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PREFACE

October 4, 2018

These are a set of lecture notes for ECMM719, Fluid Dynam-
ics of the Atmosphere and Ocean, given at the University
of Exeter. The notes are not self-contained - you will need
to look in books for a full understanding, and this version
of the notes is quite streamlined.



CHAPTER

EQUATIONS WITH ROTATION
AND STRATIFICATION

WEEKS1TO 3

1.1 REVIEw OF FLUID EQUATIONS

FIRST WE JUST WRITE DOWN the equations without deriva-
tion. For dry air, or for a salt-free liquid, the equations of
motion may be written as follows:

The mass continuity equation:

op B
F + V- (pv) =0. (1.1)

If density is constant this reduces to V- v = 0.
The momentum equation:

Dy = —E +vwWv +F, 1.2)
Dt p

where F represents the effects of body forces such as gravity

and v is the kinematic viscosity. If density is constant, or

pressure, p, is given as a function of density alone (e.g.,

p = Cp" where y is a constant), then (1.1) and (1.2) form a

complete system.

The thermodynamic equation:

DI p

D pV v=0Q, (1.3)
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where Q represents diabatic sources such as heating and

diffusion, I is internal energy. In the ideal gas case the

internal energy is given by I = ¢, T where T is temperature.
An equation of state:

p=fp), (1.4)

where f is some known function. For example, for an ideal
gas, p = pRI/c, or, more simply, p = pRT, where R is the
ideal gas constant for the gas at hand and T is temperature.

The above four equations have four unknowns: velocity
(a vector), temperature, pressure and density. The equa-
tions are called the Euler equations if the viscous term is
omitted, and the Navier-Stokes equations if viscosity is
included.!

1.1.1 Ideal Gas

Let us look at the ideal gas case in a little more detail. For
fluid dynamical purposes the ideal gas equation of state is
usually written in the form

p=pRT (15)

where R is the gas constant of the gas in question, related
to the universal gas constant R, by R = R,,/m, where m is
the molecular weight of the gas.

The internal energy of an ideal gas is given by I =
¢, T where ¢, is the heat capacity at constant volume. It is
a function of temperature alone, and in fact is almost a
constant. For an ideal gas we also have ¢, — ¢, = R, where
¢, is the heat capacity at constant pressure.

For an ideal gas the first law of thermodynamics may

be written in either of the two equivalent forms
dQ = ¢, dT+pda or dQ = ¢ dT-adp, (1.6a,b)

where the second expression is derived using « = RT/p.
Forming the material derivative of the above gives two
forms of the internal energy equation:

DI Da . DT RTDp

C“E+pE:Q or c——7—=Q.
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Using the mass continuity equation, (1.7a) is equivalent to

LI S (18)
Dt c¢p G

Alternatively, again using the ideal gas equation, we may
eliminate T in favour of p and « and obtain

Dp, vow_ PR
Dr +ypV v—QC . (1.9)

(

where y = ¢,/c,.

Potential temperature
Using the ideal gas equation we can write (1.6b) as s

d
=TQ=cpdlnT—Rdlnp. (1.10)

dn
where # is the specific entropy, which is a function of state.
Now, let us define the potential temperature, 0, by the ex-

pression
esT(%) , (L11)

where x = R/c,. It straightforwardly follows that
¢,dInf =c,dInT - Rdln p, (1.12)

and therefore the first law of thermodynamics can be writ-
ten at

dQ=¢, () ¢. (113)

Taking the material derivative we have

DO 0.
cpa = ?Q. (1.14)
This is a useful form because it just involves the mate-
rial derivative of one quantity. The potential temperature
is, in the absence of diabatic terms, a materially conserved
quantity, unlike temperature. It is closely related to entropy,
and in particular

dy = [N dlné. (1.15)
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The potential temperature is the temperature that a
fluid would have if moved adiabatically to the reference
pressure p,, but the explicit demonstration of this is left to
the reader. Indeed, potential temperature may be defined
this way, and for an ideal gas this is equivalent to (1.11).

1.2 THE EQUATIONS OF MOTION IN A ROTATING
FRAME OF REFERENCE

Newton’s second law of motion, that the acceleration on a
body is proportional to the imposed force divided by the
body’s mass, applies in so-called inertial frames of refer-
ence; that is, frames that are stationary or moving only
with a constant rectilinear velocity relative to the distant
galaxies. Now the Earth spins round its own axis with a
period of almost 24 hours (23h 56m) and so the surface of
the Earth manifestly is not an inertial frame. Nevertheless,
it is very convenient to describe the flow relative to the
Earth’s surface (which in fact is moving at speeds of up
to a few hundreds of metres per second), rather than in
some inertial frame. This necessitates recasting the equa-
tions into a form that is appropriate for a rotating frame of
reference, and that is the subject of this section.

1.2.1 Rate of change of a vector

Consider first a vector C of constant length rotating rela-
tive to an inertial frame at a constant angular velocity Q.
Then, in a frame rotating with that same angular velocity
it appears stationary and constant. If in a small interval of
time Ot the vector C rotates through a small angle A then
the change in C, as perceived in the inertial frame, is given
by (see Fig. 1.1)

0C = |C| cos 9651 m, (1.16)

where the vector m is the unit vector in the direction of
change of C, which is perpendicular to both C and Q. But
the rate of change of the angle A is just, by definition, the
angular velocity so that §A = [02|6t and

8C = |C||Q|sinIm St = Q x C bt. (1.17)
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Figure1.1 A vector C rotating at an angular velocity Q. It ap-
pears to be a constant vector in the rotating frame, whereas in
the inertial frame it evolves according to (dC/dt); = Q x C.

Esing the definition of the vector cross product, where
9 = (/2 - 9) is the angle between 2 and C. Thus

dc
) _oxc, 118
(dt )1 X (118)

where the left-hand side is the rate of change of C as per-
ceived in the inertial frame.

Now consider a vector B that changes in the inertial
frame. In a small time 8¢ the change in B as seen in the
rotating frame is related to the change seen in the inertial
frame by

(0B); = (6B)g + (B),p> (L19)

where the terms are, respectively, the change seen in the
inertial frame, the change due to the vector itself changing
as measured in the rotating frame, and the change due to
the rotation. Using (1.17) (§B),,; = 2 x Bdt, and so the
rates of change of the vector B in the inertial and rotating
frames are related by

(%)jz(%)R+QXB. (1.20)

This relation applies to a vector B that, as measured at any
one time, is the same in both inertial and rotating frames.
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1.2.2  Velocity and acceleration in a rotating frame

The velocity of a body is not measured to be the same in
the inertial and rotating frames, so care must be taken
when applying (1.20) to velocity. First apply (1.20) to r, the
position of a particle to obtain

(%)I:(%>R+.er (1.21)

vy=vR+2xr (1.22)

or

We refer to vy and v; as the relative and inertial velocity,
respectively, and (1.22) relates the two. Apply (1.20) again,
this time to the velocity vy to give

dvy dvy )
—R) =2 0 , 1.23
( dt )1 ( dt /g TR (129

or, using (1.22)

dvy

d
(a(vl—ﬂxr))lz (E>R+QXUR’ (1.24)

or

dv, ) (dvR > dQ (dr)
— == 0 — Ox|— ). (125
( a ), ” R+ XUg+ ” Xt +0X i) (1.25)

Then, noting that

dr dr
— | =5 | +2xr= +0QXxr), 1.26
(dt >1 <dt)R r= (o ") (1.26)
and assuming that the rate of rotation is constant, (1.25)
becomes
dvg ) ( dv; )
— ) =l ) 22 xv -2 x (2 x7r). 1.27
< dt Jp \dt ), K (@xn. (1.27)
This equation may be interpreted as follows. The term
on the left-hand side is the rate of change of the relative
velocity as measured in the rotating frame. The first term
on the right-hand side is the rate of change of the inertial
velocity as measured in the inertial frame (the inertial
acceleration, which is, by Newton’s second law, equal to the
force on a fluid parcel divided by its mass). The second and
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third terms on the right-hand side (including the minus
signs) are the Coriolis force and the centrifugal force per
unit mass. Neither of these are true forces — they may
be thought of as quasi-forces (i.e., ‘as if” forces); that is,
when a body is observed from a rotating frame it seems
to behave as if unseen forces are present that affect its
motion. If (1.27) is written, as is common, with the terms
+20Q x v, and +02 x (2 x r) on the left-hand side then these
terms should be referred to as the Coriolis and centrifugal
accelerations.

Centrifugal force

If r, is the perpendicular distance from the axis of rotation
(see Fig. 1.1 and substitute r for C), then, because 2 is
perpendicular tor,, 2xr = Qxr . Then, using the vector
identity 2 x (2xr,) =(Q2-r, )2 - (2-Q)r, and noting
that the first term is zero, we see that the centrifugal force
per unit mass is just given by

F,=-Qx(Qxr)=Qr,. (1.28)

This may usefully be written as the gradient of a scalar
potential,
F,, = -V, (1.29)

ce

where @, = —(Q*r2)/2 = ~(Q x r,)?/2.

Coriolis force

The Coriolis force per unit mass is:
FCD =-20x Ug. (1.30)

It plays a central role in much of geophysical fluid dynamics
and will be considered extensively later on. For now, we
just note three basic properties.
(i) There is no Coriolis force on bodies that are station-
ary in the rotating frame.
(ii) The Coriolis force acts to deflect moving bodies at
right angles to their direction of travel.
(iii) The Coriolis force does no work on a body because it
is perpendicular to the velocity, and so vz - (2xvg) =
0.
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1.2.3 Momentum equation in a rotating frame

Since (1.27) simply relates the accelerations of a particle in
the inertial and rotating frames, then in the rotating frame
of reference the momentum equation may be written

D 1
22 420 xv=--Vp- VO, (1.31)
Dt p

incorporating the centrifugal term into the potential, ®.
We have dropped the subscript R; henceforth, unless we
need to be explicit, all velocities without a subscript will
be considered to be relative to the rotating frame.

1.2.4 Mass and tracer conservation in a rotating frame

Let ¢ be a scalar field that, in the inertial frame, obeys

D¢

— +¢V-v; =0. 1.32

o FOVu (1.32)
Now, observers in both the rotating and inertial frame
measure the same value of ¢. Further, D¢/Dt is simply the
rate of change of ¢ associated with a material parcel, and
therefore is reference frame invariant. Thus,

B-) o

where (D¢/Dt)y = (0¢/0t)g + vg - V¢ and (D¢/Dt); =
(0¢p/0t)+v;-V¢ and the local temporal derivatives (d¢/0t) 5
and (0¢/0t); are evaluated at fixed locations in the rotating
and inertial frames, respectively.

Further, using (1.22), we have that we have that

V'UI =V-(UR+.Q><1’) ZV'UR (134)

since V- (2 x r) = 0. Thus, using (1.33) and (1.34), (1.32) is
equivalent to

D¢
=T L ¢V v, =0, 1.35
Dt V- vr (1.35)

where all observables are measured in the rotating frame.
Thus, the equation for the evolution of a scalar whose mea-
sured value is the same in rotating and inertial frames is
unaltered by the presence of rotation. In particular, the
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mass conservation equation is unaltered by the presence
of rotation.

The individual components of the material derivative
differ in the rotating and inertial frames. In particular

(%‘f) (g‘f) —(@x71)-V (136)

because 2 x r is the velocity, in the inertial frame, of a
uniformly rotating body. Similarly,

v, -V = (g + 2 x 1) - Vo, (1.37)

Adding the last two equations reprises (1.33).

1.3 ¢ SpPHERICAL COORDINATES

We write these equations down for reference, but we won’t
derive them or use them in their spherical form.

1.3.1 Mass Conservation and Thermodynamic Equation

The mass conservation equation expanded in spherical
co-ordinates, is

op u_ dp wvdp op
ot " rcos9or ro9  “or
P ou

0 10
+ 7 c0s9 a—/\ + %(UCOSS) + ;a—(wr COSS)
(1.38)

Equivalently this is the same as

ap 1 J(up) 1
9t rcos9 oL ' rcos909 (UPCOS 9)+——(r wp) =
(L 39)
The thermodynamic equation is a tracer advection
equation. The (adiabatic) potential temperature in spheri-
cal coordinate form is

DO 86 u @ 089 89
Dt ot rCOSSBA r89 8

=0, (1.40)

and similarly for tracers such as water vapour or salt.
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(@) Q QY (b)

QZ
\/ Q= 0%k

o

Figure1.2 (a) On the sphere the rotation vector 2 can be de-
composed into two components, one in the local vertical and
one in the local horizontal, pointing toward the pole. That is,
2 =0Qj+Qkwhere Q, = Qcos9and 2, = Qsind. In geo-
physical fluid dynamics, the rotation vector in the local vertical
is often the more important component in the horizontal mo-
mentum equations. On a rotating disk, (b), the rotation vector
Qs parallel to the local vertical k.

1.3.2 Momentum Equation

The momentum equation is:

Du u 1 op
— -120 ) ind - 9)=—-———,
Dt ( T cos9 (vsin 9 ~wcos 9) pr cos 9 0A
(1.41a)
&+ﬂ+(29+ “ >usin9=—ia—p,
Dt r rcos 9 pr 09
(1.41b)
2, 2
Dw _w +v -20 cosSz—l@—
Dt r p or
(1.41¢)

The terms involving Q are called Coriolis terms, and the
quadratic terms on the left-hand sides involving 1/r are
often called metric terms.

1.4 ¢ THE PRIMITIVE EQUATIONS
The so-called primitive equations of motion are simplifica-
tions of the equations that make three related approxima-
tions:
(i) The hydrostatic approximation. In the vertical mo-
mentum equation the gravitational term is assumed
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to be balanced by the pressure gradient term, so that

op _
5 = P (1.42)

The advection of vertical velocity, the Coriolis terms,
and the metric term (u? + v?)/r are all neglected.

(ii) The shallow-fluid approximation. We write r = a + z
where the constant a is the radius of the Earth and
z increases in the radial direction. The coordinate r
is then replaced by a except where it is used as the
differentiating argument. Thus, for example,

10(w) _ dw

—_—. 1.43
r: or 0z (1.43)

(iii) The traditional approximation. Coriolis terms in the
horizontal momentum equations involving the verti-
cal velocity, and the still smaller metric terms uw/r
and vw/r, are neglected.

The second and third of these approximations should be
taken, or not, together, the underlying reason being that
they both relate to the presumed small aspect ratio of the
motion, so the approximations succeed or fail together.

Making these approximations, the momentum equa-
tions become

Du _ 20sin 90 - Ltan9 = - 1 @, (1.44a)
Dt a ap cos 9 oA
2

% + 20 sindu + M = —i@, (1.44b)
Dt a pa 09

10p

0=——-g, 1.44
boz 9 (1.44c¢)
where

D 0 u o0 wvo 0
a2 2w ). 1.45
Dt <at+ac0598/\+a89+waz> (145)

We note the ubiquity of the factor 2Qsin 9, and take the
opportunity to define the Coriolis parameter, f = 2Qsin 9.
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The corresponding mass conservation equation for a
shallow fluid layer is:

at+acos9$ a o9 waz

+ ! a_u+ ! i(vc039)+a—w =0
p acos9o0Al  acos9od oz |

%, _u 9 vop 0P

or equivalently,

op 1 d(up) 1 o0 o(wp)
ot +acos9 oA +ac05989(vpC059)+ =0.

(1.47)

1.5 CARTESIAN APPROXIMATIONS: THE TANGENT
PLANE

1.5.1 The f-plane

Although the rotation of the Earth is central for many
dynamical phenomena, the sphericity of the Earth is not
always so. This is especially true for phenomena on a scale
somewhat smaller than global where the use of spheri-
cal coordinates becomes awkward, and it is more con-
venient to use a locally Cartesian representation of the
equations. Referring to Fig. 1.2 we will define a plane
tangent to the surface of the Earth at a latitude 9;, and
then use a Cartesian coordinate system (x, y, z) to describe
motion on that plane. For small excursions on the plane,
(x, ¥,2) = (aA cos 9y, a(d — 9,), z). Consistently, the veloc-
ity is v = (4, v, w), so that u,v and w are the components
of the velocity in the tangent plane, in approximately in
the east-west, north-south and vertical directions, respec-
tively.

The momentum equations for flow in this plane are
then

Ou + (- -Vu+2(Qw-0Q%) = —l@, (1.48a)
ot p 0x
v + (- Vv +2(Q%u - Q"w) = —l@, (1.48b)
ot p Oy
ow 10p

=t (v-VYw+2(Qv-Qu) = —;g -g, (1.48¢)
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where the rotation vector Q = Qi+ Q’j+ Q°k and Q" = 0,
@ = Qcos9, and O° = QsinY,. If we make the tradi-
tional approximation, and so ignore the components of 2
not in the direction of the local vertical, then

Du 10p

= fo=-———, 1.4

Dt fov p O0x (1492)

Dv 10p

Y -9 1.4

= + fou 3y (1.49b)
Dw = 10p . (1.49¢)
Dt p oz

where f, = 20° = 2QsinY,. Defining the horizontal
velocity vector u = (u,v,0), the first two equations may
also be written as

%+f0xu=—l D> (1.50)
p

Dt
where Du/Dt = ou/ot +v-Vu, f, = 2Qsin 9k = fyk, and
k is the direction perpendicular to the plane (it does not
change its orientation with latitude). These equations are,
evidently, exactly the same as the momentum equations
in a system in which the rotation vector is aligned with
the local vertical, as illustrated in the right-hand panel in
Fig. 1.2 (on page 10). They will describe flow on the surface
of a rotating sphere to a good approximation provided the
flow is of limited latitudinal extent so that the effects of
sphericity are unimportant; we have made what is known
as the f-plane approximation since the Coriolis parameter
is a constant. We may in addition make the hydrostatic
approximation, in which case (1.49c) becomes the familiar

dp/oz = —pg.

1.5.2 The beta-plane approximation

The magnitude of the vertical component of rotation varies
with latitude, and this has important dynamical conse-
quences. We can approximate this effect by allowing the
effective rotation vector to vary. Thus, noting that, for
small variations in latitude,

f =2Qsin9 = 2Qsin 9, + 2Q(9 — ;) cos I, (1.51)
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then on the tangent plane we may mimic this by allowing
the Coriolis parameter to vary as

f=h+By (1.52)

where f, = 2Qsin 9, and =0 f/dy = (2Q cosI,)/a. This
important approximation is known as the beta-plane, or
B-plane, approximation; it captures the the most important
dynamical effects of sphericity, without the complicating
geometric effects, which are not essential to describe many
phenomena. The momentum equations (1.49) are unal-
tered except that f, is replaced by f, + By to represent a
varying Coriolis parameter. Thus, sphericity combined
with rotation is dynamically equivalent to a differentially
rotating system. For future reference, we write down the
B-plane horizontal momentum equations:

Du 1
— =——V_p, 1.53
De +fxu p P (1.53)

where f = (f, + By)k. In component form this equation
becomes
D 10 D 10
M= LOP DV e 1P (154ah)
Dt p Ox Dt p oy
The mass conservation, thermodynamic and hydrostatic
equations in the -plane approximation are the same as
the usual Cartesian, f-plane, forms of those equations.

1.6 THE BOUSSINESQ APPROXIMATION

The density variations in the ocean are quite small com-
pared to the mean density, and we may exploit this to derive
somewhat simpler but still quite accurate equations of mo-
tion. Let us first examine how much density does vary in
the ocean.

1.6.1 Variation of density in the ocean

The variations of density in the ocean are due to three
effects: the compression of water by pressure (which we
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denote as A ,p), the thermal expansion of water if its tem-
perature changes (A;p), and the haline contraction if its
salinity changes (Agp). How big are these? An appropriate
equation of state to approximately evaluate these effects is
the linear one

p=po|1=Br(T =Ty + Bs(S—Sy) + ;% . (155)
0%s
where B = 2x107* K™}, B = 10 psu ' and ¢, = 1500 ms™".
The three effects may then be evaluated as follows.

Pressure compressibility. We have A ,p ~ Ap/ ¢ = pygH/ct.
where H is the depth and the pressure change is quite
accurately evaluated using the hydrostatic approxi-
mation. Thus,

14 ,pl
Po

orif H < ¢?/g. The quantity ¢?/g =~ 200 km is the
density scale height of the ocean. Thus, the pressure
at the bottom of the ocean (say H = 10km in the
deep trenches), enormous as it is, is insufficient to
compress the water enough to make a significant
change in its density. Changes in density due to dy-
namical variations of pressure are small if the Mach
number is small, and this is also the case.

<1

H
it o<1, (156)

Thermal expansion. We have Arp = —Brp,AT and there-
fore
A
14zpl <
Po
For AT = 20K, B;AT = 4 x 107>, and evidently we

would require temperature differences of order 7',
or 5000 K to obtain order one variations in density.

1 if BrAT < 1. (1.57)

Saline contraction. We have Agp = S¢p,AS and therefore

A
Bspl 1 i Bas<l. (1.58)
Po

As changes in salinity in the ocean rarely exceed 5
psu, for which 84AS = 5x107, the fractional change
in the density of seawater is correspondingly very
small.
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Evidently, fractional density changes in the ocean are very
small.

1.6.2 The Boussinesq equations

The Boussinesq equations are a set of equations that exploit
the smallness of density variations in many liquids.We
write

p=po+0p(x, y,2,t) (1.59a)
where p, is a constant and we assume that
18pl < py. (1.60)

Associated with the reference density is a reference
pressure that is defined to be in hydrostatic balance with
it. That is,

P = po(z) + 8p(x, y, 2, t) (1.61a)
where q
4bo _ _
iz - 9P (1.62)

Note that V,p = V,8p.

Momentum equations

To obtain the Boussinesq equations we use p = p, + dp,
and assume 8p/p, is small. Without approximation, the
momentum equation can be written as

(po + 0p) (% +20 x v) =-Vdép - %k - g(py + Op)k,

0z
(1.63)
and using (1.62a) this becomes, again without approxima-
tion,

D
(0o + 8p) (D—‘t’ +20x v) = Vop-gopk.  (164)
If density variations are small this becomes

DD_lt) +20Qx v =-V¢ + bk, (1.65)
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where ¢ = dp/p, and b = —g 8p/p, is the buoyancy. Note
that we should not and do not neglect the term g &p, for
there is no reason to believe it to be small (§p may be small,
but g is big). Equation (1.65) is the momentum equation
in the Boussinesq approximation, and it is common to say
that the Boussinesq approximation ignores all variations
of density of a fluid in the momentum equation, except
when associated with the gravitational term.

For most large-scale motions in the ocean the deviation
pressure and density fields are also approximately in hy-
drostatic balance, and in that case the vertical component
of (1.65) becomes

%y

0z

A condition for (1.66) to hold is that vertical accelerations
are small compared to gp/p,, and not compared to the
acceleration due to gravity itself. For more discussion of
this point, see section 1.7.

