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Preface

September 28, 2018

_ese are a set of lecture notes for ECMM719, Fluid Dynamics of the Atmosphere and
Ocean, given at the University of Exeter. _e notes are not self-contained – you will need
to look in books for a full understanding, and this version of the notes is quite streamlined.



Chapter 1
Equationswith Rotation and
Stratification
Weeks 1 to 3

1.1 Review of Fluid Equations
First we just write down the equations without derivation. For dry air, or for a salt-free
liquid, the equations ofmotion may be written as follows:

_emass continuity equation:

àñ
àt

+ ∇⋅ (ñv) = 0. (1.1)

If density is constant this reduces to ∇⋅ v = 0.
_emomentum equation:

Dv
Dt

= −
∇p
ñ

+ í∇2v + F, (1.2)

where F represents the eòects of body forces such as gravity and í is the kinematic viscosity.
If density is constant, or pressure, p, is given as a function of density alone (e.g., p = Cñã
where ã is a constant), then (1.1) and (1.2) form a complete system.

_e thermodynamic equation:

DI
Dt

+
p
ñ
∇⋅ v = Q̇, (1.3)

where Q̇ represents diabatic sources such as heating and diòusion, I is internal energy. In
the ideal gas case the internal energy is given by I = cvT where T is temperature.

1



1.1 Review of Fluid Equations 2

An equation of state:
p = f(I, ñ), (1.4)

where f is some known function. For example, for an ideal gas, p = ñRI/cv or,more simply,
p = ñRT, where R is the ideal gas constant for the gas at hand and T is temperature.

_e above four equations have four unknowns: velocity (a vector), temperature, pres-
sure and density. _e equations are called the Euler equations if the viscous term is omitted,
and the Navier–Stokes equations if viscosity is included.1

1.1.1 Ideal Gas
Let us look at the ideal gas case in a littlemore detail. For �uid dynamical purposes the
ideal gas equation of state is usually written in the form

p = ñRT (1.5)

where R is the gas constant of the gas in question, related to the universal gas constant Ru
by R = Ru/m, wherem is themolecular weight of the gas.

_e internal energy of an ideal gas is given by I = cvT where cv is the heat capacity at
constant volume. It is a function of temperature alone, and in fact is almost a constant. For
an ideal gas we also have cp − cv = R, where cp is the heat capacity at constant pressure.

For an ideal gas the ûrst law of thermodynamics may be written in either of the two
equivalent forms

đQ = cv dT + p dá or đQ = cp dT − á dp, (1.6a,b)

where the second expression is derived using á = RT/p. Forming thematerial derivative
of the above gives two forms of the internal energy equation:

cvDT
Dt

+ p
Dá
Dt

= Q̇ or cpDT
Dt

−
RT
p

Dp
Dt

= Q̇. (1.7a,b)

Using themass continuity equation, (1.7a) is equivalent to

DT
Dt

+
p
cvñ∇⋅ v = Q̇

cv . (1.8)

Alternatively, again using the ideal gas equation, wemay eliminate T in favour of p and á
and obtain

Dp
Dt

+ ãp∇⋅ v = Q̇
ñR
cv . (1.9)

where ã = cp/cv.
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Potential temperature
Using the ideal gas equation we can write (1.6b) as s

dç =
đQ
T

= cp d lnT − R d lnp. (1.10)

where ç is the speciûc entropy, which is a function of state. Now, let us deûne the potential
temperature, è, by the expression

è ≡ T(
p0
p
)
ê
, (1.11)

where ê = R/cp. It straightforwardly follows that

cp d ln è = cp d lnT − R d lnp, (1.12)

and therefore the ûrst law of thermodynamics can be written at

đQ = cp (Tè ) dè. (1.13)

Taking thematerial derivative we have

cpDè
Dt

=
è
T
Q̇. (1.14)

_is is a useful form because it just involves thematerial derivative of one quantity. _e
potential temperature is, in the absence of diabatic terms, amaterially conserved quantity,
unlike temperature. It is closely related to entropy, and in particular

dç = cp d ln è. (1.15)

_e potential temperature is the temperature that a �uid would have ifmoved adia-
batically to the reference pressure p0, but the explicit demonstration of this is le� to the
reader. Indeed, potential temperaturemay be deûned this way, and for an ideal gas this is
equivalent to (1.11).

