
factor of å in the scaling of w. If the Coriolis parameter is
constant or nearly so then, from (1.119), å = Ro, whereas
if the Coriolis parameter varies then å = Roâ, as in (1.119).
_e scaling for õ and b� are suggested by geostrophic and
thermal wind balance with f0 a representative value of f.
Substituting these values into (1.86)we obtain the following
scaledmomentum equations:

Ro
Dû
Dt̂

+ f̂ × û = −∇õ̂, Roåá2Dŵ
Dt̂

= −
àõ̂
àẑ

− b̂.

(1.122a,b)
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where D/Dt̂ = à/àt̂ + û ⋅ ∇z + åŵà/àẑ. _ere are two no-
table aspects to these equations. First andmost obviously,
when Ro ≪ 1, (1.122a) reduces to geostrophic balance,
f × u ≈ −∇õ̂. Second, thematerial derivative in (1.122b) is
multiplied by three non-dimensional parameters, and we
can understand the appearance of each as follows.

(i) _e aspect ratio dependence (á2) arises in the same
way as for non-rotating �ows— that is, because of
the presence of w and z in the vertical momentum
equation as opposed to (u, v) and (x, y) in the hori-
zontal equations.

(ii) _e Rossby number dependence (Ro) arises because
in rotating �ow the pressure gradient is balanced by
the Coriolis force, which is Rossby number larger
than the advective terms.

(iii) _e factor å arises because in rotating �oww is smaller
than u by å times the aspect ratio. _e factor may be
theRossby number itself, or the betaRossby number.

_e factor Roåá2 is very small for large-scale �ow; the
reader is invited to calculate representative values. Evi-
dently, a rapidly rotating �uid is more likely to be in hydro-
static balance than a non-rotating �uid, other conditions
being equal. _e combined eòects of rotation and stratiû-
cation are, not surprisingly, quite subtle and we leave that
topic for chapter 3.



Chapter 2
ShallowWater Systems
Weeks 3 to 5

2.1 Dynamics of a Single, Shallow Layer
Consider �uid in a container above which is another �uid
of negligible density (and therefore negligible inertia) rel-
ative to the �uid of interest, as illustrated in Fig. 2.1. Our
notation is that v = ui + vj + wk is the three-dimensional
velocity and u = ui + vj is the horizontal velocity. ℎ(x, y)
is the thickness of the liquid column,H is its mean height,
and ç is the height of the free surface. In a �at-bottomed
container ç = ℎ, whereas in general ℎ = ç − çb, where çb is
the height of the �oor of the container.

2.1.1 Momentum equations
_e vertical momentum equation is just the hydrostatic
equation,

àp
àz

= −ñ0g, (2.1)

and, because density is assumed constant,wemay integrate
this to

p(x, y, z, t) = −ñ0gz + po. (2.2)

At the top of the �uid, z = ç, the pressure is determined
by the weight of the overlying �uid and this is assumed to
be negligible. _us, p = 0 at z = ç, giving

p(x, y, z, t) = ñ0g(ç(x, y, t) − z). (2.3)

33
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Figure 2.1 A shallowwater system. ℎ is the thickness of awater
column,H its mean thickness, ç the height of the free surface
and çb is the height of the lower, rigid, surface, above some
arbitrary origin, typically chosen such that the average of çb
is zero. Äç is the deviation free surface height, so we have
ç = çb + ℎ = H + Äç.

_e consequence of this is that the horizontal gradient of
pressure is independent of height. _at is

∇zp = ñ0g∇zç, (2.4)

where
∇z = i à

àx
+ j à

ày
(2.5)

is the gradient operator at constant z. (In the rest of this
chapter we will drop the subscript z unless that causes am-
biguity. _e three-dimensional gradient operator will be
denoted by ∇3. We will also mostly use Cartesian coordi-
nates, but the shallow water equations may certainly be
applied over a spherical planet— indeed, ‘Laplace’s tidal
equations’ are essentially the shallow water equations on a
sphere.) _e horizontal momentum equations therefore
become

Du
Dt

= −
1
ñ0∇p = −g∇ç. (2.6)

_e right-hand side of this equation is independent of the
vertical coordinate z. _us, if the �ow is initially indepen-
dent of z, itmust stay so. (_is z independence is unrelated
to that arising from the rapid rotation necessary for the
Taylor–Proudman eòect.) _e velocities u and v are func-
tions of x, y and t only, and the horizontal momentum
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equation is therefore

Du
Dt

=
àu
àt

+ u
àu
àx

+ v
àu
ày

= −g∇ç. (2.7)

_at the horizontal velocity is independent of z is a conse-
quence of the hydrostatic equation, which ensures that the
horizontal pressure gradient is independent of height. (An-
other starting point would be to take this independence
of the horizontal motion with height as the deûnition of
shallow water �ow. In real physical situations such inde-
pendence does not hold exactly— for example, friction
at the bottom may induce a vertical dependence of the
�ow in a boundary layer.) In the presence of rotation, (2.7)
easily generalizes to

Du
Dt

+ f × u = −g∇ç , (2.8)

where f = fk. Just as with the primitive equations, f may
be constant ormay vary with latitude, so that on a spherical
planet f = 2Ø sin ú and on the â-plane f = f0 + ây.

2.1.2 Mass continuity equation
_emass contained in a �uid column of height ℎ and cross-
sectional area A is given by ∫A ñ0ℎ dA (see Fig. 2.2). If
there is a net �ux of �uid across the column boundary (by
advection) then this must be balanced by a net increase in
themass in A, and therefore a net increase in the height of
the water column. _emass convergence into the column
is given by

Fm = mass �ux in = −∫S ñ0u ⋅ dS, (2.9)

where S is the area of the vertical boundary of the column.
_e surface area of the column is composed of elements
of area ℎn äl, where äl is a line element circumscribing
the column and n is a unit vector perpendicular to the
boundary, pointing outwards. _us (2.9) becomes

Fm = −∮ ñ0ℎu ⋅ n dl. (2.10)
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Figure 2.2 Themassbudget for a columnof areaA in a shallow
water system. The �uid leaving the column is∮ ñ0ℎu ⋅n dlwhere
n is the unit vector normal to the boundary of the �uid column.
There is a non-zero vertical velocity at the top of the column if
the mass convergence into the column is non-zero.

Using the divergence theorem in two dimensions, (2.10)
simpliûes to

Fm = −∫A ∇⋅ (ñ0uℎ) dA, (2.11)

where the integral is over the cross-sectional area of the
�uid column (looking down from above). _is is balanced
by the local increase in height of the water column, given
by

Fm =
d
dt

∫ ñ0 dV =
d
dt

∫A ñ0ℎ dA = ∫A ñ0 àℎàt dA. (2.12)

Because ñ0 is constant, the balance between (2.11) and (2.12)
leads to

∫A [
àℎ
àt

+ ∇⋅ (uℎ)] dA = 0, (2.13)

and because the area is arbitrary the integrand itselfmust
vanish, whence,

àℎ
àt

+ ∇⋅ (uℎ) = 0, (2.14)
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_e ShallowWater Equations

For a single-layer �uid, and including the Coriolis term, the inviscid shallow
water equations are

momentum: Du
Dt

+ f × u = −g∇ç. (SW.1)

mass continuity: Dℎ
Dt

+ ℎ∇⋅ u = 0 or àℎ
àt

+ ∇⋅ (ℎu) = 0, (SW.2)

where u is the horizontal velocity, ℎ is the total �uid thickness, ç is the height
of the upper free surface and çb is the height of the lower surface (the bottom
topography). _us, ℎ(x, y, t) = ç(x, y, t) − çb(x, y). _ematerial derivative is

D
Dt

=
à
àt

+ u ⋅ ∇ =
à
àt

+ u
à
àx

+ v
à
ày

, (SW.3)

with the rightmost expression holding in Cartesian coordinates.

or equivalently

Dℎ
Dt

+ ℎ∇ ⋅ u = 0. (2.15)

_is derivation holds whether or not the lower surface is
�at. If it is, then ℎ = ç, and if not ℎ = ç − çb.
From the 3Dmass conservation equation
Since the �uid is incompressible, the three-dimensional
mass continuity equation is just ∇⋅ v = 0. Writing this out
in component form

àw
àz

= −(
àu
àx

+
àv
ày

) = −∇ ⋅ u. (2.16)

Integrating this from the bottom of the �uid to the top, and
using the boundary conditions of w (express w in terms of
ℎ) gives (2.15). Details le� to the reader.

2.2 Reduced Gravity Equations
Consider now a single shallow moving layer of �uid on
top of a deep, quiescent �uid layer (Fig. 2.3), and beneath a
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�uid of negligible inertia. _is conûguration is o�en used
as amodel of the upper ocean: the upper layer represents
�ow in perhaps the upper few hundredmetres of the ocean,
the lower layer being the near-stagnant abyss. If we turn
themodel upside-down we have a perhaps slightly less re-
alisticmodel of the atmosphere: the lower layer represents
motion in the troposphere above which lies an inactive
stratosphere. _e equations of motion are virtually the
same in both cases.

2.2.1 Pressure gradient in the active layer
We will derive the equations for the oceanic case (active
layer on top) in two cases, which diòer slightly in the as-
sumption made about the upper surface.

I Free upper surface
_e pressure in the upper layer is given by integrating the
hydrostatic equation down from the upper surface. _us,
at a height z in the upper layer

p1(z) = gñ1(ç0 − z), (2.17)

where ç0 is the height of the upper surface. Hence, every-
where in the upper layer,

1
ñ1∇p1 = g∇ç0, (2.18)

and themomentum equation is

Du
Dt

+ f × u = −g∇ç0. (2.19)

In the lower layer the pressure is also given by theweight of
the �uid above it. _us, at some level z in the lower layer,

p2(z) = ñ1g(ç0 − ç1) + ñ2g(ç1 − z). (2.20)

But if this layer is motionless the horizontal pressure gra-
dient in it is zero and therefore

ñ1gç0 = −ñ1g�ç1 + constant, (2.21)
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Figure 2.3 The reduced gravity shallow water system. An ac-
tive layer lies over a deep, more dense, quiescent layer. In a
common variation the upper surface is held �at by a rigid lid,
and ç0 = 0.

where g� = g(ñ2 − ñ1)/ñ1 is the reduced gravity. _e mo-
mentum equation becomes

Du
Dt

+ f × u = g�∇ç1. (2.22)

_e equations are completed by the usual mass conserva-
tion equation,

Dℎ
Dt

+ ℎ∇⋅ u = 0, (2.23)

where ℎ = ç0−ç1. Becauseg ≫ g�, (2.21) shows that surface
displacements aremuch smaller than the displacements at
the interior interface. We see this in the real ocean where
themean interior isopycnal displacements may be several
tens ofmetres but variations in themean height of ocean
surface are of the order of centimetres.

II _e rigid lid approximation
_e smallness of the upper surface displacement suggests
that we will make little error is we impose a rigid lid at the
top of the �uid. Displacements are no longer allowed, but
the lid will in general impart a pressure force to the �uid.
Suppose that this is P(x, y, t), then the horizontal pressure
gradient in the upper layer is simply

∇p1 = ∇P. (2.24)
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_e pressure in the lower layer is again given by hydrostasy,
and is

p2 = −ñ1gç1+ñ2g(ç1−z)+P = ñ1gℎ−ñ2g(ℎ+z)+P, (2.25)

so that
∇p2 = −g(ñ2 − ñ1)∇ℎ + ∇P. (2.26)

_en if ∇p2 = 0 we have

g(ñ2 − ñ1)∇ℎ = ∇P, (2.27)

and themomentum equation for the upper layer is just

Du
Dt

+ f × u = −g�1∇ℎ. (2.28)

where g� = g(ñ2 − ñ1)/ñ1. _ese equations diòer from the
usual shallow water equations only in the use of a reduced
gravity g� in place of g itself. It is the density diòerence
between the two layers that is important. Similarly, if we
take a shallow water system, with themoving layer on the
bottom, and we suppose that overlying it is a stationary
�uid of ûnite density, then we would easily ûnd that the
�uid equations for the moving layer are the same as if
the �uid on top had zero inertia, except that g would be
replaced by an appropriate reduced gravity (problem 2.??).

2.3 Geostrophic Balance
Geostrophic balance occurs in the shallowwater equations,
just as in the continuously stratiûed equations, when the
Rossby number U/fL is small and the Coriolis term domi-
nates the advective terms in themomentum equation. In
the single-layer shallow water equations the geostrophic
�ow is:

f × ug = −g∇ç. (2.29)

_us, the geostrophic velocity is proportional to the slope
of the surface, as sketched in Fig. 2.4. (For the rest of this
section, we will drop the subscript g, and take all velocities
to be geostrophic.)

In both the single-layer andmulti-layer cases, the slope
of an interfacial surface is directly related to the diòerence
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Figure 2.4 Geostrophic �ow in a shallow water system, with a
positive value of the Coriolis parameter f, as in the Northern
Hemisphere. The pressure force is directed down the gradient
of the height �eld, and this can be balanced by the Coriolis force
if the �uid velocity is at right angles to it. If fwere negative, the
geostrophic �ow would be reversed.

in pressure gradient on either side and so, by geostrophic
balance, to the shear of the �ow. _is is the shallow wa-
ter analogue of the thermal wind relation. To obtain an
expression for this, consider the interface, ç, between two
layers labelled 1 and 2. _e pressure in two layers is given
by the hydrostatic relation and so,

p1 = A(x, y) − ñ1gz (at some z in layer 1)
(2.30a)

p2 = A(x, y) − ñ1gç + ñ2g(ç − z)

= A(x, y) + ñ1g�1ç − ñ2gz (at some z in layer 2)
(2.30b)

where A(x, y) is a function of integration. _us we ûnd

1
ñ1∇(p1 − p2) = −g�1∇ç. (2.31)

If the �ow is geostrophically balanced and Boussinesq then,
in each layer, the velocity obeys

fui = 1
ñ1 k × ∇pi. (2.32)

Using (2.31) then gives

f(u1 − u2) = −k × g�1∇ç, (2.33)
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Figure 2.5 Margules’ relation: using hydrostasy, the di�erence
in the horizontal pressure gradient between the upper and the
lower layer is given by −g�ñ1s, where s = tanõ = Äz/Äy is the
interface slope and g� = g(ñ2 − ñ1)/ñ1. Geostrophic balance
then gives f(u1 − u2) = g�s, which is a special case of (2.34).

or in general

f(un − un+1) = −k × g�n∇ç. (2.34)

_is is the thermal wind equation for the shallow water
system. It applies at any interface, and it implies the shear
is proportional to the interface slope, a result known as the
‘Margules relation’ (Fig. 2.5).

Suppose thatwe represent the atmosphere by two layers
of �uid; ameridionally decreasing temperaturemay then
be represented by an interface that slopes upwards toward
the pole. _en, in either hemisphere, we have

u1 − u2 = g�1
f

àç
ày

> 0, (2.35)

and the temperature gradient is associated with a positive
shear (see problem 2.??).

2.4 ConservationPropertiesofShallowWa-
ter Systems

_ere are two common types of conservation property in
�uids: (i) material invariants and (ii) integral invariants.
Material invariance occurs when a property (õ say) is con-
served on each �uid element, and so obeys the equation
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Dõ/Dt = 0. An integral invariant is one that is conserved
following an integration over some, usually closed, volume;
energy is an example.

2.4.1 Potential vorticity: amaterial invariant
_e vorticity of a �uid, denoted ø, is deûned to be the curl
of the velocity ûeld. Let us also deûne the shallow water
vorticity, ø∗, as the curl of the horizontal velocity. We
therefore have:

ø ≡ ∇ × v, ø∗ ≡ ∇ × u. (2.36)

Because àu/àz = àv/àz = 0, only the vertical component
of ø∗ is non-zero and

ø∗ = k (àv
àx

−
àu
ày

) ≡ k æ. (2.37)

Considering ûrst the non-rotating case, we use the vector
identity

(u ⋅ ∇)u =
1
2
∇(u ⋅ u) − u × (∇ × u), (2.38)

to write themomentum equation, (2.8) with f = 0, as

àu
àt

+ ø∗ × u = −∇(gç +
1
2
u2) . (2.39)

To obtain an evolution equation for the vorticity we take
the curl of (2.39), andmake use of the vector identity

∇ × (ø∗ × u) = (u ⋅ ∇)ø∗ − (ø∗ ⋅ ∇)u + ø∗∇⋅ u − u∇⋅ ø∗
= (u ⋅ ∇)ø∗ + ø∗∇⋅ u, (2.40)

using the fact that ∇⋅ ø∗ is the divergence of a curl and
therefore zero, and (ø∗ ⋅ ∇)u = 0 because ø∗ is perpendic-
ular to the surface in which u varies. Taking the curl of
(2.39) gives

àæ
àt

+ (u ⋅ ∇)æ = −æ∇⋅ u, (2.41)

where æ = k ⋅ ø∗. Now, the mass conservation equation
may be written as

− æ∇⋅ u =
æ
ℎ
Dℎ
Dt

, (2.42)
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and using this (2.41) becomes

Dæ
Dt

=
æ
ℎ
Dℎ
Dt

, (2.43)

which simpliûes to

D
Dt

(
æ
ℎ
) = 0. (2.44)

_e important quantity æ/ℎ, o�en denoted by Q, is known
as the potential vorticity, and (2.44) is the potential vorticity
equation. We re-derive this conservation law in a more
general way in section ??

Because Q is conserved on parcels, then so is any func-
tion of Q; that is, F(Q) is amaterial invariant, where F is
any function. To see this algebraically,multiply (2.44) by
F�(Q), the derivative of F with respect to Q, giving

F�(Q)
DQ
Dt

=
D
Dt

F(Q) = 0. (2.45)

Since F is arbitrary there are an inûnite number ofmaterial
invariants corresponding to diòerent choices of F.

Eòects of rotation
In a rotating frame of reference, the shallow water momen-
tum equation is

Du
Dt

+ f × u = −g∇ç, (2.46)

where (as before) f = fk. _is may be written in vector
invariant form as

àu
àt

+ (ø∗ + f) × u = −∇(gç +
1
2
u2) , (2.47)

and taking the curl of this gives the vorticity equation

àæ
àt

+ (u ⋅ ∇)(æ + f) = −(f + æ)∇⋅ u. (2.48)

_is is the same as the shallow water vorticity equation in
a non-rotating frame, save that æ is replaced by æ + f, the
reason for this being that f is the vorticity that the �uid
has by virtue of the background rotation. _us, (2.48) is
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simply the equation of motion for the total or absolute
vorticity, øa = ø∗ + f = (æ + f)k.

_e potential vorticity equation in the rotating case
follows,much as in the non-rotating case, by combining
(2.48) with themass conservation equation, giving

D
Dt

(
æ + f
ℎ

) = 0 . (2.49)

_at is, Q ≡ (æ + f)/ℎ, the potential vorticity in a rotating
shallow system, is amaterial invariant.