(1.66)

Mass Conservation

The unapproximated mass conservation equation is

D§
=P +(py +6p)V-v =0. (1.67)

Dt
Provided that time scales advectively — that is to say that
D/Dt scales in the same way as v - V — then we may ap-

proximate this equation by
V-v=0 , (1.68)

which is the same as that for a constant density fluid. This
absolutely does not allow one to go back and use (1.67)
to say that DSp/Dt = 0; the evolution of density is given
by the thermodynamic equation in conjunction with an
equation of state, and this should not be confused with the
mass conservation equation. Note also that in eliminating
the time-derivative of density we eliminate the possibility
of sound waves.



1.6 THE BOUSSINESQ APPROXIMATION 18

Thermodynamic equation and equation of state

[This section is even more informal and non-rigorous than
other sections.] We write the thermodynamic equation as
DI .

2 Pyy-g (169)
Dt p
We neglect the second term on the left-hand side (because
the fluid is incompressible), and write the first term in
terms of temperature
DT .
C— = 1.70
o = Q (1.70)
where c is the heat capacity of the fluid. We further sup-
pose that the temperature is linearly related to the buoy-
ancy, b. That is, we assume a linear equation of state,
b = by(1+ A(T —T,)) where A is a constant coefficient
of thermal expansion. The thermodynamic equation be-
comes
— =Qp 1.71
Dr - % .70
where Q, = AQ/C. The momentum equation (1.65), mass
continuity equation (1.68) and thermodynamic equation
(1.71) then form a closed set, called the Boussinesq equa-
tions.

¢ Mean stratification and the buoyancy frequency

The processes that cause density to vary in the vertical often
differ from those that cause it to vary in the horizontal. For
this reason it is sometimes useful to write p = p, + p(z) +
p'(x, y,2,t) and define b(z) = —gp/p, and b’ = —gp'/p,.
The thermodynamic equation (1.69) becomes

Db’

~—— +N°w=0, (1.72)
Dt

where D/Dt remains a three-dimensional operator and

N*(z) = iﬁ, (1.73)
z

The quantity N is a measure of the mean stratification of
the fluid. N is known as the buoyancy frequency, some-
thing we return to later on.
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Summary of Boussinesq Equations

The simple Boussinesq equations are, for an inviscid fluid:

Dv
momentum equations: = + fxv=-V¢+Dbk,
mass conservation: V-v=0,
. Db .
buoyancy equation: o b

A more general form replaces the buoyancy equation by:

D )

thermodynamic equation: Hf =0,

salinity equation: DS _ S
equation of state: b =10b(6,S,z).

1.6.3 Energetics of the Boussinesq system
In a uniform gravitational field but with no other forcing

or dissipation, we write the simple Boussinesq equations
as

D Db
D—’t’+2axv=bk—v¢, Vou=0, —=0

Dt
(1.74a,b,c)
From (1.74a) and (1.74b) the kinetic energy density evolu-
tion is given by
1DV v (o) (1.75)
- = 0W — * > .
2 Dt
where the constant reference density p, is omitted. Let us
now define the potential ® = -z, so that VO = -k and
Do

o - V- (v®) = —w, (1.76)

and using this and (1.74c) gives

D
a(b@) = —wb. (1.77)

(B.1)
(B.2)
(B.3)

(B.4)

(B.5)
(B.6)
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Adding (1.77) to (1.75) and expanding the material deriva-
tive gives

0 1, 1,

3 (Ev + b@) +V-: [v(zv +bD + </>)] =0. (1.78)
This constitutes an energy equation for the Boussinesq
system. The energy density (divided by p,) is just v*/2+b®.
What does the term b represent? Its integral, multiplied
by py» is the potential energy of the flow minus that of
the basic state, or j g(p — po)z dz. If there were a heating
term on the right-hand side of (1.74c) this would directly
provide a source of potential energy, rather than internal
energy as in the compressible system. Because the fluid is
incompressible, there is no conversion from kinetic and
potential energy into internal energy.

1.7 ScALING FOR HYDROSTATIC BALANCE

We now look in more detail at the conditions required for
hydrostatic balance to hold. Along with geostrophic bal-
ance, considered in the next section, it is one of the most
fundamental balances in geophysical fluid dynamics. The
corresponding states, hydrostasy and geostrophy, are not
exactly realized, but their approximate satisfaction has pro-
found consequences on the behaviour of the atmosphere
and ocean.

1.71 Preliminaries

Consider the relative sizes of terms in (1.48c):

W Uw  W? 0
—+U—+—+QU~1 P
T L H

For most large-scale motion in the atmosphere and ocean
the terms on the right-hand side are orders of magnitude
larger than those on the left, and therefore must be approxi-
mately equal. Explicitly, suppose W ~ 1cms™', L ~ 10° m,
H~10°m,U ~ 10ms™', T = L/U. Then by substituting
into (1.79) it seems that the pressure term is the only one
which could balance the gravitational term, and we are led
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to approximate (1.48c) by,

op _
> = P9 (1.80)

This equation, which is a vertical momentum equation, is
known as hydrostatic balance.

However, (1.80) is not always a useful equation! Let us
suppose that the density is a constant, p, . We can then
write the pressure as

P 3,2,1) = po(2) + (%, y, 2, 1), (1.81)

where

9Py
—_ = . 1.82
aZ POg ( )

That is, p, and p, are in hydrostatic balance. On the f-
plane, the inviscid vertical momentum equation becomes,
without approximation,

!

Dw__19p (1.83)

Dt po 0z
Thus, for constant density fluids the gravitational term has
no dynamical effect: there is no buoyancy force, and the
pressure term in the horizontal momentum equations can
be replaced by p'. Hydrostatic balance, and in particular
(1.82), is certainly not an appropriate vertical momentum
equation in this case. If the fluid is stratified, we should
therefore subtract off the hydrostatic pressure associated
with the mean density before we can determine whether
hydrostasy is a useful dynamical approximation, accurate
enough to determine the horizontal pressure gradients.
This is automatic in the Boussinesq equations, where the
vertical momentum equation is

Dw 0¢

o =3 T (1.84)
and the hydrostatic balance of the basic state is already
subtracted out. In the more general equation,

Dw 10p

— =L 4 1.85
Dt p oz g (185)
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we need to compare the advective term on the left-hand
side with the pressure variations arising from horizontal
flow in order to determine whether hydrostasy is an appro-
priate vertical momentum equation. Nevertheless, if we
only need to determine the pressure for use in an equation
of state then we simply need to compare the sizes of the dy-
namical terms in (1.48c) with g itself, in order to determine
whether a hydrostatic approximation will suffice.

1.7.2  Scaling and the aspect ratio

In a Boussinesq fluid we write the horizontal and vertical
momentum equations as

Du Dw 0¢
- =-V_¢, =T 4p 1.86a,
t+f><u o ; +b (1.86a,b)

With f =0, (1.86a) implies the scaling
¢~ U (1.87)

If we use mass conservation, V, - u + ow/0z = 0, to scale
vertical velocity then

H
w~W= IU = aU, (1.88)

where o = H/L is the aspect ratio. The advective terms in
the vertical momentum equation all scale as

Dw UW U’H

—_—

Dt L L2

(1.89)

Using (1.87) and (1.89) the ratio of the advective term to
the pressure gradient term in the vertical momentum equa-
tions then scales as

|Dw/Dt| U?H/L? <H )2

0¢/oz]  U?/H \L (1.90)

L

Thus, the condition for hydrostasy, that [Dw/Dt|/|0¢/0z| <
1, is:

o = (%)2 <1 . (1.91)
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The advective term in the vertical momentum may then
be neglected. Thus, hydrostatic balance is a small aspect
ratio approximation.

We can obtain the same result more formally by non-
dimensionalizing the momentum equations. Using upper-
case symbols to denote scaling values we write

(x,y) = L(%, ), z = Hz,

H
u=Uu, w=W@=TUL’D,
~ L. ~ - U
t=Tt=—t, =Pp=U"¢p, b=Bb=—Db,
S ¢=0p=U’ —
(1.92)

where the hatted variables are non-dimensional and the
scaling for w is suggested by the mass conservation equa-
tion, V,-u+0w/0z = 0. Substituting (1.92) into (1.86) (with
f =0) gives us the non-dimensional equations

D ~ D 0 -

— = _V R o — == + b, 193a,b

Dt ¢ Dt 0z ( )
where D/Dt = 9/0t + i0/0X + U0/0y + wd/0Z and we use
the convention that when V operates on non-dimensional
quantities the operator itself is non-dimensional. From
(1.93b) it is clear that hydrostatic balance pertains when

2

o < 1.

1.8 GEOSTROPHIC AND THERMAL WIND BALANCE

We now consider the dominant dynamical balance in the
horizontal components of the momentum equation. In the
horizontal plane (meaning along geopotential surfaces)
we find that the Coriolis term is much larger than the
advective terms and the dominant balance is between it
and the horizontal pressure force. This balance is called
geostrophic balance, and it occurs when the Rossby number
is small, as we now investigate.

1.8.1 The Rossby number

The Rossby number characterizes the importance of rota-
tion in a fluid. It is, essentially, the ratio of the magnitude
of the relative acceleration to the Coriolis acceleration, and
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Variable  Scaling Meaning Atmos. value Ocean value
symbol
(x, ) L Horizontal length scale 10°m 10° m
t T Time scale 1 day (10°s) 10 days ( 105 s)
(u,v) U Horizontal velocity 10ms ! 0.1ms!
Ro Rossby number, U/ fL 0.1 0.01

Table 1.1 Scales of large-scale flow in atmosphere and
ocean. The choices given are representative
of large-scale mid-latitude eddying motion
in both systems.

it is of fundamental importance in geophysical fluid dy-
namics. It arises from a simple scaling of the horizontal
momentum equation, namely

ou

1
E+(v Nu+ fxu= - D> (1.94a)

U*/L  fU (1.94b)

where U is the approximate magnitude of the horizontal
velocity and L is a typical length scale over which that
velocity varies. (We assume that W/H < U/L, so that
vertical advection does not dominate the advection.) The
ratio of the sizes of the advective and Coriolis terms is
defined to be the Rossby number,

Ro=Z (1.95)

fL

If the Rossby number is small then rotation effects are
important, and as the values in Table 1.1 indicate this is the
case for large-scale flow in both ocean and atmosphere.
Another intuitive way to think about the Rossby num-
ber is in terms of time scales. The Rossby number based

on a time scale is .

fT’
where T is a time scale associated with the dynamics at
hand. If the time scale is an advective one, meaning that

Rop = (1.96)
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T ~ L/U, then this definition is equivalent to (1.95). Now,
f =2Qsin 9, where Q is the angular velocity of the rotating
frame and equal to 2n/T), where T , is the period of rotation
(24 hours). Thus,
T T

Ror = AnT'sin9 T’ 197)
where T; = 1/ f is the ‘inertial time scale] about three hours
in mid-latitudes. Thus, for phenomena with time scales
much longer than this, such as the motion of the Gulf
Stream or a mid-latitude atmospheric weather system, the
effects of the Earth’s rotation can be expected to be impor-
tant, whereas a short-lived phenomena, such as a cumulus
cloud or tornado, may be oblivious to such rotation. The ex-
pressions (1.95) and (1.96) are, of course, just approximate
measures of the importance of rotation.

1.8.2 Geostrophic balance

If the Rossby number is sufficiently small in (1.94a) then the
rotation term will dominate the nonlinear advection term,
and if the time period of the motion scales advectively then
the rotation term also dominates the local time derivative.
The only term that can then balance the rotation term is
the pressure term, and therefore we must have

fxu= 1 D> (1.98)
P
or, in Cartesian component form
10p 10p
= ——m ~--L, 1.99
Ju p oy fo p 0x (199)

This balance is known as geostrophic balance, and its conse-
quences are profound, giving geophysical fluid dynamics
a special place in the broader field of fluid dynamics. We
define the geostrophic velocity by

_ 1adp _10p
fl/lg=—l—)$, ngzl—)a > (1100)

and for low Rossby number flow u = u, and v = v,,.
Geostrophic balance has a number of immediate rami-
fications:
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Figure1.3 Schematic of geostrophic flow with a positive value
of the Coriolis parameter f. Flow is parallel to the lines of con-
stant pressure (isobars). Cyclonic flow is anticlockwise around a
low pressure region and anticyclonic flow is clockwise around
a high. If f were negative, as in the Southern Hemisphere,
(anti)cyclonic flow would be (anti)clockwise.

« Geostrophic flow is parallel to lines of constant pres-
sure (isobars). If f > 0 the flow is anticlockwise
round a region of low pressure and clockwise around
a region of high pressure (see Fig. 1.3).

If the Coriolis force is constant and if the density
does not vary in the horizontal the geostrophic flow
is horizontally non-divergent and

Oy , % 0 1.101
'ug—§+§— . ( )

4

We may define the geostrophic streamfunction, v, by

p
y= 2 (1.102)
Sopo
whence 5 5
_ 9%y _Y
Uy = 3y Uy I (1.103)

The vertical component of vorticity, ¢, is then given

{=k-Vxv==-—=Vly. (1.104)
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« If the Coriolis parameter is not constant, then cross-
differentiating (1.100) gives, for constant density geo-
strophic flow,

of
‘Ug@ + fVZ . ug =0, (1105)
which, using the mass continuity equation V, - u, =
—ow/oz,
ow
=f—. 1.106
Pug=f—_ (1106)

where 8 = 0f/dy = 2Qcos¥9/a. This geostrophic
vorticity balance is sometimes known as ‘Sverdrup
balance) although that expression is better restricted
to the case when the vertical velocity from a wind
stress.

1.8.3 Taylor-Proudman effect

If B = 0, then (1.106) implies that the vertical velocity is
not a function of height. In fact, in that case none of the
components of velocity vary with height if density is also
constant. To show this, in the limit of zero Rossby number
we first write the three-dimensional momentum equation
as

foxv=-V$-Vy, (1.107)

where f;, = 20 = 20Kk, ¢ = p/p,, and V represents other
potential forces. If y = gz then the vertical component
of this equation represents hydrostatic balance, and the
horizontal components represent geostrophic balance. On
taking the curl of this equation, the terms on the right-hand
side vanish and the left-hand side becomes

(fo-VYv—-fiV-v—(v-V)fy +vV- f, =0. (1.108)

But V- v = 0 by mass conservation, and because f, is
constant both V- f; and (v - V) f;, vanish. Equation (1.108)
thus reduces to

(f, - V)v =0, (1.109)

which, since f; = fyk, implies f,0v/0z = 0, and in partic-
ular we have
ou ov ow
0 =0 =

= =0 5-=0, =—=0. (1.110)
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A different presentation of this argument proceeds as
follows. If the flow is exactly in geostrophic and hydrostatic
balance then

o L1910 ¢
_foax’ B foay’ 0z

Differentiating (1.111a,b) with respect to z, and using (1.111c)
yields

=—g. (LIllla,b,c)

ov_19g_ du_19g_

— = =0, —= =0. 1112
0z  fy0x 0z  fy 0y (1112)

Noting that the geostrophic velocities are horizontally non-
divergent (V, -u = 0), and using mass continuity then gives
Jw/oz = 0, as before.

If there is a solid horizontal boundary anywhere in the
fluid, for example at the surface, then w = 0 at that surface
and thus w = 0 everywhere. Hence the motion occurs in
planes that lie perpendicular to the axis of rotation, and the
flow is effectively two dimensional. This result is known
as the Taylor-Proudman effect, namely that for constant
density flow in geostrophic and hydrostatic balance the ver-
tical derivatives of the horizontal and the vertical velocities
are zero. At zero Rossby number, if the vertical velocity is
zero somewhere in the flow, it is zero everywhere in that
vertical column; furthermore, the horizontal flow has no
vertical shear, and the fluid moves like a slab. The effects
of rotation have provided a stiffening of the fluid in the
vertical.

In neither the atmosphere nor the ocean do we observe
precisely such vertically coherent flow, mainly because of
the effects of stratification. However, it is typical of geo-
physical fluid dynamics that the assumptions underlying
a derivation are not fully satisfied, yet there are manifes-
tations of it in real flow. Thus, one might have naively
expected, because 0w/0z = —V,-u, that the scales of the var-
ious variables would be related by W/H ~ U/L. However,
if the flow is rapidly rotating we expect that the horizon-
tal flow will be in near geostrophic balance and therefore
nearly divergence free; thus V, - <« U/L,and W <« HU/L.
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1.8.4 Thermal wind balance

Thermal wind balance arises by combining the geostrophic
and hydrostatic approximations, and this is most easily
done in the context of the anelastic (or Boussinesq) equa-
tions, or in pressure coordinates. For the anelastic equa-
tions, geostrophic balance may be written

_0¢ 1 0¢ _ 0  10¢
frg = 0x  acos90A’ fug = dy  add’
(1.113a,b)

Combining these relations with hydrostatic balance, 0¢/0z =
b, gives

ov ob

g

—f— =—-—, 1.114

0z ox ( 3)
ou ob

g
—_— = ——. 1.114b
0z oy ( )

These equations represent thermal wind balance, and
the vertical derivative of the geostrophic wind is the ‘ther-
mal wind’

If the density or buoyancy is constant then there is
no shear and (1.114b) gives the Taylor-Proudman result.
But suppose that the temperature falls in the poleward
direction. Then thermal wind balance implies that the
(eastward) wind will increase with height — just as is ob-
served in the atmosphere! In general, a vertical shear of
the horizontal wind is associated with a horizontal tem-
perature gradient, and this is one of the most simple and
far-reaching effects in geophysical fluid dynamics. The
underlying physical mechanism is illustrated in Fig. 1.4.

1.8.5 Vertical velocity and hydrostatic balance
Scaling for vertical velocity

If the Coriolis parameter is constant then the horizontal
component of flows that are in geostrophic balance have
zero horizontal divergence (V, - u = 0) and zero vertical
velocity. We can therefore expect that any flow with small
Rossby number will have a ‘small” vertical velocity. Let
us make this statement more precise using the rotating
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_Vp
Higher pressure —_— Lower pressure
u>0
Warm, Cold,
light dense
z
Y
u<o
Lower pressure ‘V— Higher pressure
-Vvp

Figure 1.4 The mechanism of thermal wind. A cold fluid is
denser than a warm fluid, so by hydrostasy the vertical pressure
gradient is greater where the fluid is cold. Thus, the pressure gra-
dients form as shown, where ‘higher’ and ‘lower’ mean relative
to the average at that height. The horizontal pressure gradients
are balanced by the Coriolis force, producing (for f > 0) the hor-
izontal winds shown (® into the paper, and © out of the paper).
Only the wind shear is given by the thermal wind.

Boussinesq equations, (1.86) with constant Coriolis param-
eter. Let u = u, + u, where the geostrophic flow satisfies
fo xuy = =V¢. The horizontal momentum equation, with
corresponding scales for each term, then becomes

ou ou

§+u~Vu+w$+f0xua=O, (1115)
U U* wu

— — —_— U.. 1.116
L L H fO a ( )

This equation suggests a scaling for the ageostrophic flow

of U
U =—U = RoU. (1.117)

TSl
That is, the ageostrophic flow is Rossby number smaller (at
least) than the geostrophic flow. To obtain a scaling for the
vertical velocity we look to the mass continuity equation
written in the form

ow

—=-V-u_, 1.118
0z Ya (L118)
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since only the ageostrophic flow has a divergence. Equa-
tions (1.117) and (1.118) suggest the scaling

HU

That is, the vertical velocity is order Rossby number smaller
than an estimate based purely on the mass continuity equa-
tion would suggest.

If the Coriolis parameter is not constant then the geo-
strophic flow itself is divergent and this induces a vertical
velocity, as in (1.106). The scaling for vertical velocity is

now HU
w= By - Rog—. (1.120)
f L

where Rog = BL/f is the beta Rossby number. 1t is less
than one for all flows except those with a truly global scale.

Scaling for hydrostatic balance

Let us non-dimensionalize the rotating Boussinesq equa-
tions, (1.86), by writing

(x, y) = L(%, y), z = HZ, u =Ui,

(=Ti=Ch f= L],
- - 1.121
w-Ma  gop-gup M
b:BB:fOULTa,
H

These relations are almost the same as (1.92), except for the
factor of € in the scaling of w. If the Coriolis parameter is
constant or nearly so then, from (1.119), € = Ro, whereas
if the Coriolis parameter varies then € = Ro g asin (1.119).
The scaling for ¢ and b’ are suggested by geostrophic and
thermal wind balance with f, a representative value of f.
Substituting these values into (1.86) we obtain the following
scaled momentum equations:

Du - Do 0¢ -
ROD_g + fxu=-Vg, Roeocz—l%) = ——(f b

(1.122a,b)
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where D/Dt = /0t + # - V, + ewd/0z. There are two no-
table aspects to these equations. First and most obviously,
when Ro <« 1, (1.122a) reduces to geostrophic balance,
f xu =~ -Vé. Second, the material derivative in (1.122b) is
multiplied by three non-dimensional parameters, and we
can understand the appearance of each as follows.

(i) The aspect ratio dependence (a?) arises in the same
way as for non-rotating flows — that is, because of
the presence of w and z in the vertical momentum
equation as opposed to (¢, v) and (x, y) in the hori-
zontal equations.

(ii)) The Rossby number dependence (Ro) arises because
in rotating flow the pressure gradient is balanced by
the Coriolis force, which is Rossby number larger
than the advective terms.

(iii) The factor e arises because in rotating flow w is smaller
than u by e times the aspect ratio. The factor may be
the Rossby number itself, or the beta Rossby number.

The factor Roea” is very small for large-scale flow; the
reader is invited to calculate representative values. Evi-
dently, a rapidly rotating fluid is more likely to be in hydro-
static balance than a non-rotating fluid, other conditions
being equal. The combined effects of rotation and stratifi-
cation are, not surprisingly, quite subtle and we leave that
topic for chapter 3.



CHAPTER

SHALLOW WATER SYSTEMS

WEEKS 3 TO 5

2.1 DYNAMICS OF A SINGLE, SHALLOW LAYER

Consider fluid in a container above which is another fluid
of negligible density (and therefore negligible inertia) rel-
ative to the fluid of interest, as illustrated in Fig. 2.1. Our
notation is that v = ui + vj + wk is the three-dimensional
velocity and u = ui + vj is the horizontal velocity. h(x, y)
is the thickness of the liquid column, H is its mean height,
and 7 is the height of the free surface. In a flat-bottomed
container # = h, whereas in general h = 1 — 1, where 7, is
the height of the floor of the container.