1.2 The Equations of Motion in a Rotating Frame of Reference
Newton’s second law of motion, that the acceleration on a body is proportional to the
imposed force divided by the body’s mass, applies in so-called inertial frames of reference;
that is, frames that are stationary or moving only with a constant rectilinear velocity relative
to the distant galaxies. Now the Earth spins round its own axis with a period of almost
24 hours (23h 56m) and so the surface of the Earth manifestly is not an inertial frame.
Nevertheless, it is very convenient to describe the �ow relative to the Earth’s surface (which
in fact is moving at speeds of up to a few hundreds ofmetres per second), rather than in
some inertial frame. _is necessitates recasting the equations into a form that is appropriate
for a rotating frame of reference, and that is the subject of this section.
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Figure 1.1 A vector C rotating at an angular velocityØ. It appears to be a constant vector in the
rotating frame, whereas in the inertial frame it evolves according to (dC/dt)I = Ø × C.
1.2.1 Rate of change of a vector
Consider ûrst a vectorC of constant length rotating relative to an inertial frame at a constant
angular velocity Ø. _en, in a frame rotating with that same angular velocity it appears
stationary and constant. If in a small interval of time ät the vector C rotates through a
small angle äë then the change in C, as perceived in the inertial frame, is given by (see
Fig. 1.1)

äC = |C| cos ú äëm, (1.16)

where the vectorm is the unit vector in the direction of change ofC,which is perpendicular
to both C and Ø. But the rate of change of the angle ë is just, by deûnition, the angular
velocity so that äë = |Ø|ät and

äC = |C||Ø| sin ú̂m ät = Ø × C ät. (1.17)

using the deûnition of the vector cross product, where ú̂ = (π/2 − ú) is the angle between
Ø and C. _us

(
dC
dt

)I = Ø × C, (1.18)

where the le�-hand side is the rate of change of C as perceived in the inertial frame.
Now consider a vector B that changes in the inertial frame. In a small time ät the

change in B as seen in the rotating frame is related to the change seen in the inertial frame
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by
(äB)I = (äB)R + (äB)rot, (1.19)

where the terms are, respectively, the change seen in the inertial frame, the change due to
the vector itself changing as measured in the rotating frame, and the change due to the
rotation. Using (1.17) (äB)rot = Ø × B ät, and so the rates of change of the vector B in the
inertial and rotating frames are related by

(
dB
dt

)I = (
dB
dt

)R +Ø × B. (1.20)

_is relation applies to a vector B that, as measured at any one time, is the same in both
inertial and rotating frames.

1.2.2 Velocity and acceleration in a rotating frame
_e velocity of a body is not measured to be the same in the inertial and rotating frames,
so caremust be taken when applying (1.20) to velocity. First apply (1.20) to r, the position
of a particle to obtain

(
dr
dt

)I = (
dr
dt

)R +Ø × r (1.21)

or
vI = vR +Ø × r. (1.22)

We refer to vR and vI as the relative and inertial velocity, respectively, and (1.22) relates the
two. Apply (1.20) again, this time to the velocity vR to give

(
dvR
dt

)I = (
dvR
dt

)R +Ø × vR, (1.23)

or, using (1.22)

(
d
dt

(vI −Ø × r))I = (
dvR
dt

)R +Ø × vR, (1.24)

or
(
dvI
dt

)I = (
dvR
dt

)R +Ø × vR +
dØ
dt

× r +Ø × (
dr
dt

)I . (1.25)