Vorticity and circulation
Although vorticity itself is not amaterial invariant, its inte-
gral over a horizontal material area is invariant. To demon-
strate this in the non-rotating case, consider the integral

C = ∫A æ dA = ∫A Qℎ dA, (2.50)

over a surface A, the cross-sectional area of a column of
height ℎ (as in Fig. 2.2). Taking thematerial derivative of
this gives

DC
Dt

= ∫A DQ
Dt

ℎ dA + ∫A Q
D
Dt

(ℎ dA). (2.51)

_e ûrst term is zero, by (2.43); the second term is just the
derivative of the volume of a column of �uid and it too is
zero, by mass conservation. _us,

DC
Dt

=
D
Dt

∫A æ dA = 0. (2.52)

_us, the integral of the vorticity over a some cross-sectional
area of the �uid is unchanging, although both the vorticity
and area of the �uidmay individually change. Using Stokes’
theorem, it may be written as

DC
Dt

=
D
Dt

∮ u ⋅ dl, (2.53)

where the line integral is around the boundary ofA. _is is
an example of Kelvin’s circulation theorem, which we shall
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meet again in amore general form in chapter ??, where we
also consider the rotating case.

A slight generalization of (2.52) is possible. Consider
the integral I = ∫F(Q)ℎ dA where again F is any diòeren-
tiable function of its argument. It is clear that

D
Dt

∫A F(Q)ℎ dA = 0. (2.54)

If the area of integration in (2.39) or (2.54) is the whole
domain (enclosed by frictionless walls, for example) then
it is clear that the integral of ℎF(Q) is a constant, including
as a special case the integral of æ.

2.4.2 Energy conservation: an integral invariant
Since we have made various simpliûcations in deriving
the shallow water system, it is not self-evident that energy
should be conserved, or indeedwhat form the energy takes.
_e kinetic energy density (KE), that is the kinetic energy
per unit area, is ñ0ℎu2/2. _e potential energy density of
the �uid is

PE = ∫
ℎ0 ñ0gz dz =

1
2
ñ0gℎ2. (2.55)

_e factor ñ0 appears in both kinetic and potential energies
and, because it is a constant, we will omit it. For algebraic
simplicity we also assume the bottom is �at, at z = 0.

Using themass conservation equation (2.15) we obtain
an equation for the evolution of potential energy density,
namely

D
Dt

gℎ2
2

+ gℎ2∇⋅ u = 0 (2.56a)

or

à
àt

gℎ2
2

+ ∇⋅ (u
gℎ2
2

) +
gℎ2
2

∇⋅ u = 0. (2.56b)

From themomentum andmass continuity equations we
obtain an equation for the evolution of kinetic energy den-
sity, namely

D
Dt

ℎu2
2

+
u2ℎ
2

∇⋅ u = −gu ⋅ ∇
ℎ2
2

(2.57a)
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or

à
àt

ℎu2
2

+ ∇⋅ (u
ℎu2
2

) + gu ⋅ ∇
ℎ2
2

= 0. (2.57b)

Adding (2.56b) and (2.57b) we obtain

à
àt

1
2
(ℎu2 + gℎ2)+∇⋅[1

2
u (gℎ2 + ℎu2 + gℎ2)] = 0, (2.58)

or
àE
àt

+ ∇⋅ F = 0, (2.59)

where E = KE + PE = (ℎu2 + gℎ2)/2 is the density of the
total energy and F = u(ℎu2/2 + gℎ2) is the energy �ux. If
the �uid is conûned to a domain bounded by rigidwalls, on
which the normal component of velocity vanishes, then on
integrating (2.58) over that area and using Gauss’s theorem,
the total energy is seen to be conserved; that is

dÊ
dt

=
1
2
d
dt

∫A(ℎu2 + gℎ2) dA = 0. (2.60)

Such an energy principle also holds in the case with bot-
tom topography. Note that, as we found in the case for a
compressible �uid in chapter ??, the energy �ux in (2.59)
is not just the energy density multiplied by the velocity; it
contains an additional term guℎ2/2, and this represents
the energy transfer occurring when the �uid does work
against the pressure force (see problem 2.??).

2.5 ShallowWaterWaves
Let us now look at the gravity waves that occur in shallow
water. To isolate the essence of the phenomena, we will
consider waves in a single �uid layer, with a �at bottom
and a free upper surface, inwhich gravity provides the sole
restoring force.

2.5.1 Non-rotating shallow water waves
Given a �at bottom the �uid thickness is equal to the free
surface displacement (Fig. 2.1), and taking the basic state
of the �uid to be at rest we let

ℎ(x, y, t) = H + ℎ�(x, y, t) = H + ç�(x, y, t), (2.61a)
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u(x, y, t) = u�(x, y, t). (2.61b)

_emass conservation equation, (2.15), then becomes

àç�
àt

+ (H + ç�)∇⋅ u� + u� ⋅ ∇ç� = 0, (2.62)

and neglecting squares of small quantities this yields the
linear equation

àç�
àt

+H∇⋅ u� = 0. (2.63)

Similarly, linearizing themomentum equation, (2.8) with
f = 0, yields

àu�
àt

= −g∇ç�. (2.64)

Eliminating velocity by diòerentiating (2.63) with re-
spect to time and taking the divergence of (2.64) leads
to

à2ç�
àt2 − gH∇2ç� = 0, (2.65)

which may be recognized as a wave equation. We can ûnd
the dispersion relationship for this by substituting the trial
solution

ç� = Re ç̃ei(k⋅x−øt), (2.66)

where ç̃ is a complex constant, k = ik + jl is the horizon-
tal wavenumber and Re indicates that the real part of the
solution should be taken. If, for simplicity, we restrict at-
tention to the one-dimensional problem, with no variation
in the y-direction, then substituting into (2.65) leads to
the dispersion relationship

ø = ±ck, (2.67)

where c = √gH; that is, the wave speed is proportional to
the square root of themean �uid depth and is independent
of the wavenumber— the waves are dispersionless. _e
general solution is a superposition of all such waves, with
the amplitudes of eachwave (or Fourier component) being
determined by the Fourier decomposition of the initial
conditions.
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Because the waves are dispersionless, the general solu-
tion can be written as

ç�(x, t) = 1
2
[F(x − ct) + F(x + ct)] , (2.68)

where F(x) is the height ûeld at t = 0. From this, it is easy
to see that the shape of an initial disturbance is preserved
as it propagates both to the right and to the le� at speed c,
(see also problem 2.??).

2.5.2 Rotating shallow water (Poincaré) waves
We now consider the eòects of rotation on shallow water
waves. Linearizing the rotating, �at-bottomed f-plane
shallowwater equations [i.e., (SW.1) and (SW.2) on page 37]
about a state of rest we obtain

àu�
àt

− f0v� = −g
àç�
àx

,
àv�
àt

+ f0u� = −g
àç�
ày

,

àç�
àt

+H(
àu�
àx

+
àv�
ày

) = 0.

(2.69a,b,c)
To obtain a dispersion relationship we let

(u, v, ç) = (ũ, ṽ, ç̃)ei(k⋅x−øt), (2.70)

and substitute into (2.69), giving

(
−i ø −f0 i gk
f0 −i ø i gl
iHk iHl −i ø

)(
ũ
ṽ
ç̃
) = 0. (2.71)

_is homogeneous equation has non-trivial solutions only
if the determinant of thematrix vanishes. _is condition
gives

ø(ø2 − f20 − c2K2) = 0. (2.72)

where K2 = k2 + l2 and c2 = gH. _ere are two classes
of solution to (2.72). _e ûrst is simply ø = 0, i.e., time-
independent �ow corresponding to geostrophic balance
in (2.69). Because geostrophic balance gives a divergence-
free velocity ûeld for a constant Coriolis parameter the
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Figure 2.6 Dispersion relation for Poincaré waves (solid) and
non-rotating shallowwaterwaves (dashed). Frequency is scaled
by the Coriolis frequency f, and wavenumber by the inverse
deformation radius √gH/f. For small wavenumbers the fre-
quency is approximately f; for high wavenumbers it asymp-
totes to that of non-rotating waves.

equations are satisûed by a time-independent solution. _e
second set of solutions gives the dispersion relation

ø2 = f20 + c2(k2 + l2), (2.73)

or
ø2 = f20 + gH(k2 + l2). (2.74)

_e corresponding waves are known as Poincaré waves,2

and the dispersion relationship is illustrated in Fig. 2.6.
Note that the frequency is always greater than the Coriolis
frequency f0. _ere are two interesting limits.

(i) The short wave limit. If

K2 ≫ f20
gH

, (2.75)

where K2 = k2 + l2, then the dispersion relationship
reduces to that of the non-rotating case (2.67). _is
condition is equivalent to requiring that the wave-
length bemuch shorter than the deformation radius,
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Ld ≡ √gH/f. Speciûcally, if l = 0 and ë = 2π/k is
the wavelength, the condition is

ë2 ≪ L2d(2π)2. (2.76)

_e numerical factor of (2π)2 is more than an order
ofmagnitude, so caremust be taken when deciding
if the condition is satisûed in particular cases. Fur-
thermore, the wavelength must still be longer than
the depth of the �uid, otherwise the shallow water
condition is not met.

(ii) The long wave limit. If

K2 ≪ f20
gH

, (2.77)

that is if the wavelength is much longer than the
deformation radius Ld, then the dispersion relation-
ship is

ø = f0. (2.78)

_ese are known as inertial oscillations. _e equa-
tions ofmotion giving rise to them are

àu�
àt

− f0v� = 0,
àv�
àt

+ f0u� = 0, (2.79)

which are equivalent to material equations for free
particles in a rotating frame, unconstrained by pres-
sure forces, namely

d2x
dt2 − f0v = 0,

d2y
dt2 + f0u = 0. (2.80)

2.5.3 Kelvin waves
_e Kelvin wave is a particular type of gravity wave that
exists in the presence of both rotation and a lateral bound-
ary. Suppose there is a solid boundary at y = 0; clearly
harmonic solutions in the y-direction are not allowable,
as these would not satisfy the condition of no normal �ow
at the boundary. Do any wave-like solutions exist? _e
aõrmative answer to this question was provided by Kelvin
and the associated waves are now eponymously known as
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Kelvin waves.3 We begin with the linearized shallow water
equations, namely

àu�
àt

− f0v� = −g
àç�
àx

,
àv�
àt

+ f0u� = −g
àç�
ày

,

àç�
àt

+H(
àu�
àx

+
àv�
ày

) = 0.

(2.81a,b,c)
_e fact that v� = 0 at y = 0 suggests that we look for a
solution with v� = 0 everywhere, whence these equations
become

àu�
àt

= −g
àç�
àx

, f0u� = −g
àç�
ày

,
àç�
àt

+H
àu�
àx

= 0.

(2.82a,b,c)
Equations (2.82a) and (2.82c) lead to the standard wave
equation

à2u�
àt2 = c2 à2u�

àx2 , (2.83)

where c = √gH, the usual wave speed of shallow water
waves. _e solution of (2.83) is

u� = F1(x + ct, y) + F2(x − ct, y), (2.84)

with corresponding surface displacement

ç� = √H/g [−F1(x + ct, y) + F2(x − ct, y)] . (2.85)

_e solution represents the superposition of twowaves, one
(F1) travelling in the negative x-direction, and the other
in the positive x-direction. To obtain the y dependence of
these functions we use (2.82b) which gives

àF1
ày

=
f0

√gH
F1, àF2

ày
= −

f0
√gH

F2, (2.86)

with solutions

F1 = F(x + ct)ey/Ld F2 = G(x − ct)e−y/Ld , (2.87)

where Ld = √gH/f0 is the radius of deformation. If we
consider �ow in the half-plane in which y > 0, then for
positive f0 the solution F1 grows exponentially away from
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the wall, and so fails to satisfy the condition of bounded-
ness at inûnity. It thus must be eliminated, leaving the
general solution

u� = e−y/LdG(x − ct), v� = 0,

ç� = √H/ge−y/LdG(x − ct).
(2.88a,b,c)

_ese are Kelvin waves, and they decay exponentially away
from the boundary. In general, for f0 positive the bound-
ary is to the right of an observer moving with the wave.
Given a constant Coriolis parameter, we could equally well
have obtained a solution on ameridional wall, in which
casewewould ûnd that thewave again moves such that the
wall is to the right of the wave direction. (_is is obvious
once it is realized that f-plane dynamics are isotropic in x
and y.) _us, in theNorthernHemisphere thewavemoves
anticlockwise round a basin, and conversely in the South-
ern Hemisphere, and in both hemispheres the direction is
cyclonic.

2.6 Geostrophic Adjustment
Large-scale, extratropical circulation of the atmosphere
is in near-geostrophic balance. Why is this? Why should
the Rossby number be small? It turs out there is in fact a
powerful and ubiquitous process whereby a �uid in an ini-
tially unbalanced state naturally evolves toward a state of
geostrophic balance, namely geostrophic adjustment. _is
process occurs quite generally in rotating �uids, whether
stratiûed or not. We consider the free evolution of a single
shallow layer of �uid whose initial state is manifestly un-
balanced, and we will suppose that surface displacements
are small so that the evolution of the system is described
by the linearized shallow equations ofmotion. _ese are

àu
àt

+ f × u = −g∇ç,
àç
àt

+H∇⋅ u = 0, (2.89a,b)

where ç is the free surface displacement andH is themean
�uid depth, and we omit the primes on the linearized vari-
ables.
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2.6.1 Non-rotating �ow
We consider ûrst the non-rotating problem set, with little
loss of generality, in one dimension. We suppose that ini-
tially the �uid is at rest but with a simple discontinuity in
the height ûeld so that

ç(x, t = 0) = {
+ç0 x < 0
−ç0 x > 0

(2.90)

and u(x, t = 0) = 0 everywhere. We can realize these
initial conditions physically by separating two �uidmasses
of diòerent depths by a thin dividingwall, and then quickly
removing thewall. What is the subsequent evolution of the
�uid? _e general solution to the linear problem is given
by (2.68) where the functional form is determined by the
initial conditions so that here

F(x) = ç(x, t = 0) = −ç0 sgn(x). (2.91)

Equation (2.68) states that this initial pattern is propagated
to the right and to the le�. _at is, two discontinuities in
�uid height move to the right and le� at a speed c = √gH.
Speciûcally, the solution is

ç(x, t) = −
1
2
ç0[sgn(x + ct) + sgn(x − ct)]. (2.92)

_e initial conditions may be much more complex than
a simple front, but, because the waves are dispersionless,
the solution is still simply a sum of the translation of those
initial conditions to the right and to the le� at speed c. _e
velocity ûeld in this class of problem is obtained from

àu
àt

= −g
àç
àx

, (2.93)

which gives, using (2.68),

u = −
g
2c

[F(x + ct) − F(x − ct)]. (2.94)

Consider the casewith initial conditions given by (2.90).
At a given location, away from the initial disturbance, the
�uid remains at rest and undisturbed until the front arrives.
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�
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Perturbation height

Figure 2.7 The time development of an initial ‘top hat’ height
disturbance, with zero initial velocity, in non-rotating �ow.
Fronts propagate in both directions, and the velocity is non-
zerobetween fronts, but ultimately thedisturbance are radiated
away to in�nity, and the�uid is left at restwith zeroperturbation
height.

A�er the front has passed, the �uid surface is again undis-
turbed and the velocity is uniform and non zero. Speciû-
cally:

ç = {
−ç0sgn(x)
0

u = {
0 |x| > ct
(ç0g/c) |x| < ct.

(2.95)
_e solution with ‘top-hat’ initial conditions in the

height ûeld, and zero initial velocity, is a superposition
two discontinuities similar to (2.95) and is illustrated in
Fig. 2.7. Two fronts propagate in either direction from
each discontinuity and, in this case, the ûnal velocity, as
well as the �uid displacement, is zero a�er all the fronts
have passed. _at is, the disturbance is radiated completely
away.
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2.6.2 Rotating �ow
Rotation makes a profound diòerence to the adjustment
problem of the shallow water system, because a steady,
adjusted, solution can exist with non-zero gradients in
the height ûeld — the associated pressure gradients being
balanced by the Coriolis force — and potential vorticity
conservation provides a powerful constraint on the �uid
evolution.4 In a rotating shallow �uid that conservation is
represented by

àQ
àt

+ u ⋅ ∇Q = 0, (2.96)

where Q = (æ + f)/ℎ. In the linear case with constant
Coriolis parameter, (2.96) becomes

àq
àt

= 0, q = (æ − f0 çH) . (2.97)

_is equation may be obtained either from the linearized
velocity andmass conservation equations, (2.89), or from
(2.96) directly. In the latter case, we write

Q =
æ + f0
H + ç

≈
1
H
(æ+f0)(1 − ç

H
) ≈

1
H

(f0 + æ − f0 çH) =
f0
H

+
q
H

(2.98)
having used f0 ≫ |æ| andH ≫ |ç|. _e term f0/H is a con-
stant and so dynamically unimportant, as is theH−1 factor
multiplying q. Further, the advective term u ⋅ ∇Q becomes
u ⋅ ∇q, and this is second order in perturbed quantities
and so is neglected. _us,making these approximations,
(2.96) reduces to (2.97). _e potential vorticity ûeld is
therefore ûxed in space! Of course, this was also true in
the non-rotating case where the �uid is initially at rest.
_en q = æ = 0 and the �uid remains irrotational through-
out the subsequent evolution of the �ow. However, this
is rather a weak constraint on the subsequent evolution
of the �uid; it does nothing, for example, to prevent the
conversion of all the potential energy to kinetic energy. In
the rotating case the potential vorticity is non-zero, and
potential vorticity conservation and geostrophic balance
are all we need to infer the ûnal steady state, assuming it
exists, without solving for the details of the �ow evolution,
as we now see.
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With an initial condition for the height ûeld given by
(2.90), the initial potential vorticity is given by

q(x, y) = {
−f0ç0/H x < 0
f0ç0/H x > 0,

(2.99)

and this remains unchanged throughout the adjustment
process. _e ûnal steady state is then the solution of the
equations

æ − f0 çH = q(x, y), f0u = −g
àç
ày

, f0v = g
àç
àx

,

(2.100a,b,c)
where æ = àv/àx − àu/ày. Because the Coriolis parameter
is constant, the velocity ûeld is horizontally non-divergent
andwemay deûne a streamfunction ÷ = gç/f0. Equations
(2.100) then reduce to

(∇2 − 1
L2d)÷ = q(x, y), (2.101)

where Ld = √gH/f0 is known as the Rossby radius of
deformation or o�en just the ‘deformation radius’ or the
‘Rossby radius’. It is a naturally occurring length scale in
problems involving both rotation and gravity, and arises
in a slightly diòerent form in stratiûed �uids.

_e initial conditions (2.99) admit of a nice analytic
solution, for the �ow will remain uniform in y, and (2.101)
reduces to

à2÷
àx2 −

1
L2d÷ =

f0ç0
H

sgn(x). (2.102)

We solve this separately for x > 0 and x < 0 and then
match the solutions and their ûrst derivatives at x = 0, also
imposing the condition that the velocity decays to zero as
x → ±∞. _e solution is

÷ = {
−(gç0/f0)(1 − e−x/Ld) x > 0
+(gç0/f0)(1 − ex/Ld) x < 0.