2.1.1 Momentum equations
The vertical momentum equation is just the hydrostatic
equation,
op _
— —pia, 21
5, = Pod (2.1)

and, because density is assumed constant, we may integrate
this to
p(x, y,2,t) = —pogz + P, (2.2)

At the top of the fluid, z = #, the pressure is determined
by the weight of the overlying fluid and this is assumed to
be negligible. Thus, p = 0 at z = #, giving

p(x, ¥, 2,t) = pogn(x, y,t) — z). (2.3)

33
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Fluid surface
Anl

Topography

Figure2.1 A shallow water system. his the thickness of a water
column, H its mean thickness, # the height of the free surface
and 7, is the height of the lower, rigid, surface, above some
arbitrary origin, typically chosen such that the average of 7,
is zero. An is the deviation free surface height, so we have
n=mn,+h=H+An.

The consequence of this is that the horizontal gradient of
pressure is independent of height. That is

VP = pogVets (2.4)

where
V,=i— +j— 2.5
z lax + ]ay ( )

is the gradient operator at constant z. (In the rest of this
chapter we will drop the subscript z unless that causes am-
biguity. The three-dimensional gradient operator will be
denoted by V;. We will also mostly use Cartesian coordi-
nates, but the shallow water equations may certainly be
applied over a spherical planet — indeed, ‘Laplace’s tidal
equations’ are essentially the shallow water equations on a
sphere.) The horizontal momentum equations therefore

become D )
u

— =——Vp=-gVn 2.6

Df - gy P TIVH (2.6)
The right-hand side of this equation is independent of the
vertical coordinate z. Thus, if the flow is initially indepen-
dent of z, it must stay so. (This z independence is unrelated
to that arising from the rapid rotation necessary for the
Taylor-Proudman effect.) The velocities u and v are func-

tions of x, y and ¢ only, and the horizontal momentum
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equation is therefore

% = g—l: + ug—:: + vg—;‘ =—-gVn. (2.7)
That the horizontal velocity is independent of z is a conse-
quence of the hydrostatic equation, which ensures that the
horizontal pressure gradient is independent of height. (An-
other starting point would be to take this independence
of the horizontal motion with height as the definition of
shallow water flow. In real physical situations such inde-
pendence does not hold exactly — for example, friction
at the bottom may induce a vertical dependence of the
flow in a boundary layer.) In the presence of rotation, (2.7)
easily generalizes to

Du
— =—gVny , 2.8
Dt+f><u gvn (2.8)

where f = fk. Just as with the primitive equations, f may
be constant or may vary with latitude, so that on a spherical
planet f = 2Qsin 9 and on the B-plane f = f, + By.

2.1.2 Mass continuity equation

The mass contained in a fluid column of height h and cross-
sectional area A is given by IA pohdA (see Fig. 2.2). If
there is a net flux of fluid across the column boundary (by
advection) then this must be balanced by a net increase in
the mass in A, and therefore a net increase in the height of
the water column. The mass convergence into the column
is given by

F,, = mass flux in = — J pout - dS, (2.9)
S

where S is the area of the vertical boundary of the column.
The surface area of the column is composed of elements
of area hn él, where 6l is a line element circumscribing
the column and # is a unit vector perpendicular to the
boundary, pointing outwards. Thus (2.9) becomes

F,=- CJ) pohu - ndl. (2.10)
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Figure2.2 The massbudgetforacolumn ofarea Ainashallow
water system. The fluid leaving the columniis cﬁ pohu-ndlwhere
n is the unit vector normal to the boundary of the fluid column.
There is a non-zero vertical velocity at the top of the column if
the mass convergence into the column is non-zero.

Using the divergence theorem in two dimensions, (2.10)
simplifies to

F, - —J V- (pyuh) dA, (2.11)
A

where the integral is over the cross-sectional area of the
fluid column (looking down from above). This is balanced
by the local increase in height of the water column, given

by

a a oh
Fo= Jpo av="< L pohdA = L prstdA. (212)

Because p, is constant, the balance between (2.11) and (2.12)
leads to

oh
L [E LV (uh)] dA =0, (2.13)

and because the area is arbitrary the integrand itself must
vanish, whence,

% + V- (uh) =0, (2.14)
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The Shallow Water Equations

For a single-layer fluid, and including the Coriolis term, the inviscid shallow
water equations are

momentum: %t; + fxu=-gVn. (SW1)
mass continuity: I’;—’: +hV-u=0 or % + V- (hu) =0, (SW.2)

where u is the horizontal velocity, 4 is the total fluid thickness, # is the height
of the upper free surface and 7, is the height of the lower surface (the bottom
topography). Thus, h(x, y,t) = n(x, y,t) — 1, (x, y). The material derivative is

D 0 d 0 0
D—t_a+u-V—a+ua+va, (SW.3)

with the rightmost expression holding in Cartesian coordinates.

or equivalently

D—h +hV-u=0. (2.15)
Dt

This derivation holds whether or not the lower surface is
flat. If it is, then h = , and if not h = 51 — 1.

From the 3D mass conservation equation
Since the fluid is incompressible, the three-dimensional
mass continuity equation is just V- v = 0. Writing this out
in component form
ow ou oJv
—=—(Z=+=)=-V-u 216
0z ( ox 0dy ) (2.16)
Integrating this from the bottom of the fluid to the top, and

using the boundary conditions of w (express w in terms of
h) gives (2.15). Details left to the reader.

2.2 REDUCED GRAVITY EQUATIONS

Consider now a single shallow moving layer of fluid on
top of a deep, quiescent fluid layer (Fig. 2.3), and beneath a
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fluid of negligible inertia. This configuration is often used
as a model of the upper ocean: the upper layer represents
flow in perhaps the upper few hundred metres of the ocean,
the lower layer being the near-stagnant abyss. If we turn
the model upside-down we have a perhaps slightly less re-
alistic model of the atmosphere: the lower layer represents
motion in the troposphere above which lies an inactive
stratosphere. The equations of motion are virtually the
same in both cases.

2.2.1 Pressure gradient in the active layer

We will derive the equations for the oceanic case (active
layer on top) in two cases, which differ slightly in the as-
sumption made about the upper surface.

I Free upper surface

The pressure in the upper layer is given by integrating the
hydrostatic equation down from the upper surface. Thus,
at a height z in the upper layer

P1(2) = gpi (1o = 2), (2.17)
where 7, is the height of the upper surface. Hence, every-
where in the upper layer,

1
—Vp1 =gV, (2.18)
P1

and the momentum equation is

Du
o fxu=-gVn,. (2.19)

In the lower layer the pressure is also given by the weight of
the fluid above it. Thus, at some level z in the lower layer,

P2(2) = prg(no —m) + pg(my — 2). (2.20)

But if this layer is motionless the horizontal pressure gra-
dient in it is zero and therefore

P19%0 = —P14' N, + constant, (2.21)
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Figure 2.3 The reduced gravity shallow water system. An ac-
tive layer lies over a deep, more dense, quiescent layer. In a
common variation the upper surface is held flat by a rigid lid,
andy, = 0.

where g’ = g(p, — p1)/p, is the reduced gravity. The mo-
mentum equation becomes

Du

Dt+fxu=ng. (2.22)

The equations are completed by the usual mass conserva-

tion equation,

D—h +hV-u=0, (2.23)
Dt

where h = ny—#,. Because g > g', (2.21) shows that surface
displacements are much smaller than the displacements at
the interior interface. We see this in the real ocean where
the mean interior isopycnal displacements may be several
tens of metres but variations in the mean height of ocean
surface are of the order of centimetres.

IT The rigid lid approximation

The smallness of the upper surface displacement suggests
that we will make little error is we impose a rigid lid at the
top of the fluid. Displacements are no longer allowed, but
the lid will in general impart a pressure force to the fluid.
Suppose that this is P(x, y, t), then the horizontal pressure
gradient in the upper layer is simply

Vp, = VP. (2.24)
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The pressure in the lower layer is again given by hydrostasy,
and is

P2 = —p1gMm+pag(n—2)+P = pygh—p,g(h+z)+P, (2.25)

so that
Vp, ==9(p, — p1)Vh + VP (2.26)

Then if Vp, = 0 we have
g(py — p1)Vh = VP, (2.27)

and the momentum equation for the upper layer is just

Du '

or fxu=-g,Vh. (2.28)
where g’ = g(p, — p;)/p;. These equations differ from the
usual shallow water equations only in the use of a reduced
gravity g’ in place of g itself. It is the density difference
between the two layers that is important. Similarly, if we
take a shallow water system, with the moving layer on the
bottom, and we suppose that overlying it is a stationary
fluid of finite density, then we would easily find that the
fluid equations for the moving layer are the same as if
the fluid on top had zero inertia, except that g would be
replaced by an appropriate reduced gravity (problem 2.2?).

2.3 GEOSTROPHIC BALANCE

Geostrophic balance occurs in the shallow water equations,
just as in the continuously stratified equations, when the
Rossby number U/ fL is small and the Coriolis term domi-
nates the advective terms in the momentum equation. In
the single-layer shallow water equations the geostrophic
flow is:

fx u, =-gvn. (2.29)

Thus, the geostrophic velocity is proportional to the slope
of the surface, as sketched in Fig. 2.4. (For the rest of this
section, we will drop the subscript g, and take all velocities
to be geostrophic.)

In both the single-layer and multi-layer cases, the slope
of an interfacial surface is directly related to the difference
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Figure2.4 Geostrophic flow in a shallow water system, with a
positive value of the Coriolis parameter f, as in the Northern
Hemisphere. The pressure force is directed down the gradient
of the height field, and this can be balanced by the Coriolis force
if the fluid velocity is at right angles to it. If f were negative, the
geostrophic flow would be reversed.

in pressure gradient on either side and so, by geostrophic
balance, to the shear of the flow. This is the shallow wa-
ter analogue of the thermal wind relation. To obtain an
expression for this, consider the interface, #, between two
layers labelled 1 and 2. The pressure in two layers is given
by the hydrostatic relation and so,

p1 = Alx, y) — pgz (at some z in layer 1)
(2.30a)
Py = Al y) = pugn + g - 2)
= A(x, y) + prgi1 — p29% (at some z in layer 2)
(2.30b)

where A(x, y) is a function of integration. Thus we find
1
;V(Pl - py) = -9, V1. (2.31)
1

If the flow is geostrophically balanced and Boussinesq then,
in each layer, the velocity obeys

Fu, = pik < Vp;. (2.32)
1

Using (2.31) then gives

fluy —u,) = -k x g,Vn, (2.33)
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\Ap = prg Az

Ap = p1g Az

Figure2.5 Margules’ relation: using hydrostasy, the difference
in the horizontal pressure gradient between the upper and the
lower layer is given by —g'p;s, where s = tan¢ = Az/Ay is the
interface slope and g' = g(p, — p;)/p;. Geostrophic balance
then gives f(u, —u,) = g's, which is a special case of (2.34).

or in general

f(u, —u,,,) = -kxg Vy. (2.34)

This is the thermal wind equation for the shallow water
system. It applies at any interface, and it implies the shear
is proportional to the interface slope, a result known as the
‘Margules relation’ (Fig. 2.5).

Suppose that we represent the atmosphere by two layers
of fluid; a meridionally decreasing temperature may then
be represented by an interface that slopes upwards toward
the pole. Then, in either hemisphere, we have

!
9,91
U —uy==—=—>>0, (2.35)
foy
and the temperature gradient is associated with a positive
shear (see problem 2.2?).

2.4 CONSERVATION PROPERTIES OF SHALLOW WA-
TER SYSTEMS

There are two common types of conservation property in
fluids: (i) material invariants and (ii) integral invariants.
Material invariance occurs when a property (¢ say) is con-
served on each fluid element, and so obeys the equation
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D¢/Dt = 0. An integral invariant is one that is conserved
following an integration over some, usually closed, volume;
energy is an example.

2.4.1 Potential vorticity: a material invariant

The vorticity of a fluid, denoted w, is defined to be the curl
of the velocity field. Let us also define the shallow water
vorticity, @®, as the curl of the horizontal velocity. We
therefore have:

w=Vxuv, w' =Vxu (2.36)

Because du/dz = dv/0z = 0, only the vertical component
of @™ is non-zero and

. ov OJu
=k|(—-— )=k 237
@ k(52— 5) =k 237
Considering first the non-rotating case, we use the vector
identity

(u-Vu = %V(u cu)—ux (Vxu), (2.38)

to write the momentum equation, (2.8) with f =0, as

g—?+w* ><u=—V(g11+%u2). (2.39)

To obtain an evolution equation for the vorticity we take
the curl of (2.39), and make use of the vector identity

Vx (" xu)=w-Vo' — (0 -Vu+w'V-u-—uv-w”
= - Vo' +ao"'V-u, (2.40)

using the fact that V- w” is the divergence of a curl and
therefore zero, and (w” - V)u = 0 because w” is perpendic-
ular to the surface in which u varies. Taking the curl of
(2.39) gives

of

= (u-V) =—={V-u, (2.41)
where { = k- @*. Now, the mass conservation equation
may be written as

{ Dh

—(V'I/l: EE, (242)
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and using this (2.41) becomes

D{ (Dh

—_— =, 2.43

Dt hDt (243)
which simplifies to

D (¢

—(-]=0. 2.44

Dt ( h ) (2.44)

The important quantity {/h, often denoted by Q, is known
as the potential vorticity, and (2.44) is the potential vorticity
equation. We re-derive this conservation law in a more
general way in section #?

Because Q is conserved on parcels, then so is any func-
tion of Q; that is, F(Q) is a material invariant, where F is
any function. To see this algebraically, multiply (2.44) by
F'(Q), the derivative of F with respect to Q, giving

1y PQ _ D
F (Q)E = EF(Q) =0. (2.45)
Since F is arbitrary there are an infinite number of material
invariants corresponding to different choices of F.

Effects of rotation

In a rotating frame of reference, the shallow water momen-
tum equation is
Du
—+ fxu=-gVn, 2.46
ot gvn (2.46)
where (as before) f = fk. This may be written in vector
invariant form as
ou

o +(w*+f)><u=—V(g17+%u2), (2.47)
and taking the curl of this gives the vorticity equation

o¢

5 T VN ==(f+OV-u. (2.48)

This is the same as the shallow water vorticity equation in
a non-rotating frame, save that  is replaced by ¢ + f, the
reason for this being that f is the vorticity that the fluid
has by virtue of the background rotation. Thus, (2.48) is
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simply the equation of motion for the total or absolute
vorticity, w, = w* + f = ({ + f)k.

The potential vorticity equation in the rotating case
follows, much as in the non-rotating case, by combining
(2.48) with the mass conservation equation, giving

%(C;f>:0 . (2.49)

That is, Q = ({ + f)/h, the potential vorticity in a rotating
shallow system, is a material invariant.

Vorticity and circulation

Although vorticity itself is not a material invariant, its inte-
gral over a horizontal material area is invariant. To demon-
strate this in the non-rotating case, consider the integral

C- L CdA = L QhdA, (2.50)

over a surface A, the cross-sectional area of a column of
height h (as in Fig. 2.2). Taking the material derivative of
this gives

DC DQ j D
— = —hdA —(hdA). 2.51

Dt J A Dt " A Q Dt ( ) ( )
The first term is zero, by (2.43); the second term is just the
derivative of the volume of a column of fluid and it too is

zero, by mass conservation. Thus,

DC D

==c LCdA ~ 0. (2.52)

Thus, the integral of the vorticity over a some cross-sectional
area of the fluid is unchanging, although both the vorticity
and area of the fluid may individually change. Using Stokes’

theorem, it may be written as
DC D
—=—Qu-dl, (2.53)
Dt Dt

where the line integral is around the boundary of A. This is
an example of Kelvin’s circulation theorem, which we shall
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meet again in a more general form in chapter 22, where we
also consider the rotating case.

A slight generalization of (2.52) is possible. Consider
the integral I = f F(Q)h dA where again F is any differen-
tiable function of its argument. It is clear that

D
o JA F(QhdA = 0. (2.54)

If the area of integration in (2.39) or (2.54) is the whole
domain (enclosed by frictionless walls, for example) then
it is clear that the integral of hF(Q) is a constant, including
as a special case the integral of (.

2.4.2 Energy conservation: an integral invariant

Since we have made various simplifications in deriving
the shallow water system, it is not self-evident that energy
should be conserved, or indeed what form the energy takes.
The kinetic energy density (KE), that is the kinetic energy
per unit area, is pyhu’/2. The potential energy density of
the fluid is

h
PE = Jo pogz dz = %poghz‘ (2.55)
The factor p, appears in both kinetic and potential energies
and, because it is a constant, we will omit it. For algebraic
simplicity we also assume the bottom is flat, at z = 0.

Using the mass conservation equation (2.15) we obtain
an equation for the evolution of potential energy density,
namely

D gl’l 2
- u = 2.
o 2 +gh'V-u=0 (2.56a)
or
h? h? h?
39—+v-<ug—)+g—v-u=0. (2.56b)
ot 2 2 2

From the momentum and mass continuity equations we
obtain an equation for the evolution of kinetic energy den-
sity, namely

D hu’  u’h K

——+—Vu=-gu-V— 2.57a
Dt 2 ' 2 S (2572)
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or

2 2 2
%h% +V. (u%) +gu- Vh? =0. (2.57b)

Adding (2.56b) and (2.57b) we obtain

01 2 2 1 2 2 2 _
Ei(hu + gh )+V~[Eu (gh +hu” + gh )] =0, (2.58)

or

OE
— +V-F=0, 2.59
5t (2.59)

where E = KE + PE = (hu® + gh2 )/2 is the density of the
total energy and F = u(hu®/2 + gh®) is the energy flux. If
the fluid is confined to a domain bounded by rigid walls, on
which the normal component of velocity vanishes, then on
integrating (2.58) over that area and using Gauss’s theorem,
the total energy is seen to be conserved; that is

dE_1d

et 2dt
Such an energy principle also holds in the case with bot-
tom topography. Note that, as we found in the case for a
compressible fluid in chapter 22, the energy flux in (2.59)
is not just the energy density multiplied by the velocity; it
contains an additional term guh®/2, and this represents
the energy transfer occurring when the fluid does work
against the pressure force (see problem 2.2?).

J (i + gi)dA=0.  (2.60)
A

2.5 SHALLOW WATER WAVES

Let us now look at the gravity waves that occur in shallow
water. To isolate the essence of the phenomena, we will
consider waves in a single fluid layer, with a flat bottom
and a free upper surface, in which gravity provides the sole
restoring force.

2.5.1 Non-rotating shallow water waves

Given a flat bottom the fluid thickness is equal to the free
surface displacement (Fig. 2.1), and taking the basic state
of the fluid to be at rest we let

h(x, y,t) = H + W (x, y,t) =H+ 11'(x, y,t),  (2.6la)
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u(x, y,t) = u'(x, y, t). (2.61b)
The mass conservation equation, (2.15), then becomes

a !
a—z FH+)Vu +d -V =0, (2.62)
and neglecting squares of small quantities this yields the
linear equation

M HY-u =0 (2.63)
ot e '
Similarly, linearizing the momentum equation, (2.8) with
f =0, yields

ou'

E = —gVI’],. (264)

Eliminating velocity by differentiating (2.63) with re-
spect to time and taking the divergence of (2.64) leads
to 2

n

ot?

which may be recognized as a wave equation. We can find

the dispersion relationship for this by substituting the trial
solution

- gHV*q =0, (2.65)

n' = Refjelk*0) (2.66)

where 7] is a complex constant, k = ik + jl is the horizon-
tal wavenumber and Re indicates that the real part of the
solution should be taken. If, for simplicity, we restrict at-
tention to the one-dimensional problem, with no variation
in the y-direction, then substituting into (2.65) leads to
the dispersion relationship

w = *ck, (2.67)

where ¢ = \/gH; that is, the wave speed is proportional to
the square root of the mean fluid depth and is independent
of the wavenumber — the waves are dispersionless. The
general solution is a superposition of all such waves, with
the amplitudes of each wave (or Fourier component) being
determined by the Fourier decomposition of the initial
conditions.
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Because the waves are dispersionless, the general solu-
tion can be written as

n'(x, t) = % [F(x —ct) + F(x + ct)], (2.68)

where F(x) is the height field at ¢ = 0. From this, it is easy
to see that the shape of an initial disturbance is preserved
as it propagates both to the right and to the left at speed c,
(see also problem 2.2?).

2.5.2 Rotating shallow water (Poincaré) waves

We now consider the effects of rotation on shallow water
waves. Linearizing the rotating, flat-bottomed f-plane
shallow water equations [i.e., (SW.1) and (SW.2) on page 37]
about a state of rest we obtain

aul , 817' vl , aﬂl
5 Jv =95 oot fou = 9%,
! ! !
8_17 +H ai + a_v =0.
ot ox 0oy
(2.69a,b,c)
To obtain a dispersion relationship we let
(w,0,1) = (1,8, 7' ** 77, (2.70)

and substitute into (2.69), giving

-iw —-f, igk 7
fo -iw igl v ]=0. (2.71)
iHk iHl -iw/ \7j

This homogeneous equation has non-trivial solutions only
if the determinant of the matrix vanishes. This condition
gives

w(w? - fo2 -ZKkH =o. (2.72)

where K* = k* + 1> and ¢* = gH. There are two classes
of solution to (2.72). The first is simply w = 0, i.e., time-
independent flow corresponding to geostrophic balance
in (2.69). Because geostrophic balance gives a divergence-
free velocity field for a constant Coriolis parameter the
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Figure 2.6 Dispersion relation for Poincaré waves (solid) and
non-rotating shallow water waves (dashed). Frequency is scaled
by the Coriolis frequency f, and wavenumber by the inverse
deformation radius /gH/ f. For small wavenumbers the fre-
quency is approximately f; for high wavenumbers it asymp-
totes to that of non-rotating waves.

equations are satisfied by a time-independent solution. The
second set of solutions gives the dispersion relation

W' = fo+ K+ ), (2.73)

or

W = f2+ gHK + ). (2.74)

The corresponding waves are known as Poincaré waves,”
and the dispersion relationship is illustrated in Fig. 2.6.
Note that the frequency is always greater than the Coriolis
frequency f,. There are two interesting limits.

(i) The short wave limit. If

f2
K> 2%, (2.75)
gH

where K* = k* + I%, then the dispersion relationship
reduces to that of the non-rotating case (2.67). This
condition is equivalent to requiring that the wave-
length be much shorter than the deformation radius,
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(ii)

2.5.3

L, = \JgH/f. Specifically, if | = 0 and A = 2n/k is
the wavelength, the condition is

V< 152n). (2.76)

The numerical factor of (211)? is more than an order
of magnitude, so care must be taken when deciding
if the condition is satisfied in particular cases. Fur-
thermore, the wavelength must still be longer than
the depth of the fluid, otherwise the shallow water
condition is not met.