_en, noting that

(
dr
dt

)I = (
dr
dt

)R +Ø × r = (vR +Ø × r), (1.26)

and assuming that the rate of rotation is constant, (1.25) becomes

(
dvR
dt

)R = (
dvI
dt

)I − 2Ø × vR −Ø × (Ø × r). (1.27)
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_is equation may be interpreted as follows. _e term on the le�-hand side is the rate
of change of the relative velocity as measured in the rotating frame. _e ûrst term on the
right-hand side is the rate of change of the inertial velocity as measured in the inertial
frame (the inertial acceleration, which is, by Newton’s second law, equal to the force on
a �uid parcel divided by its mass). _e second and third terms on the right-hand side
(including theminus signs) are the Coriolis force and the centrifugal force per unit mass.
Neither of these are true forces— theymay be thought of as quasi-forces (i.e., ‘as if ’ forces);
that is, when a body is observed from a rotating frame it seems to behave as if unseen
forces are present that aòect its motion. If (1.27) is written, as is common, with the terms
+2Ø × vr and +Ø × (Ø × r) on the le�-hand side then these terms should be referred to as
the Coriolis and centrifugal accelerations.

Centrifugal force
If r⊥ is the perpendicular distance from the axis of rotation (see Fig. 1.1 and substitute r for
C), then, because Ø is perpendicular to r⊥, Ø × r = Ø × r⊥. _en, using the vector identity
Ø × (Ø × r⊥) = (Ø ⋅ r⊥)Ø − (Ø ⋅Ø)r⊥ and noting that the ûrst term is zero, we see that the
centrifugal force per unit mass is just given by

Fce = −Ø × (Ø × r) = Ø2r⊥. (1.28)

_is may usefully be written as the gradient of a scalar potential,

Fce = −∇Õce. (1.29)

where Õce = −(Ø2r2⊥)/2 = −(Ø × r⊥)2/2.
Coriolis force
_e Coriolis force per unit mass is:

FCo = −2Ø × vR. (1.30)

It plays a central role in much of geophysical �uid dynamics and will be considered exten-
sively later on. For now, we just note three basic properties.

(i) _ere is no Coriolis force on bodies that are stationary in the rotating frame.
(ii) _e Coriolis force acts to de�ect moving bodies at right angles to their direction of

travel.
(iii) _e Coriolis force does no work on a body because it is perpendicular to the velocity,

and so vR ⋅ (Ø × vR) = 0.

1.2.3 Momentum equation in a rotating frame
Since (1.27) simply relates the accelerations of a particle in the inertial and rotating frames,
then in the rotating frame of reference themomentum equation may be written

Dv
Dt

+ 2Ø × v = −
1
ñ
∇p − ∇Õ, (1.31)
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incorporating the centrifugal term into the potential, Õ. We have dropped the subscript R;
henceforth, unlesswe need to be explicit, all velocitieswithout a subscriptwill be considered
to be relative to the rotating frame.

1.2.4 Mass and tracer conservation in a rotating frame
Let õ be a scalar ûeld that, in the inertial frame, obeys

Dõ
Dt

+ õ∇⋅ vI = 0. (1.32)

Now, observers in both the rotating and inertial framemeasure the same value of õ. Further,
Dõ/Dt is simply the rate of change of õ associated with amaterial parcel, and therefore is
reference frame invariant. _us,

(
Dõ
Dt

)R = (
Dõ
Dt

)I , (1.33)

where (Dõ/Dt)R = (àõ/àt)R + vR ⋅ ∇õ and (Dõ/Dt)I = (àõ/àt)I + vI ⋅ ∇õ and the local
temporal derivatives (àõ/àt)R and (àõ/àt)I are evaluated at ûxed locations in the rotating
and inertial frames, respectively.

Further, using (1.22), we have that we have that

∇⋅ vI = ∇⋅ (vR +Ø × r) = ∇⋅ vR (1.34)

since ∇⋅ (Ø × r) = 0. _us, using (1.33) and (1.34), (1.32) is equivalent to

Dõ
Dt

+ õ∇⋅ vR = 0, (1.35)

where all observables are measured in the rotating frame. _us, the equation for the
evolution of a scalar whosemeasured value is the same in rotating and inertial frames is
unaltered by the presence of rotation. In particular, the mass conservation equation is
unaltered by the presence of rotation.

_e individual components of thematerial derivative diòer in the rotating and inertial
frames. In particular

(
àõ
àt

)I = (
àõ
àt

)R − (Ø × r) ⋅ ∇õ (1.36)

because Ø × r is the velocity, in the inertial frame, of a uniformly rotating body. Similarly,

vI ⋅ ∇õ = (vR +Ø × r) ⋅ ∇õ. (1.37)

Adding the last two equations reprises (1.33).