(2.103)

_e velocity ûeld associated with this is obtained from
(2.100b,c), and is

u = 0, v = −
gç0
f0Ld e−|x|/Ld . (2.104)
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Figure 2.8 Solutions of a linear geostrophic adjustment prob-
lem. Top panel: the initial height �eld, given by (2.90) with
ç0 = 1. Second panel: equilibrium (�nal) height �eld, ç given
by (2.103) and ç = f0÷/g. Third panel: equilibrium geostrophic
velocity (normal to the gradient of height �eld), given by (2.104).
Bottom panel: potential vorticity, given by (2.99), and this does
note evolve. The distance, x is non-dimensionalized by the de-
formation radius Ld = √gH/f0, and the velocity by ç0(g/f0Ld).
Changes to the initial state occur only withinO(Ld) of the initial
discontinuity; and as x → ±∞ the initial state is unaltered.

_e velocity is perpendicular to the slope of the free surface,
and a jet forms along the initial discontinuity, as illustrated
in Fig. 2.8.

_e important point of this problem is that the varia-
tions in the height and ûeld arenot radiated away to inûnity,
as in the non-rotating problem. Rather, potential vorticity
conservation constrains the in�uence of the adjustment to
within a deformation radius (we see now why this name is
appropriate) of the initial disturbance. _is property is a
general one in geostrophic adjustment— it also arises if the
initial condition consists of a velocity jump, as considered
in problem 2.??.

2.6.3 ♦ Energetics of adjustment
How much of the initial potential energy of the �ow is
lost to inûnity by gravity wave radiation, and how much is
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converted to kinetic energy? _e linear equations (2.89)
lead to

1
2
à
àt

(Hu2 + gç2) + gH∇⋅ (uç) = 0, (2.105)

so that energy conservation holds in the form

E =
1
2
∫(Hu2 + gç2) dx, dE

dt
= 0, (2.106)

provided the integral of the divergence term vanishes, as it
normally will in a closed domain. _e �uid has a non-zero
potential energy, (1/2)∫∞−∞ gç2 dx, if there are variations
in �uid height, and with the initial conditions (2.90) the
initial potential energy is

PEI = ∫
∞0 gç20 dx. (2.107)

_is isnominally inûnite if the �uid hasno boundaries, and
the initial potential energy density is gç20/2 everywhere.

In the non-rotating case, and with initial conditions
(2.90), a�er the front has passed, the potential energy den-
sity is zero and the kinetic energy density isHu2/2 = gç20/2,
using (2.95) and c2 = gH. _us, all the potential energy
is locally converted to kinetic energy as the front passes,
and eventually the kinetic energy is distributed uniformly
along the line. In the case illustrated in Fig. 2.7, the po-
tential energy and kinetic energy are both radiated away
from the initial disturbance. (Note that although we can
superpose the solutions from diòerent initial conditions,
we cannot superpose their potential and kinetic energies.)
_e general point is that the evolution of the disturbance
is not conûned to its initial location.

In contrast, in the rotating case the conversion from
potential to kinetic energy is largely conûned to within a de-
formation radius of the initial disturbance, and at locations
far from the initial disturbance the initial state is essen-
tially unaltered. _e conservation of potential vorticity has
prevented the complete conversion of potential energy to
kinetic energy, a result that is not sensitive to the precise
form of the initial conditions (see also problem 2.??).

In fact, in the rotating case, some of the initial potential
energy is converted to kinetic energy, some remains as
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potential energy and some is lost to inûnity; let us calculate
these amounts. _e ûnal potential energy, a�er adjustment,
is, using (2.103),

PEF =
1
2
gç20 [∫∞0 (1 − e−x/Ld)2 dx + ∫

0−∞ (1 − ex/Ld)2 dx] .

(2.108)
_is is nominally inûnite, but the change in potential en-
ergy is ûnite and is given by

PEI − PEF = gç20 ∫∞0 (2e−x/Ld − e−2x/Ld) dx =
3
2
gç20Ld.
(2.109)

_e initial kinetic energy is zero, because the �uid is at rest,
and its ûnal value is, using (2.104),

KEF =
1
2
H∫ u2 dx = H(

gç0
fLd)2 ∫∞0 e−2x/Ld dx =

gç20Ld
2

.

(2.110)
_us one-third of the diòerence between the initial and
ûnal potential energies is converted to kinetic energy, and
this is trapped within a distance of the order of a deforma-
tion radius of the disturbance; the remainder, an amount
gLdç20 is radiated away and lost to inûnity. In any ûnite re-
gion surrounding the initial discontinuity the ûnal energy
is less than the initial energy.

2.6.4 A variational perspective
In the non-rotating problem, all of the initial potential en-
ergy is eventually radiated away to inûnity. In the rotating
problem, the ûnal state contains both potential and kinetic
energy. Why is the energy not all radiated away to inûnity?
It is because potential vorticity conservation on parcels pre-
vents all of the energy being dispersed. _is suggests that it
may be informative to think of the geostrophic adjustment
problem as a variational problem: we seek to minimize
the energy consistent with the conservation of potential
vorticity. We stay in the linear approximation in which,
because the advection of potential vorticity is neglected,
potential vorticity remains constant at each point.

_e energy of the �ow is given by the sum of potential
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and kinetic energies, namely

energy = ∫(Hu2 + gç2) dA, (2.111)

(where dA ≡ dx dy) and the potential vorticity ûeld is

q = æ − f0 çH = (vx − uy) − f0 çH, (2.112)

where the subscripts x, y denote derivatives. _e problem
is then to extremize the energy subject to potential vorticity
conservation. _is is a constrained problem in the calculus
of variations, sometimes called an isoperimetric problem
because of its origins in maximizing the area of a surface
for a given perimeter.5 _e mathematical problem is to
extremize the integral

I = ∫ {H(u2 + v2) + gç2 + ë(x, y)[(vx − uy) − f0ç/H]} dA,
(2.113)

where ë(x, y) is a Lagrange multiplier, undetermined at
this stage. It is a function of space: if it were a constant,
the integral would merely extremize energy subject to a
given integral of potential vorticity, and rearrangements of
potential vorticity (which here we wish to disallow) would
leave the integral unaltered.

As there are three independent variables there are three
Euler–Lagrange equations that must be solved in order to
minimize I. _ese are

àL
àç

−
à
àx

àL
àçx −

à
ày

àL
àçy = 0,

àL
àu

−
à
àx

àL
àux −

à
ày

àL
àuy = 0,

àL
àv

−
à
àx

àL
àvx −

à
ày

àL
àvy = 0,

(2.114)
where L is the integrand on the right-hand side of (2.113).
Substituting the expression for L into (2.114) gives, a�er a
little algebra,

2gç −
ëf0
H

= 0, 2Hu +
àë
ày

= 0, 2Hv −
àë
àx

= 0,

(2.115)
and then eliminating ë gives the simple relationships

u = −
g
f0 àçày , v =

g
f0 àçàx , (2.116)
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which are the equations of geostrophic balance. _us, in
the linear approximation, geostrophic balance is themini-
mum energy state for a given ûeld of potential vorticity.



Chapter 3
Geostrophic Theory
Weeks 5 to 7

_is chapter is concerned with �ows that are close to geo-
strophic balance,with the speciûc goal of deriving equation
sets that exploit this closeness and that are simpler than
the original, ‘primitive’ equations. We will in particular
derive the quasi-geostrophic and planetary-geostrophic
sets of equations. We do this ûrst for shallow water and
then for the stratiûed three-dimensional equations.

3.1 GeostrophicScaling intheShallowWa-
ter Equations

For simplicity we will assume a �at bottom, so that ç =
ℎ. With the odd exception, we will denote the scales of
variables by capital letters; thus, if L is a typical length
scale of themotion we wish to describe, and U is a typical
velocity scale, and assuming the scales are horizontally
isotropic, we write

(x, y) ∼ L or (x, y) = O(L)

(u, v) ∼ U or (u, v) = O(U).
(3.1)

and similarly for other variables. Wemay thennon-dimensionalize
the variables by writing

(x, y) = L(x̂, ŷ), (u, v) = U(û, v̂), (3.2)

63
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where the hatted variables are non-dimensional and, by
supposition, are O(1). _e various terms in themomen-
tum equation then scale as:

àu
àt

+ u ⋅ ∇u + f × u = −g∇ç, (3.3a)

U
T

U2
L

fU g
H
L
, (3.3b)

where the ∇ operator acts in the x, y plane and H is the
amplitude of the variations in the surface displacement.
(We use ç to denote the height of the free surface above
some arbitrary reference level, as in Fig. 2.1. _us, ç =
H+Äç,where Äç denotes the variation of ç about its mean
position.)

_e ratio of the advective term to the rotational term
in themomentum equation (3.3) is (U2/L)/(fU) = U/fL;
this is the Rossby number, ûrst encountered in chapter
??.6 Using values typical of the large-scale circulation (e.g.,
from Table 1.1) we ûnd that Ro ≈ 0.1 for the atmosphere
and Ro ≈ 0.01 for the ocean: small in both cases. If we
are interested in motion that has the advective time scale
T = L/U then we scale time by L/U so that

t =
L
U
t̂, (3.4)

and the local time derivative and the advective term then
both scale as U2/L, and both are smaller than the rota-
tion term by a factor of the order of the Rossby number.
_en, either the Coriolis term is the dominant term in
the equation, in which case we have a state of no motion
with −fv = 0, or else the Coriolis force is balanced by the
pressure force, and the dominant balance is

−fv = −g
àç
àx

, (3.5)

namely geostrophic balance. If we make this non-trivial
choice, then variations in ç (i.e., Äç) scale according to

Äç ∼ H =
fUL
g

. (3.6)

We can also writeH as

H = Ro
f2L2
g

= RoH
L2
L2d , (3.7)
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where Ld = √gH/f is the deformation radius and H is
themean depth of the �uid. _e variations in �uid height
thus scale as

Äç
H

∼ Ro
L2
L2d , (3.8)

and the height of the �uidmay be written as

ç = H(1 + Ro
L2
L2d ç̂) and Äç = Ro

L2
L2dHç̂,

(3.9)
where ç̂ is theO(1) non-dimensional value of the surface
height deviation.

Non-dimensional momentum equation
If we use (3.9) to scale height variations, (3.2) to scale
lengths and velocities, and (3.4) to scale time, then the
momentum equation (3.3) becomes

Ro [
àû
àt̂

+ (û ⋅ ∇)û] + f̂ × û = −∇ç̂ , (3.10)

where f̂ = kf̂ = kf/f0, where f0 is a representative value
of the Coriolis parameter. (If f is a constant, then f̂ = 1,
but it is informative to explicitly write f̂ in the equations.
Also, where the operator ∇ operates on a non-dimensional
variable then the diòerentials are taken with respect to
the non-dimensional variables x̂, ŷ.) All the variables in
(3.10) will be assumed to be of order unity, and the Rossby
number multiplying the local time derivative and the ad-
vective terms indicates the smallness of those terms. By
construction, the dominant balance in this equation is the
geostrophic balance between the last two terms.

Non-dimensional mass continuity (height) equation
_e (dimensional) mass continuity equation can bewritten
as

1
H

Dç
Dt

+ (1 +
Äç
H

)∇⋅ u = 0, (3.11)

Using (3.2), (3.4) and (3.9) this equation may be written

Ro (
L
Ld)2 Dç̂

Dt̂
+ [1 + Ro (

L
Ld)2 ç̂]∇⋅ û = 0 . (3.12)
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Equations (3.10) and (3.12) are the non-dimensional ver-
sions of the full shallow water equations of motion. Evi-
dently, some terms in the equations ofmotion are small
and may be eliminated with little loss of accuracy, and
the way this is done will depend on the size of the second
non-dimensional parameter, (L/Ld)2. We explore this in
sections 3.2 and 3.3.

Froude and Burger numbers
_e Froude number may be generally deûned as the ratio
of a �uid particle speed to a wave speed. In a shallow water
system this gives

Fr ≡
U

√gH
=

U
f0Ld = Ro

L
Ld . (3.13)

_e Burger number is a useful measure of the scale of
motion of the �uid, relative to the deformation radius, and
may be deûned by

Bu ≡ (
Ld
L
)
2
=

gH
f20 L2 = (

Ro
Fr

)
2
. (3.14)

It is also useful to deûne the parameter F ≡ Bu−1, which is
like the square of a Froude number but uses the rotational
speed fL instead of U in the numerator.

3.2 TheShallowWaterPlanetary-Geostrophic
Equations

3.2.1 Informal derivation
_e advection and time derivative terms in themomentum
equation (3.10) are order Rossby number smaller than the
Coriolis and pressure terms (the term in square brackets is
multiplied by Ro), and therefore let us neglect them. _e
momentum equation straightforwardly becomes

f̂ × û = −∇ç̂. (3.15)

_emass conservation equation (3.12), contains two non-
dimensional parameters, Ro = U/(f0L) (the Rossby num-
ber), and F = (L/Ld)2 (the ratio of the length scale of the
motion to the deformation scale; F = Bu−1) and wemust
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make a choice as to the relationship between these two
numbers. We will choose

FRo = O(1), (3.16)

which implies

L2 ≫ L2d or equivalently F ≫ 1, Bu ≪ 1.
(3.17)

_at is to say, we suppose that the scales of motion are
much larger than the deformation scale. Given this choice,
all the terms in themass conservation equation, (3.12), are
of roughly the same size, and we retain them all. _us, the
shallow water planetary geostrophic equations are the full
mass continuity equation along with geostrophic balance
and a geometric relationship between the height ûeld and
the �uid thickness, and in dimensional form these are:

Dℎ
Dt

+ ℎ∇⋅ u = 0

f × u = −g∇ç, ç = ℎ + çb. (3.18a,b)

We emphasize that the planetary-geostrophic equations are
only valid for scales ofmotion much larger than the deforma-
tion radius. _e height variations are then as large as the
mean height ûeld itself; that is, using (3.8), Äç/H = O(1).

♦ Formal derivation
Wemake the following assumptions.

(i) _e Rossby number is small. Ro = U/f0L ≪ 1.
(ii) _e scale of themotion is signiûcantly larger than

the deformation scale. _at is, (3.16) holds or

F = Bu−1 = (
L
Ld)2 ≫ 1 (3.19)

and in particular

FRo = O(1). (3.20)

(iii) Time scales advectively, so that T = L/U.
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We expand the non-dimensional variables velocity and
height ûelds in an asymptotic series with the Rossby num-
ber as the small parameter, substitute into the equations
of motion and derive a simpler set of equations. It is a
nearly trivial exercise in this instance, and so it illustrates
themethodology well. _e expansions are

û = û0 + Ro û1 + Ro2û2 + ⋅ ⋅ ⋅ (3.21a)

and
ç̂ = ç̂0 + Ro ç̂1 + Ro2ç̂2 + ⋅ ⋅ ⋅ . (3.21b)

_en substituting (3.21a) and (3.21b) into themomen-
tum equation gives

Ro [
àû0
àt̂

+ û0 ⋅ ∇û0 + f̂ × û1]+f̂×û0 = −∇ç̂0−Ro [∇ç̂1]+O(Ro2)
(3.22)

_e Rossby number is an asymptotic ordering parameter;
thus, the sum of all the terms at any particular order in
Rossby number must vanish. At lowest order we obtain
the simple expression

f̂ × û0 = −∇ç̂0. (3.23)

Note that although f0 is a representative value of f, we
havemade no assumptions about the constancy of f. In
particular, f is allowed to vary by an order one amount,
provided that it does not become so small that the Rossby
number U/(f0L) is not small.

_e appropriate height (mass conservation) equation
is similarly obtained by substituting (3.21a) and (3.21b) into
the shallow water mass conservation equation. Because
FRo = O(1) at lowest order we simply retain all the terms
in the equation to give

FRo [
àç̂0
àt

+ û0 ⋅ ∇ç̂0] + [1 + FRo ç̂]∇⋅ û0 = 0. (3.24)

Equations (3.23) and (3.24) are a closed set, and consti-
tute the non-dimensional planetary-geostrophic equations.
_e dimensional forms of these equations are just (3.18).
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Variation of the Coriolis parameter
Suppose then that f is a constant (f0). _en, from the
curl of (3.23), ∇⋅ u0 = 0. _is means that we can deûne a
streamfunction for the �ow and, from geostrophic balance,
the height ûeld is just that streamfunction. _at is, in
dimensional form,

÷ =
g
f0 ç, u = k × ∇÷, (3.25a,b)

and (3.24) becomes, in dimensional form,

àç
àt

+ u ⋅ ∇ç = 0 or
àç
àt

+ J(÷, ç) = 0, (3.26)

where J(a, b) ≡ axby − aybx. But since ç ∝ ÷ the advec-
tive term is proportional to J(÷, ÷),which is zero. _us, the
�owdoesnot evolve at this order. _eplanetary-geostrophic
equations are uninteresting if the scale of themotion is such
that the Coriolis parameter is not variable. On Earth, the
scale ofmotion on which this parameter regime exists is
rather limited, since the planetary-geostrophic equations
require that the scale ofmotion also be larger than the de-
formation radius. In the Earth’s atmosphere, any scale that
is larger than the deformation radius will be such that the
Coriolis parameter varies signiûcantly over it, and we do
not encounter this parameter regime. On the other hand,
in the Earth’s ocean the deformation radius is relatively
small and there exists a small parameter regime that has
scales larger than the deformation radius but smaller than
that on which the Coriolis parameter varies.

Potential vorticity
_e shallow water PG equations may be written as an evo-
lution equation for an approximated potential vorticity. A
littlemanipulation reveals that (3.18) are equivalent to:

DQ
Dt

= 0

Q =
f
ℎ
, f × u = −g∇ç, ç = ℎ + çb. (3.27)

_us, potential vorticity is amaterial invariant in the ap-
proximate equation set, just as it is in the full equations. _e
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other variables— the free surface height and the velocity—
are diagnosed from it, a process known as potential vortic-
ity inversion. In the planetary geostrophic approximation,
the inversion proceeds using the approximate form f/ℎ
rather than the full potential vorticity, (f + æ)/ℎ. (Strictly
speaking, we do not approximate potential vorticity, be-
cause this is the evolving variable. Rather, we approximate
the inversion relations from which we derive the height
and velocity ûelds.) _e simplest way of all to derive the
shallow water PG equations is to begin with the conserva-
tion of potential vorticity, and to note that at small Rossby
number the expression (æ + f)/ℎ may be approximated by
f/ℎ. _en, noting in addition that the �ow is geostrophic,
(3.27) immediately emerges. Every approximate set of equa-
tions that we derive in this chapter may be expressed as
the evolution of potential vorticity, with the other ûelds
being obtained diagnostically from it.