The long wave limit. 1f

f2
K< 2%, (2.77)
gH
that is if the wavelength is much longer than the
deformation radius L 4, then the dispersion relation-
ship is
w = fo. (2.78)

These are known as inertial oscillations. The equa-
tions of motion giving rise to them are

ou' ) ov' )

— — fou =0, —+ fou =0, 2.79

T =+ fy 279)
which are equivalent to material equations for free
particles in a rotating frame, unconstrained by pres-
sure forces, namely

d’x d*y

Kelvin waves

The Kelvin wave is a particular type of gravity wave that
exists in the presence of both rotation and a lateral bound-
ary. Suppose there is a solid boundary at y = 0; clearly
harmonic solutions in the y-direction are not allowable,
as these would not satisfy the condition of no normal flow
at the boundary. Do any wave-like solutions exist? The
affirmative answer to this question was provided by Kelvin
and the associated waves are now eponymously known as
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Kelvin waves.> We begin with the linearized shallow water
equations, namely

ou' , on' ov' ! on'
5 Jv=mag o oot fou = 9%,
! ! !
8_17 +H ai + a_v =0.
ot ox 0oy
(2.81a,b,c)

The fact that v’ = 0 at y = 0 suggests that we look for a
solution with v' = 0 everywhere, whence these equations
become

ou' oy’ , oy’ oy’ ou'
o T e S 5 tHR 0
(2.82a,b,c)

Equations (2.82a) and (2.82c¢) lead to the standard wave
equation

o*u' ,0%u!
= —, 2.83
o a2 (2.83)
where ¢ = +/gH, the usual wave speed of shallow water
waves. The solution of (2.83) is

u = Fi(x+ct, y) + F,(x —ct, y), (2.84)

with corresponding surface displacement

77' = \H/g[-F,(x+ct, y) + F,(x — ct, y)] . (2.85)

The solution represents the superposition of two waves, one
(F,) travelling in the negative x-direction, and the other
in the positive x-direction. To obtain the y dependence of
these functions we use (2.82b) which gives

Oh _ So g 9B___Jop (54

dy +gH L oy \gH

with solutions

Fy = F(x+ ct)e?/ta F, = G(x - ct)e ¥t (2.87)

where L; = +/gH/ f, is the radius of deformation. If we
consider flow in the half-plane in which y > 0, then for
positive f; the solution F, grows exponentially away from
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the wall, and so fails to satisfy the condition of bounded-
ness at infinity. It thus must be eliminated, leaving the
general solution

u = efy/LdG(x — ct), v =0,
(2.88a,b,¢)
11' = \[H/gefy/L”’G(x —ct).

These are Kelvin waves, and they decay exponentially away
from the boundary. In general, for f, positive the bound-
ary is to the right of an observer moving with the wave.
Given a constant Coriolis parameter, we could equally well
have obtained a solution on a meridional wall, in which
case we would find that the wave again moves such that the
wall is to the right of the wave direction. (This is obvious
once it is realized that f-plane dynamics are isotropic in x
and y.) Thus, in the Northern Hemisphere the wave moves
anticlockwise round a basin, and conversely in the South-
ern Hemisphere, and in both hemispheres the direction is
cyclonic.

2.6 GEOSTROPHIC ADJUSTMENT

Large-scale, extratropical circulation of the atmosphere
is in near-geostrophic balance. Why is this? Why should
the Rossby number be small? It turs out there is in fact a
powerful and ubiquitous process whereby a fluid in an ini-
tially unbalanced state naturally evolves toward a state of
geostrophic balance, namely geostrophic adjustment. This
process occurs quite generally in rotating fluids, whether
stratified or not. We consider the free evolution of a single
shallow layer of fluid whose initial state is manifestly un-
balanced, and we will suppose that surface displacements
are small so that the evolution of the system is described
by the linearized shallow equations of motion. These are

0
g—': +fxu=—gVy, a—'z +YHV-u=0, (2.89ab)
where 7 is the free surface displacement and H is the mean
fluid depth, and we omit the primes on the linearized vari-
ables.
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2.6.1 Non-rotating flow

We consider first the non-rotating problem set, with little
loss of generality, in one dimension. We suppose that ini-

tially the fluid is at rest but with a simple discontinuity in
the height field so that

0
n(x,t = 0) = {m‘) X< (2.90)
—o x>0

and u(x,t = 0) = 0 everywhere. We can realize these
initial conditions physically by separating two fluid masses
of different depths by a thin dividing wall, and then quickly
removing the wall. What is the subsequent evolution of the
fluid? The general solution to the linear problem is given
by (2.68) where the functional form is determined by the
initial conditions so that here

F(x) = n(x,t = 0) = -, sgn(x). (2.91)

Equation (2.68) states that this initial pattern is propagated
to the right and to the left. That is, two discontinuities in
fluid height move to the right and left at a speed ¢ = \/gH.
Specifically, the solution is

nGe,t) = —%no[sgn(x rot) +sgn(x—c)l.  (2.92)

The initial conditions may be much more complex than
a simple front, but, because the waves are dispersionless,
the solution is still simply a sum of the translation of those
initial conditions to the right and to the left at speed c. The
velocity field in this class of problem is obtained from

ou on
—=—g—, 2.
ot~ Jox (2:53)
which gives, using (2.68),
u ==L [Flx+ct) = Fx - ct)). (2.94)
c

Consider the case with initial conditions given by (2.90).
At a given location, away from the initial disturbance, the
fluid remains at rest and undisturbed until the front arrives.
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Figure 2.7 The time development of an initial ‘top hat’ height
disturbance, with zero initial velocity, in non-rotating flow.
Fronts propagate in both directions, and the velocity is non-
zero between fronts, but ultimately the disturbance are radiated

away to infinity, and the fluid is left at rest with zero perturbation
height.

After the front has passed, the fluid surface is again undis-
turbed and the velocity is uniform and non zero. Specifi-
cally:

n = {—nosgn(x) . {0 || > ct
0 (og/c) |x| < ct.
(2.95)

The solution with ‘top-hat’ initial conditions in the
height field, and zero initial velocity, is a superposition
two discontinuities similar to (2.95) and is illustrated in
Fig. 2.7. Two fronts propagate in either direction from
each discontinuity and, in this case, the final velocity, as
well as the fluid displacement, is zero after all the fronts
have passed. That is, the disturbance is radiated completely
away.
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2.6.2 Rotating flow

Rotation makes a profound difference to the adjustment
problem of the shallow water system, because a steady,
adjusted, solution can exist with non-zero gradients in
the height field — the associated pressure gradients being
balanced by the Coriolis force — and potential vorticity
conservation provides a powerful constraint on the fluid
evolution.* In a rotating shallow fluid that conservation is

represented by

aa—? +u-VQ =0, (2.96)

where Q = ({ + f)/h. In the linear case with constant
Coriolis parameter, (2.96) becomes

g n
— =0, z( - —) 2.97
5t q=\¢-fo % (2.97)
This equation may be obtained either from the linearized
velocity and mass conservation equations, (2.89), or from
(2.96) directly. In the latter case, we write

_C+f0
- H+n

Q <@ (1- ) = (fort- ok ) = 204

(2.98)
having used f, > |{| and H > |5|. The term f,/H is a con-
stant and so dynamically unimportant, as is the H™* factor
multiplying g. Further, the advective term u - VQ becomes
u - Vg, and this is second order in perturbed quantities
and so is neglected. Thus, making these approximations,
(2.96) reduces to (2.97). The potential vorticity field is
therefore fixed in space! Of course, this was also true in
the non-rotating case where the fluid is initially at rest.
Then g = { = 0 and the fluid remains irrotational through-
out the subsequent evolution of the flow. However, this
is rather a weak constraint on the subsequent evolution
of the fluid; it does nothing, for example, to prevent the
conversion of all the potential energy to kinetic energy. In
the rotating case the potential vorticity is non-zero, and
potential vorticity conservation and geostrophic balance
are all we need to infer the final steady state, assuming it
exists, without solving for the details of the flow evolution,
as we now see.
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With an initial condition for the height field given by
(2.90), the initial potential vorticity is given by

(2.99)
foro/H x>0,

q(x, y) = {

and this remains unchanged throughout the adjustment
process. The final steady state is then the solution of the
equations

a 0
(_f()%:q(x’y)’ fo”z_g£) va:ga_z’
(2.100a,b,c)

where { = 0v/0x — 0u/0dy. Because the Coriolis parameter
is constant, the velocity field is horizontally non-divergent
and we may define a streamfunction y = g#/ f,. Equations
(2.100) then reduce to

(V2 - L%) y = q(x, y), (2.101)
where L; = +/gH/ f, is known as the Rossby radius of
deformation or often just the ‘deformation radius’ or the
‘Rossby radius’ It is a naturally occurring length scale in
problems involving both rotation and gravity, and arises
in a slightly different form in stratified fluids.

The initial conditions (2.99) admit of a nice analytic
solution, for the flow will remain uniform in y, and (2.101)
reduces to 2

oy L%"’ _ %sgn(x). (2.102)
We solve this separately for x > 0 and x < 0 and then
match the solutions and their first derivatives at x = 0, also
imposing the condition that the velocity decays to zero as
x — +o00. The solution is

_ {‘(gﬂo/fo)(l — e7/Lay x>0

B +(g77()/f0)(1 - ex/Ld) x <0, (2103)

The velocity field associated with this is obtained from
(2.100b,¢), and is

9o _-Ixl/Ly
u=0, v=—-———c¢t . (2.104)
foLa
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Figure 2.8 Solutions of a linear geostrophic adjustment prob-
lem. Top panel: the initial height field, given by (2.90) with
o, = 1. Second panel: equilibrium (final) height field, # given
by (2.103) and 1 = f,y/g. Third panel: equilibrium geostrophic
velocity (normal to the gradient of height field), given by (2.104).
Bottom panel: potential vorticity, given by (2.99), and this does
note evolve. The distance, x is non-dimensionalized by the de-
formation radius L; = \/gH/ f,, and the velocity by 1,(g/ foL 4)-
Changes to the initial state occur only within O(L ;) of the initial
discontinuity; and as x — +oo the initial state is unaltered.

The velocity is perpendicular to the slope of the free surface,
and a jet forms along the initial discontinuity, as illustrated
in Fig. 2.8.

The important point of this problem is that the varia-
tions in the height and field are not radiated away to infinity,
as in the non-rotating problem. Rather, potential vorticity
conservation constrains the influence of the adjustment to
within a deformation radius (we see now why this name is
appropriate) of the initial disturbance. This property is a
general one in geostrophic adjustment — it also arises if the
initial condition consists of a velocity jump, as considered
in problem 2.22.

2.6.3 ¢ Energetics of adjustment

How much of the initial potential energy of the flow is
lost to infinity by gravity wave radiation, and how much is
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converted to kinetic energy? The linear equations (2.89)
lead to

10
E§(H"2 + gn?) + gHV- (un) = 0, (2.105)

so that energy conservation holds in the form

dE
dr
provided the integral of the divergence term vanishes, as it
normally will in a closed domain. The fluid has a non-zero
potential energy, (1/2) I_Ogo gnz dx, if there are variations
in fluid height, and with the initial conditions (2.90) the
initial potential energy is

1
E= J(Huz + gn’) dx, 0, (2.106)

PE; = J gne dx. (2.107)
0

This is nominally infinite if the fluid has no boundaries, and
the initial potential energy density is grg/2 everywhere.

In the non-rotating case, and with initial conditions
(2.90), after the front has passed, the potential energy den-
sity is zero and the kinetic energy density is Hu*/2 = gn/2,
using (2.95) and ¢* = gH. Thus, all the potential energy
is locally converted to kinetic energy as the front passes,
and eventually the kinetic energy is distributed uniformly
along the line. In the case illustrated in Fig. 2.7, the po-
tential energy and kinetic energy are both radiated away
from the initial disturbance. (Note that although we can
superpose the solutions from different initial conditions,
we cannot superpose their potential and kinetic energies.)
The general point is that the evolution of the disturbance
is not confined to its initial location.

In contrast, in the rotating case the conversion from
potential to kinetic energy is largely confined to within a de-
formation radius of the initial disturbance, and at locations
far from the initial disturbance the initial state is essen-
tially unaltered. The conservation of potential vorticity has
prevented the complete conversion of potential energy to
kinetic energy, a result that is not sensitive to the precise
form of the initial conditions (see also problem 2.2?).

In fact, in the rotating case, some of the initial potential
energy is converted to kinetic energy, some remains as
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potential energy and some is lost to infinity; let us calculate
these amounts. The final potential energy, after adjustment,
is, using (2.103),

PE, = 1 5 ° —x/Lg4 2 d 0 x/Lg4 2 d
F—quo L (1—e ) x+J_OO(1—e ) x|.
(2.108)

This is nominally infinite, but the change in potential en-
ergy is finite and is given by

(ee]
- - 3
PE; - PEp = gné Jo (2e ™ Ed _ 72 /Lay 4x = Egnng.

(2.109)
The initial kinetic energy is zero, because the fluid is at rest,
and its final value is, using (2.104),

2 2
(o0) L
KEg = %H J u'dx=H (—;7’20 ) J e 2¥La gy = _9’702 d
d 0
(2.110)

Thus one-third of the difference between the initial and
final potential energies is converted to kinetic energy, and
this is trapped within a distance of the order of a deforma-
tion radius of the disturbance; the remainder, an amount
gL n¢ is radiated away and lost to infinity. In any finite re-
gion surrounding the initial discontinuity the final energy
is less than the initial energy.

2.6.4 A variational perspective

In the non-rotating problem, all of the initial potential en-
ergy is eventually radiated away to infinity. In the rotating
problem, the final state contains both potential and kinetic
energy. Why is the energy not all radiated away to infinity?
It is because potential vorticity conservation on parcels pre-
vents all of the energy being dispersed. This suggests that it
may be informative to think of the geostrophic adjustment
problem as a variational problem: we seek to minimize
the energy consistent with the conservation of potential
vorticity. We stay in the linear approximation in which,
because the advection of potential vorticity is neglected,
potential vorticity remains constant at each point.

The energy of the flow is given by the sum of potential
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and kinetic energies, namely
energy = j(Hu2 + gn’) dA, (2.111)
(where dA = dx dy) and the potential vorticity field is
n n
q=0(- foﬁ = (v, —uy) - foﬁ, (2.112)

where the subscripts x, y denote derivatives. The problem
is then to extremize the energy subject to potential vorticity
conservation. This is a constrained problem in the calculus
of variations, sometimes called an isoperimetric problem
because of its origins in maximizing the area of a surface
for a given perimeter.” The mathematical problem is to
extremize the integral

I= j {H(u2 + v2) + g;12 + A(x,y)[(vx - uy) - foﬂ/H]} dA,
(2.113)

where A(x, y) is a Lagrange multiplier, undetermined at
this stage. It is a function of space: if it were a constant,
the integral would merely extremize energy subject to a
given integral of potential vorticity, and rearrangements of
potential vorticity (which here we wish to disallow) would
leave the integral unaltered.

As there are three independent variables there are three
Euler-Lagrange equations that must be solved in order to
minimize I. These are

oL 9oL oL 9L 9L D dL_
Ou 0xou, OJyou, ’ ov  Oxdvu, ayavy_
(2.114)

where L is the integrand on the right-hand side of (2.113).
Substituting the expression for L into (2.114) gives, after a
little algebra,

A
Zgn—ﬁzo, 2Hu+a—A=0, 2HU—%=O,
H dy 0x
(2.115)

and then eliminating A gives the simple relationships

__991 _99

=—-=— v= , (2.116)
fooy foox
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which are the equations of geostrophic balance. Thus, in
the linear approximation, geostrophic balance is the mini-
mum energy state for a given field of potential vorticity.



CHAPTER

(GGEOSTROPHIC THEORY

WEEKS 5 TO 7

This chapter is concerned with flows that are close to geo-
strophic balance, with the specific goal of deriving equation
sets that exploit this closeness and that are simpler than
the original, ‘primitive’ equations. We will in particular
derive the quasi-geostrophic and planetary-geostrophic
sets of equations. We do this first for shallow water and
then for the stratified three-dimensional equations.

3.1 GEOSTROPHIC SCALING IN THE SHALLOW WA-
TER EQUATIONS

For simplicity we will assume a flat bottom, so that # =
h. With the odd exception, we will denote the scales of
variables by capital letters; thus, if L is a typical length
scale of the motion we wish to describe, and U is a typical
velocity scale, and assuming the scales are horizontally
isotropic, we write

(x,y)~L or (x,y) =0O(L)

(3.1)
(u,v) ~U or (u,v) = OU).

and similarly for other variables. We may then non-dimensionalize
the variables by writing

(x,y) = L(X, ), (u,v) =U®@, ), (3.2)

63
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where the hatted variables are non-dimensional and, by
supposition, are O(1). The various terms in the momen-
tum equation then scale as:

ou

§+u-Vu+f><u=—gV11, (3.3a)
u U H
— — U -, 3.3b
T ./ 97 (3.3b)

where the V operator acts in the x, y plane and # is the
amplitude of the variations in the surface displacement.
(We use 7 to denote the height of the free surface above
some arbitrary reference level, as in Fig. 2.1. Thus, =
H + Ay, where Ar denotes the variation of 77 about its mean
position.)

The ratio of the advective term to the rotational term
in the momentum equation (3.3) is (U*/L)/(fU) = U/ fL;
this is the Rossby number, first encountered in chapter
22.% Using values typical of the large-scale circulation (e.g.,
from Table 1.1) we find that Ro = 0.1 for the atmosphere
and Ro = 0.01 for the ocean: small in both cases. If we
are interested in motion that has the advective time scale
T = L/U then we scale time by L/U so that

t=—t, (3.4)

and the local time derivative and the advective term then
both scale as U? /L, and both are smaller than the rota-
tion term by a factor of the order of the Rossby number.
Then, either the Coriolis term is the dominant term in
the equation, in which case we have a state of no motion
with — fv = 0, or else the Coriolis force is balanced by the
pressure force, and the dominant balance is
on

fu= 95 (3.5)
namely geostrophic balance. If we make this non-trivial
choice, then variations in # (i.e., Ar) scale according to

UL
An~H = JUL (3.6)
g
We can also write H as
272 2
L L
H = ROf =Ro HL—Z, (37)

d
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where L; = +/gH/ f is the deformation radius and H is
the mean depth of the fluid. The variations in fluid height

thus scale as 5
A L
2N Ro=, (3.8)
H I

and the height of the fluid may be written as

L’ L’
n=H <1 + RoL—%in> and Ay = ROL_ZH”’
(3.9)

where 7 is the O(1) non-dimensional value of the surface
height deviation.

Non-dimensional momentum equation

If we use (3.9) to scale height variations, (3.2) to scale
lengths and velocities, and (3.4) to scale time, then the
momentum equation (3.3) becomes

Ro [Z—’tf + (- V)ﬁ] + fxia=-Vij , (3.10)

where f = kf = kf/ f,, where f, is a representative value
of the Coriolis parameter. (If f is a constant, then f =1,
but it is informative to explicitly write f in the equations.
Also, where the operator V operates on a non-dimensional
variable then the differentials are taken with respect to
the non-dimensional variables X, .) All the variables in
(3.10) will be assumed to be of order unity, and the Rossby
number multiplying the local time derivative and the ad-
vective terms indicates the smallness of those terms. By
construction, the dominant balance in this equation is the
geostrophic balance between the last two terms.

Non-dimensional mass continuity (height) equation

The (dimensional) mass continuity equation can be written
as

D A
i—’7+(1+—17)V-u=0, (3.11)
H Dt H

Using (3.2), (3.4) and (3.9) this equation may be written

G- 2
RO<£) D—Z+ [1+R0(£> ﬁ:| V-u=0 . (312)
Dt L

d
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Equations (3.10) and (3.12) are the non-dimensional ver-
sions of the full shallow water equations of motion. Evi-
dently, some terms in the equations of motion are small
and may be eliminated with little loss of accuracy, and
the way this is done will depend on the size of the second
non-dimensional parameter, (L/L ;)*. We explore this in
sections 3.2 and 3.3.

Froude and Burger numbers

The Froude number may be generally defined as the ratio
of a fluid particle speed to a wave speed. In a shallow water
system this gives

Fr= v = v = Roi. (3.13)
vgH  fola L,

The Burger number is a useful measure of the scale of
motion of the fluid, relative to the deformation radius, and
may be defined by

I O L R

It is also useful to define the parameter F = Bu~', which is
like the square of a Froude number but uses the rotational
speed fL instead of U in the numerator.

3.2 THESHALLOW WATER PLANETARY-GEOSTROPHIC
EQuATIONS

3.2.1 Informal derivation

The advection and time derivative terms in the momentum
equation (3.10) are order Rossby number smaller than the
Coriolis and pressure terms (the term in square brackets is
multiplied by Ro), and therefore let us neglect them. The
momentum equation straightforwardly becomes

f xii = -Vij. (3.15)

The mass conservation equation (3.12), contains two non-
dimensional parameters, Ro = U/( f,L) (the Rossby num-
ber),and F = (L/L ,,l)2 (the ratio of the length scale of the
motion to the deformation scale; F = Bu™') and we must
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make a choice as to the relationship between these two
numbers. We will choose

FRo = 0(1), (3.16)
which implies
L’ > Lz or equivalently F>1, Buxl
(3.17)

That is to say, we suppose that the scales of motion are
much larger than the deformation scale. Given this choice,
all the terms in the mass conservation equation, (3.12), are
of roughly the same size, and we retain them all. Thus, the
shallow water planetary geostrophic equations are the full
mass continuity equation along with geostrophic balance
and a geometric relationship between the height field and
the fluid thickness, and in dimensional form these are:

Dh +hV-u=0
Dt (3.18a,b)

fxu=-gVn, n="h+n,.

We emphasize that the planetary-geostrophic equations are
only valid for scales of motion much larger than the deforma-
tion radius. The height variations are then as large as the
mean height field itself; that is, using (3.8), Ay/H = O(1).
¢ Formal derivation
We make the following assumptions.
(i) The Rossby number is small. Ro = U/ f)L <« 1.

(ii) The scale of the motion is significantly larger than
the deformation scale. That is, (3.16) holds or

_ L\
F=Bu 1=<L—> > 1 (3.19)
d

and in particular

FRo = O(1). (3.20)

(iii) Time scales advectively, so that T = L/U.
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We expand the non-dimensional variables velocity and
height fields in an asymptotic series with the Rossby num-
ber as the small parameter, substitute into the equations
of motion and derive a simpler set of equations. It is a
nearly trivial exercise in this instance, and so it illustrates
the methodology well. The expansions are

il = iy + Roii, + Ro%ily + - -- (3.21a)

and
7j =17y +Rofj, + R0 +---. (3.21b)

Then substituting (3.21a) and (3.21b) into the momen-
tum equation gives

Ro % +ily - Vil + f x it |+fxily = —Vij—Ro [Vij,]+O(Ro?)
(3.22)

The Rossby number is an asymptotic ordering parameter;

thus, the sum of all the terms at any particular order in

Rossby number must vanish. At lowest order we obtain

the simple expression

f x @iy = -Vij,. (3.23)

Note that although f,, is a representative value of f, we
have made no assumptions about the constancy of f. In
particular, f is allowed to vary by an order one amount,
provided that it does not become so small that the Rossby
number U/( f,,L) is not small.