1.3 Spherical Coordinates 8

�
Figure 1.2 (a) On the sphere the rotation vectorØ can be decomposed into two components, one
in the local vertical and one in the local horizontal, pointing toward the pole. That is,Ø = Øyj+Øzk
whereØy = Ø cos ú andØz = Ø sinú. In geophysical �uid dynamics, the rotation vector in the local
vertical is often the more important component in the horizontal momentum equations. On a
rotating disk, (b), the rotation vectorØ is parallel to the local vertical k.

1.3 ♦ Spherical Coordinates
We write these equations down for reference, but we won’t derive them or use them in their
spherical form.

1.3.1 Mass Conservation and_ermodynamic Equation
_emass conservation equation expanded in spherical co-ordinates, is

àñ
àt

+
u

r cos ú
àñ
àë

+
v
r
àñ
àú

+ w
àñ
àr

+
ñ

r cos ú
[
àu
àë

+
à
àú

(v cos ú) +
1
r
à
àr

(wr2 cos ú)] = 0.
(1.38)

Equivalently this is the same as

àñ
àt

+
1

r cos ú
à(uñ)
àë

+
1

r cos ú
à
àú

(vñ cos ú) +
1
r2 à

àr
(r2wñ) = 0. (1.39)

_e thermodynamic equation is a tracer advection equation. _e (adiabatic) potential
temperature in spherical coordinate form is

Dè
Dt

=
àè
àt

+
u

r cos ú
àè
àë

+
v
r
àè
àú

+ w
àè
àr

= 0, (1.40)

and similarly for tracers such as water vapour or salt.

1.3.2 Momentum Equation
_emomentum equation is:

Du
Dt

− (2Ø +
u

r cos ú
) (v sin ú − w cos ú) = −

1
ñr cos ú

àp
àë

, (1.41a)
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Dv
Dt

+
wv
r

+ (2Ø +
u

r cos ú
) u sin ú = −

1
ñr

àp
àú

, (1.41b)

Dw
Dt

−
u2 + v2

r
− 2Øu cos ú = −

1
ñ
àp
àr

− g. (1.41c)

_e terms involving Ø are called Coriolis terms, and the quadratic terms on the le�-hand
sides involving 1/r are o�en calledmetric terms.

1.4 ♦ The primitive equations
_e so-called primitive equations ofmotion are simpliûcations of the equations that make
three related approximations:

(i) The hydrostatic approximation. In the vertical momentum equation the gravitational
term is assumed to be balanced by the pressure gradient term, so that

àp
àz

= −ñg. (1.42)

_e advection of vertical velocity, the Coriolis terms, and themetric term (u2 + v2)/r
are all neglected.

(ii) The shallow-�uid approximation. Wewrite r = a+zwhere the constant a is the radius
of the Earth and z increases in the radial direction. _e coordinate r is then replaced
by a except where it is used as the diòerentiating argument. _us, for example,

1
r2 à(r2w)àr

→
àw
àz

. (1.43)

(iii) The traditional approximation. Coriolis terms in the horizontal momentum equations
involving the vertical velocity, and the still smaller metric terms uw/r and vw/r, are
neglected.

_e second and third of these approximations should be taken, or not, together, the under-
lying reason being that they both relate to the presumed small aspect ratio of themotion,
so the approximations succeed or fail together.

Making these approximations, themomentum equations become

Du
Dt

− 2Ø sin úv −
uv
a

tan ú = −
1

añ cos ú
àp
àë

, (1.44a)

Dv
Dt

+ 2Ø sin úu +
u2 tan ú

a
= −

1
ña

àp
àú

, (1.44b)

0 = −
1
ñ
àp
àz

− g, (1.44c)
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where
D
Dt

= (
à
àt

+
u

a cos ú
à
àë

+
v
a

à
àú

+ w
à
àz

) . (1.45)

We note the ubiquity of the factor 2Ø sin ú, and take the opportunity to deûne the Coriolis
parameter, f ≡ 2Ø sin ú.