3.3 The Shallow Water Quasi-Geostrophic
Equations

We now derive a set of geostrophic equations that is valid
(unlike the PG equations) when the horizontal scale of
motion is similar to that of the deformation radius. _ese
equations are called the quasi-geostrophic equations, and
are perhaps themost widely used set of equations for theo-
retical studies of the atmosphere and ocean. _e speciûc
assumptions wemake are as follows.

(i) _e Rossby number is small, so that the �ow is in
near-geostrophic balance.

(ii) _e scale of the motion is not signiûcantly larger
than the deformation scale. Speciûcally, we shall
require that

Ro (
L
Ld)2 = O(Ro). (3.28)

For the shallowwater equations, this assumption im-
plies, using (3.9), that the variations in �uid depth
are small compared to its total depth. For the contin-
uously stratiûed system it implies, using (3.53), that
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the variations in stratiûcation are small compared
to the background stratiûcation.

(iii) Variations in the Coriolis parameter are small; that is,
|âL| ≪ |f0|where L is the length scale of themotion.

(iv) Time scales advectively; that is, the scaling for time
is given by T = L/U.

_e second and third of these diòer from the planetary-
geostrophic counterparts: wemake the second assumption
because we wish to explore a diòerent parameter regime,
and we then ûnd that the third assumption is necessary to
avoid a rather trivial state [i.e., a leading order balance of
âv = 0, see the discussion surrounding (3.44)]. All of the
assumptions are the samewhetherwe consider the shallow
water equations or a continuously stratiûed �ow, and in
this section we consider the former.

3.3.1 Shallow water quasi-geostrophic equations
let us set the velocity equal to a geostrophic component,
ug plus an ageostrophic component, ua. We will suppose
that f = f0 + ây, where |f0| ≫ |ây|, and we will deûne the
geostrophic �ow to be the �ow that satisûes

f0 × ug = −g∇ç, (3.29)

which in turn implies ∇⋅ ug = 0. Rather than make approx-
imations to the momentum approximation let us begin
with the shallow water vorticity equation which, reprising
2.41, is

àæ
àt

+ (u ⋅ ∇)(æ + f) = − (æ + f)∇⋅ u. (3.30)

_e right-hand side contains only the ageostrophic velocity,
which is small, and since æ is smaller than f by a factor of
the Rossby number we can ignore æ∇⋅ u and take f to be
equal to f0. _e le�-hand sidemay be well-approximated
by using the geostrophic �ow, (3.29), so that we have

àæg
àt

+ (ug ⋅ ∇)(æg + f) = −f0∇⋅ ua. (3.31)

Note that on the le�-hand side f can be replaced by ây.
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We now use themass continuity equation to obtain an
expression for the divergence. From (??) themass continu-
ity equation may be written as

Dç
Dt

+ (H + Äæ)∇⋅ u = 0, (3.32)

and since H ≫ Äæ (using (3.12), H is bigger by a factor
(Ld/L)2Ro−1), the equation becomes

Dç
Dt

+H∇⋅ ua = 0. (3.33)

Combining (3.31) and (3.33) gives

D
Dt

(æg + f −
f0ç
H

) = 0. (3.34)

It appears that we have two variables here, æg and ç. How-
ever, they are related through geostrophic balance, and the
fact that the geostrophic �ow is non-divergent. _us, we
maydeûne a streamfunction÷ such thatug = −à÷/ày, vg =
à÷/àx,whence àu/àx+àv/ày = 0,_e vorticity andheight
ûeld are related to the streamfunction by

æg =
àv
àx

−
àu
ày

= ∇2÷, and ç =
f0÷
g

, (3.35a,b)

where the second relation comes from geostrophic balance.
Eqrefgs:pg10 may then be written as

Dq
Dt

= 0, q = ∇2÷ + ây −
÷
L2d , (3.36)

whereLd = √gH/f0. _e variable q is the quasi-geostrophic
potential vorticity.

Connection to shallow water potential vorticity
_e quantity q given by (3.36) is an approximation (except
for dynamically unimportant constant additive andmulti-
plicative factors) to the shallow water potential vorticity.
To see the truth of this statement, beginwith the expression
for the shallow water potential vorticity,

Q =
f + æ
ℎ

. (3.37)
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Now let ℎ = H(1 + ç�/H), where ç� is the perturbation of
the free-surface height, and assume that ç�/H is small to
obtain

Q =
f + æ

H(1 + ç�/H)
≈

1
H
(f + æ)(1 −

ç�
H
)

≈
1
H

(f0 + ây + æ − f0 ç�H) .
(3.38)

Because f0/H is a constant it has no eòect in the evolution
equation, and the quantity given by

q = ây + æ − f0 ç�H (3.39)

ismaterially conserved. Using geostrophic balancewe have
æ = ∇2÷ and ç� = f0÷/g so that (3.39) is identical to the q
given in (3.36).

_e approximations needed to go from (3.37) to (3.39)
are the same as those used in our earlier,more long-winded,
derivation of the quasi-geostrophic equations. _at is, we
assumed thatf itself is nearly constant, and thatf0 ismuch
larger than æ, equivalent to a low Rossby number assump-
tion. Itwas also necessary to assume thatH ≫ ç� to enable
the expansion of the height ûeld which, using assumption
((ii)) on page 69, is equivalent to requiring that the scale
ofmotion not be signiûcantly larger than the deformation
scale. _e derivation is completed by noting that the advec-
tion of the potential vorticity should be by the geostrophic
velocity alone, and we recover (??) or (??).

Two interesting limits
_ere are two interesting limits to the quasi-geostrophic po-
tential vorticity equationwhich, taking â = 0 for simplicity,
are as follows.

(i) Motion on scales much smaller than the deformation
radius. _at is, L ≪ Ld and thus Bu ≫ 1 or F ≪ 1.
_en (??) becomes

àæ
àt

+ J(÷, æ) = 0, (3.40)
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where æ = ∇2÷ and J(÷, æ) = ÷xæy − ÷yæx. _us, the
motion obeys the two-dimensional vorticity equa-
tion. Physically, on small length scales the devia-
tions in the height ûeld are very small andmay be
neglected.

(ii) Motion on scales much larger than the deformation
radius. Although scales are not allowed to become
so large that Ro(L/Ld)2 is of order unity, wemay, a
posteriori, still have L ≫ Ld, whence the potential
vorticity equation, (??), becomes

à÷
àt

+ J(÷, ÷) = 0 or
àç
àt

+ J(÷, ç) = 0,

(3.41)
because ÷ = gç/f0. _e Jacobian term evidently
vanishes. _us, one is le� with a trivial equation that
implies there is no advective evolution of the height
ûeld. _ere is nothing wrong with our reasoning;
themathematics has indeed pointed out a limit in-
teresting in its uninterestingness. From a physical
point of view, however, such a lack ofmotion is likely
to be rare, because on such large scales the Coriolis
parameter varies considerably, and we are led to the
planetary-geostrophic equations.

In practice, o�en themost severe restriction of quasi-geostrophy
is that variations in layer thickness are small: what does
this have to dowith geostrophy? Ifwe scale ç assuming geo-
strophic balance then ç ∼ fUL/g and ç/H ∼ Ro(L/Ld)2.
_us, if Ro is to remain small, ç/H can only be of order one
if (L/Ld)2 ≫ 1. _at is, the height variations must occur
on a large scale, orwe are led to a scaling inconsistency. Put
another way, if there are order-one height variations over a
length scale of less than or of the order of the deformation
scale, the Rossby number will not be small. Large height
variations are allowed if the scale of motion is large, but
this contingency is described by the planetary-geostrophic
equations.

Another �ow regime
Although perhaps of little terrestrial interest, we can imag-
ine a regime in which the Coriolis parameter varies fully,
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but the scale of motion remains no larger than the de-
formation radius. _is parameter regime is not quasi-
geostrophic, but it gives an interesting result. Because
ç�/H ∼ Ro(L/Ld)2 deviations of the height ûeld are at least
of order Rossby number smaller than the reference height
and |ç�| ≪ H. _e dominant balance in the height equa-
tion is then

H∇⋅ u = 0, (3.42)

presuming that time still scales advectively. _is zero hori-
zontal divergencemust remain consistentwith geostrophic
balance

f × u = −g∇ç, (3.43)

where now f is a fully variable Coriolis parameter. Taking
the curl of (that is, cross-diòerentiating) (3.43) gives

âv + f∇⋅ u = 0, (3.44)

whence, using (3.42), v = 0, and the �ow is purely zonal.
Although not at all useful as an evolution equation, this
illustrates the constraining eòect that diòerential rotation
has on meridional velocity. _is eòect may be the cause of
the banded, highly zonal �ow on some of the giant planets.

3.4 Geostrophic scaling inthe stratifiedequa-
tions

We use the hydrostatic Boussinesq equations, which we
write as

Du
Dt

+ f × u = −∇zõ, (3.45a)

àõ
àz

= b, (3.45b)

Db
Dt

= 0, (3.45c)

∇⋅ v = 0. (3.45d)

where b is the buoyancy. Anticipating that the average
stratiûcationmay not scale in the sameway as the deviation
from it, let us separate out the contribution of the advection
of a reference stratiûcation in (3.45c) by writing

b = b̃(z) + b�(x, y, z, t). (3.46)
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_en the thermodynamic equation becomes

Db�
Dt

+N2w = 0, (3.47)

where N2 ≡ àb̃/àz (and the advective derivative is still
three-dimensional). We then let õ = õ̃(z) + õ�, where õ̃ is
hydrostatically balanced by b̃, and the hydrostatic equation
becomes

àõ�
àz

= b�. (3.48)

Equations (3.47) and (3.48) replace (3.45c) and (3.45b),
and õ� is used in (3.45a).

3.4.1 Non-dimensional equations
We scale the basic variables by supposing that

(x, y) ∼ L, (u, v) ∼ U, t ∼
L
U
, z ∼ H,

f ∼ f0, N ∼ N0, (3.49)

where the scaling variables (capitalized, except for f0) are
chosen to be such that the non-dimensional variables have
magnitudes of the order of unity. We presume that the
scales chosen are such that the Rossby number is small;
that is Ro = U/(f0L) ≪ 1. In themomentum equation the
pressure term then balances the Coriolis force,

|f × u| ∼ |∇õ�| (3.50)

and so the pressure scales as

õ� ∼ Õ = foUL. (3.51)

Using the hydrostatic relation, (3.51) implies that the buoy-
ancy scales as

b� ∼ B =
f0UL
H

, (3.52)

and from this we obtain

(àb�/àz)
N20 ∼ Ro

L2
L2d , (3.53)
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where Ld = N0H/f0 is the deformation radius in the
continuously stratiûed �uid, analogous to the quantity
√gH/f0 in the shallow water system, and we use the same
symbol, Ld, for both. In the continuously stratiûed system,
if the scale ofmotion is the same as or smaller than the de-
formation radius, and the Rossby number is small, then the
variations in stratiûcation are small. _e choice of scale is
the key diòerence between the planetary-geostrophic and
quasi-geostrophic equations.

Finally, we will non-dimensionalize the vertical veloc-
ity by using themass conservation equation,

àw
àz

= −(
àu
àx

+
àv
ày

) , (3.54)

and we suppose that this implies

w ∼ W =
UH
L

. (3.55)

_is is a naïve scaling for rotating �ow: if the Coriolis
parameter is nearly constant the geostrophic velocity is
nearly horizontally non-divergent and the right-hand side
of (3.54) is small, andW ≪ UH/L. Wemight then estimate
w by cross-diòerentiating geostrophic balance to obtain the
linear geostrophic vorticity equation and corresponding
scaling:

âv ≈ f
àw
àz

, w ∼ W =
âUH
f0 . (3.56a,b)

However, rather than using (3.56b) from the outset,wewill
use (3.55) and let the proper scaling emerge in the fullness
of time. Note that if variations in the Coriolis parameter
are large and â ∼ f0/L, then (3.56b) is the same as (3.55).

Given the scalings above [using (3.55) for w] we non-
dimensionalize by setting

(x̂, ŷ) = L−1(x, y), ẑ = H−1z,
(û, v̂) = U−1(u, v), ŵ =

L
UH

w, t̂ =
U
L
t,

f̂ = f−10 f, õ̂ =
õ�

f0UL, b̂ =
H

f0ULb�,
(3.57)
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Non-dimensional Primitive Equations

_e non-dimebnsional, hydrostatic, Boussinesq equations in a rotating frame
of reference are

Horizontal momentum: Ro
Dû
Dt̂

+ f̂ × û = −∇õ̂ (PE.1)

Hydrostatic:
àõ̂
àẑ

= b̂ (PE.2)

Mass continuity: (
àû
àx̂

+
àv̂
àŷ

+
àŵ
àẑ

) = 0 (PE.3)

_ermodynamic: Ro
Db̂
Dt̂

+ (
Ld
L
)
2
N̂2ŵ = 0. (PE.4)

where the hatted variables are non-dimensional. _e hori-
zontal momentum and hydrostatic equations then become

Ro
Dû
Dt̂

+ f̂ × û = −∇õ̂, (3.58)

and
àõ̂
àẑ

= b̂. (3.59)

_e non-dimensional mass conservation equation is sim-
ply

∇⋅ v̂ = (
àû
àx̂

+
àv̂
àŷ

+
àŵ
àẑ

) = 0, (3.60)

and the nondimensional thermodynamic equation is

f0UL
H

U
L
Db̂
Dt̂

+ N̂2N20 HU
L

ŵ = 0, (3.61)

or, re-arranging,

Ro
Db̂
Dt̂

+ (
Ld
L
)
2
N̂2ŵ = 0. (3.62)

_e nondimensional primitive equations are summarized
in the box above.
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3.5 Planetary-geostrophicequations forstrat-
ified flow

We use the inviscid and adiabatic Boussinesq equations of
motion with the hydrostatic approximation. _e essential
assumptions in deriving the PG equations are:

1. Ro ≪ 1

2. (Ld/L)2 ≪ 1. And speciûcally (Ld/L)2 = O(Ro) .
We are also assuming that time scales advectively and we
allow f to have a full variation.

Given these assumptions the only simpliûcation we
make to the equations in the shaded box on the preceding
page is that the momentum equation is replaced by geo-
strophic balance. _en, in dimensional form, the planetary-
geostrophic equations ofmotion are:

Db�
Dt

+ wN2 = 0.

f × u = −∇õ�, àõ�
àz

= b�, ∇⋅ v = 0
. (3.63)

_e thermodynamic equation may also be written sim-
ply as

Db
Dt

= ḃ, (3.64)

where b now represents the total stratiûcation. _e rele-
vant pressure, õ, is then the pressure that is in hydrostatic
balancewith b, so that geostrophic and hydrostatic balance
aremost usefully written as

f × u = −∇õ,
àõ
àz

= b. (3.65a,b)

3.5.1 Potential vorticity
Manipulation of (3.63) reveals that we can equivalently
write the equations as an evolution equation for potential
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vorticity. _us, the evolution equations may be written as

DQ
Dt

= Q̇

Q = f
àb
àz

, (3.66)

where Q̇ = fàḃ/àz, and the inversion— i.e., the diagnosis
of velocity, pressure and buoyancy — is carried out us-
ing the hydrostatic, geostrophic and mass conservation
equations.

3.5.2 Applicability to the ocean and atmosphere
In the atmosphere a typical deformation radius NH/f is
about 1 000 km. _e constraint that the scale of motion
bemuch larger than the deformation radius is thus quite
hard to satisfy, since one quickly runs out of room on a
planet whose equator-to-pole distance is 10 000 km. _us,
only the largest planetary waves can satisfy the planetary-
geostrophic scaling in the atmosphere and we should then
also write the equations in spherical coordinates. In the
ocean the deformation radius is about 100 km, so there is
lots of room for the planetary-geostrophic equations to
hold, and indeed much of the theory of the large-scale
structure of the ocean involves the planetary-geostrophic
equations.

3.6 TheContinuouslyStratifiedQuasi-Geostrophic
System

We now consider the quasi-geostrophic equations for the
continuously stratiûed hydrostatic system. _e primitive
equations ofmotion are given by (3.45), and we extract the
mean stratiûcation so that the thermodynamic equation is
given by (3.47). We stay on the â-plane for simplicity.

3.6.1 Scaling and assumptions
_e non-dimensionalization and scaling are initially pre-
cisely that of section 3.4 and the nondimensional equations
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are just those in the shaded box on page 77. _e Coriolis
parameter is given

f = (f0 + ây) k̂ (3.67)

_e variation of the Coriolis parameter is assumed to be
small (this is a keydiòerence between the quasi-geostrophic
system and the planetary-geostrophic system), and in par-
ticular we shall assume that ây is approximately the size of
the relative vorticity, and so is much smaller than f0 itself.
_e assumptions needed to derive the QG system are:

1. _e Rossby number is small, Ro ≪ 1.

2. Length scales are of the same order as the deforma-
tion radius, L ∼ Ld or L/Ld = O(1).

3. Variations inCoriolisparameter are small, and specif-
ically |ây| ∼ Rof0.

Given these assumptions, we can write the horizontal
velocity as the sum of a geostrophic component and an
ageostrophic one:

u = ug + ua,
where f0k̂ × ug = −∇õ and |ug| ≫ |ua|. (3.68)

I follows from the deûnition of the geostrophic velocity
that its divergence is zero; that is

àug
àx

+
àvg
ày

= 0. (3.69)

_e vertical velocity is thus given by the divergence of the
ageostrophic velocity,

àw
àz

= −
àua
àx

+
àva
ày

. (3.70)

Since the ageostrophic velocity is small, the actual vertical
velocity is smaller than the scaling suggested by themass
conservation equation in its original form. _at is,

W ≪
UH
L

. (3.71)
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3.6.2 Derivation of StratiûedQG Equations
For reference we write down the primitive equations of
motion again. _ese are

Du
Dt

+ f × u = −∇zõ, (3.72a)

àõ
àz

= b, (3.72b)

Db
Dt

�
+N2w = 0, (3.72c)

àu
àx

+
àv
ày

+
àw
àz

= 0. (3.72d)

_ese are the horizontal momentum equation, the hydro-
static equation, the thermodynamic equation and themass
continuity equation. _ematerial derivative is three dimen-
sional.

We being by cross diòerentiating the horizontal mo-
mentum equation to give, a�er a few lines of algebra, the
vorticity equation:

D
Dt

(æ + f) = −(æ + f)(
àu
àx

+
àv
ày

) + (
àu
àz

àw
ày

−
àv
àz

àw
àx

) .

(3.73)
We now apply the above quasi-geostrophic assump-

tions, so that:
1. _e geostrophic velocity and vorticity aremuch larger

than their ageostrophic counterparts, so we use geo-
strophic values for the terms on the le�-hand side.

2. On the right hand side we keep the horizontal diver-
gence (which is small) on the right-hand side where
it is multiplied by the big term f. Furthermore, be-
causef is nearly constantwe replace itwithf0 except
where it is diòerentiated.