The appropriate height (mass conservation) equation
is similarly obtained by substituting (3.21a) and (3.21b) into
the shallow water mass conservation equation. Because
FRo = O(1) at lowest order we simply retain all the terms
in the equation to give

0
FRo [% iy - Vﬁo] +[1+FRofj|V-iiy=0. (3.24)
Equations (3.23) and (3.24) are a closed set, and consti-
tute the non-dimensional planetary-geostrophic equations.
The dimensional forms of these equations are just (3.18).
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Variation of the Coriolis parameter

Suppose then that f is a constant (f;). Then, from the
curl of (3.23), V- u;, = 0. This means that we can define a
streamfunction for the flow and, from geostrophic balance,
the height field is just that streamfunction. That is, in
dimensional form,

Y= iﬂ’ u=kxVy, (3.25a,b)
fo

and (3.24) becomes, in dimensional form,

g—’:+u-V17=O or g—’z+](1//,17)=0, (3.26)
where J(a,b) = a.b, — a,b,. But since 1 o< y the advec-
tive term is proportional to J(y, y), which is zero. Thus, the
flow does not evolve at this order. The planetary-geostrophic
equations are uninteresting if the scale of the motion is such
that the Coriolis parameter is not variable. On Earth, the
scale of motion on which this parameter regime exists is
rather limited, since the planetary-geostrophic equations
require that the scale of motion also be larger than the de-
formation radius. In the Earth’s atmosphere, any scale that
is larger than the deformation radius will be such that the
Coriolis parameter varies significantly over it, and we do
not encounter this parameter regime. On the other hand,
in the Earth’s ocean the deformation radius is relatively
small and there exists a small parameter regime that has
scales larger than the deformation radius but smaller than
that on which the Coriolis parameter varies.

Potential vorticity

The shallow water PG equations may be written as an evo-
lution equation for an approximated potential vorticity. A
little manipulation reveals that (3.18) are equivalent to:

bQ _,
Dt (3.27)

, fxu=-gVn, n=h+n,.

Thus, potential vorticity is a material invariant in the ap-
proximate equation set, just as it is in the full equations. The
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other variables — the free surface height and the velocity —
are diagnosed from it, a process known as potential vortic-
ity inversion. In the planetary geostrophic approximation,
the inversion proceeds using the approximate form f/h
rather than the full potential vorticity, (f + {)/h. (Strictly
speaking, we do not approximate potential vorticity, be-
cause this is the evolving variable. Rather, we approximate
the inversion relations from which we derive the height
and velocity fields.) The simplest way of all to derive the
shallow water PG equations is to begin with the conserva-
tion of potential vorticity, and to note that at small Rossby
number the expression ({ + f)/h may be approximated by
f/h. Then, noting in addition that the flow is geostrophic,
(3.27) immediately emerges. Every approximate set of equa-
tions that we derive in this chapter may be expressed as
the evolution of potential vorticity, with the other fields
being obtained diagnostically from it.

3.3 THE SHALLOW WATER QUASI-GEOSTROPHIC
EQUATIONS

We now derive a set of geostrophic equations that is valid
(unlike the PG equations) when the horizontal scale of
motion is similar to that of the deformation radius. These
equations are called the quasi-geostrophic equations, and
are perhaps the most widely used set of equations for theo-
retical studies of the atmosphere and ocean. The specific
assumptions we make are as follows.

(i) The Rossby number is small, so that the flow is in
near-geostrophic balance.

(ii) The scale of the motion is not significantly larger
than the deformation scale. Specifically, we shall
require that

I\
Ro (—) = O(Ro). (3.28)
Lg

For the shallow water equations, this assumption im-
plies, using (3.9), that the variations in fluid depth

are small compared to its total depth. For the contin-
uously stratified system it implies, using (3.53), that
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the variations in stratification are small compared
to the background stratification.

(iii) Variations in the Coriolis parameter are small; that is,
|BL| < | f,| where L is the length scale of the motion.

(iv) Time scales advectively; that is, the scaling for time
isgivenby T' = L/U.

The second and third of these differ from the planetary-
geostrophic counterparts: we make the second assumption
because we wish to explore a different parameter regime,
and we then find that the third assumption is necessary to
avoid a rather trivial state [i.e., a leading order balance of
Pu = 0, see the discussion surrounding (3.44)]. All of the
assumptions are the same whether we consider the shallow
water equations or a continuously stratified flow, and in
this section we consider the former.

3.3.1 Shallow water quasi-geostrophic equations

let us set the velocity equal to a geostrophic component,
u, plus an ageostrophic component, u,. We will suppose
that f = f, + By, where | f,| > |By|, and we will define the
geostrophic flow to be the flow that satisfies

foxu,=-gVn, (3.29)

which in turn implies V- u, = 0. Rather than make approx-
imations to the momentum approximation let us begin
with the shallow water vorticity equation which, reprising
241, is

o¢

a+(u~V)((+f)=—((+f)V-u. (3.30)
The right-hand side contains only the ageostrophic velocity,
which is small, and since ¢ is smaller than f by a factor of
the Rossby number we can ignore (V- u and take f to be
equal to f;. The left-hand side may be well-approximated
by using the geostrophic flow, (3.29), so that we have

aL,
5 g VGt f) = —foV s, (3.31)

Note that on the left-hand side f can be replaced by Sy.
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We now use the mass continuity equation to obtain an
expression for the divergence. From (2?) the mass continu-
ity equation may be written as

D
D—’Z +(H+ADV-u=0, (3.32)

and since H > A( (using (3.12), H is bigger by a factor
(L4 /L)*Ro™Y), the equation becomes

Dy
— +HV-u, =0. 3.33
Dt Ha (3.33)

Combining (3.31) and (3.33) gives

D Jon )
— -=—=]=0. 3.34
o (s4r -2 (.34
It appears that we have two variables here, {; and 7. How-
ever, they are related through geostrophic balance, and the
fact that the geostrophic flow is non-divergent. Thus, we
may define a streamfunction y such thatu, = —0y/dy, v, =
0y/0x, whence 0u/0x+0dv/dy = 0, The vorticity and height
field are related to the streamfunction by
ov Jdu _, fov
:———:V 5 d = — 3.35,b

CH ox Oy 14 an 4l g (3.35a,b)
where the second relation comes from geostrophic balance.
Eqrefgs:pgl0 may then be written as

Dq_

0, _y
Dt 1

v By LKZ (3.36)
d

where L ; = y/gH/ f,,. The variable q is the quasi-geostrophic
potential vorticity.

Connection to shallow water potential vorticity

The quantity g given by (3.36) is an approximation (except
for dynamically unimportant constant additive and multi-
plicative factors) to the shallow water potential vorticity.
To see the truth of this statement, begin with the expression
for the shallow water potential vorticity,

e

Q="

(3.37)
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Now let & = H(1 +#'/H), where ' is the perturbation of
the free-surface height, and assume that #'/H is small to
obtain

__fre 1 o
Q= H(+4'/H) ~ H(f+(:)<1 H)

1 , (3.38)
- H<f0+ﬁy+(—fo%>-

Because f,,/H is a constant it has no effect in the evolution
equation, and the quantity given by

a=By+{-fo (3.39)

is materially conserved. Using geostrophic balance we have
{ =V*yandy' = fyy/g so that (3.39) is identical to the g
given in (3.36).

The approximations needed to go from (3.37) to (3.39)
are the same as those used in our earlier, more long-winded,
derivation of the quasi-geostrophic equations. That is, we
assumed that f itself is nearly constant, and that £ is much
larger than , equivalent to a low Rossby number assump-
tion. It was also necessary to assume that H > 7’ to enable
the expansion of the height field which, using assumption
((ii)) on page 69, is equivalent to requiring that the scale
of motion not be significantly larger than the deformation
scale. The derivation is completed by noting that the advec-
tion of the potential vorticity should be by the geostrophic
velocity alone, and we recover (2?) or (??).

Two interesting limits

There are two interesting limits to the quasi-geostrophic po-
tential vorticity equation which, taking 8 = 0 for simplicity,
are as follows.

(i) Motion on scales much smaller than the deformation
radius. Thatis, L <« L; and thus Bu > lor F < 1.
Then (2?) becomes

o¢

>t J(y,0) =0, (3.40)
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where { = V2y and J(y,{) = v, {, - v,{,. Thus, the
motion obeys the two-dimensional vorticity equa-
tion. Physically, on small length scales the devia-
tions in the height field are very small and may be
neglected.

(i) Motion on scales much larger than the deformation
radius. Although scales are not allowed to become
so large that Ro(L/L ;)* is of order unity, we may, a
posteriori, still have L > L ;, whence the potential
vorticity equation, (2?), becomes

on

~ +J(y,n) =0,

(3.41)
because v = gn/f,. The Jacobian term evidently
vanishes. Thus, one is left with a trivial equation that
implies there is no advective evolution of the height
field. There is nothing wrong with our reasoning;
the mathematics has indeed pointed out a limit in-
teresting in its uninterestingness. From a physical
point of view, however, such a lack of motion is likely
to be rare, because on such large scales the Coriolis
parameter varies considerably, and we are led to the
planetary-geostrophic equations.

oy _
§+](1//,1//)—O or

In practice, often the most severe restriction of quasi-geostrophy
is that variations in layer thickness are small: what does
this have to do with geostrophy? If we scale # assuming geo-
strophic balance then # ~ fUL/g and n/H ~ Ro(L/Ld)z.
Thus, if Ro is to remain small, #/H can only be of order one
if (L/L d)z > 1. That is, the height variations must occur
on alarge scale, or we are led to a scaling inconsistency. Put
another way, if there are order-one height variations over a
length scale of less than or of the order of the deformation
scale, the Rossby number will not be small. Large height
variations are allowed if the scale of motion is large, but
this contingency is described by the planetary-geostrophic
equations.

Another flow regime

Although perhaps of little terrestrial interest, we can imag-
ine a regime in which the Coriolis parameter varies fully,
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but the scale of motion remains no larger than the de-
formation radius. This parameter regime is not quasi-
geostrophic, but it gives an interesting result. Because
#'/H ~ Ro(L/L d)2 deviations of the height field are at least
of order Rossby number smaller than the reference height
and |%'| < H. The dominant balance in the height equa-
tion is then

HV-u=0, (3.42)

presuming that time still scales advectively. This zero hori-
zontal divergence must remain consistent with geostrophic
balance

fxu=-gVy, (3.43)

where now f is a fully variable Coriolis parameter. Taking
the curl of (that is, cross-differentiating) (3.43) gives

Bv+ fV-u=0, (3.44)

whence, using (3.42), v = 0, and the flow is purely zonal.
Although not at all useful as an evolution equation, this
illustrates the constraining effect that differential rotation
has on meridional velocity. This effect may be the cause of
the banded, highly zonal flow on some of the giant planets.

3.4 GEOSTROPHIC SCALING IN THE STRATIFIED EQUA-
TIONS

We use the hydrostatic Boussinesq equations, which we
write as

% + fxu=-V,¢, (3.45a)
¢ =D, (3.45b)
0z
D—b =0, (3.45¢)
Dt

V-v=0. (3.45d)

where b is the buoyancy. Anticipating that the average
stratification may not scale in the same way as the deviation
from it, let us separate out the contribution of the advection
of a reference stratification in (3.45c) by writing

b=b(z)+b(x, 9,2, 1). (3.46)
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Then the thermodynamic equation becomes

!
% +N?w=0, (3.47)

where N? = 0b/0z (and the advective derivative is still
three-dimensional). We then let ¢ = ¢(z) + ¢, where ¢ is
hydrostatically balanced by b, and the hydrostatic equation
becomes

!
%—‘i =, (3.48)

Equations (3.47) and (3.48) replace (3.45¢) and (3.45b),
and ¢’ is used in (3.45a).

3.4.1 Non-dimensional equations

We scale the basic variables by supposing that

L
(X’)’)~L’ (U,U)NU, tNE; Z"’H)

foo» N~N0>

where the scaling variables (capitalized, except for f;) are
chosen to be such that the non-dimensional variables have
magnitudes of the order of unity. We presume that the
scales chosen are such that the Rossby number is small;
that is Ro = U/(f,L) < 1. In the momentum equation the
pressure term then balances the Coriolis force,

(3.49)

|f xul ~ V| (3.50)
and so the pressure scales as
¢' ~ @ = f,UL. (3.51)

Using the hydrostatic relation, (3.51) implies that the buoy-
ancy scales as

L
b'~B= fO—U, (3.52)
H

and from this we obtain

M ~ RoL—2 (3.53)
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where L; = NyH/f, is the deformation radius in the
continuously stratified fluid, analogous to the quantity
VgH/ f, in the shallow water system, and we use the same
symbol, L, for both. In the continuously stratified system,
if the scale of motion is the same as or smaller than the de-
formation radius, and the Rossby number is small, then the
variations in stratification are small. The choice of scale is
the key difference between the planetary-geostrophic and
quasi-geostrophic equations.

Finally, we will non-dimensionalize the vertical veloc-
ity by using the mass conservation equation,

ow ou Ov
a*(a*a) (3.54)

and we suppose that this implies

_UH
=

w~W (3.55)
This is a naive scaling for rotating flow: if the Coriolis
parameter is nearly constant the geostrophic velocity is
nearly horizontally non-divergent and the right-hand side
of (3.54) is small, and W « UH/L. We might then estimate
w by cross-differentiating geostrophic balance to obtain the
linear geostrophic vorticity equation and corresponding
scaling:

BUH

fo
However, rather than using (3.56b) from the outset, we will
use (3.55) and let the proper scaling emerge in the fullness
of time. Note that if variations in the Coriolis parameter
are large and 3 ~ f,/L, then (3.56b) is the same as (3.55).

Given the scalings above [using (3.55) for w] we non-
dimensionalize by setting

pu = fg—LZU, w~W= (3.56a,b)

(% 7) =L (xy), z=Hz

D -_ L =Y
(I/l) U) =U (u) U), w = UHw’ t= Lt, (357)
!
- - H ,
— , = N b = >
f=Hhf ¢ f,UL foUL
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Non-dimensional Primitive Equations

The non-dimebnsional, hydrostatic, Boussinesq equations in a rotating frame

of reference are

Di — ~
Horizontal momentum: RoD—; +fxu=-V¢
0
Hydrostatic: —=b
ydrostatic >
Mass continuity: (B_ﬁ 4 90 1 a—ﬁ)) =0
Rk ox 0y 0z/)
Db (LyV <
Thermodynamic: Ro— + (—d) N°@ = 0.
Dt L

where the hatted variables are non-dimensional. The hori-
zontal momentum and hydrostatic equations then become

Du ~ ~
Ro— + f xu =-V¢, 3.58
° Dt fxa ¢ ( )
and ~
op -
— =b. 3.59
o 659
The non-dimensional mass conservation equation is sim-
Py ou 0v oJw
i 00 ow
Vo=|—+—+—]=0, 3.60
° (afaf’az) (360

and the nondimensional thermodynamic equation is

fUULUDb  —, »HU _

— +N'Nj—w =0, (3.61)
H L Dt L
or, re-arranging,
Db (L;\ —~
Ro— + (—d) N*w =o0. (3.62)
Dt L

The nondimensional primitive equations are summarized
in the box above.

(PE)

(PE.2)

(PE.3)

(PE.4)



3.5 PLANETARY-GEOSTROPHIC EQUATIONS FOR
STRATIFIED FLOW 79

3.5 PLANETARY-GEOSTROPHIC EQUATIONS FOR STRAT-
IFIED FLOW

We use the inviscid and adiabatic Boussinesq equations of
motion with the hydrostatic approximation. The essential
assumptions in deriving the PG equations are:

L. Rox1

2. (L4/L)* < 1. And specifically (L 4/L)* = O(Ro) .
We are also assuming that time scales advectively and we
allow f to have a full variation.

Given these assumptions the only simplification we
make to the equations in the shaded box on the preceding
page is that the momentum equation is replaced by geo-

strophic balance. Then, in dimensional form, the planetary-
geostrophic equations of motion are:

!
% +wN? = 0.
bt o (3.63)
fxu=-V¢, g=b’, V=0

The thermodynamic equation may also be written sim-
ply as
Do _y, (3.64)
Dt
where b now represents the total stratification. The rele-
vant pressure, ¢, is then the pressure that is in hydrostatic
balance with b, so that geostrophic and hydrostatic balance
are most usefully written as

fxu=-V¢, Z—fzb.

(3.65a,b)
3.5.1 Potential vorticity

Manipulation of (3.63) reveals that we can equivalently
write the equations as an evolution equation for potential
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vorticity. Thus, the evolution equations may be written as

DQ .
D~ ©
, (3.66)
Q = f%
0z

where Q = f 0b/dz, and the inversion — i.e., the diagnosis
of velocity, pressure and buoyancy — is carried out us-
ing the hydrostatic, geostrophic and mass conservation
equations.

3.5.2 Applicability to the ocean and atmosphere

In the atmosphere a typical deformation radius NH/ f is
about 1000 km. The constraint that the scale of motion
be much larger than the deformation radius is thus quite
hard to satisfy, since one quickly runs out of room on a
planet whose equator-to-pole distance is 10 000 km. Thus,
only the largest planetary waves can satisfy the planetary-
geostrophic scaling in the atmosphere and we should then
also write the equations in spherical coordinates. In the
ocean the deformation radius is about 100 km, so there is
lots of room for the planetary-geostrophic equations to
hold, and indeed much of the theory of the large-scale
structure of the ocean involves the planetary-geostrophic
equations.

3.6 THE CONTINUOUSLY STRATIFIED QUASI-GEOSTROPHIC
SYSTEM

We now consider the quasi-geostrophic equations for the
continuously stratified hydrostatic system. The primitive
equations of motion are given by (3.45), and we extract the
mean stratification so that the thermodynamic equation is
given by (3.47). We stay on the -plane for simplicity.

3.6.1 Scaling and assumptions

The non-dimensionalization and scaling are initially pre-
cisely that of section 3.4 and the nondimensional equations
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are just those in the shaded box on page 77. The Coriolis
parameter is given

f=0H+Bk (3.67)

The variation of the Coriolis parameter is assumed to be
small (this is a key difference between the quasi-geostrophic
system and the planetary-geostrophic system), and in par-
ticular we shall assume that Sy is approximately the size of
the relative vorticity, and so is much smaller than f;, itself.
The assumptions needed to derive the QG system are:

1. The Rossby number is small, Ro <« 1.

2. Length scales are of the same order as the deforma-
tion radius, L ~ Ly or L/L; = O(1).

3. Variations in Coriolis parameter are small, and specif-
ically |By| ~ Ro f,.
Given these assumptions, we can write the horizontal
velocity as the sum of a geostrophic component and an
ageostrophic one:

u=u,+u,

g

~ (3.68)
where fyk x u, =-Vo and gl > lu,l.

I follows from the definition of the geostrophic velocity
that its divergence is zero; that is

ou, O0v

9 9
— 4+ —=0. 3.69
ox oy (3.69)

The vertical velocity is thus given by the divergence of the
ageostrophic velocity,

ow ou, 0y,

—=-_—e,a 3.70

0z ox 0oy (3.70)
Since the ageostrophic velocity is small, the actual vertical
velocity is smaller than the scaling suggested by the mass
conservation equation in its original form. That is,

UH
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3.6.2 Derivation of Stratified QG Equations

For reference we write down the primitive equations of
motion again. These are

Du

E + f Xu=- z¢’ (3723)
0
—¢ =b, (3.72b)
0z
!
Db N2w = 0, (3.72¢)
Dt
ou ov OJw
— +—+ —=0. 72
ax+6y+az 0 (3.72d)

These are the horizontal momentum equation, the hydro-
static equation, the thermodynamic equation and the mass
continuity equation. The material derivative is three dimen-
sional.

We being by cross differentiating the horizontal mo-
mentum equation to give, after a few lines of algebra, the
vorticity equation:

u av)+<auaw avaw)
0z dy 0zox/

D
D—t((+f):—(c+f)<a+@

We now apply the above quasi-geostrophic assump-
tions, so that:

1. The geostrophic velocity and vorticity are much larger
than their ageostrophic counterparts, so we use geo-
strophic values for the terms on the left-hand side.

2. On the right hand side we keep the horizontal diver-
gence (which is small) on the right-hand side where
it is multiplied by the big term f. Furthermore, be-
cause f is nearly constant we replace it with f; except
where it is differentiated.

3. The second term (tilting) on the right-hand side is
smaller than the advection terms on the left-hand
side by the ratio [UW/(HL)]/[U*/L*] = [W/H]/[U/L] <
1, because w is small, as noted above

Given the above, (3.73) becomes

D, B ou ov) _ow
E(Cngf)—_fo(a’L@)—fog’ (3.74)
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where the second equality uses mass continuity and D, /Dt =
0/ot +u gV —note that only the (horizontal) geostrophic
velocity does any advecting.

Now consider the three-dimensional thermodynamic
equation. Since w is small it only advects the basic state,
and the perturbation buoyancy is advected only by the
geostrophic velocity. Thus, (3.72¢) becomes

D gb’ 5
—2_ +wN*=0. (3.75)
Dt

We now eliminate w between (3.74) and (3.75), and
(with some algebra) gives

Dyq o [ fob'
97 _ = _ 0
" 0, q=C,+ f+ : < Nz ) (3.76)

Hydrostatic and geostrophic wind balance enable us
to write the geostrophic velocity, vorticity, and buoyancy
in terms of streamfunction v [= p/(fypy)]:

u,=kxVy, {,=Vy b =foy/dz. (377)

Thus, we have, now omitting the subscript g,

Dq_
Dt

>

, (3.78a,b)
vy ge g2 (L20)
q—V‘/""f"'fan NZaZ

Only the variable part of f (e.g., By) is relevant in the
second term on the right-hand side of the expression for g.
The material derivative may be expressed as

D _aasat + 1y 9). (3.79)
Dt
The quantity g is known as the quasi-geostrophic poten-
tial vorticity. It is analogous to the exact (Ertel) potential
vorticity (see section ?? for more about this), and it is con-
served when advected by the horizontal geostrophic flow.
All the other dynamical variables may be obtained from
potential vorticity as follows.
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(i) Streamfunction, using (3.78b).

(i) Velocity: u = k x Vy [= V'y = -V x (ky)].
(iii) Relative vorticity: { = V2y .
(iv) Perturbation pressure: ¢ = f,y.

(v) Perturbation buoyancy: b’ = f,0y/0z.

The length scale L; = NH/ f,, emerges naturally from
the QG dynamics. It is the scale at which buoyancy and
relative vorticity effects contribute equally to the potential
vorticity, and is called the deformation radius; it is anal-
ogous to the quantity \/gH/ f, arising in shallow water
theory. In the upper ocean, with N = 102%s L, H=10°m
and f, = 10™*s7!, then L; ~ 100km. At high latitudes
the ocean is much less stratified and f is somewhat larger,
and the deformation radius may be as little as 30 km. In
the atmosphere, with N =~ 1072s™!, H =~ 10*m, then
L; = 1000km. It is this order of magnitude difference
in the deformation scales that accounts for a great deal of
the quantitative difference in the dynamics of the ocean
and the atmosphere. If we take the limit L ; — oo then the
stratified quasi-geostrophic equations reduce to

Dq

o "
This is the two-dimensional vorticity equation, identical
to (22). The high stratification of this limit has suppressed
all vertical motion, and variations in the flow become con-
fined to the horizontal plane. Finally, we note that it is
typical in quasi-geostrophic applications to omit the prime
on the buoyancy perturbations, and write b = f,0y/0z;
however, we will keep the prime in this chapter.

0, q=Vy+f (3.80)

3.6.3 Buoyancy advection at the surface

The solution of the elliptic equation in (3.78) requires ver-
tical boundary conditions on y at the ground and at the
top of the atmosphere, and these are given by use of the
thermodynamic equation. For a flat, slippery, rigid surface
the vertical velocity is zero so that the thermodynamic
equation may be written as

Db’ , oy
N (3.81)
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We apply this at the ground and at the tropopause, treating
the latter as a lid on the lower atmosphere. In the presence
of friction and topography the vertical velocity is not zero,
but is given by

w=1rVy +u-Vy, (3.82)

where the first term represents Ekman friction (with the
constant r proportional to the thickness of the Ekman
layer) and the second term represents topographic forcing.
The boundary condition becomes

0 0 9]
3 (foa—f>+u-v (foa—f + Nznb>+N2rV21// =0, (3.83)

where all the fields are evaluated at z = 0 or z = H, the
height of the lid. Thus, the quasi-geostrophic system is
characterized by the horizontal advection of potential vor-
ticity in the interior and the advection of buoyancy at the
boundary. Instead of a lid at the top, then in a compress-
ible fluid such as the atmosphere we may suppose that all
disturbances tend to zero as z — co.

3.7 ENERGETICS OF QUASI-GEOSTROPHY

If the quasi-geostrophic set of equations is to represent a
real fluid system in a physically meaningful way, then it
should have a consistent set of energetics. In particular,
the total energy should be conserved, and there should be
analogs of kinetic and potential energy and conversion be-
tween the two. We now show that such energetic properties
do hold, using the Boussinesq set as an example.

Let us write the governing equations as a potential
vorticity equation in the interior,

D |2 3 (fo oy oy
V=0 2Y ¥ o, 1,
Dt[ "’+az<N2az MLE 0<zs<

(3.84)
and buoyancy advection at the boundary,

D (2

=0, =0,1. (3.85
Dt 62) ‘ ( )
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For lateral boundary conditions we may assume that
y = constant, or impose periodic conditions. If we multi-
ply (3.84) by —y and integrate over the domain, using the
boundary conditions, we easily find

dE ~_ 1 2 fo (Y

(3.86a,b)
The term involving 8 makes no direct contribution to the
energy budget. Equation (3.86) is the fundamental energy
equation for quasi-geostrophic motion, and it states that
in the absence of viscous or diabatic terms the total energy
is conserved. The two terms in (3.86b) can be identified
as the kinetic energy (KE) and available potential energy
(APE) of the flow, where

2 2
KE=%J (Vy)? dV, ApE:lj f—‘)(al’) av.
\4

2 A4 N 2 aZ
(3.87a,b)
The available potential energy may also be written as
2 0 2
APE=1 J = (—"’) av, (3.88)
2Jv L p 0z

where L is the deformation radius NH/ f, and we may
choose H such that z ~ H. At some scale L the ratio of the
kinetic energy to the potential energy is thus, roughly,
2
KE L4

5T (3.89)

For scales much larger than L ; the potential energy domi-
nates the kinetic energy, and contrariwise.

3.71 Conversion between APE and KE

Let us return to the vorticity and thermodynamic equa-

tions,
D{  ow

= f— 3.90
Dt 0z ( )

where { = V2y, and

— +N’w=0 (3.91)
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where b’ = f,0y/9z. From (3.90) we form a kinetic energy
equation namely

1d 2 ow a‘l’
2dt .[V( vrd JV fo 0z v JV fow 0z

(3.92)
From (3.91) we form a potential energy equation, namely

di( fs <8w>2 J oy
— | S(=—) dv=- —dV. 3.93
dtZJVNZ 9z Y5 (399)

Thus, the conversion from APE to KE is represented by

%KE _ —%APE _ J fowg—‘;’ av, (3.94)
Because the buoyancy is proportional to 0y/0dz, when
warm fluid rises there is a correlation between w and oy/0z
and APE is converted to KE. Whether such a phenomenon
occurs depends of course on the dynamics of the flow;
however, such a conversion is, in fact, a common feature
of geophysical flows.
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CHAPTER

RossBY WAVES

WEEKS 7 TO 9

4.1 FUNDAMENTALS AND FORMALITIES
4.11 Wave propagation and phase speed

Consider the propagation of monochromatic plane waves
satisfying

1’/ — Re Ipeie(x,t) — Re Wei(k-x—wt)’ (41)

where ¥ is a complex constant, 6 is the phase, w is the wave
frequency and k is the vector wavenumber (k, I, m) (also
written as (k*, k”,k*) or, in subscript notation, k;). The
prefix Re denotes the real part of the expression, but we
will drop it if there is no ambiguity. Given (4.1) a wave will
propagate in the direction of k (Fig. 4.1). At a given instant
and location we can align our coordinate axis along this
direction, and we write k - x = Kx*, where x* increases
in the direction of k and K? = |k|? is the magnitude of the
wavenumber. With this, we can write (4.1) as

v = Re re!®¥ 0 — Re el K= (42)
where ¢ = w/K. From this equation it is evident that the
phase of the wave propagates at the speed c in the direction

of k, and we define the phase speed by

w
Cp E (43)

88
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The wavelength of the wave, A, is the distance between
two wavecrests — that is, the distance between two loca-
tions along the line of travel whose phase difters by 2m —
and evidently this is given by

2m
A== 4.4
X (4.4)
In (for simplicity) a two-dimensional wave, and referring
to Fig. 4.1, the wavelength and wave vectors in the x- and
y-directions are given by,
A A
V=—0r VM=—m17p, k*=Kcosp, k¥ =Ksing.
cos ¢ sin¢
(4.5)
In general, lines of constant phase intersect both the co-
ordinate axes and propagate along them. The speed of
propagation along these axes is given by
x I Cp K w 24 _ Cp K w

PP cosc/)chﬁ_k_"’

sin ¢ _Cpky kY

(4.6)
using (4.3) and (4.5), and again referring to Fig. 4.1 for
notation. The speed of phase propagation along any one
of the axis is in general larger than the phase speed in the
primary direction of the wave. The phase speeds are clearly
not components of a vector: for example, c}’,‘ # c,cos¢.
Analogously, the wavevector k is a true vector, whereas the
wavelength A is not.

To summarize, the phase speed and its components
are given by

V= =
cp—cpl

G =— cgz (4.7)

w
K

4.1.2 'The dispersion relation

The above description is mostly kinematic and a little ab-
stract, applying to almost any disturbance that has a wavevec-
tor and a frequency. The particular dynamics of a wave are
determined by the relationship between the wavevector
and the frequency; that is, by the dispersion relation. Once
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(9)

0-(t1)
01(t1)

X \ AN X

Figure 4.1 The propagation of a two-dimensional wave. (a)
Two lines of constant phase (e.g., two wavecrests) at a time ¢,.
The wave is propagating in the direction k with wavelength A.
(b) The same line of constant phase at two successive times. The
phase speed is the speed of advancement of the wavecrest in
the direction of travel, and so ¢ = 1/(t, — t;). The phase speed
in the x-direction is the speed of propagation of the wavecrest
along the x-axis, and c;‘ =1/t —t;) = ¢,/ cos ¢.

the dispersion relation is known a great many of the prop-
erties of the wave follow in a more-or-less straightforward
manner, as we will see. Picking up from (??), the dispersion
relation is a functional relationship between the frequency
and the wavevector of the general form

w = Q(k). (4.8)

Perhaps the simplest example of a linear operator that
gives rise to waves is the one-dimensional equation

oy oy

— — =0. 4.9

ot “ox (49)
Substituting a trial solution of the form y = Re Aelkx—wt)

where Re denotes the real part, we obtain (—iw+cik)A = 0,
giving the dispersion relation

w = ck. (4.10)

The phase speed of this wave is ¢, = w/k = c. A few other

examples of governing equations, dispersion relations and

X

lX'

N
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phase speeds are:

0 .
a—lf+c-V1//=0, w=c-k, ¢, =lclcosb, cgch
(4.11a)
o’y cK
52 c2V21// =0, o =K% ¢ = %6, c; = 17,
(4.11b)
d 2 al// _:8k w x /5
s VP =0 T 9T 9Tk
(4.11¢)

where K* = k* +I? and 0 is the angle between ¢ and k, and
the examples are all two-dimensional, with variation in x
and y only.

A wave is said to be nondispersive or dispersionless if
the phase speed is independent of the wavelength. This
condition is clearly satisfied for the simple example (4.9)
but is manifestly not satisfied for (4.11c), and these waves
(Rossby waves, in fact) are dispersive. Waves of different
wavelengths then travel at different speeds so that a group
of waves will spread out — disperse — even if the medium
is homogeneous. When a wave is dispersive there is an-
other characteristic speed at which the waves propagate,
known as the group velocity, and we come to this in the
next section.

Most media are, of course, inhomogeneous, but if the
medium varies sufficiently slowly in space and time — and
in particular if the variations are slow compared to the
wavelength and period — we may still have a local disper-
sion relation between frequency and wavevector,

w = Q(k; x, t). (4.12)

Although Q is a function of k, x and t the semi-colon in
(4.12) is used to suggest that x and t are slowly varying
parameters of a somewhat different nature than k. We'll
resume our discussion of this topic in section ??2, but before
that we must introduce the group velocity.

4.2 GROUP VELOCITY

Information and energy clearly cannot travel at the phase
speed, for as the direction of propagation of the phase line
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Wave Fundamentals

« A wave is a propagating disturbance that has a characteristic relationship between its frequency
and size, known as the dispersion relation. Waves typically arise as solutions to a linear problem of
the form

L(y) =0, (WE1)

where L is, commonly, a linear operator in space and time. Two examples are

0
ot

2
IV _ Vi =0 and

2
- V2 + ﬁa—f 0. (WE2)

The first example is s

« Solutions to the governing equation are often sought in the form of plane waves that have the form
¥ = Re Ae! k>, (WE3)

where A is the wave amplitude, k = (k, I, m) is the wavevector, and w is the frequency.

« The dispersiono common in all areas of physics it is sometimes called ‘the’ wave equation. The
second example gives rise to Rossby waves. relation connects the frequency and wavevector through
an equation of the form w = Q(k) where Q is some function. The relation is normally derived
by substituting a trial solution like (WE3) into the governing equation (WE.1). For the examples
of (WE.2) we obtain w = ¢’K? and w = —ﬁk/K2 where K? = k* + I> + m? or, in two dimensions,
K=K+

« The phase speed is the speed at which the wave crests move. In the direction of propagation and in
the x, y and z directions the phase speed is given by, respectively,

w x @
P K P K

y_ @ 2_%
¢ = i . =—. (WFE.4)
where K = 2nt/A where A is the wavelength. The wave crests have both a speed (cp) and a direction
of propagation (the direction of k), like a vector, but the components defined in (WE4) are not the
components of that vector.

« The group velocity is the velocity at which a wave packet or wave group moves. It is a vector and is
given by
c, = Je with components ¢ = dw @ = dw i = 9w
9 ok 9 ok’ 9 ol 9 om’
Most physical quantities of interest are transported at the group velocity.

(WE5)

« If the coefficients of the wave equation are not constant (for example if the medium is inhomoge-
neous) then, if the coefficients are only slowly varying, approximate solutions may sometimes be
found in the form

v = Re A(x, )e!%®", (WE6)

where the amplitude A is also slowly varying and the local wavenumber and frequency are related
to the phase, 8, by k = VO and w = —d0/0dt. The dispersion relation is then a local one of the form
w = Q(k; x, t).
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21/6k

\/\A,\W,\A/\/\/\ C"AA/\f\/\
A V\/\!\/\/f

2Tr/k

Figure 4.2 Superposition of two sinusoidal waves with wave-
numbers k and k+0k, producing a wave (solid line) that is modu-
lated by a slowly varying wave envelope or wave packet (dashed
line). The envelope moves at the group velocity, ¢, = dw/dk
and the phase of the wave moves at the group speed ¢, = w/k.

tends to a direction parallel to the y-axis, the phase speed in
the x-direction tends to infinity! Rather, it turns out that
most quantities of interest, including energy, propagate
at the group velocity, a quantity of enormous importance
in wave theory.” Roughly speaking, group velocity is the
velocity at which a packet or a group of waves will travel,
whereas the individual wave crests travel at the phase speed.
To introduce the idea we will consider the superposition
of plane waves, noting that a monochromatic plane wave
already fills space uniformly so that there can be no prop-
agation of energy from place to place. We will restrict
attention to waves propagating in one direction, but the
argument may be extended to two or three dimensions.

4.2.1 Superposition of two waves

Consider the linear superposition of two waves. Limit-
ing attention to the one-dimensional case for simplicity,
consider a disturbance represented by
v = Re &(ei(klx_wlt) + ei(kzx_“’zt)). (4.13)
Let us further suppose that the two waves have similar
wavenumbers and frequency, and, in particular, that k; =
k+Akand k, = k- Ak,and w;, = w + Aw and w, = w — Aw.
With this, (4.13) becomes
y = Re We i(kx— wt)[ i(Ak x—Aw't) + e—i(Ak x—Aw t)]

(4.14)
=2Re l/fel(kx_“’t) cos(Ak x — Aw't).
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The resulting disturbance, illustrated in Fig. 4.2 has two
aspects: a rapidly varying component, with wavenumber
k and frequency w, and a more slowly varying envelope,
with wavenumber Ak and frequency Aw. The envelope
modulates the fast oscillation, and moves with velocity
Aw/Ak; in the limit Ak — 0 and Aw — 0 this is the group
velocity, ¢, = dw/0k. Group velocity is equal to the phase
speed, w/k, only when the frequency is a linear function
of wavenumber. The energy in the disturbance must move
at the group velocity — note that the node of the envelope
moves at the speed of the envelope and no energy can cross
the node. These concepts generalize to more than one di-
mension, and if the wavenumber is the three-dimensional
vector k = (k,I,m) then the three-dimensional envelope
propagates at the group velocity given by

_Ow _ (aw ow 8w> (4.15)

9= 3k ~\ok’ 3l om

The group velocity is also written as ¢, = Viw or, in sub-
script notation, c,; = 00/0k;, with the subscript i denoting
the component of a vector.

4.3 RossBY WAVES
4.3.1 The linear equation of motion

For most of the rest of this chapter we will be concerned
with the quasi-geostrophic equations of motion for which
(as discussed in chapter 3) the inviscid, adiabatic potential
vorticity equation is

9q

— -Vg =0, 416
or ¥V (4.16)

where q(x, y, z, t) is the potential vorticity and u(x, y, z,t)
is the horizontal velocity. The velocity is related to a stream-
function by u = -0y/dy, v = 0y/dx and the potential
vorticity is some function of the streamfunction, which
might differ from system to system. Two examples, one
applying to a continuously stratified system and the second
to a single layer system, are

0 0
q= f+C+£ (S(Z)a—li_/), q="{+f-ky. (417ab)
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where S(z) = fo2 /N2, = V21[/ is the relative vorticity and
k; = 1/L ;is the inverse radius of deformation for a shallow
water system. (Note that definitions of k; and L ; can vary,
typically by factors of 2, m, etc.) Boundary conditions may
be needed to form a complete system.

We now linearize (4.16); that is, we suppose that the
flow consists of a time-independent component (the ‘basic
state’) plus a perturbation, with the perturbation being
small compared with the mean flow. The basic state must
satisfy the time-independent equation of motion, and it is
common and useful to linearize about a zonal flow, u(y, z).
The basic state is then purely a function of y and so we
write

q1=4(.2) +q'(x, 3.t), Y=Y +y'(xy.21)
(4.18)

with a similar notation for the other variables. Note that
u = -0y/dy and v = 0. Substituting into (4.16) gives,
without approximation,

aq’ _ —_ — ! ! — ! I _

¥+u-Vq+u-Vq +u -Vg+u -Vq =0. (4.19)
The primed quantities are presumptively small so we ne-
glect terms involving their products. Further, we are assum-
ing that we are linearizing about a state that is a solution of
the equations of motion, so that - Vg = 0. Finally, since
v = 0 and dg/0x = 0 we obtain

oq' oq' dq
i+ﬁi+v’_q=

0. 4.20
ot 0x oy (4.20)

This equation or one very similar appears very commonly
in studies of Rossby waves. To proceed, let us consider the
simple example of waves in a single layer.

4.3.2 Waves in a single layer

Consider a system obeying (4.16) and (4.17b). The equation
could be written in spherical coordinates with f = 2Qsin 9,
but the dynamics are more easily illustrated on Cartesian
B-plane for which f = f, + By, and since f, is a constant
it does not appear in our subsequent derivations.
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Infinite deformation radius

If the scale of motion is much less than the deformation
scale then we make the approximation that k; = 0 and the
equation of motion may be written as

of

E+u-V(+ﬁv=0 (4.21)

We linearize about a constant zonal flow, = U, by writing

v =v() + ¢ (x 1), (4.22)

where y = —Uy. Substituting(4.22) into (4.21) and neglect-
ing the nonlinear terms involving products of ¥’ to give

!

ivzlll’ +U

oviy! 0
2 w+ﬁvf

ox

v 0. (4.23)
This equation is just a single-layer version of (4.20), with
9g/y = B,q' = V*y' and v’ = oy /ox.

The coefficients in (4.23) are not functions of y or z;
this is not a requirement for wave motion to exist but it
does enable solutions to be found more easily. Let us seek
solutions in the form of a plane wave, namely

w’ — Re&ei(kx-'—ly_wt), (424)

where ¥ is a complex constant and Re indicates the real
part of the function (a notation sometimes omitted if no
ambiguity is so-caused). Solutions of this form are valid
in a domain with doubly-periodic boundary conditions;
solutions in a channel can be obtained using a meridional
variation of sin Iy, with no essential changes to the dynam-
ics. The amplitude of the oscillation is given by ¢ and
the phase by kx + Iy — wt, where k and [ are the x- and
y-wavenumbers and w is the frequency of the oscillation.
Substituting (4.24) into (4.23) yields

[(~w + Uk)(-K?) + k] = 0, (4.25)

where K* = k* + I*. For non-trivial solutions this implies

w=Uk-= . (4.26)
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This is the dispersion relation for barotropic Rossby waves,
and evidently the velocity U Doppler shifts the frequency.
The components of the phase speed and group velocity are
given by, respectively,

x_w_, P y_@_yk_ Bk
cp_k—U 2 cp_l—Ul 7k (4.27a,b)
and

)
g0 _y B0, _ow 2Bk
9 0ok (k% +12)2 9 1 (k2 +12)2

(4.28a,b)
The phase speed in the absence of a mean flow is westwards,
with waves of longer wavelengths travelling more quickly,
and the eastward current speed required to hold the waves
of a particular wavenumber stationary (i.e., c; =0)isU =
B/K?. The background flow U evidently just provides a

uniform shift to the phase speed, and could be transformed
away by a change of coordinate.

Finite deformation radius

For a finite deformation radius the basic state ¥ = Uy
is still a solution of the original equations of motion, but
the potential vorticity corresponding to this state is g =
Uyk’+By and its gradient is Vq = (B+Uk2)j. The linearized
equation of motion is thus

I
(%+U )(vzw’ wk2)+(/3+de)——0 (4.29)

Substituting y' = Fel***~“" we obtain the dispersion
relation,
k(UK2 k(UK? - p) _ B +UK:
k2 Uk -k it (4.30)

The corresponding components of phase speed and group
velocity are

x_U_ﬁ+Uk;_UK2—/3 g _yk K UK® - B
POTUORP+KE K24k P T I\ KP+K
(4.31a,b)
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and
sy, Bt UK (K* - 1P - k3) o 2K+ Uk%)
I (k2 + 2+ k2)? TR+ R2)Y
(4.32a,b)

The uniform velocity field now no longer provides just
a simple Doppler shift of the frequency, nor a uniform
addition to the phase speed. From (4.31a) the waves are
stationary when K* = /U = KZ; that is, the current speed
required to hold waves of a particular wavenumber station-
aryisU = B/K>. However, this is not simply the magnitude
of the phase speed of waves of that wavenumber in the ab-
sence of a current — this is given by
x _ﬁ -U

c, = = -U. 4.33
P K52+kfi 1+k§/Ks2 ? (4.33)

Why is there a difference? It is because the current does not
just provide a uniform translation, but, if k; is non-zero,
it also modifies the basic potential vorticity gradient. The
basic state height field #, is sloping; that is 1, = —(f,/9)Uy,
and the ambient potential vorticity field increases with y
and g = (B + Uk})y. Thus, the basic state defines a pre-
ferred frame of reference, and the problem is not Galilean
invariant.®

We also note that, from (4.31b), the group velocity is
negative (westward) if the x-wavenumber is sufficiently
small, compared to the y-wavenumber or the deformation
wavenumber. That is, said a little loosely, long waves move
information westward and short waves move information
eastward, and this is a common property of Rossby waves.
The x-component of the phase speed, on the other hand,
is always westward relative to the mean flow.

4.3.3 The mechanism of Rossby waves

The fundamental mechanism underlying Rossby waves is
easily understood. Consider a material line of stationary
fluid parcels along a line of constant latitude, and suppose
that some disturbance causes their displacement to the
line marked #(t = 0) in Fig. 4.3. In the displacement, the
potential vorticity of the fluid parcels is conserved, and
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Figure4.3 The mechanism of a two-dimensional (x-y) Rossby
wave. An initial disturbance displaces a material line at constant
latitude (the straight horizontal line) to the solid line marked
n(t = 0). Conservation of potential vorticity, By + {, leads to the
production of relative vorticity, as shown for two parcels. The
associated velocity field (arrows on the circles) then advects the
fluid parcels, and the material line evolves into the dashed line.
The phase of the wave has propagated westwards.

in the simplest case of barotropic flow on the -plane the
potential vorticity is the absolute vorticity, Sy + {. Thus, in
either hemisphere, a northward displacement leads to the
production of negative relative vorticity and a southward
displacement leads to the production of positive relative
vorticity. The relative vorticity gives rise to a velocity field
which, in turn, advects the parcels in material line in the
manner shown, and the wave propagates westwards.