3. _e second term (tilting) on the right-hand side is
smaller than the advection terms on the le�-hand
side by the ratio [UW/(HL)]/[U2/L2] = [W/H]/[U/L] ≪
1, because w is small, as noted above

Given the above, (3.73) becomes

Dg
Dt

(æg + f) = −f0 (àu
àx

+
àv
ày

) = f0 àwàz , (3.74)
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where the second equalityusesmass continuity andDg/Dt =
à/àt +ug ⋅ ∇— note that only the (horizontal) geostrophic
velocity does any advecting.

Now consider the three-dimensional thermodynamic
equation. Since w is small it only advects the basic state,
and the perturbation buoyancy is advected only by the
geostrophic velocity. _us, (3.72c) becomes

Dgb�
Dt

+ wN2 = 0. (3.75)

We now eliminate w between (3.74) and (3.75), and
(with some algebra) gives

Dgq
Dt

= 0, q = æg + f +
à
àz

(
f0b�
N2 ) . (3.76)

Hydrostatic and geostrophic wind balance enable us
to write the geostrophic velocity, vorticity, and buoyancy
in terms of streamfunction ÷ [= p/(f0ñ0)]:
ug = k × ∇÷, æg = ∇2÷, b� = f0à÷/àz. (3.77)

_us, we have, now omitting the subscript g,

Dq
Dt

= 0,

q = ∇2÷ + f + f20 à
àz

(
1
N2 à÷àz )

, (3.78a,b)

Only the variable part of f (e.g., ây) is relevant in the
second term on the right-hand side of the expression for q.
_ematerial derivativemay be expressed as

Dw
Dt

= àq/àt + J(÷, q). (3.79)

_e quantity q is known as the quasi-geostrophic poten-
tial vorticity. It is analogous to the exact (Ertel) potential
vorticity (see section ?? for more about this), and it is con-
served when advected by the horizontal geostrophic �ow.
All the other dynamical variables may be obtained from
potential vorticity as follows.
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(i) Streamfunction, using (3.78b).
(ii) Velocity: u = k × ∇÷ [≡ ∇⊥÷ = −∇ × (k÷)].
(iii) Relative vorticity: æ = ∇2÷ .
(iv) Perturbation pressure: õ = f0÷.
(v) Perturbation buoyancy: b� = f0à÷/àz.
_e length scale Ld = NH/f0, emerges naturally from

the QG dynamics. It is the scale at which buoyancy and
relative vorticity eòects contribute equally to the potential
vorticity, and is called the deformation radius; it is anal-
ogous to the quantity √gH/f0 arising in shallow water
theory. In the upper ocean, with N ≈ 10−2 s−1,H ≈ 103 m
and f0 ≈ 10−4 s−1, then Ld ≈ 100 km. At high latitudes
the ocean is much less stratiûed and f is somewhat larger,
and the deformation radius may be as little as 30 km. In
the atmosphere, with N ≈ 10−2 s−1, H ≈ 104 m, then
Ld ≈ 1000 km. It is this order of magnitude diòerence
in the deformation scales that accounts for a great deal of
the quantitative diòerence in the dynamics of the ocean
and the atmosphere. If we take the limit Ld → ∞ then the
stratiûed quasi-geostrophic equations reduce to

Dq
Dt

= 0, q = ∇2÷ + f. (3.80)

_is is the two-dimensional vorticity equation, identical
to (??). _e high stratiûcation of this limit has suppressed
all vertical motion, and variations in the �ow become con-
ûned to the horizontal plane. Finally, we note that it is
typical in quasi-geostrophic applications to omit the prime
on the buoyancy perturbations, and write b = f0à÷/àz;
however, we will keep the prime in this chapter.

3.6.3 Buoyancy advection at the surface
_e solution of the elliptic equation in (3.78) requires ver-
tical boundary conditions on ÷ at the ground and at the
top of the atmosphere, and these are given by use of the
thermodynamic equation. For a �at, slippery, rigid surface
the vertical velocity is zero so that the thermodynamic
equation may be written as

Db�
Dt

= 0, b� = f0 à÷àz . (3.81)
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We apply this at the ground and at the tropopause, treating
the latter as a lid on the lower atmosphere. In the presence
of friction and topography the vertical velocity is not zero,
but is given by

w = r∇2÷ + u ⋅ ∇çb (3.82)

where the ûrst term represents Ekman friction (with the
constant r proportional to the thickness of the Ekman
layer) and the second term represents topographic forcing.
_e boundary condition becomes

à
àt

(f0 à÷àz )+u ⋅∇(f0 à÷àz +N2çb)+N2r∇2÷ = 0, (3.83)

where all the ûelds are evaluated at z = 0 or z = H, the
height of the lid. _us, the quasi-geostrophic system is
characterized by the horizontal advection of potential vor-
ticity in the interior and the advection of buoyancy at the
boundary. Instead of a lid at the top, then in a compress-
ible �uid such as the atmosphere wemay suppose that all
disturbances tend to zero as z → ∞.

3.7 Energetics of Quasi-Geostrophy
If the quasi-geostrophic set of equations is to represent a
real �uid system in a physically meaningful way, then it
should have a consistent set of energetics. In particular,
the total energy should be conserved, and there should be
analogs of kinetic and potential energy and conversion be-
tween the two. We now show that such energetic properties
do hold, using the Boussinesq set as an example.

Let us write the governing equations as a potential
vorticity equation in the interior,

D
Dt

[∇2÷ +
à
àz

(
f20
N2 à÷àz )] + â

à÷
àx

= 0, 0 < z < 1,

(3.84)

and buoyancy advection at the boundary,

D
Dt

(
à÷
àz

) = 0, z = 0, 1. (3.85)
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For lateral boundary conditions wemay assume that
÷ = constant, or impose periodic conditions. If wemulti-
ply (3.84) by −÷ and integrate over the domain, using the
boundary conditions, we easily ûnd

dÊ
dt

= 0, Ê =
1
2
∫V [(∇÷)2 + f20

N2 (à÷
àz

)
2
] dV.

(3.86a,b)
_e term involving â makes no direct contribution to the
energy budget. Equation (3.86) is the fundamental energy
equation for quasi-geostrophicmotion, and it states that
in the absence of viscous or diabatic terms the total energy
is conserved. _e two terms in (3.86b) can be identiûed
as the kinetic energy (KE) and available potential energy
(APE) of the �ow, where

KE =
1
2
∫V(∇÷)2 dV, APE =

1
2
∫V f20

N2 (à÷
àz

)
2
dV.

(3.87a,b)
_e available potential energy may also be written as

APE =
1
2
∫V H2

L2d (
à÷
àz

)
2
dV, (3.88)

where Ld is the deformation radius NH/f0 and we may
chooseH such that z ∼ H. At some scale L the ratio of the
kinetic energy to the potential energy is thus, roughly,

KE
APE

∼
L2d
L2 . (3.89)

For scales much larger than Ld the potential energy domi-
nates the kinetic energy, and contrariwise.

3.7.1 Conversion between APE and KE
Let us return to the vorticity and thermodynamic equa-
tions,

Dæ
Dt

= f
àw
àz

(3.90)

where æ = ∇2÷, and
Db�
Dt

+N2w = 0 (3.91)
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where b� = f0à÷/àz. From (3.90)we form a kinetic energy
equation namely

1
2
d
dt

∫V(∇÷)2 dV = −∫V f0 àwàz ÷ dV = ∫V f0wà÷
àz

dV.

(3.92)
From (3.91) we form a potential energy equation, namely

d
dt

1
2
∫V f20

N2 (à÷
àz

)
2
dV = −∫V f0wà÷

àz
dV. (3.93)

_us, the conversion from APE to KE is represented by

d
dt

KE = −
d
dt
APE = ∫v f0wà÷

àz
dV. (3.94)

Because the buoyancy is proportional to à÷/àz, when
warm�uid rises there is a correlation betweenw and à÷/àz
and APE is converted to KE.Whether such a phenomenon
occurs depends of course on the dynamics of the �ow;
however, such a conversion is, in fact, a common feature
of geophysical �ows.



Chapter 4
RossbyWaves
Weeks 7 to 9

4.1 Fundamentals and Formalities
4.1.1 Wave propagation and phase speed
Consider the propagation ofmonochromatic plane waves
satisfying

÷ = Re ÷̃eiè(x,t) = Re ÷̃ei(k⋅x−øt), (4.1)

where ÷̃ is a complex constant, è is the phase, ø is thewave
frequency and k is the vector wavenumber (k, l, m) (also
written as (kx, ky, kz) or, in subscript notation, ki). _e
preûx Re denotes the real part of the expression, but we
will drop it if there is no ambiguity. Given (4.1) a wave will
propagate in the direction of k (Fig. 4.1). At a given instant
and location we can align our coordinate axis along this
direction, and we write k ⋅ x = Kx∗, where x∗ increases
in the direction of k and K2 = |k|2 is themagnitude of the
wavenumber. With this, we can write (4.1) as

÷ = Re ÷̃ei(Kx∗−øt) = Re ÷̃eiK(x∗−ct), (4.2)

where c = ø/K. From this equation it is evident that the
phase of thewave propagates at the speed c in the direction
of k, and we deûne the phase speed by

cp ≡
ø
K
. (4.3)

88
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_e wavelength of the wave, ë, is the distance between
two wavecrests— that is, the distance between two loca-
tions along the line of travel whose phase diòers by 2π—
and evidently this is given by

ë =
2π
K

. (4.4)

In (for simplicity) a two-dimensional wave, and referring
to Fig. 4.1, the wavelength and wave vectors in the x- and
y-directions are given by,

ëx =
ë

cosõ
, ëy =

ë
sinõ

, kx = K cosõ, ky = K sinõ.

(4.5)
In general, lines of constant phase intersect both the co-
ordinate axes and propagate along them. _e speed of
propagation along these axes is given by

cxp = cp lxl =
cp

cosõ
= cp K

kx =
ø
kx , cyp = cp lyl =

cp
sinõ

= cp K
ky =

ø
ky ,

(4.6)
using (4.3) and (4.5), and again referring to Fig. 4.1 for
notation. _e speed of phase propagation along any one
of the axis is in general larger than the phase speed in the
primary direction of thewave. _e phase speeds are clearly
not components of a vector: for example, cxp ̸= cp cosõ.
Analogously, the wavevector k is a true vector, whereas the
wavelength ë is not.

To summarize, the phase speed and its components
are given by

cp =
ø
K
, cxp =

ø
kx , cyp =

ø
ky . (4.7)

4.1.2 _e dispersion relation
_e above description is mostly kinematic and a little ab-
stract, applying to almost anydisturbance thathas awavevec-
tor and a frequency. _e particular dynamics of a wave are
determined by the relationship between the wavevector
and the frequency; that is, by the dispersion relation. Once
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Figure 4.1 The propagation of a two-dimensional wave. (a)
Two lines of constant phase (e.g., two wavecrests) at a time t1.
The wave is propagating in the direction kwith wavelength ë.
(b) The same line of constant phase at two successive times. The
phase speed is the speed of advancement of the wavecrest in
the direction of travel, and so cp = l/(t2 − t1). The phase speed
in the x-direction is the speed of propagation of the wavecrest
along the x-axis, and cxp = lx/(t2 − t1) = cp/ cosõ.
the dispersion relation is known a great many of the prop-
erties of the wave follow in amore-or-less straightforward
manner, aswewill see. Picking up from (??), the dispersion
relation is a functional relationship between the frequency
and the wavevector of the general form

ø = Ø(k). (4.8)

Perhaps the simplest example of a linear operator that
gives rise to waves is the one-dimensional equation

à÷
àt

+ c
à÷
àx

= 0. (4.9)

Substituting a trial solution of the form ÷ = ReAei(kx−øt),
where Re denotes the real part,we obtain (−iø+cik)A = 0,
giving the dispersion relation

ø = ck. (4.10)

_e phase speed of this wave is cp = ø/k = c. A few other
examples of governing equations, dispersion relations and
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phase speeds are:
à÷
àt

+ c ⋅ ∇÷ = 0, ø = c ⋅ k, cp = |c| cos è, cxp =
c ⋅ k
k

, cyp =
c ⋅ k
l

(4.11a)
à2÷
àt2 − c2∇2÷ = 0, ø2 = c2K2, cp = ±c, cxp = ±

cK
k
, cyp = ±

cK
l
,

(4.11b)
à
àt

∇2÷ + â
à÷
àx

= 0, ø =
−âk
K2 , cp =

ø
K
, cxp = −

â
K2 , cyp = −

âk/l
K2 .

(4.11c)

whereK2 = k2 + l2 and è is the angle between c and k, and
the examples are all two-dimensional, with variation in x
and y only.

A wave is said to be nondispersive or dispersionless if
the phase speed is independent of the wavelength. _is
condition is clearly satisûed for the simple example (4.9)
but is manifestly not satisûed for (4.11c), and these waves
(Rossby waves, in fact) are dispersive. Waves of diòerent
wavelengths then travel at diòerent speeds so that a group
of waves will spread out— disperse — even if themedium
is homogeneous. When a wave is dispersive there is an-
other characteristic speed at which the waves propagate,
known as the group velocity, and we come to this in the
next section.

Most media are, of course, inhomogeneous, but if the
medium varies suõciently slowly in space and time — and
in particular if the variations are slow compared to the
wavelength and period — wemay still have a local disper-
sion relation between frequency and wavevector,

ø = Ø(k;x, t). (4.12)

Although Ø is a function of k,x and t the semi-colon in
(4.12) is used to suggest that x and t are slowly varying
parameters of a somewhat diòerent nature than k. We’ll
resume our discussion of this topic in section ??, but before
that wemust introduce the group velocity.

4.2 Group Velocity
Information and energy clearly cannot travel at the phase
speed, for as the direction of propagation of the phase line
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Wave Fundamentals

∙ A wave is a propagating disturbance that has a characteristic relationship between its frequency
and size, known as the dispersion relation. Waves typically arise as solutions to a linear problem of
the form

L(÷) = 0, (WF.1)

where L is, commonly, a linear operator in space and time. Two examples are

à2÷
àt2 − c2∇2÷ = 0 and à

àt
∇2÷ + â

à÷
àx

= 0. (WF.2)

_e ûrst example is s
∙ Solutions to the governing equation are o�en sought in the form of plane waves that have the form

÷ = ReAei(k⋅x−øt), (WF.3)

where A is the wave amplitude, k = (k, l, m) is the wavevector, and ø is the frequency.
∙ _e dispersiono common in all areas of physics it is sometimes called ‘the’ wave equation. _e

second example gives rise toRossby waves. relation connects the frequency andwavevector through
an equation of the form ø = Ø(k) where Ø is some function. _e relation is normally derived
by substituting a trial solution like (WF.3) into the governing equation (WF.1). For the examples
of (WF.2) we obtain ø = c2K2 and ø = −âk/K2 where K2 = k2 + l2 + m2 or, in two dimensions,
K2 = k2 + l2.

∙ _e phase speed is the speed at which the wave crests move. In the direction of propagation and in
the x, y and z directions the phase speed is given by, respectively,

cp =
ø
K
, cxp =

ø
k
, cyp =

ø
l
, czp =

ø
m
. (WF.4)

where K = 2π/ë where ë is the wavelength. _e wave crests have both a speed (cp) and a direction
of propagation (the direction of k), like a vector, but the components deûned in (WF.4) are not the
components of that vector.

∙ _e group velocity is the velocity at which a wave packet or wave group moves. It is a vector and is
given by

cg =
àø
àk

with components cxg =
àø
àk

, cyg =
àø
àl

, czg =
àø
àm

. (WF.5)

Most physical quantities of interest are transported at the group velocity.
∙ If the coeõcients of the wave equation are not constant (for example if themedium is inhomoge-

neous) then, if the coeõcients are only slowly varying, approximate solutions may sometimes be
found in the form

÷ = ReA(x, t)eiè(x,t), (WF.6)

where the amplitude A is also slowly varying and the local wavenumber and frequency are related
to the phase, è, by k = ∇è and ø = −àè/àt. _e dispersion relation is then a local one of the form
ø = Ø(k; x, t).
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Figure 4.2 Superposition of two sinusoidal waves with wave-
numbers k and k+äk, producing awave (solid line) that ismodu-
latedby a slowly varyingwave envelopeorwavepacket (dashed
line). The envelope moves at the group velocity, cg = àø/àk
and the phase of the wave moves at the group speed cp = ø/k.

tends to a direction parallel to they-axis, thephase speed in
the x-direction tends to inûnity! Rather, it turns out that
most quantities of interest, including energy, propagate
at the group velocity, a quantity of enormous importance
in wave theory.7 Roughly speaking, group velocity is the
velocity at which a packet or a group of waves will travel,
whereas the individualwave crests travel at the phase speed.
To introduce the idea we will consider the superposition
of plane waves, noting that amonochromatic plane wave
already ûlls space uniformly so that there can be no prop-
agation of energy from place to place. We will restrict
attention to waves propagating in one direction, but the
argument may be extended to two or three dimensions.

4.2.1 Superposition of two waves
Consider the linear superposition of two waves. Limit-
ing attention to the one-dimensional case for simplicity,
consider a disturbance represented by

÷ = Re ÷̃(ei(k1x−ø1t) + ei(k2x−ø2t)). (4.13)

Let us further suppose that the two waves have similar
wavenumbers and frequency, and, in particular, that k1 =
k+Äk and k2 = k−Äk, and ø1 = ø+Äø and ø2 = ø−Äø.
With this, (4.13) becomes

÷ = Re ÷̃ei(kx−øt)[ei(Äk x−Äø t) + e−i(Äk x−Äø t)]
= 2Re ÷̃ei(kx−øt) cos(Äk x − Äø t).

(4.14)
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_e resulting disturbance, illustrated in Fig. 4.2 has two
aspects: a rapidly varying component, with wavenumber
k and frequency ø, and a more slowly varying envelope,
with wavenumber Äk and frequency Äø. _e envelope
modulates the fast oscillation, and moves with velocity
Äø/Äk; in the limit Äk → 0 and Äø → 0 this is the group
velocity, cg = àø/àk. Group velocity is equal to the phase
speed, ø/k, only when the frequency is a linear function
of wavenumber. _e energy in the disturbancemust move
at the group velocity— note that the node of the envelope
moves at the speed of the envelope and no energy can cross
the node. _ese concepts generalize to more than one di-
mension, and if the wavenumber is the three-dimensional
vector k = (k, l, m) then the three-dimensional envelope
propagates at the group velocity given by

cg =
àø
àk

≡ (
àø
àk

,
àø
àl

,
àø
àm

) . (4.15)

_e group velocity is also written as cg = ∇kø or, in sub-
script notation, cgi = àØ/àki, with the subscript i denoting
the component of a vector.