In more complicated situations, such as flow in two
layers, considered below, or in a continuously stratified
fluid, the mechanism is essentially the same. A displaced
fluid parcel carries with it its potential vorticity and, in the
presence of a potential vorticity gradient in the basic state,
a potential vorticity anomaly is produced. The potential
vorticity anomaly produces a velocity field (an example of
potential vorticity inversion) which further displaces the
fluid parcels, leading to the formation of a Rossby wave.
The vital ingredient is a basic state potential vorticity gra-
dient, such as that provided by the change of the Coriolis
parameter with latitude.
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4.4 RoOSSBY WAVES IN STRATIFIED QUASI-GEOSTROPHIC
Frow

4.4.1 Setting up the problem

Let us now consider the dynamics of linear waves in strat-
ified quasi-geostrophic flow on a 3-plane, with a resting
basic state.

The interior flow is governed by the potential vorticity
equation, (3.78), and linearizing this about a uniform E-W
flow gives rest gives

0 0 5, , 0 oy’ oy’
[a +Ua] [V vt (F(z)gﬂ TP = 0,

(4.34)

where F(z) = fo2 /N?. (Fis the square of the inverse Prandtl

ratio, N/ f,.) The vertical boundary conditions are de-

termined by the thermodynamic equation, (3.81). If the

boundaries are flat, rigid, slippery surfaces then w = 0 at

the boundaries and if there is no surface buoyancy gradient

the linearized thermodynamic equation is

3 oy
= (%) 0. (4.35)

We apply this at the ground and at the tropopause, so at
z=0andatz = H.

4.4.2 Wave motion

We may seek solutions of the form
1l// = Re Ip(z)ei(kx+ly—wt)) (436)

where y(z) will determine the vertical structure of the
waves. In the zonal direction (the x-direction) the flow is
periodic, and if the domain is of horizontal length L, then
we have k = 2nn, /L, where n, = 1,2,3.... In there are
‘walls’at y = 0and y = L, where y = 0 then the y variation
should be of the form y' ~ sinly where | = /L, where
n, is an integer. However, we will keep the exponential
form (4.36) for the y variation for simplicity. Finally, if
F(z) is a constant then the problem further simplifies and
we can seek solutions of the form

1//l ~ Re ﬁei(kx+ly+mz—wt)’ (437)
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and this is what we shall do. This solution does not of itself
satisty (4.35), and we can make it do so by restricting the
vertical variations to be of the form:

1//' = Acosmz where m =n,n/H, (4.38)

where #, is an integer. These solutions then satisty oy/oz
at z = 0 and z = H. Having said this, we will stick with
eqref[qg:sepwave2] for our manipulations, just because
that is simpler, bearing in mind that the y and z variations
should just be sines and cosines, respectively.

The dispersion relation is obtained by substituting (??)qg;sepwave2]
into (4.34) giving

Bk

=Uk - .
“ 12+ 2+ (f2/ N2

(4.39)

It is interesting to re-write this as an equation for m,
and we obtain

2
%MZ = Uﬁ_ - - K? (4.40)

where K? = k* + I and ¢ = w/k. We'll come back to this in
section 4.5, and the next subsection may be skipped if you
wish.

4.43 ¢ The case with non-constant N*

For simplicity let U = 0, and then substituting (4.36) into
(4.34) gives

1d

w —K2{/7(z) + 5z

_d§ _
Now, if ¥ satisfies

14 (5139 - rg
Sa (pF(z) ) =TV (4.42)

where I is a constant, then the equation of motion becomes

~w[K*+T|§ - ki =0, (4.43)
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and the dispersion relation follows, namely

k
w= —Kf+ - (4.44)

Equation (4.42) constitutes an eigenvalue problem for the
vertical structure; the boundary conditions, derived from
(4.35), are 0y/0z = 0 atz = 0 and z = H. The result-
ing eigenvalues, I' are proportional to the inverse of the
squares of the deformation radii for the problem and the
eigenfunctions are the vertical structure functions.

Consider the case in which F(z) is constant, and in
which the domain is confined between two rigid surfaces
at z = 0 and z = H. Then the eigenvalue problem for the
vertical structure is

>y _
Fd—zz = —Fl// (4458.)

with boundary conditions of

a7 _

0, atz =0,H. (4.45b)
dz

There is a sequence of solutions to this, namely
¥, (z) = cos(nnz/H), n=1,2... (4.46)

with corresponding eigenvalues

F 2 2
rnznzﬁ’g:(m)z(ﬁ), n=12.... (4.47)

NH
Equation (4.47) may be used to define the deformation
radii for this problem, namely
1 NH

" \/Tn - nify

The first deformation radius is the same as the expression
obtained by dimensional analysis, namely NH/ f, except
for a factor of m. (Definitions of the deformation radii
both with and without the factor of m are common in the
literature, and neither is obviously more correct. In the
latter case, the first deformation radius in a problem with
uniform stratification is given by NH/ f, equal to n/+/T;.)

L

(4.48)



4.5 VERTICAL PROPAGATION OF ROSSBY WAVES 103

In addition to these baroclinic modes, the case with n = 0,
that is with ¢ = 1, is also a solution of (4.45) for any F(z).
Using (4.44) and (4.47) the dispersion relation becomes

Bk

T GNDE " 0,1,2... (4.49)

and, of course, the horizontal wavenumbers k and [ are also
quantized in a finite domain. This equation is the same as
(4.39)

The dynamics of the barotropic mode (n = 0) are in-
dependent of height and independent of the stratification
of the basic state, and so these Rossby waves are identical
with the Rossby waves in a two-dimensional fluid.

4.5 VERTICAL PROPAGATION OF ROSSBY WAVES
4.5.1 Conditions for wave propagation

The dispersion relation is

2
m? = % (% — K+ 12)). (4.50)
0

For waves to propagate upwards we require that m* > 0
and, from (4.50), that

B
0<U C<k2+12’ (4.51)
where u, = 3/ (k* + I?) is the Rossby critical velocity. For
waves of some given frequency (w = kc) the above expres-
sion provides a condition on U for the vertical propagation
of planetary waves. For stationary waves ¢ = 0 and the
criterion is

B

0<U<k2+12 , (4.52)
and this is illustrated in Fig. 4.4. That is to say, the verti-
cal propagation of stationary Rossby waves occurs only
in westerly winds, and winds that are weaker than some
critical value, u, = B/(k* + I*) that depends on the scale
of the wave. If the waves can take any frequency there is
no such condition on U, for (4.50) is just a form of the
dispersion relation and (4.51) is naturally satisfied.
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Essentials of Rossby Waves

« Rossby waves owe their existence to a gradient of potential vorticity in the fluid. If a fluid parcel is
displaced, it conserves its potential vorticity and so its relative vorticity will in general change. The
relative vorticity creates a velocity field that displaces neighbouring parcels, whose relative vorticity
changes and so on.

« A common source of a potential vorticity gradient is differential rotation, or the f-effect, and
planetary waves is the name given to this type of Rossby wave. In the presence of non-zero f the
ambient potential vorticity increases northward and the phase of the Rossby waves propagates
westward. In general, Rossby waves propagate pseudo-westwards, meaning to the left of the
direction of the potential vorticity gradient.

« A common equation of motion for Rossby waves is
— +tuU—+0—=0, (RW.1)

with an overbar denoting the basic state and a prime a perturbation. In the case of a single layer of
fluid with no mean flow this equation becomes

%(V2 + k)Y + ﬁaa—li =0 (RW.2)

with dispersion relation

_[)’k

+ The phase speed in the zonal direction (c, = w/k) is always negative, or westward, and is larger for
large waves. For (RW.2) components of the group velocity are given by

. PE-1P-K)
c=——,
N (Y )k

2Bkl

— e (RW.4)
(K2 + 2 + k2)?

y_
]

The group velocity is westward if the zonal wavenumber is sufficiently small, and eastward if the
zonal wavenumber is sufficiently large.

» Rossby waves exist in stratified fluids, and have a similar dispersion relation to (RW.3) with an
appropriate vertical wavenumber appearing in place of the inverse deformation radius, k.

« The reflection of such Rossby waves at a wall is specular, meaning that the group velocity of the
reflected wave makes the same angle with the wall as the group velocity of the incident wave. The
energy flux of the reflected wave is equal and opposite to that of the incoming wave in the direction
normal to the wall.



4.5 VERTICAL PROPAGATION OF ROSSBY WAVES 105

1201
\\ —¥=1.6
\ ---y=2.0

[0}
o

N \\ Evanesce

Propagate S

Zonal wind (m/s)
N
o

0 ]
Evanesce
4 L L L L
0O 2 4 6 8 10
Wavenumber

Figure 4.4 The boundary between propagating waves and
evanescent waves as a function of zonal wind and wavenumber,
using (4.52), for a couple of values of I (labelled y here).

Stationary, vertically oscillatory modes can exist only
for zonal flows that are eastwards and that are less than the
critical velocity U, = B/(k* + I*). One way to interpret this
condition is note that in a resting medium the Rossby wave
frequency has a minimum value (and maximum absolute
value), when m = 0, of

Bk

Note too that in a frame moving with speed U our Rossby
waves (stationary in the Earth’s frame) have frequency
—Uk, and this is the forcing frequency arising from the
now-moving bottom topography. Thus, (4.52) is equiva-
lent to saying that for oscillatory waves to exist the forcing
frequency must lie within the frequency range of vertically
propagating Rossby waves.

For westward flow, or for sufficiently strong eastward
flow, the waves decay exponentially as @ = @, exp(-az)

where "
a:fﬁ(k%lz—g) . (4.54)
0

Note that the critical velocity u, = (8/k* + I?) is a func-
tion of wavenumber, and that it increases with horizontal
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wavelength. Thus, for a given eastward flow long waves
may penetrate vertically when short waves are trapped, an
effect sometimes referred to as ‘Charney-Drazin filtering’’
One important consequence of this is that the stratospheric
motion is typically of larger scales than that of the tropo-
sphere, because Rossby waves tend to be excited first in
the troposphere (by baroclinic instability and by flow over
topography, among other things), but the shorter waves are
trapped and only the longer ones reach the stratosphere. In
the summer, the stratospheric winds are often westwards
(because the pole is warmer than the equator) and all waves
are trapped in the troposphere; the eastward stratospheric
winds that favour vertical penetration occur in the other
three seasons, although very strong eastward winds can
suppress penetration in mid-winter.

4.5.2 Dispersion relation and group velocity

The dispersion relation for three-dimensional Rossby waves
is again

Bk
= Uk - . 455
“ K2+ 92 + m f2/ N2 (45)

The three components of the group velocity for these waves
are then:

BIK* — (P +m® f§[N?)]

cr=U+ (4.56a)
C e e Ny
o 2kl o 2Bkmfy/N* ‘
P N T e Y
(4.56b,c)

The propagation in the horizontal is analogous to the prop-
agation in a shallow water model [c.f. (4.31b)]; note also
that higher baroclinic modes (bigger ) will have a more
westward group velocity. The vertical group velocity is
proportional to m, and for waves that propagate signals up-
ward we must choose m to have the same sign as k so that
c; is positive. If there is no mean flow then the zonal wave-
number k is negative (in order that frequency is positive)
and m must then also be negative. Energy then propagates

upward but the phase propagates downward.
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Figure4.5 A schematic east-west section of an upwardly prop-
agating Rossby wave. The slanting lines are lines of constant
phase and ‘high’ and ‘low’ refer to the pressure or streamfunc-
tion values. Both k and m are negative so the phase lines are
oriented up and to the west. The phase propagates westward
and downward, but the group velocity is upward.

4.5.3 Vertical wave propagation and heat transport

If the group velocity in the z-direction, given by (4.56) is
to be positive, then we require the product km > 0. This
has consequences for the heat transport.

Remember that the buoyancy b, which is a proxy for
temperature, is given by f,0y/0z. And the northward
velocity is v = 0y/0x. Thus, the northward flux of heat, H
say, is given by

v ov (457)

where an overbar denotes a zonal average. Thus

H=0b= fog—‘i’g—‘” = f,Re yimexp(i0) Re yik exp(i0)
X
(4.58)

where 0 = (kx + 1y + mz). Following manipulations exactly
analogous to those given in the appendix, we find

|
H=> folwPkm. (4.59)
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Figure 4.6 The effects of a mid-latitude disturbance on the
circulation around the latitude line C. If initially the absolute vor-
ticity increases monotonically polewards, then the disturbance
will bring fluid with lower absolute vorticity into the cap region.
Then, using Stokes theorem, the velocity around the latitude
line C will become more westwards.

The conclusion is that vertical propagation of Rossby
waves is associated with a polewards heat flux.

4.6 RossBY WAVES AND JETS
4.6.1 1. The vorticity budget

Suppose that the absolute vorticity normal to the surface
(i.e., { +2Qsin 9) increases monotonically polewards. (A
sufficient condition for this is that the fluid is at rest.) By
Stokes’ theorem, the circulation around a line of latitude
circumscribing the polar cap, I, is equal to the integral of
the absolute vorticity over the cap. That is,

I = J w;,-dA = ¢ u;,,dl = CJ; (u;+Qacos 9) dl, (4.60)
cap C C

where w;, and u;,, are the initial absolute vorticity and veloc-
ity, respectively, u; is the initial zonal velocity in the Earth’s
frame of reference, and the line integrals are around the
line of latitude. For simplicity let us take u; = 0 and suppose
there is a disturbance equatorwards of the polar cap, and
that this results in a distortion of the material line around
the latitude circle C (Fig. 4.6). Since we are supposing the
source of the disturbance to be distant from the latitude of
interest, then if we neglect viscosity the circulation along
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the material line is conserved, by Kelvin’s circulation theo-
rem. Thus, vorticity with a lower value is brought into the
region of the polar cap — that is, the region polewards of
the latitude line C. Using Stokes’ theorem again the circu-
lation around the latitude circle C must therefore fall; that
is, denoting values after the disturbance with a subscript

>
Iy = J wp, dA <, (4.61)
cap

so that

4) (uf +QacosV)dl < 4} (u; + Qacos9)dl  (4.62)
C o

and

i< (4.63)
with the overbar indicating a zonal average. Thus, there
is a tendency to produce westward flow polewards of the
disturbance. By a similar argument westward flow is also
produced equatorwards of the disturbance — to see this
one might apply Kelvin's theorem over all of the globe south
of the source of the disturbance (taking care to take the dot-
product correctly between the direction of the vorticity
vector and the direction normal to the surface). Finally,
note that the overall situation is the same in the Southern
Hemisphere. Thus, on the surface of a rotating sphere,
external stirring will produce westward flow away from
the region of the stirring.

Now suppose, furthermore, that the disturbance im-
parts no net angular momentum to the fluid. Then the
integral of ua cos 9 over the entire hemisphere must be con-
stant. But the fluid is accelerating westwards away from
the disturbance. Therefore, the fluid in the region of the
disturbance must accelerate eastwards; that is, angular mo-
mentum must converge into the stirred region, producing
an eastward flow. This simple mechanism is the essence of
the production of eastward eddy-driven jets in the atmo-
sphere, and of the eastward surface winds in mid-latitudes.
The stirring that here we have externally imposed comes,
in reality, from baroclinic instability.

If the stirring subsides then the flow may reversibly
go back to its initial condition, with a concomitant rever-
sal of the momentum convergence that caused the zonal
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Figure 4.7 Generation of zonal flow on a 3-plane or on a rotat-
ing sphere. Stirring in mid-latitudes (by baroclinic eddies) gen-
erates Rossby waves that propagate away from the disturbance.
Momentum converges in the region of stirring, producing east-
ward flow there and weaker westward flow on its flanks.

flow. Thus, we must have some form of dissipation and
irreversibility in order to produce permanent changes, and
in particular we need to irreversibly mix vorticity. If the
fluid is continuously mixed, then of course we also need
a source that restores the absolute vorticity gradient, oth-
erwise we will completely homogenize the vorticity over
the hemisphere, so let us now set up a simple model that
shows how a permanent jet structure can be maintained.

4.6.2 II. Rossby waves and momentum flux

We saw above that a mean gradient of vorticity is an essen-
tial ingredient in the mechanism whereby a mean flow is
generated by stirring. Given such, we expect Rossby waves
to be excited, and we now show how Rossby waves are
intimately related to the momentum flux maintaining the
mean flow.

If a stirring is present in mid-latitudes then we expect
that Rossby waves will be generated there, propagate away
and break and dissipate. To the extent that the waves are
quasi-linear and do not interact, then just away from the
source region each wave has the form

v = Re Cei(kx+ly—wt) — Re Cei(kx+ly—kct), (464)
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Figure 4.8 The momentum transport in physical space,
caused by the propagation of Rossby waves away from a source
in mid-latitudes. The ensuing bow-shaped eddies are responsi-
ble for a convergence of momentum, as indicated in the ideal-
ization pictured.

where C is a constant, with dispersion relation

w=ck=Uk- % = wpg, (4.65)
provided that there is no meridional shear in the zonal
flow. The meridional component of the group velocity is
given by
dw 2Bkl
ol (k+12)*
Now, the direction of the group velocity must be away from
the source region; this is a radiation condition (discussed
more in the next subsection), demanded by the require-
ment that Rossby waves transport energy away from the
disturbance. Thus, northwards of the source kI is positive
and southwards of the source kI is negative. That the prod-
uct kI can be positive or negative arises because for each k
there are two possible values of  that satisfy the dispersion

-
G = (4.66)
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relation (4.65), namely

=+ (Ui - kz)l/2 , (4.67)

—-C

assuming that the quantity in parentheses is positive.
The velocity variations associated with the Rossby waves
are

ul = _ReC ilei(kx+ly—wt)’ v = ReC ikei(kx+ly—wt)’
(4.68a,b)
and the associated momentum flux is (see appendix for
algebraic details)

e —%Czkl. (4.69)

Thus, given that the sign of kl is determined by the group
velocity, northwards of the source the momentum flux as-
sociated with the Rossby waves is southward (i.e., u'v/ is
negative), and southwards of the source the momentum
flux is northward (i.e., ' is positive). That is, the momen-
tum flux associated with the Rossby waves is toward the
source region. Momentum converges in the region of the
stirring, producing net eastward flow there and westward
flow to either side (Fig. 4.7).

Another way of describing the same effect is to note
that if kI is positive then lines of constant phase (kx + ly =
constant) are tilted north-west/south-east, and the momen-
tum flux associated with such a disturbance is negative
(u'v' < 0). Similarly, if kI is negative then the constant-
phase lines are tilted north-east/south-west and the associ-
ated momentum flux is positive (W > 0). The net result
is a convergence of momentum flux into the source region.
In physical space this is reflected by having eddies that are
‘bow-shaped, as in Fig. 4.8.

APPENDIX: CALCULATION OF FLUXES

In two places in this chapter we had to calculate the average
flux of a quantity and in this appendix we do that explicitly
in the case of the northward flux of momentum in a Rossby
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wave. The same method can be used to calculate the ver-
tical flux of buoyancy in a Rossby wave. It is important
to take the real part of each expression before taking the
average. To proceed, let

y = Re Ae!+hy—eh (4.70)

where A = a + ib. The velocities are given by

u= —2—;’:, v= ?)_l/ (4.71)
Thus,
u = -ReilAe = alsin 6 + bl cos 6 (4.72)
and
v = +ReikAe'® = —aksin 0 — bk cos 6 (4.73)

where 0 = kx + ly — wt. The northwards momentum flux

is then
L

uv = 1 J uvdx (4.74)
L )o

where L is a wavelength or a multiple of wavelengths. Now,
a standard result is that

1 (L, 1 (L, 1
— | sin“kxdx =~ cos"kxdx ==, (4.75)
L Jo L Jo 2

and

L
% J sin kx coskx dx = 0. (4.76)
0

Thus,
1 (L
uv = I J (al sin O + bl cos 8) x (—ak sin 6 — bk cos 0)
0

=T b) = —%lAlzkl
(4.77)

Thus, the poleward flux of momentum is proportional to
—kl.

A similar methodology applies when calculating the
poleward flux of buoyancy, vb. Since v = 0y/0x = ReikA exp(i0)
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and b = f,0y/0z = ReifymAexp(if) then by the same
technique we find, skipping some algebra,

o L
vb = % J (—ak sin @ — bk cos 0) x (—am sin 6 — bm cos 0)
0
_ Jokm 2 2y = Jopakm
2 2
(4.78)

and is proportional to +km.
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ExXMAN LAYERS AND OCEAN
(GYRE

WEEKS 9 TO 11

5.1 ExmAN LAYERS

The fluid fields in the interior of a domain are often set
by different physical processes than those occurring at a
boundary, and consequently often change rapidly in a thin
boundary layer, as in Fig. 5.1. Such boundary layers nearly
always involve one or both of viscosity and diffusion, be-
cause these appear in the terms of highest differential order
in the equations of motion, and so are responsible for the
number and type of boundary conditions that the equa-
tions must satisfy — for example, the presence of molecular
viscosity leads to the condition that the tangential flow (as
well as the normal flow) must vanish at a rigid surface.
In many boundary layers in non-rotating flow the domi-
nant balance in the momentum equation is between the
advective and viscous terms. In large-scale atmospheric
and oceanic flow the effects of rotation are large and the
dominant balance is between Coriolis and frictional or
stress terms.

The atmospheric Ekman layer occurs near the ground,
and the stress at the ground itself is due to the surface wind
(and its vertical variation). In the ocean the main Ekman
layer is near the surface, and the stress at ocean surface is
largely due to the presence of the overlying wind. There

115
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U

Figure 5.1 An idealized boundary layer. The values of a field,
such as velocity, U, may vary rapidly in a boundary in order
to satisfy the boundary conditions at a rigid surface. The pa-
rameter § is a measure of the boundary layer thickness, H is a
typical scale of variation away from the boundary, and typically
a boundary layer has § <« H.

is also a weak Ekman layer at the bottom of the ocean,
analogous to the atmospheric Ekman layer. To analyze all
these layers we assume:

« The Ekman layer is Boussinesq.

 The Ekman layer has a finite depth that is less than
the total depth of the fluid, this depth being given by
the level at which the frictional stresses essentially
vanish. Within the Ekman layer, frictional terms
are important, whereas geostrophic balance holds
beyond it.