4.3 RossbyWaves
4.3.1 _e linear equation ofmotion
For most of the rest of this chapter we will be concerned
with the quasi-geostrophic equations ofmotion for which
(as discussed in chapter 3) the inviscid, adiabatic potential
vorticity equation is

àq
àt

+ u ⋅ ∇q = 0, (4.16)

where q(x, y, z, t) is the potential vorticity and u(x, y, z, t)
is the horizontal velocity. _e velocity is related to a stream-
function by u = −à÷/ày, v = à÷/àx and the potential
vorticity is some function of the streamfunction, which
might diòer from system to system. Two examples, one
applying to a continuously stratiûed system and the second
to a single layer system, are

q = f+æ+
à
àz

(S(z)
à÷
àz

) , q = æ+f−k2d÷. (4.17a,b)
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where S(z) = f20 /N2, æ = ∇2÷ is the relative vorticity and
kd = 1/Ld is the inverse radius of deformation for a shallow
water system. (Note that deûnitions of kd and Ld can vary,
typically by factors of 2, π, etc.) Boundary conditions may
be needed to form a complete system.

We now linearize (4.16); that is, we suppose that the
�ow consists of a time-independent component (the ‘basic
state’) plus a perturbation, with the perturbation being
small compared with themean �ow. _e basic statemust
satisfy the time-independent equation ofmotion, and it is
common and useful to linearize about a zonal �ow, u(y, z).
_e basic state is then purely a function of y and so we
write

q = q(y, z) + q�(x, y, t), ÷ = ÷(y, z) + ÷�(x, y, z, t)
(4.18)

with a similar notation for the other variables. Note that
u = −à÷/ày and v = 0. Substituting into (4.16) gives,
without approximation,

àq�
àt

+ u ⋅ ∇q + u ⋅ ∇q� + u� ⋅ ∇q + u� ⋅ ∇q� = 0. (4.19)

_e primed quantities are presumptively small so we ne-
glect terms involving their products. Further,we are assum-
ing that we are linearizing about a state that is a solution of
the equations ofmotion, so that u ⋅ ∇q = 0. Finally, since
v = 0 and àq/àx = 0 we obtain

àq�
àt

+ u
àq�
àx

+ v� àq
ày

= 0. (4.20)

_is equation or one very similar appears very commonly
in studies of Rossby waves. To proceed, let us consider the
simple example of waves in a single layer.

4.3.2 Waves in a single layer
Consider a systemobeying (4.16) and (4.17b). _e equation
could bewritten in spherical coordinateswithf = 2Ø sin ú,
but the dynamics aremore easily illustrated on Cartesian
â-plane for which f = f0 + ây, and since f0 is a constant
it does not appear in our subsequent derivations.
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Inûnite deformation radius
If the scale ofmotion is much less than the deformation
scale then wemake the approximation that kd = 0 and the
equation ofmotion may be written as

àæ
àt

+ u ⋅ ∇æ + âv = 0 (4.21)

We linearize about a constant zonal �ow, u = U, by writing

÷ = ÷(y) + ÷�(x, y, t), (4.22)

where ÷ = −Uy. Substituting(4.22) into (4.21) and neglect-
ing the nonlinear terms involving products of ÷� to give

à
àt

∇2÷� + U
à∇2÷�
àx

+ â
à÷�
àx

= 0. (4.23)

_is equation is just a single-layer version of (4.20), with
àq/ày = â, q� = ∇2÷� and v� = à÷�/àx.

_e coeõcients in (4.23) are not functions of y or z;
this is not a requirement for wave motion to exist but it
does enable solutions to be foundmore easily. Let us seek
solutions in the form of a plane wave, namely

÷� = Re ÷̃ei(kx+ly−øt), (4.24)

where ÷̃ is a complex constant and Re indicates the real
part of the function (a notation sometimes omitted if no
ambiguity is so-caused). Solutions of this form are valid
in a domain with doubly-periodic boundary conditions;
solutions in a channel can be obtained using ameridional
variation of sin ly, with no essential changes to the dynam-
ics. _e amplitude of the oscillation is given by ÷̃ and
the phase by kx + ly − øt, where k and l are the x- and
y-wavenumbers and ø is the frequency of the oscillation.

Substituting (4.24) into (4.23) yields

[(−ø + Uk)(−K2) + âk]÷̃ = 0, (4.25)

where K2 = k2 + l2. For non-trivial solutions this implies

ø = Uk −
âk
K2 . (4.26)



4.3 Rossby Waves 97

_is is the dispersion relation for barotropic Rossby waves,
and evidently the velocity U Doppler shi�s the frequency.
_e components of the phase speed and group velocity are
given by, respectively,

cxp ≡
ø
k
= U −

â
K2 , cyp ≡

ø
l
= U

k
l
−

âk
K2l , (4.27a,b)

and

cxg ≡
àø
àk

= U +
â(k2 − l2)
(k2 + l2)2 , cyg ≡

àø
àl

=
2âkl

(k2 + l2)2 .
(4.28a,b)

_e phase speed in the absence of amean �ow iswestwards,
with waves of longer wavelengths travelling more quickly,
and the eastward current speed required to hold the waves
of a particular wavenumber stationary (i.e., cxp = 0) is U =
â/K2. _e background �ow U evidently just provides a
uniform shi� to the phase speed, and could be transformed
away by a change of coordinate.

Finite deformation radius
For a ûnite deformation radius the basic state × = −Uy
is still a solution of the original equations ofmotion, but
the potential vorticity corresponding to this state is q =
Uyk2d+ây and its gradient is∇q = (â+Uk2d)j. _e linearized
equation ofmotion is thus

(
à
àt

+ U
à
àx

) (∇2÷� − ÷�k2d) + (â + Uk2d)à÷�
àx

= 0. (4.29)

Substituting ÷� = ÷̃ei(kx+ly−øt) we obtain the dispersion
relation,

ø =
k(UK2 − â)
K2 + k2d = Uk − k

â + Uk2d
K2 + k2d . (4.30)

_e corresponding components of phase speed and group
velocity are

cxp = U−
â + Uk2d
K2 + k2d =

UK2 − â
K2 + k2d , cyp = U

k
l
−
k
l
(
UK2 − â
K2 + k2d )

(4.31a,b)
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and

cxg = U +
(â + Uk2d)(k2 − l2 − k2d)

(k2 + l2 + k2d)2 , cyg =
2kl(â + Uk2d)
(k2 + l2 + k2d)2 .

(4.32a,b)
_e uniform velocity ûeld now no longer provides just
a simple Doppler shi� of the frequency, nor a uniform
addition to the phase speed. From (4.31a) the waves are
stationary when K2 = â/U ≡ K2s ; that is, the current speed
required to holdwaves of a particularwavenumber station-
ary isU = â/K2. However, this is not simply themagnitude
of the phase speed of waves of that wavenumber in the ab-
sence of a current— this is given by

cxp =
−â

K2s + k2d =
−U

1 + k2d/K2s ̸= −U. (4.33)

Why is there a diòerence? It is because the current does not
just provide a uniform translation, but, if kd is non-zero,
it also modiûes the basic potential vorticity gradient. _e
basic state height ûeld ç0 is sloping; that is ç0 = −(f0/g)Uy,
and the ambient potential vorticity ûeld increases with y
and q = (â + Uk2d)y. _us, the basic state deûnes a pre-
ferred frame of reference, and the problem is not Galilean
invariant.8

We also note that, from (4.31b), the group velocity is
negative (westward) if the x-wavenumber is suõciently
small, compared to the y-wavenumber or the deformation
wavenumber. _at is, said a little loosely, long waves move
information westward and short waves move information
eastward, and this is a common property of Rossby waves.
_e x-component of the phase speed, on the other hand,
is always westward relative to themean �ow.

4.3.3 _emechanism of Rossby waves
_e fundamental mechanism underlying Rossby waves is
easily understood. Consider amaterial line of stationary
�uid parcels along a line of constant latitude, and suppose
that some disturbance causes their displacement to the
linemarked ç(t = 0) in Fig. 4.3. In the displacement, the
potential vorticity of the �uid parcels is conserved, and
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η(t > 0)

η(t = 0) ζ < 0

ζ > 0

Figure 4.3 Themechanismof a two-dimensional (x–y) Rossby
wave. An initial disturbance displaces amaterial line at constant
latitude (the straight horizontal line) to the solid line marked
ç(t = 0). Conservation of potential vorticity, ây + æ, leads to the
production of relative vorticity, as shown for two parcels. The
associated velocity �eld (arrows on the circles) then advects the
�uid parcels, and the material line evolves into the dashed line.
The phase of the wave has propagated westwards.

in the simplest case of barotropic �ow on the â-plane the
potential vorticity is the absolute vorticity, ây + æ. _us, in
either hemisphere, a northward displacement leads to the
production of negative relative vorticity and a southward
displacement leads to the production of positive relative
vorticity. _e relative vorticity gives rise to a velocity ûeld
which, in turn, advects the parcels in material line in the
manner shown, and the wave propagates westwards.

In more complicated situations, such as �ow in two
layers, considered below, or in a continuously stratiûed
�uid, themechanism is essentially the same. A displaced
�uid parcel carries with it its potential vorticity and, in the
presence of a potential vorticity gradient in the basic state,
a potential vorticity anomaly is produced. _e potential
vorticity anomaly produces a velocity ûeld (an example of
potential vorticity inversion) which further displaces the
�uid parcels, leading to the formation of a Rossby wave.
_e vital ingredient is a basic state potential vorticity gra-
dient, such as that provided by the change of the Coriolis
parameter with latitude.
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4.4 RossbyWaves inStratifiedQuasi-Geostrophic
Flow

4.4.1 Setting up the problem
Let us now consider the dynamics of linear waves in strat-
iûed quasi-geostrophic �ow on a â-plane, with a resting
basic state.

_e interior �ow is governed by the potential vorticity
equation, (3.78), and linearizing this about a uniform E–W
�ow gives rest gives

[
à
àt

+ U
à
àx

] [∇2÷� + à
àz

(F(z)
à÷�
àz

)] + â
à÷�
àx

= 0,

(4.34)
whereF(z) = f20 /N2. (F is the square of the inverse Prandtl
ratio, N/f0.) _e vertical boundary conditions are de-
termined by the thermodynamic equation, (3.81). If the
boundaries are �at, rigid, slippery surfaces then w = 0 at
the boundaries and if there is no surface buoyancy gradient
the linearized thermodynamic equation is

à
àt

(
à÷�
àz

) = 0. (4.35)

We apply this at the ground and at the tropopause, so at
z = 0 and at z = H.

4.4.2 Wavemotion
Wemay seek solutions of the form

÷� = Re ÷̃(z)ei(kx+ly−øt), (4.36)

where ÷̃(z) will determine the vertical structure of the
waves. In the zonal direction (the x-direction) the �ow is
periodic, and if the domain is of horizontal length Lx then
we have k = 2πnx/Lx where nx = 1, 2, 3 . . . . In there are
‘walls’ at y = 0 and y = Ly where÷ = 0 then the y variation
should be of the form ÷� ∼ sin ly where l = πny/Ly where
ny is an integer. However, we will keep the exponential
form (4.36) for the y variation for simplicity. Finally, if
F(z) is a constant then the problem further simpliûes and
we can seek solutions of the form

÷� = Re ÷̃ei(kx+ly+mz−øt), (4.37)
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and this is what we shall do. _is solution does not of itself
satisfy (4.35), and we can make it do so by restricting the
vertical variations to be of the form:

÷� = A cosmz where m = nzπ/H, (4.38)

where nz is an integer. _ese solutions then satisfy à÷/àz
at z = 0 and z = H. Having said this, we will stick with
eqref[qg:sepwave2] for our manipulations, just because
that is simpler, bearing in mind that the y and z variations
should just be sines and cosines, respectively.

_e dispersion relation is obtained by substituting (??)qg;sepwave2]
into (4.34) giving

ø = Uk −
âk

k2 + l2 + (f20 /N2)m2 . (4.39)

It is interesting to re-write this as an equation for m,
and we obtain

f20
N2m2 = â

U − c
−K2 (4.40)

whereK2 = k2 + l2 and c = ø/k. We’ll come back to this in
section 4.5, and the next subsection may be skipped if you
wish.

4.4.3 ♦ _e case with non-constant N2
For simplicity let U = 0, and then substituting (4.36) into
(4.34) gives

ø [−K2÷̃(z) + 1
ñ̃

d
dz

(ñ̃F(z)
d÷̃
dz

)] − âk÷̃(z) = 0. (4.41)

Now, if ÷̃ satisûes

1
ñ̃

d
dz

(ñ̃F(z)
d÷̃
dz

) = −Ã÷̃, (4.42)

whereÃ is a constant, then the equation ofmotion becomes

− ø [K2 + Ã] ÷̃ − âk÷̃ = 0, (4.43)
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and the dispersion relation follows, namely

ø = −
âk

K2 + Ã
. (4.44)

Equation (4.42) constitutes an eigenvalue problem for the
vertical structure; the boundary conditions, derived from
(4.35), are à÷̃/àz = 0 at z = 0 and z = H. _e result-
ing eigenvalues, Ã are proportional to the inverse of the
squares of the deformation radii for the problem and the
eigenfunctions are the vertical structure functions.

Consider the case in which F(z) is constant, and in
which the domain is conûned between two rigid surfaces
at z = 0 and z = H. _en the eigenvalue problem for the
vertical structure is

F
d2÷̃
dz2 = −Ã÷̃ (4.45a)

with boundary conditions of

d÷̃
dz

= 0, at z = 0,H. (4.45b)

_ere is a sequence of solutions to this, namely

÷̃n(z) = cos(nπz/H), n = 1, 2 . . . (4.46)

with corresponding eigenvalues

Ãn = n2Fπ2
H2 = (nπ)2 ( f0

NH
)
2
, n = 1, 2 . . . . (4.47)

Equation (4.47) may be used to deûne the deformation
radii for this problem, namely

Ln ≡
1

√Ãn =
NH
nπf0 . (4.48)

_e ûrst deformation radius is the same as the expression
obtained by dimensional analysis, namelyNH/f, except
for a factor of π. (Deûnitions of the deformation radii
both with and without the factor of π are common in the
literature, and neither is obviously more correct. In the
latter case, the ûrst deformation radius in a problem with
uniform stratiûcation is given byNH/f, equal to π/√Ã1.)
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In addition to these baroclinicmodes, the case with n = 0,
that is with ÷̃ = 1, is also a solution of (4.45) for any F(z).

Using (4.44) and (4.47) the dispersion relation becomes

ø = −
âk

K2 + (nπ)2(f0/NH)2 , n = 0, 1, 2 . . . (4.49)

and, of course, the horizontalwavenumbers k and l are also
quantized in a ûnite domain. _is equation is the same as
(4.39)

_e dynamics of the barotropic mode (n = 0) are in-
dependent of height and independent of the stratiûcation
of the basic state, and so these Rossby waves are identical
with the Rossby waves in a two-dimensional �uid.

4.5 Vertical Propagation of Rossby waves
4.5.1 Conditions for wave propagation
_e dispersion relation is

m2 = N2
f20 (

â
U − c

− (k2 + l2)) . (4.50)

For waves to propagate upwards we require that m2 > 0
and, from (4.50), that

0 < U − c <
â

k2 + l2 , (4.51)

where uc = â/(k2 + l2) is the Rossby critical velocity. For
waves of some given frequency (ø = kc) the above expres-
sion provides a condition onU for the vertical propagation
of planetary waves. For stationary waves c = 0 and the
criterion is

0 < U <
â

k2 + l2 , (4.52)

and this is illustrated in Fig. 4.4. _at is to say, the verti-
cal propagation of stationary Rossby waves occurs only
in westerly winds, and winds that are weaker than some
critical value, uc = â/(k2 + l2) that depends on the scale
of the wave. If the waves can take any frequency there is
no such condition on U, for (4.50) is just a form of the
dispersion relation and (4.51) is naturally satisûed.
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Essentials of Rossby Waves

∙ Rossby waves owe their existence to a gradient of potential vorticity in the �uid. If a �uid parcel is
displaced, it conserves its potential vorticity and so its relative vorticity will in general change. _e
relative vorticity creates a velocity ûeld that displaces neighbouring parcels, whose relative vorticity
changes and so on.

∙ A common source of a potential vorticity gradient is diòerential rotation, or the â-eòect, and
planetary waves is the name given to this type of Rossby wave. In the presence of non-zero â the
ambient potential vorticity increases northward and the phase of the Rossby waves propagates
westward. In general, Rossby waves propagate pseudo-westwards, meaning to the le� of the
direction of the potential vorticity gradient.

∙ A common equation ofmotion for Rossby waves is

àq�
àt

+ u
àq�
àx

+ v� àq
ày

= 0, (RW.1)

with an overbar denoting the basic state and a prime a perturbation. In the case of a single layer of
�uid with no mean �ow this equation becomes

à
àt

(∇2 + k2d)÷� + â
à÷�
àx

= 0 (RW.2)

with dispersion relation

ø =
−âk

k2 + l2 + k2d . (RW.3)

∙ _e phase speed in the zonal direction (cxp = ø/k) is always negative, or westward, and is larger for
large waves. For (RW.2) components of the group velocity are given by

cxg =
â(k2 − l2 − k2d)
(k2 + l2 + k2d)2 , cyg =

2âkl

(k2 + l2 + k2d)2 . (RW.4)

_e group velocity is westward if the zonal wavenumber is suõciently small, and eastward if the
zonal wavenumber is suõciently large.

∙ Rossby waves exist in stratiûed �uids, and have a similar dispersion relation to (RW.3) with an
appropriate vertical wavenumber appearing in place of the inverse deformation radius, kd.

∙ _e re�ection of such Rossby waves at a wall is specular,meaning that the group velocity of the
re�ected wavemakes the same angle with the wall as the group velocity of the incident wave. _e
energy �ux of the re�ected wave is equal and opposite to that of the incoming wave in the direction
normal to the wall.
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Figure 4.4 The boundary between propagating waves and
evanescent waves as a function of zonal wind andwavenumber,
using (4.52), for a couple of values of l (labelled ã here).

Stationary, vertically oscillatorymodes can exist only
for zonal �ows that are eastwards and that are less than the
critical velocity Uc = â/(k2 + l2). One way to interpret this
condition is note that in a resting medium the Rossby wave
frequency has aminimum value (andmaximum absolute
value), when m = 0, of

ø = −
âk

k2 + l2 . (4.53)

Note too that in a framemoving with speed U our Rossby
waves (stationary in the Earth’s frame) have frequency
−Uk, and this is the forcing frequency arising from the
now-moving bottom topography. _us, (4.52) is equiva-
lent to saying that for oscillatory waves to exist the forcing
frequency must lie within the frequency range of vertically
propagating Rossby waves.

For westward �ow, or for suõciently strong eastward
�ow, the waves decay exponentially as Õ = Õ0 exp(−áz)
where

á =
N
f0 (k2 + l2 − â

U
)
1/2

. (4.54)

Note that the critical velocity uc = (â/k2 + l2) is a func-
tion of wavenumber, and that it increases with horizontal
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wavelength. _us, for a given eastward �ow long waves
may penetrate vertically when short waves are trapped, an
eòect sometimes referred to as ‘Charney–Drazin ûltering’.9

One important consequence of this is that the stratospheric
motion is typically of larger scales than that of the tropo-
sphere, because Rossby waves tend to be excited ûrst in
the troposphere (by baroclinic instability and by �ow over
topography, among other things), but the shorterwaves are
trapped and only the longer ones reach the stratosphere. In
the summer, the stratospheric winds are o�en westwards
(because the pole iswarmer than the equator) and allwaves
are trapped in the troposphere; the eastward stratospheric
winds that favour vertical penetration occur in the other
three seasons, although very strong eastward winds can
suppress penetration in mid-winter.

4.5.2 Dispersion relation and group velocity
_e dispersion relation for three-dimensionalRossbywaves
is again

ø = Uk −
âk

K2 + ã2 +m2f20 /N2 . (4.55)

_e three components of the group velocity for thesewaves
are then:

cxg = U +
â[k2 − (l2 +m2f20 /N2)]

(K2 +m2f20 /N2)2 , (4.56a)

cyg =
2âkl

(K2 +m2f20 /N2)2 , czg =
2âkmf20 /N2

(K2 +m2f20 /N2)2 .

(4.56b,c)
_e propagation in the horizontal is analogous to the prop-
agation in a shallow water model [c.f. (4.31b)]; note also
that higher baroclinicmodes (bigger m) will have amore
westward group velocity. _e vertical group velocity is
proportional tom, and for waves that propagate signals up-
ward wemust choosem to have the same sign as k so that
czg is positive. If there is no mean �ow then the zonal wave-
number k is negative (in order that frequency is positive)
andm must then also be negative. Energy then propagates
upward but the phase propagates downward.
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Figure 4.5 A schematic east-west section of an upwardly prop-
agating Rossby wave. The slanting lines are lines of constant
phase and ‘high’ and ‘low’ refer to the pressure or streamfunc-
tion values. Both k andm are negative so the phase lines are
oriented up and to the west. The phase propagates westward
and downward, but the group velocity is upward.

4.5.3 Vertical wave propagation and heat transport
If the group velocity in the z-direction, given by (4.56) is
to be positive, then we require the product km > 0. _is
has consequences for the heat transport.

Remember that the buoyancy b, which is a proxy for
temperature, is given by f0à÷/àz. And the northward
velocity is v = à÷/àx. _us, the northward �ux of heat,H
say, is given by

H = vb = f0 à÷àz à÷
àx

, (4.57)

where an overbar denotes a zonal average. _us

H = vb = f0 à÷àz à÷
àx

= f0Re ÷̃im exp(iè)Re ÷̃ik exp(iè)
(4.58)

where è = (kx+ ly+mz). Following manipulations exactly
analogous to those given in the appendix, we ûnd

H =
1
2
f0|÷̃|2km. (4.59)



4.6 Rossby Waves and Jets 108

absolute vorticity 

increasing poleward

Figure 4.6 The e�ects of a mid-latitude disturbance on the
circulation around the latitude line C. If initially the absolute vor-
ticity increases monotonically polewards, then the disturbance
will bring �uid with lower absolute vorticity into the cap region.
Then, using Stokes theorem, the velocity around the latitude
line C will becomemore westwards.

_e conclusion is that vertical propagation of Rossby
waves is associated with a polewards heat �ux.

4.6 RossbyWaves and Jets
4.6.1 I. _e vorticity budget
Suppose that the absolute vorticity normal to the surface
(i.e., æ + 2Ø sin ú) increases monotonically polewards. (A
suõcient condition for this is that the �uid is at rest.) By
Stokes’ theorem, the circulation around a line of latitude
circumscribing the polar cap, I, is equal to the integral of
the absolute vorticity over the cap. _at is,

Ii = ∫
cap
øia⋅dA = ∮C uia dl = ∮C(ui+Øa cos ú) dl, (4.60)

whereøia and uia are the initial absolute vorticity and veloc-
ity, respectively, ui is the initial zonal velocity in the Earth’s
frame of reference, and the line integrals are around the
line of latitude. For simplicity let us takeui = 0 and suppose
there is a disturbance equatorwards of the polar cap, and
that this results in a distortion of thematerial line around
the latitude circle C (Fig. 4.6). Since we are supposing the
source of the disturbance to be distant from the latitude of
interest, then if we neglect viscosity the circulation along
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thematerial line is conserved, by Kelvin’s circulation theo-
rem. _us, vorticity with a lower value is brought into the
region of the polar cap— that is, the region polewards of
the latitude line C. Using Stokes’ theorem again the circu-
lation around the latitude circle C must therefore fall; that
is, denoting values a�er the disturbance with a subscript
f,

If = ∫
cap
ø fa ⋅ dA < Ii (4.61)

so that

∮C(uf + Øa cos ú) dl < ∮C(ui + Øa cos ú) dl (4.62)

and
uf < ui (4.63)

with the overbar indicating a zonal average. _us, there
is a tendency to produce westward �ow polewards of the
disturbance. By a similar argument westward �ow is also
produced equatorwards of the disturbance — to see this
onemight applyKelvin’s theoremover all of the globe south
of the source of the disturbance (taking care to take the dot-
product correctly between the direction of the vorticity
vector and the direction normal to the surface). Finally,
note that the overall situation is the same in the Southern
Hemisphere. _us, on the surface of a rotating sphere,
external stirring will produce westward �ow away from
the region of the stirring.

Now suppose, furthermore, that the disturbance im-
parts no net angular momentum to the �uid. _en the
integral of ua cos ú over the entire hemispheremust be con-
stant. But the �uid is accelerating westwards away from
the disturbance. _erefore, the �uid in the region of the
disturbancemust accelerate eastwards; that is, angular mo-
mentum must converge into the stirred region, producing
an eastward �ow. _is simplemechanism is the essence of
the production of eastward eddy-driven jets in the atmo-
sphere, and of the eastward surface winds in mid-latitudes.
_e stirring that here we have externally imposed comes,
in reality, from baroclinic instability.

If the stirring subsides then the �ow may reversibly
go back to its initial condition, with a concomitant rever-
sal of themomentum convergence that caused the zonal
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zonal velocity

Figure 4.7 Generation of zonal �ow on a â-plane or on a rotat-
ing sphere. Stirring in mid-latitudes (by baroclinic eddies) gen-
erates Rossby waves that propagate away from the disturbance.
Momentum converges in the region of stirring, producing east-
ward �ow there and weaker westward �ow on its �anks.

�ow. _us, we must have some form of dissipation and
irreversibility in order to produce permanent changes, and
in particular we need to irreversibly mix vorticity. If the
�uid is continuously mixed, then of course we also need
a source that restores the absolute vorticity gradient, oth-
erwise we will completely homogenize the vorticity over
the hemisphere, so let us now set up a simplemodel that
shows how a permanent jet structure can bemaintained.

4.6.2 II. Rossby waves andmomentum �ux
We saw above that amean gradient of vorticity is an essen-
tial ingredient in themechanism whereby amean �ow is
generated by stirring. Given such, we expect Rossby waves
to be excited, and we now show how Rossby waves are
intimately related to themomentum �ux maintaining the
mean �ow.

If a stirring is present in mid-latitudes then we expect
that Rossby waves will be generated there, propagate away
and break and dissipate. To the extent that the waves are
quasi-linear and do not interact, then just away from the
source region each wave has the form

÷ = ReCei(kx+ly−øt) = ReCei(kx+ly−kct), (4.64)
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Figure 4.8 The momentum transport in physical space,
caused by the propagation of Rossby waves away from a source
in mid-latitudes. The ensuing bow-shaped eddies are responsi-
ble for a convergence of momentum, as indicated in the ideal-
ization pictured.

where C is a constant, with dispersion relation

ø = ck = Uk −
âk

k2 + l2 ≡ øR, (4.65)

provided that there is no meridional shear in the zonal
�ow. _emeridional component of the group velocity is
given by

cyg =
àø
àl

=
2âkl

(k2 + l2)2 . (4.66)

Now, the direction of the group velocitymust be away from
the source region; this is a radiation condition (discussed
more in the next subsection), demanded by the require-
ment that Rossby waves transport energy away from the
disturbance. _us, northwards of the source kl is positive
and southwards of the source kl is negative. _at the prod-
uct kl can be positive or negative arises because for each k
there are two possible values of l that satisfy the dispersion
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relation (4.65), namely

l = ±(
â

U − c
− k2)1/2 , (4.67)

assuming that the quantity in parentheses is positive.
_e velocity variations associatedwith theRossbywaves

are

u� = −ReC ilei(kx+ly−øt), v� = ReC ikei(kx+ly−øt),
(4.68a,b)

and the associated momentum �ux is (see appendix for
algebraic details)

u�v� = −
1
2
C2kl. (4.69)

_us, given that the sign of kl is determined by the group
velocity, northwards of the source themomentum �ux as-
sociated with the Rossby waves is southward (i.e., u�v� is
negative), and southwards of the source themomentum
�ux is northward (i.e., u�v� is positive). _at is, themomen-
tum �ux associated with the Rossby waves is toward the
source region. Momentum converges in the region of the
stirring, producing net eastward �ow there and westward
�ow to either side (Fig. 4.7).

Another way of describing the same eòect is to note
that if kl is positive then lines of constant phase (kx + ly =
constant) are tilted north-west/south-east, and themomen-
tum �ux associated with such a disturbance is negative
(u�v� < 0). Similarly, if kl is negative then the constant-
phase lines are tilted north-east/south-west and the associ-
atedmomentum �ux is positive (u�v� > 0). _e net result
is a convergence ofmomentum �ux into the source region.
In physical space this is re�ected by having eddies that are
‘bow-shaped’, as in Fig. 4.8.

Appendix: Calculation of Fluxes
In two places in this chapterwe had to calculate the average
�ux of a quantity and in this appendix we do that explicitly
in the case of the northward �ux ofmomentum in aRossby
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wave. _e samemethod can be used to calculate the ver-
tical �ux of buoyancy in a Rossby wave. It is important
to take the real part of each expression before taking the
average. To proceed, let

÷ = ReAei(kx+ly−øt) (4.70)

where A = a + ib. _e velocities are given by

u = −
à÷
ày

, v =
à÷
àx

. (4.71)

_us,

u = −Re ilAeiè = al sin è + bl cos è (4.72)

and

v = +Re ikAeiè = −ak sin è − bk cos è (4.73)

where è = kx + ly − øt. _e northwards momentum �ux
is then

uv =
1
L
∫
L0 uv dx (4.74)

where L is a wavelength or amultiple of wavelengths. Now,
a standard result is that

1
L
∫
L0 sin2 kx dx =

1
L
∫
L0 cos2 kx dx =

1
2
, (4.75)

and
1
L
∫
L0 sin kx cos kx dx = 0. (4.76)

_us,

uv =
1
L
∫
L0 (al sin è + bl cos è) × (−ak sin è − bk cos è)

= −
kl
2
(a2 + b2) = −

1
2
|A|2kl

(4.77)

_us, the poleward �ux ofmomentum is proportional to
−kl.

A similar methodology applies when calculating the
poleward�ux of buoyancy, vb. Since v = à÷/àx = Re ikA exp(iè)
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and b = f0à÷/àz = Re if0mA exp(iè) then by the same
technique we ûnd, skipping some algebra,

vb =
f0
L

∫
L0 (−ak sin è − bk cos è) × (−am sin è − bm cos è)

=
f0km
2

(a2 + b2) = f0
2
|A|2km

(4.78)

and is proportional to +km.



Chapter 5
Ekman Layers andOcean
Gyre
Weeks 9 to 11

5.1 Ekman Layers
_e �uid ûelds in the interior of a domain are o�en set
by diòerent physical processes than those occurring at a
boundary, and consequently o�en change rapidly in a thin
boundary layer, as in Fig. 5.1. Such boundary layers nearly
always involve one or both of viscosity and diòusion, be-
cause these appear in the terms of highest diòerential order
in the equations ofmotion, and so are responsible for the
number and type of boundary conditions that the equa-
tionsmust satisfy—for example, the presence ofmolecular
viscosity leads to the condition that the tangential �ow (as
well as the normal �ow) must vanish at a rigid surface.
In many boundary layers in non-rotating �ow the domi-
nant balance in themomentum equation is between the
advective and viscous terms. In large-scale atmospheric
and oceanic �ow the eòects of rotation are large and the
dominant balance is between Coriolis and frictional or
stress terms.

_e atmospheric Ekman layer occurs near the ground,
and the stress at the ground itself is due to the surfacewind
(and its vertical variation). In the ocean themain Ekman
layer is near the surface, and the stress at ocean surface is
largely due to the presence of the overlying wind. _ere

115
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Figure 5.1 An idealized boundary layer. The values of a �eld,
such as velocity, U, may vary rapidly in a boundary in order
to satisfy the boundary conditions at a rigid surface. The pa-
rameter ä is a measure of the boundary layer thickness,H is a
typical scale of variation away from the boundary, and typically
a boundary layer has ä ≪ H.

is also a weak Ekman layer at the bottom of the ocean,
analogous to the atmospheric Ekman layer. To analyze all
these layers we assume:

∙ _e Ekman layer is Boussinesq.
∙ _e Ekman layer has a ûnite depth that is less than

the total depth of the �uid, this depth being given by
the level at which the frictional stresses essentially
vanish. Within the Ekman layer, frictional terms
are important, whereas geostrophic balance holds
beyond it.

∙ _enonlinear and time-dependent terms in the equa-
tions ofmotion are negligible, hydrostatic balance
holds in the vertical, and buoyancy is constant, not
varying in the horizontal.

∙ Friction can be parameterized by a viscous term of
the form ñ−10 àó/àz = Aà2u/àz2,whereA is constant
and ó is the stress. [In general, stress is a tensor, óij,
with an associated force given by Fi = àóij/àxj, sum-
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ming over the repeated index. It is common in geo-
physical �uid dynamics that the vertical derivative
dominates, and in this case the force is F = àó/àz.
We still use the word stress for ó, but it now refers to
a vector whose derivative in a particular direction
(z in this case) is the force on a �uid.] In laboratory
settings A may be themolecular viscosity, whereas
in the atmosphere and ocean it is a so-called eddy
viscosity.

5.1.1 Equations ofmotion and scaling
Frictional–geostrophic balance in the horizontal momen-
tum equation is:

f × u = −∇zõ +
àó̃
àz

, (5.1)

where ó̃ ≡ ó/ñ0 is the kinematic stress and f = fk, where
the Coriolis parameter f is allowed to vary with latitude.
Ifwemodel the stresswith an eddy viscosity, (5.1) becomes

f × u = −∇zõ + A
à2u
àz2 . (5.2)

_e vertical momentum equation is àõ/àz = b, i.e., hydro-
static balance, and, because buoyancy is constant, wemay
without loss of generality write this as

àõ
àz

= 0. (5.3)

_e equation set is completed by themass continuity equa-
tion, ∇⋅ v = 0.

_e Ekman number
We non-dimensionalize the equations by setting

(u, v) = U(û, v̂), (x, y) = L(x̂, ŷ), f = f0f̂, z = Hẑ, õ = Õõ̂,
(5.4)

where hatted variables are non-dimensional. H is a scaling
for the height, and at this stage we will suppose it to be
some height scale in the free atmosphere or ocean, not
the height of the Ekman layer itself. Geostrophic balance
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suggests that Õ = f0UL. Substituting (5.4) into (5.2) we
obtain

f̂ × û = −∇̂õ̂ + Ek
à2û
àẑ2 , (5.5)

where the parameter

Ek ≡ (
A

f0H2) , (5.6)

is the Ekman number, and it determines the importance
of frictional terms in the horizontal momentum equation.
If Ek ≪ 1 then the friction is small in the �ow interior
where ẑ = O(1). However, the friction term cannot nec-
essarily be neglected in the boundary layer because it is
of the highest diòerential order in the equation, and so
determines the boundary conditions; if Ek is small the
vertical scales become small and the second term on the
right-hand side of (5.5) remains ûnite. _e case when this
term is simply omitted from the equation is therefore a
singular limit, meaning that it diòers from the case with
Ek → 0. If Ek ≥ 1 friction is important everywhere, but
it is usually the case that Ek is small for atmospheric and
oceanic large-scale �ow, and the interior �ow is very nearly
geostrophic. (In part this is because A itself is only large
near a rigid surface where the presence of a shear creates
turbulence and a signiûcant eddy viscosity.)

Momentum balance in the Ekman layer
For deûniteness, suppose the �uid lies above a rigid surface
at z = 0. Suõciently far away from the boundary the
velocity ûeld is known, and we suppose this �ow to be in
geostrophic balance. We then write the velocity ûeld and
the pressure ûeld as the sum of the interior geostrophic
part, plus a boundary layer correction:

û = ûg + ûE, õ̂ = õ̂g + õ̂E, (5.7)

where the Ekman layer corrections, denoted with a sub-
script E, are negligible away from the boundary layer. Now,
in the�uid interiorwehave, byhydrostatic balance, àõ̂g/àẑ =
0. In the boundary layer we still have àõ̂g/àẑ = 0 so that,
to satisfy hydrostasy, àõ̂E/àẑ = 0. But because õ̂E vanishes
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away from the boundary we have õ̂E = 0 everywhere. _us,
there is no boundary layer in the pressure ûeld. Note that
this is amuch stronger result than saying that pressure is
continuous, which is nearly always true in �uids; rather, it
is a special result for Ekman layers.

Using (5.7) with õ̂E = 0, the dimensional horizontal
momentum equation (5.1) becomes, in the Ekman layer,

f × uE =
àó̃
àz

. (5.8)

_e dominant force balance in the Ekman layer is thus
between the Coriolis force and the friction. We can de-
termine the thickness of the Ekman layer if wemodel the
stress with an eddy viscosity so that

f × uE = A
à2uE
àz2 , (5.9)

or, non-dimensionally,

f̂ × ûE = Ek
à2ûE
àẑ2 . (5.10)

It is evident this equation can only be satisûed if ẑ ̸= O(1),
implying that H is not a proper scaling for z in the bound-
ary layer. Rather, if the vertical scale in the Ekman layer is
ä̂ (meaning ẑ ∼ ä̂)wemust have ä̂ ∼ Ek1/2. In dimensional
terms this means the thickness of the Ekman layer is

ä = Hä̂ = HEk1/2 (5.11)

or

ä = (
A
f0)1/2 . (5.12)

[_is estimate also emerges directly from (5.9).] Note that
(5.11) can be written as

Ek = (
ä
H
)
2
. (5.13)

_at is, the Ekman number is equal to the square of the
ratio of the depth of the Ekman layer to an interior depth
scale of the �uidmotion. In laboratory �owswhereA is the
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molecular viscosity we can thus estimate the Ekman layer
thickness, and ifwe know the eddy viscosity of the ocean or
atmosphere we can estimate their respective Ekman layer
thicknesses. We can invert this argument and obtain an
estimate of A if we know the Ekman layer depth. In the
atmosphere, deviations from geostrophic balance are very
small in the atmosphere above 1 km, and using this gives
A ≈ 102 m2 s−1. In the ocean Ekman depths are o�en 50m
or less, and eddy viscosities are about 0.1m2 s−1.
5.1.2 Integral properties of the Ekman layer
What can we deduce about the Ekman layer without speci-
fying the detailed formof the frictional term? Using dimen-
sional notation we recall frictional–geostrophic balance,

f × u = −∇õ +
1
ñ0 àóàz , (5.14)

where ó is zero at the edge of the Ekman layer. In the
Ekman layer itself we have

f × uE =
1
ñ0 àóàz . (5.15)

Consider either a top or bottom Ekman layer, and integrate
over its thickness. From (5.15) we obtain

f ×ME = óT − óB, (5.16)

where
ME = ∫

Ek
ñ0uE dz (5.17)

is the ageostrophicmass transport in the Ekman layer, and
óT and óB are the respective stresses at the top and the
bottom of the Ekman layer at hand. _e stress at the top
(bottom) will be zero in a bottom (top) Ekman layer and
therefore, from (5.16),

top Ekman layer: ME = −
1
f
k × óT

bottom Ekman layer: ME =
1
f
k × óB .