« The nonlinear and time-dependent terms in the equa-
tions of motion are negligible, hydrostatic balance
holds in the vertical, and buoyancy is constant, not
varying in the horizontal.

« Friction can be parameterized by a viscous term of
the form p,'97/0z = A9°u/0z*, where A is constant
and 7 is the stress. [In general, stress is a tensor, 7;;,
with an associated force given by F; = 07;;/0x ;, sum-
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ming over the repeated index. It is common in geo-
physical fluid dynamics that the vertical derivative
dominates, and in this case the force is F = 0t/0z.
We still use the word stress for 7, but it now refers to
a vector whose derivative in a particular direction
(z in this case) is the force on a fluid.] In laboratory
settings A may be the molecular viscosity, whereas
in the atmosphere and ocean it is a so-called eddy
viscosity.

5.1.1 Equations of motion and scaling

Frictional-geostrophic balance in the horizontal momen-
tum equation is:

o7

Xu=-V ¢+ —, 51

f Z¢ az ( )

where T = 7/p, is the kinematic stress and f = fk, where

the Coriolis parameter f is allowed to vary with latitude.

If we model the stress with an eddy viscosity, (5.1) becomes

7u

fxu=- Z¢+Aazz.

(5.2)
The vertical momentum equation is 0¢/dz = b, i.e., hydro-
static balance, and, because buoyancy is constant, we may
without loss of generality write this as

o¢

— =0. 5.3

5 (5.3)
The equation set is completed by the mass continuity equa-
tion, V-v = 0.

The Ekman number

We non-dimensionalize the equations by setting

(u,v) =UW,0), (x,y)=LX7»), f=ff, z=Hz
(5.4)
where hatted variables are non-dimensional. H is a scaling
for the height, and at this stage we will suppose it to be
some height scale in the free atmosphere or ocean, not
the height of the Ekman layer itself. Geostrophic balance
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suggests that @ = f UL. Substituting (5.4) into (5.2) we

obtain
2~

fxﬁ:—§$+M%§, (5.5)

where the parameter

Ekz(ﬁ§ﬁ> , (5.6)

is the Ekman number, and it determines the importance
of frictional terms in the horizontal momentum equation.
If Ek < 1 then the friction is small in the flow interior
where Z = O(1). However, the friction term cannot nec-
essarily be neglected in the boundary layer because it is
of the highest differential order in the equation, and so
determines the boundary conditions; if Ek is small the
vertical scales become small and the second term on the
right-hand side of (5.5) remains finite. The case when this
term is simply omitted from the equation is therefore a
singular limit, meaning that it differs from the case with
Ek — 0. If Ek > 1 friction is important everywhere, but
it is usually the case that Ek is small for atmospheric and
oceanic large-scale flow;, and the interior flow is very nearly
geostrophic. (In part this is because A itself is only large
near a rigid surface where the presence of a shear creates
turbulence and a significant eddy viscosity.)

Momentum balance in the Ekman layer

For definiteness, suppose the fluid lies above a rigid surface
at z = 0. Sufficiently far away from the boundary the
velocity field is known, and we suppose this flow to be in
geostrophic balance. We then write the velocity field and
the pressure field as the sum of the interior geostrophic
part, plus a boundary layer correction:

i=d,+ig  ¢=P,+ s (5.7)

where the Ekman layer corrections, denoted with a sub-
script E, are negligible away from the boundary layer. Now,
in the fluid interior we have, by hydrostatic balance, a% [0z =
0. In the boundary layer we still have a@ /0z = 0 so that,

to satisfy hydrostasy, d¢/0z = 0. But because ¢ vanishes
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away from the boundary we have ¢ = 0 everywhere. Thus,
there is no boundary layer in the pressure field. Note that
this is a much stronger result than saying that pressure is
continuous, which is nearly always true in fluids; rather, it
is a special result for Ekman layers.

Using (5.7) with ¢5 = 0, the dimensional horizontal
momentum equation (5.1) becomes, in the Ekman layer,

ot
= —. 58
S xug oz (5.8)

The dominant force balance in the Ekman layer is thus
between the Coriolis force and the friction. We can de-
termine the thickness of the Ekman layer if we model the
stress with an eddy viscosity so that

o*u
f XUg = A?ZE, (59)
or, non-dimensionally,
— gl
Fxiip = Ek a;E‘ (5.10)

It is evident this equation can only be satisfied if Z # O(1),
implying that H is not a proper scaling for z in the bound-
ary layer. Rather, if the vertical scale in the Ekman layer is
5 (meaning z ~ 8) we must have 8 ~ Ek'?. In dimensional
terms this means the thickness of the Ekman layer is

8 = HS = HEK'? (5.11)

or

5= (%)m . (512)

[This estimate also emerges directly from (5.9).] Note that
(5.11) can be written as

Ek = (%)2 (5.13)

That is, the Ekman number is equal to the square of the
ratio of the depth of the Ekman layer to an interior depth
scale of the fluid motion. In laboratory flows where A is the



5.1 EXMAN LAYERS 120

molecular viscosity we can thus estimate the Ekman layer
thickness, and if we know the eddy viscosity of the ocean or
atmosphere we can estimate their respective Ekman layer
thicknesses. We can invert this argument and obtain an
estimate of A if we know the Ekman layer depth. In the
atmosphere, deviations from geostrophic balance are very
small in the atmosphere above 1km, and using this gives
A = 10* m?s”". In the ocean Ekman depths are often 50 m

or less, and eddy viscosities are about 0.1 m* s,

5.1.2 Integral properties of the Ekman layer

What can we deduce about the Ekman layer without speci-
tying the detailed form of the frictional term? Using dimen-
sional notation we recall frictional-geostrophic balance,
1 ot
=-Vop+ ——, 514
fru=-Vor o 5:14)
where 7 is zero at the edge of the Ekman layer. In the
Ekman layer itself we have

1 ot

XU = ——. 5.15
fxug =57 (515)
Consider either a top or bottom Ekman layer, and integrate

over its thickness. From (5.15) we obtain

where
ME = J PoUE dz (5.17)
Ek

is the ageostrophic mass transport in the Ekman layer, and
7p and 1y are the respective stresses at the top and the
bottom of the Ekman layer at hand. The stress at the top
(bottom) will be zero in a bottom (top) Ekman layer and
therefore, from (5.16),

1
top Ekman layer: Mg = —?k X T

1
bottom Ekman layer: Mp=—-kxTp

f
(5.18a,b)
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The transport is thus at right angles to the stress at the
surface, and proportional to the magnitude of the stress.
These properties have a simple physical explanation: inte-
grated over the depth of the Ekman layer the surface stress
must be balanced by the Coriolis force, which in turn acts
at right angles to the mass transport. A consequence of
(5.18) is that the mass transports in adjacent oceanic and
atmospheric Ekman layers are equal and opposite, because
the stress is continuous across the ocean—atmosphere in-
terface. Equation (5.18a) is particularly useful in the ocean,
where the stress at the surface is primarily due to the wind,
and is largely independent of the interior oceanic flow. In
the atmosphere, the surface stress mainly arises as a result
of the interior atmospheric flow, and to calculate it we need
to parameterize the stress in terms of the flow.

Finally, we obtain an expression for the vertical veloc-
ity induced by an Ekman layer. The mass conservation
equation is

ou OJv OJw
—+—+—=0 5.19
ox oy oz (5.19)
Integrating this over an Ekman layer gives
iV MT = —(wT - wB), (5.20)
Po

where M is the total (Ekman plus geostrophic) mass trans-
port in the Ekman layer,

M, = J poudz = J po(uy+ug)dz = M, + Mg, (5.21)
Ek Ek

and wr and wy are the vertical velocities at the top and
bottom of the Ekman layer; the former (latter) is zero in a
top (bottom) Ekman layer. Equations (5.21) and (5.16) give

!
f

Taking the curl of this (i.e., cross-differentiating) gives

kx (Mg~ M,) = ~(ty - 5). (5.22)

V- (Mg~ M,) = curl,[(zy - )/ f], (5.23)

where the curl, operator on a vector A is defined by curl A =
d.A, —0,A,. Using (5.20) we obtain, for top and bottom
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Figure5.2 Upper and lower Ekman layers. The upper Ekman
layer in the ocean is primarily driven by an imposed wind stress,
whereas the lower Ekman layer in the atmosphere or ocean
largely results from the interaction of interior geostrophic veloc-
ity and a rigid lower surface. The upper part of figure shows the
vertical Ekman ‘pumping’ velocities that result from the given
wind stress, and the lower part of the figure shows the Ekman
pumping velocities given the interior geostrophic flow.

Ekman layers respectively,

1 T 1 T
wg = % (curlzTT + V- Mg>, wr = % (curlzTB -V Mg>,
(5.24a,b)

where V- M, = —(B/ f)M, - j is the divergence of the geo-
strophic transport in the Ekman layer, and this is often

small compared to the other terms in these equations. Thus,
friction induces a vertical velocity at the edge of the Ekman

layer, proportional to the curl of the stress at the surface,

and this is perhaps the most used result in Ekman layer the-

ory. Numerical models sometimes do not have the vertical
resolution to explicitly resolve an Ekman layer, and (5.24)
provides a means of parameterizing the Ekman layer in
terms of resolved or known fields. It is particularly useful

for the top Ekman layer in the ocean, where the stress can

be regarded as a given function of the overlying wind.
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5.1.3 Sverdrup Balance

In this section we rederive the above results in a slightly
more direct way, and also obtain a result for the total trans-
port induced by a windstress. To this end, consider an
ocean forced by a windstress at the top that satisfies the
Ekman-layer equations

where T = 7/p,. Equivalently we have

07, o7
flog=v) ===, flu-u,) = a_zy' (5.26)

We note that the geostrophic velocity field satisfies,

Ju, 0y, 57
f g + g = —/.))Ug. ( . )
If we integrate the mass continuity equation over the

depth of the Ekman layer, the vertical velocity at its base is
given by

0 ou, Ov
szJ %+%+_g+_g . (5.28)
-H;,\ O0x dy Ox Oy

The divergence of the geostrophic velocity is given by (5.27),
and that of the ageostrophic velocity is obtained from
(5.26). We thus obtain

w5 (3)-5 ()
(5.29)

where 7,, T, are the components of the stress at the sur-
face. This equation is essentially the same as (5.24a).

If we go back to (5.25), cross differentiate and integrate
from the top down we obtain an expression for the vertical
velocity at the base of the Ekman layer in terms of the stress
and the total velocity,

7 = 0
wg = L [aTyO - %] - J Evdz. (5.30)
flox oy -H f

—JO Ev dz,

-y f Y
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Figure 5.3 Left: the time averaged velocity field at a depth
of 75 m in the North Atlantic. Right: the streamfunction of the
vertically integrated flow, in Sverdrups (1Sv = 10° kg s™'). Note
the presence of an anticyclonic subtropical gyre (clockwise cir-
culation, shaded red), a cyclonic subpolar gyre (anticlockwise,
blue), and intense western boundary currents.

If we let the integral go over the entire depth of the ocean,
and assume that the vertical velocity is zero at the bottom,
we obtain
0T, 0T
vdz = =2 — 2 X0, 5.31
j P ox oy 53D

This is known as the Sverdrup relation, and is a relation
between the stress at the surface and the total meridional
transport in the ocean.

5.2 OCEAN GYRES

5.3 THE DEPTH INTEGRATED WIND-DRIVEN CIR-
CULATION

The large-scale mean currents shown in Fig. 5.3 and in
Fig. 5.4, where we see subtropical and subpolar gyres, all
of them intensified in the west. Our goal is to explain
the main features seen in these figures in as simple and
straightforward a manner as is possible.

The equations that govern the large-scale flow in the
oceans are the planetary-geostrophic equations, but these
equations are still quite daunting: a prognostic equation
for buoyancy is coupled to the advecting velocity via hydro-
static and geostrophic balance, and the resulting problem
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is formidably nonlinear. However, it turns out that thermo-
dynamic effects can effectively be eliminated by the simple
device of vertical integration; the resulting equations are
linear, and the only external forcing is that due to the wind
stress.

5.3.1 The Stommel Model

The planetary-geostrophic equations for a Boussinesq fluid
are:

];_IZ = .b) V?, U= 0) (5'32a’b)

1 ot 0¢
- v+ Py, 5.33a,b
fxu o+ o0 0z 32 (5.33a,b)

These equations are, respectively, the thermodynamic equa-
tion (5.32a), the mass continuity equation (5.32b), the hor-
izontal momentum equation (5.33a), (i.e., geostrophic bal-
ance, plus a stress term), and the vertical momentum equa-
tion (5.33b) — that is, hydrostatic balance. These equa-
tions are derived more fully in Chapter 3, but they are
essentially the Boussinesq primitive equations with the
advection terms omitted from the horizontal momentum
equation, on the basis of small Rossby number. In this
chapter we will henceforth absorb the factor of p, into the
T, so that 7 denotes the kinematic stress, and the gradient
operator will be two dimensional, in the x-y plane, unless
noted.

Take the curl of (5.33a) (that is, cross differentiate its
x and y components) and integrate over the depth of the
ocean to give

J fV-udz+ % J vdz = curl (rp —15),  (534)
where the operator curl,, is defined by curl,A = 0A” /ox —
0A*/0y = k-V x A, and the subscripts T and B are for top
and bottom. The divergence term vanishes if the vertical
velocity is zero at the top and bottom of the ocean. Strictly,
at the top of the ocean the vertical velocity is given by the
material derivative of height of the ocean’s surface, Dh/Dt,
but on the large-scales this has a negligible effect and we
may make the rigid-lid approximation and set it to zero.
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Figure 5.4 The streamfunction of the vertically integrated
flow for the near global ocean. Red shading indicates clockwise
flow, and blue shading anticlockwise, but in both hemispheres
the subtropical (subpolar) gyres are anticyclonic (cyclonic).

At the bottom of the ocean the vertical velocity is only zero
if the ocean is flat-bottomed; otherwise it is u - V75, where
np is the orographic height at the ocean floor. The neglect
of this topographic term is probably the most restrictive
single approximation in the model. Given this neglect,
(5.34) becomes

pu = curl, (t — 73), (5.35)

where henceforth, in this section, quantities with an over-
bar are understood to be the vertical integral over the depth
of the ocean. If the stresses depend only on the velocity
fields then thermodynamic fields do not affect the verti-
cally integrated flow.
At the top of the ocean, the stress is given by the wind.
At the bottom, in the absence of topography we assume
that the stress may be parameterized by a linear drag, or
Rayleigh friction, as might be generated by an Ekman layer;
it is this assumption that particularly characterizes this
model as being due to Stommel. Equation (5.35) then
becomes B
pu =-r{ + F.(x, y), (5.36)

where F, = curl, 7 is the wind-stress curl at the top of the
ocean and is a known function. Because the velocity is
divergence-free, we can define a streamfunction y such
that u = —0y/dy and v = dy/ox. Equation (5.36) then
becomes

d
erl// + ﬁa—:’: = F,.(x, y). (5.37)
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This equation is often referred to as the Stommel problem
or the Stommel model, and may be posed in a variety of
two dimensional domains.

5.3.2 Approximate Solution of Stommel Model
Sverdrup balance

Equation (5.37) is linear and it is possible to obtain an
exact, analytic solution. However, it is more insightful to
approach the problem perturbatively, by supposing that the
frictional term is small, meaning there is an approximate
balance between wind stress and the -effect.' Friction is
small if [r{| < |Bu| or

r _ fo

- == 5.38

L HL <P ( )
using r = f6p/H, and where L is the horizontal scale of the
motion, and generally speaking this inequality is well satis-
fied for large-scale flow. The vorticity equation becomes

po = curl, 7, (5.39)

which is known as Sverdrup balance." (Sometimes Sver-
drup balance is taken to mean the linear geostrophic vor-
ticity balance v = fow/dz, but we will restrict its use to
mean a balance between the beta effect and wind stress
curl.) The observational support for Sverdrup balance is
rather mixed, discrepancies arising not so much from the
failure of (5.38), but from the presence of small-scale eddy-
ing motion with concomitantly large nonlinear terms, and
the presence of non-negligible vertical velocities induced
by the interaction with bottom topography.'? Nevertheless,
Sverdrup balance provides a useful, if not impregnable,
foundation on which to build.

Boundary-layer solution

For simplicity, consider a square domain of side a and
rescale the variables by setting

X = ax, y =ay, T = 1,7, Y= W%, (5.40)

where 7 is the amplitude of the wind stress. The hatted
variables are nondimensional and, assuming our scaling
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to be sensible, these are O(1) quantities in the interior.
Equation (??) becomes

oy 2~

— + & VY = curl,T, 5.41
where e = (r/af8) < 1, in accord with (5.38). For the rest
of this section we will drop the hats over nondimensional
quantities. Over the interior of the domain, away from
boundaries, the frictional term in (5.41) is small. We can
take advantage of this by writing

v(x, y) = yi(x, ) + d(x, y), (5.42)

where y; is the interior streamfunction and ¢ is a boundary
layer correction. Away from boundaries y/; is presumed to
dominate the flow, and this satisfies

o)

% = curl, 77 (5.43)
The solution of this equation (called the ‘Sverdrup interior’)
is

yi(x, y) = J curlz'r(x', ¥) dx' + gy, (5.44)
0

where g(y) is an arbitrary function of integration that gives
rise to an arbitrary zonal flow. The corresponding velocities
are

dg(y)
dy °
(5.45)

v; = curl,T, up = —ai J curl,7(x', y) dx’ -
'y Jo

The dynamics is most clearly illustrated if we now re-
strict our attention to a wind-stress curl that is zonally
uniform, and that vanishes at two latitudes, y = 0 and
y = 1. An example is

7). =0, 7. = — cos(my), (5.46)

for which curl,7 = —msin(ny). The Sverdrup (interior)
flow may then be written as

yi(x, y) = [x—C(y)]curl,7r = n[C(y) — x] sinmy, (5.47)
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Figure5.5 Two possible Sverdrup flows, v, for the wind stress
shown in the centre. Each solution satisfies the no-flow condi-
tion at either the eastern or western boundary, and a boundary
layer is therefore required at the other boundary. Both flows
have the same, equatorward, meridional flow in the interior.
Only the flow with the western boundary current is physically
realizable, however, because only then can friction produce a
curl that opposes that of the wind stress, so allowing the flow
to equilibrate.

where C(y) is the arbitrary function of integration [C(y) =
—-g(y)/curl,7]. If we choose C to be a constant, the zonal
flow associated with it is C curl, 7. We can then satisfy
y =0ateither x =0 ({if C = 0) or x = 1 (if C = 1). These
solutions are illustrated in Fig. 5.5 for the particular stress
(5.46).

Regardless of our choice of C we cannot satisfy y = 0
at both zonal boundaries. We must choose one, and then
construct a boundary layer solution (i.e., we determine ¢)
to satisfy the other condition. Which choice do we make?
On intuitive grounds it seems that we should choose the
solution that satisfies ¢ = 0 at x = 1 (the solution on the
left in Fig. 5.5), for the interior flow then goes round in the
same direction as the wind: the wind is supplying a clock-
wise torque, and to achieve an angular momentum balance
anticlockwise angular momentum must be supplied by
friction. We can imagine that this would be provided by
the frictional forces at the western boundary layer if the
interior flow is clockwise, but not by friction at an eastern
boundary layer when the interior flow is anticlockwise.
Note that this argument is not dependent on the sign of
the wind-stress curl: if the wind blew the other way a sim-
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ilar argument still implies that a western boundary layer
is needed. We will now see if and how the mathematics
reflects this intuitive but non-rigorous argument.

Asymptotic matching

Near the walls of the domain the boundary layer correction
¢(x, y) must become important in order that the boundary
conditions may be satisfied, and the flow, and in particular
¢(x, y), will vary rapidly with x. To reflect this, let us stretch
the x-coordinate near this point of failure (i.e., at either
x = 0 or x = 1, but we do not know at which yet) and let

X =€ or x-1=¢aq. (5.48a,b)

Here, « is the stretched coordinate, which has values O(1)
in the boundary layer, and e is a small parameter, as yet
undetermined. We then suppose that ¢ = ¢(«, ¥), and
using (5.42) in (5.41), we obtain

WI 18_(/) = curl, 7, (5.49)
ax o

€S(V II/I +V ¢)
where ¢ = ¢(a, y) and V2p = € 20°¢/da* + 0°¢/dy*. Now,
by choice, y; exactly satisfies Sverdrup balance, and so
(5.49) becomes

¢ 0°¢\ 104 _
€g (V Y+ —a—+$>+;£ =0. (550)

We now choose € to obtain a physically meaningful
solution. An obvious choice is € = €g, for then the leading-
order balance in (5.50) is

32¢ 5¢
=0, 5.51
da? aoc (5.51)
the solution of which is
¢ = A(y) +B(y)e ™ . (5.52)

Evidently, ¢ grows exponentially in the negative « direc-
tion. If this were allowed, it would violate our assump-
tion that solutions are small in the interior, and we must
eliminate this possibility by allowing « to take only pos-
itive values in the interior of the domain, and by setting
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Figure 5.6 Two solutions of the Stommel model. Upper panel
shows the streamfunction of a single-gyre solution, with a wind
stress proportional to — cos(nty/a) (in a domain of side a), and
the lower panel shows a two-gyre solution, with wind stress
proportional to cos(2my/a). In both cases g = 0.04.

A(y) = 0. We therefore choose x = ex so that « > 0 for
x > 0; the boundary layer is then at x = 0, that is, itis a
western boundary, and it decays eastwards in the direction
of increasing a — that is, into the ocean interior. We now
choose C = 1in (5.47) to make y; = 0 at x = 1 in (5.47)
and then, for the wind stress (5.46), the interior solution is
given by

y; = 1(1 - x)sinmy. (5.53)

This alone satisfies the boundary condition at the eastern
boundary. The function B(y) is chosen to satisfy the addi-
tional condition that

y=y;+¢=0 at x=0, (5.54)
and using (5.53) this gives
nsinmy + B(y) = 0. (5.55)
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Using this in (5.52), with A(y) = 0, then gives the boundary
layer solution
¢ = —msinmye /s, (5.56)

The composite (boundary layer plus interior) solution is
the sum of (5.53) and (5.56), namely

y=(0-x- e /%) sinmy. (5.57)

With dimensional variables this is

~ T
Y= M(l—f—e x/(“es))sin—y. (5.58)
B a ¢

This is a ‘single gyre’ solution. Two or more gyres can
be obtained with a different wind forcing, such as * =
-1, cos(2my), as in Fig. 5.6.

It is a relatively straightforward matter to generalize to
other wind stresses, provided these also vanish at the two
latitudes between which the solution is desired. It is left as
a problem to show that in general

Yy = J curlzr(x',y) dx’, (5.59)

XE

and that the composite solution is

v =y — (0, y)e S, (5.60)
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