(5.18a,b)
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_e transport is thus at right angles to the stress at the
surface, and proportional to themagnitude of the stress.
_ese properties have a simple physical explanation: inte-
grated over the depth of the Ekman layer the surface stress
must be balanced by the Coriolis force, which in turn acts
at right angles to the mass transport. A consequence of
(5.18) is that themass transports in adjacent oceanic and
atmospheric Ekman layers are equal and opposite, because
the stress is continuous across the ocean–atmosphere in-
terface. Equation (5.18a) is particularly useful in the ocean,
where the stress at the surface is primarily due to the wind,
and is largely independent of the interior oceanic �ow. In
the atmosphere, the surface stress mainly arises as a result
of the interior atmospheric �ow, and to calculate itwe need
to parameterize the stress in terms of the �ow.

Finally, we obtain an expression for the vertical veloc-
ity induced by an Ekman layer. _e mass conservation
equation is

àu
àx

+
àv
ày

+
àw
àz

= 0. (5.19)

Integrating this over an Ekman layer gives

1
ñ0∇⋅MT = −(wT − wB), (5.20)

whereMT is the total (Ekman plus geostrophic) mass trans-
port in the Ekman layer,

MT = ∫
Ek

ñ0u dz = ∫
Ek

ñ0(ug +uE) dz ≡Mg +ME, (5.21)

and wT and wB are the vertical velocities at the top and
bottom of the Ekman layer; the former (latter) is zero in a
top (bottom) Ekman layer. Equations (5.21) and (5.16) give

k × (MT −Mg) = 1
f
(óT − óB). (5.22)

Taking the curl of this (i.e., cross-diòerentiating) gives

∇⋅ (MT −Mg) = curlz[(óT − óB)/f], (5.23)

where the curlz operator on a vectorA isdeûned by curlzA ≡
àxAy − àyAx. Using (5.20) we obtain, for top and bottom
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Figure 5.2 Upper and lower Ekman layers. The upper Ekman
layer in the ocean is primarily driven by an imposed wind stress,
whereas the lower Ekman layer in the atmosphere or ocean
largely results from the interaction of interior geostrophic veloc-
ity and a rigid lower surface. The upper part of �gure shows the
vertical Ekman ‘pumping’ velocities that result from the given
wind stress, and the lower part of the �gure shows the Ekman
pumping velocities given the interior geostrophic �ow.

Ekman layers respectively,

wB =
1
ñ0 (curlzóTf + ∇⋅Mg) , wT =

1
ñ0 (curlzóBf − ∇⋅Mg) ,

(5.24a,b)
where ∇⋅Mg = −(â/f)Mg ⋅ j is the divergence of the geo-
strophic transport in the Ekman layer, and this is o�en
small compared to the other terms in these equations. _us,
friction induces a vertical velocity at the edge of the Ekman
layer, proportional to the curl of the stress at the surface,
and this is perhaps themost used result in Ekman layer the-
ory. Numerical models sometimes do not have the vertical
resolution to explicitly resolve an Ekman layer, and (5.24)
provides a means of parameterizing the Ekman layer in
terms of resolved or known ûelds. It is particularly useful
for the top Ekman layer in the ocean, where the stress can
be regarded as a given function of the overlying wind.
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5.1.3 Sverdrup Balance
In this section we rederive the above results in a slightly
more direct way, and also obtain a result for the total trans-
port induced by a windstress. To this end, consider an
ocean forced by a windstress at the top that satisûes the
Ekman-layer equations

− fv = −
àõ
àx

+
àó̃x
àz

, fu = −
àõ
ày

+
àó̃y
àz

. (5.25)

where ó̃ = ó/ñ0. Equivalently we have
f(vg − v) =

àó̃x
àz

, f(u − ug) = àó̃y
àz

. (5.26)

We note that the geostrophic velocity ûeld satisûes,

f(
àug
àx

+
àvg
ày

) = −âvg. (5.27)

If we integrate themass continuity equation over the
depth of the Ekman layer, the vertical velocity at its base is
given by

wE = ∫
0−HE (àua

àx
+
àva
ày

+
àug
àx

+
àvg
ày

) . (5.28)

_e divergence of the geostrophic velocity is given by (5.27),
and that of the ageostrophic velocity is obtained from
(5.26). We thus obtain

wE = [
à
àx

(
ó̃y0
f

) −
à
ày

(
ó̃x0
f

)] − ∫
0−HE â

f
vg dz,

(5.29)
where ó̃x0, ó̃y0 are the components of the stress at the sur-
face. _is equation is essentially the same as (5.24a).

If we go back to (5.25), cross diòerentiate and integrate
from the top down we obtain an expression for the vertical
velocity at the base of the Ekman layer in terms of the stress
and the total velocity,

wE =
1
f
[
àó̃y0
àx

−
àó̃x0
ày

] − ∫
0−HE â

f
v dz. (5.30)
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Figure 5.3 Left: the time averaged velocity �eld at a depth
of 75m in the North Atlantic. Right: the streamfunction of the
vertically integrated �ow, in Sverdrups (1 Sv = 109 kg s−1). Note
the presence of an anticyclonic subtropical gyre (clockwise cir-
culation, shaded red), a cyclonic subpolar gyre (anticlockwise,
blue), and intense western boundary currents.

If we let the integral go over the entire depth of the ocean,
and assume that the vertical velocity is zero at the bottom,
we obtain

∫âv dz =
àó̃y0
àx

−
àó̃x0
ày

. (5.31)

_is is known as the Sverdrup relation, and is a relation
between the stress at the surface and the total meridional
transport in the ocean.

5.2 Ocean Gyres
5.3 TheDepthIntegratedWind-DrivenCir-

culation
_e large-scale mean currents shown in Fig. 5.3 and in
Fig. 5.4, where we see subtropical and subpolar gyres, all
of them intensiûed in the west. Our goal is to explain
the main features seen in these ûgures in as simple and
straightforward amanner as is possible.

_e equations that govern the large-scale �ow in the
oceans are the planetary-geostrophic equations, but these
equations are still quite daunting: a prognostic equation
for buoyancy is coupled to the advecting velocity via hydro-
static and geostrophic balance, and the resulting problem
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is formidably nonlinear. However, it turns out that thermo-
dynamic eòects can eòectively be eliminated by the simple
device of vertical integration; the resulting equations are
linear, and the only external forcing is that due to the wind
stress.

5.3.1 _e Stommel Model
_e planetary-geostrophic equations for a Boussinesq �uid
are:

Db
Dt

= ḃ, ∇3 ⋅ v = 0, (5.32a,b)

f × u = −∇õ +
1
ñ0 àóàz , àõ

àz
= b. (5.33a,b)

_ese equations are, respectively, the thermodynamic equa-
tion (5.32a), themass continuity equation (5.32b), the hor-
izontal momentum equation (5.33a), (i.e., geostrophic bal-
ance, plus a stress term), and the vertical momentum equa-
tion (5.33b) — that is, hydrostatic balance. _ese equa-
tions are derived more fully in Chapter 3, but they are
essentially the Boussinesq primitive equations with the
advection terms omitted from the horizontal momentum
equation, on the basis of small Rossby number. In this
chapter we will henceforth absorb the factor of ñ0 into the
ó, so that ó denotes the kinematic stress, and the gradient
operator will be two dimensional, in the x-y plane, unless
noted.

Take the curl of (5.33a) (that is, cross diòerentiate its
x and y components) and integrate over the depth of the
ocean to give

∫f∇⋅ u dz +
àf
ày

∫ v dz = curlz(óT − óB), (5.34)

where the operator curlz is deûned by curlzA ≡ àAy/àx −
àAx/ày = k ⋅ ∇ ×A, and the subscripts T and B are for top
and bottom. _e divergence term vanishes if the vertical
velocity is zero at the top and bottom of the ocean. Strictly,
at the top of the ocean the vertical velocity is given by the
material derivative of height of the ocean’s surface, Dℎ/Dt,
but on the large-scales this has a negligible eòect and we
may make the rigid-lid approximation and set it to zero.
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Figure 5.4 The streamfunction of the vertically integrated
�ow for the near global ocean. Red shading indicates clockwise
�ow, and blue shading anticlockwise, but in both hemispheres
the subtropical (subpolar) gyres are anticyclonic (cyclonic).

At the bottom of the ocean the vertical velocity is only zero
if the ocean is �at-bottomed; otherwise it is u ⋅ ∇çB, where
çB is the orographic height at the ocean �oor. _e neglect
of this topographic term is probably themost restrictive
single approximation in the model. Given this neglect,
(5.34) becomes

âv = curlz(óT − óB), (5.35)

where henceforth, in this section, quantities with an over-
bar are understood to be the vertical integral over the depth
of the ocean. If the stresses depend only on the velocity
ûelds then thermodynamic ûelds do not aòect the verti-
cally integrated �ow.

At the top of the ocean, the stress is given by the wind.
At the bottom, in the absence of topography we assume
that the stress may be parameterized by a linear drag, or
Rayleigh friction, asmight be generated by an Ekman layer;
it is this assumption that particularly characterizes this
model as being due to Stommel. Equation (5.35) then
becomes

âv = −ræ + Fó(x, y), (5.36)

where Fó = curlzóT is the wind-stress curl at the top of the
ocean and is a known function. Because the velocity is
divergence-free, we can deûne a streamfunction ÷ such
that u = −à÷/ày and v = à÷/àx. Equation (5.36) then
becomes

r∇2÷ + â
à÷
àx

= Fó(x, y). (5.37)
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_is equation is o�en referred to as the Stommel problem
or the Stommel model, and may be posed in a variety of
two dimensional domains.

5.3.2 Approximate Solution of Stommel Model
Sverdrup balance
Equation (5.37) is linear and it is possible to obtain an
exact, analytic solution. However, it is more insightful to
approach the problemperturbatively, by supposing that the
frictional term is small,meaning there is an approximate
balance between wind stress and the â-eòect.10 Friction is
small if |ræ| ≪ |âv| or

r
L
=

fäB
HL

≪ â (5.38)

using r = fäB/H, andwhere L is the horizontal scale of the
motion, and generally speaking this inequality is well satis-
ûed for large-scale �ow. _e vorticity equation becomes

âv ≈ curlzóT, (5.39)

which is known as Sverdrup balance.11 (Sometimes Sver-
drup balance is taken to mean the linear geostrophic vor-
ticity balance âv = fàw/àz, but we will restrict its use to
mean a balance between the beta eòect and wind stress
curl.) _e observational support for Sverdrup balance is
rather mixed, discrepancies arising not so much from the
failure of (5.38), but from the presence of small-scale eddy-
ing motion with concomitantly large nonlinear terms, and
the presence of non-negligible vertical velocities induced
by the interaction with bottom topography.12 Nevertheless,
Sverdrup balance provides a useful, if not impregnable,
foundation on which to build.

Boundary-layer solution
For simplicity, consider a square domain of side a and
rescale the variables by setting

x = ax̂, y = aŷ, ó = ó0ó̂, ÷ = ÷̂
ó0
â
, (5.40)

where ó0 is the amplitude of the wind stress. _e hatted
variables are nondimensional and, assuming our scaling
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to be sensible, these are O(1) quantities in the interior.
Equation (??) becomes

à÷̂
àx̂

+ åS∇2÷̂ = curlzó̂T, (5.41)

where åS = (r/aâ) ≪ 1, in accord with (5.38). For the rest
of this section we will drop the hats over nondimensional
quantities. Over the interior of the domain, away from
boundaries, the frictional term in (5.41) is small. We can
take advantage of this by writing

÷(x, y) = ÷I(x, y) + õ(x, y), (5.42)

where÷I is the interior streamfunction and õ is a boundary
layer correction. Away from boundaries ÷I is presumed to
dominate the �ow, and this satisûes

à÷I
àx

= curlzóT. (5.43)

_e solution of this equation (called the ‘Sverdrup interior’)
is

÷I(x, y) = ∫
x0 curlzó(x�, y) dx� + g(y), (5.44)

where g(y) is an arbitrary function of integration that gives
rise to an arbitrary zonal �ow. _e corresponding velocities
are

vI = curlzó, uI = −
à
ày

∫
x0 curlzó(x�, y) dx� − dg(y)

dy
.

(5.45)

_e dynamics is most clearly illustrated if we now re-
strict our attention to a wind-stress curl that is zonally
uniform, and that vanishes at two latitudes, y = 0 and
y = 1. An example is

óyT = 0, óxT = − cos(πy), (5.46)

for which curlzóT = −π sin(πy). _e Sverdrup (interior)
�ow may then be written as

÷I(x, y) = [x−C(y)]curlzóT = π[C(y)−x] sin πy, (5.47)
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Western boundary layer Wind stress Eastern boundary layer

Figure 5.5 Two possible Sverdrup �ows,÷I, for thewind stress
shown in the centre. Each solution satis�es the no-�ow condi-
tion at either the eastern or western boundary, and a boundary
layer is therefore required at the other boundary. Both �ows
have the same, equatorward, meridional �ow in the interior.
Only the �ow with the western boundary current is physically
realizable, however, because only then can friction produce a
curl that opposes that of the wind stress, so allowing the �ow
to equilibrate.

where C(y) is the arbitrary function of integration [C(y) =
−g(y)/curlzó]. If we choose C to be a constant, the zonal
�ow associated with it is C curlzóT. We can then satisfy
÷ = 0 at either x = 0 (if C = 0) or x = 1 (if C = 1). _ese
solutions are illustrated in Fig. 5.5 for the particular stress
(5.46).

Regardless of our choice of C we cannot satisfy ÷ = 0
at both zonal boundaries. Wemust choose one, and then
construct a boundary layer solution (i.e., we determine õ)
to satisfy the other condition. Which choice do wemake?
On intuitive grounds it seems that we should choose the
solution that satisûes ÷ = 0 at x = 1 (the solution on the
le� in Fig. 5.5), for the interior �ow then goes round in the
same direction as the wind: the wind is supplying a clock-
wise torque, and to achieve an angular momentum balance
anticlockwise angular momentum must be supplied by
friction. We can imagine that this would be provided by
the frictional forces at the western boundary layer if the
interior �ow is clockwise, but not by friction at an eastern
boundary layer when the interior �ow is anticlockwise.
Note that this argument is not dependent on the sign of
the wind-stress curl: if the wind blew the other way a sim-
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ilar argument still implies that a western boundary layer
is needed. We will now see if and how the mathematics
re�ects this intuitive but non-rigorous argument.

Asymptoticmatching
Near thewalls of the domain the boundary layer correction
õ(x, y)must become important in order that the boundary
conditions may be satisûed, and the �ow, and in particular
õ(x, y),will vary rapidlywith x. To re�ect this, let us stretch
the x-coordinate near this point of failure (i.e., at either
x = 0 or x = 1, but we do not know at which yet) and let

x = åá or x − 1 = åá. (5.48a,b)

Here, á is the stretched coordinate, which has values O(1)
in the boundary layer, and å is a small parameter, as yet
undetermined. We then suppose that õ = õ(á, y), and
using (5.42) in (5.41), we obtain

åS(∇2÷I + ∇2õ) + à÷I
àx

+
1
å
àõ
àá

= curlzóT, (5.49)

where õ = õ(á, y) and ∇2õ = å−2à2õ/àá2 + à2õ/ày2. Now,
by choice, ÷I exactly satisûes Sverdrup balance, and so
(5.49) becomes

åS (∇2÷I + 1
å2 à2õàá2 +

à2õ
ày2) +

1
å
àõ
àá

= 0. (5.50)

We now choose å to obtain a physically meaningful
solution. An obvious choice is å = åS, for then the leading-
order balance in (5.50) is

à2õ
àá2 +

àõ
àá

= 0, (5.51)

the solution of which is

õ = A(y) + B(y)e−á. (5.52)

Evidently, õ grows exponentially in the negative á direc-
tion. If this were allowed, it would violate our assump-
tion that solutions are small in the interior, and wemust
eliminate this possibility by allowing á to take only pos-
itive values in the interior of the domain, and by setting
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Streamfunction Wind stress

Figure 5.6 Two solutions of the Stommel model. Upper panel
shows the streamfunction of a single-gyre solution, with a wind
stress proportional to − cos(πy/a) (in a domain of side a), and
the lower panel shows a two-gyre solution, with wind stress
proportional to cos(2πy/a). In both cases åS = 0.04.

A(y) = 0. We therefore choose x = åá so that á > 0 for
x > 0; the boundary layer is then at x = 0, that is, it is a
western boundary, and it decays eastwards in the direction
of increasing á— that is, into the ocean interior. We now
choose C = 1 in (5.47) to make ÷I = 0 at x = 1 in (5.47)
and then, for the wind stress (5.46), the interior solution is
given by

÷I = π(1 − x) sin πy. (5.53)

_is alone satisûes the boundary condition at the eastern
boundary. _e function B(y) is chosen to satisfy the addi-
tional condition that

÷ = ÷I + õ = 0 at x = 0, (5.54)

and using (5.53) this gives

π sin πy + B(y) = 0. (5.55)
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Using this in (5.52),withA(y) = 0, then gives the boundary
layer solution

õ = −π sin πye−x/åS . (5.56)

_e composite (boundary layer plus interior) solution is
the sum of (5.53) and (5.56), namely

÷ = (1 − x − e−x/åS)π sin πy. (5.57)

With dimensional variables this is

÷ =
ó0π
â

(1 −
x
a
− e−x/(aåS)) sin πy

a
. (5.58)

_is is a ‘single gyre’ solution. Two or more gyres can
be obtained with a diòerent wind forcing, such as óx =
−ó0 cos(2πy), as in Fig. 5.6.

It is a relatively straightforwardmatter to generalize to
other wind stresses, provided these also vanish at the two
latitudes between which the solution is desired. It is le� as
a problem to show that in general

÷I = ∫
xxE curlzó(x�, y) dx�, (5.59)

and that the composite solution is

÷ = ÷I − ÷I(0, y)e−x/(xEåS). (5.60)
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