_e corresponding mass conservation equation for a shallow �uid layer is:

àñ
àt

+
u

a cos ú
àñ
àë

+
v
a
àñ
àú

+ w
àñ
àz

+ ñ [
1

a cos ú
àu
àë

+
1

a cos ú
à
àú

(v cos ú) +
àw
àz

] = 0,
(1.46)

or equivalently,

àñ
àt

+
1

a cos ú
à(uñ)
àë

+
1

a cos ú
à
àú

(vñ cos ú) +
à(wñ)
àz

= 0. (1.47)

1.5 Cartesian Approximations: The Tangent Plane
1.5.1 _e f -plane
Although the rotation of the Earth is central formany dynamical phenomena, the sphericity
of the Earth is not always so. _is is especially true for phenomena on a scale somewhat
smaller than global where the use of spherical coordinates becomes awkward, and it is
more convenient to use a locally Cartesian representation of the equations. Referring to
Fig. 1.2 we will deûne a plane tangent to the surface of the Earth at a latitude ú0, and then
use a Cartesian coordinate system (x, y, z) to describe motion on that plane. For small
excursions on the plane, (x, y, z) ≈ (aë cos ú0, a(ú − ú0), z). Consistently, the velocity is
v = (u, v, w), so that u,v and w are the components of the velocity in the tangent plane, in
approximately in the east–west, north–south and vertical directions, respectively.

_emomentum equations for �ow in this plane are then

àu
àt

+ (v ⋅ ∇)u + 2(Øyw − Øzv) = −
1
ñ
àp
àx

, (1.48a)

àv
àt

+ (v ⋅ ∇)v + 2(Øzu − Øxw) = −
1
ñ
àp
ày

, (1.48b)

àw
àt

+ (v ⋅ ∇)w + 2(Øxv − Øyu) = −
1
ñ
àp
àz

− g, (1.48c)

where the rotation vectorØ = Øxi+Øyj+Øzk andØx = 0,Øy = Ø cos ú0 andØz = Ø sin ú0.
If wemake the traditional approximation, and so ignore the components of Ø not in the
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direction of the local vertical, then

Du
Dt

− f0v = −
1
ñ
àp
àx

,

Dv
Dt

+ f0u = −
1
ñ
àp
ày

,

Dw
Dt

= −
1
ñ
àp
àz

− g.

(1.49a)

(1.49b)

(1.49c)

where f0 = 2Øz = 2Ø sin ú0. Deûning the horizontal velocity vector u = (u, v, 0), the ûrst
two equations may also be written as

Du
Dt

+ f0 × u = −
1
ñ
∇zp, (1.50)

whereDu/Dt = àu/àt + v ⋅ ∇u, f0 = 2Ø sin ú0k = f0k, and k is the direction perpendicular
to the plane (it does not change its orientationwith latitude). _ese equations are, evidently,
exactly the same as themomentum equations in a system in which the rotation vector is
aligned with the local vertical, as illustrated in the right-hand panel in Fig. 1.2 (on page 8).
_ey will describe �ow on the surface of a rotating sphere to a good approximation provided
the �ow is of limited latitudinal extent so that the eòects of sphericity are unimportant; we
havemade what is known as the f-plane approximation since the Coriolis parameter is a
constant. Wemay in addition make the hydrostatic approximation, in which case (1.49c)
becomes the familiar àp/àz = −ñg.

1.5.2 _e beta-plane approximation
_e magnitude of the vertical component of rotation varies with latitude, and this has
important dynamical consequences. We can approximate this eòect by allowing the eòective
rotation vector to vary. _us, noting that, for small variations in latitude,

f = 2Ø sin ú ≈ 2Ø sin ú0 + 2Ø(ú − ú0) cos ú0, (1.51)

then on the tangent plane wemaymimic this by allowing the Coriolis parameter to vary as

f = f0 + ây , (1.52)

where f0 = 2Ø sin ú0 and â = àf/ày = (2Ø cos ú0)/a. _is important approximation is
known as the beta-plane, or â-plane, approximation; it captures the themost important
dynamical eòects of sphericity, without the complicating geometric eòects, which are not
essential to describe many phenomena. _e momentum equations (1.49) are unaltered
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except that f0 is replaced by f0 + ây to represent a varying Coriolis parameter. _us,
sphericity combined with rotation is dynamically equivalent to a diòerentially rotating
system. For future reference, we write down the â-plane horizontal momentum equations:

Du
Dt

+ f × u = −
1
ñ
∇zp, (1.53)

where f = (f0 + ây)k̂. In component form this equation becomes

Du
Dt

− fv = −
1
ñ
àp
àx

,
Dv
Dt

+ fu = −
1
ñ
àp
ày

. (1.54a,b)

_emass conservation, thermodynamic and hydrostatic equations in the â-plane approxi-
mation are the same as the usual Cartesian, f-plane, forms of those equations.

1.6 The Boussinesq Approximation
_e density variations in the ocean are quite small compared to themean density, and we
may exploit this to derive somewhat simpler but still quite accurate equations ofmotion.
Let us ûrst examine how much density does vary in the ocean.

1.6.1 Variation of density in the ocean
_e variations of density in the ocean are due to three eòects: the compression of water
by pressure (which we denote as Äpñ), the thermal expansion of water if its temperature
changes (ÄTñ), and the haline contraction if its salinity changes (ÄSñ). How big are these?
An appropriate equation of state to approximately evaluate these eòects is the linear one

ñ = ñ0 [1 − âT(T − T0) + âS(S − S0) + p
ñ0c2s ] , (1.55)

where âT ≈ 2 × 10−4 K−1, âS ≈ 10−3 psu−1 and cs ≈ 1500m s−1. _e three eòects may then
be evaluated as follows.

Pressure compressibility. We have Äpñ ≈ Äp/c2s ≈ ñ0gH/c2s . whereH is the depth and the
pressure change is quite accurately evaluated using the hydrostatic approximation.
_us,

|Äpñ|
ñ0 ≪ 1 if

gH
c2s ≪ 1, (1.56)

or ifH ≪ c2s /g. _e quantity c2s /g ≈ 200 km is the density scale height of the ocean.
_us, the pressure at the bottom of the ocean (sayH = 10 km in the deep trenches),
enormous as it is, is insuõcient to compress the water enough to make a signiûcant
change in its density. Changes in density due to dynamical variations of pressure are
small if theMach number is small, and this is also the case.
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Thermal expansion. We have ÄTñ ≈ −âTñ0ÄT and therefore

|ÄTñ|
ñ0 ≪ 1 if âTÄT ≪ 1. (1.57)

For ÄT = 20K, âTÄT ≈ 4 × 10−3, and evidently we would require temperature
diòerences of order â−1T , or 5000K to obtain order one variations in density.

Saline contraction. We have ÄSñ ≈ âSñ0ÄS and therefore

|ÄSñ|
ñ0 ≪ 1 if âSÄS ≪ 1. (1.58)

As changes in salinity in the ocean rarely exceed 5 psu, for which âSÄS = 5 × 10−3,
the fractional change in the density of seawater is correspondingly very small.

Evidently, fractional density changes in the ocean are very small.

1.6.2 _e Boussinesq equations
_eBoussinesq equations are a set of equations that exploit the smallness of density variations
in many liquids.We write

ñ = ñ0 + äñ(x, y, z, t) (1.59a)

where ñ0 is a constant and we assume that

|äñ| ≪ ñ0. (1.60)

Associated with the reference density is a reference pressure that is deûned to be in
hydrostatic balance with it. _at is,

p = p0(z) + äp(x, y, z, t) (1.61a)

where
dp0
dz

≡ −gñ0 (1.62)

Note that ∇zp = ∇zäp.
Momentum equations
To obtain the Boussinesq equations we use ñ = ñ0 + äñ, and assume äñ/ñ0 is small. Without
approximation, themomentum equation can be written as

(ñ0 + äñ)(
Dv
Dt

+ 2Ø × v) = −∇äp −
àp0
àz

k − g(ñ0 + äñ)k, (1.63)
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and using (1.62a) this becomes, again without approximation,

(ñ0 + äñ)(
Dv
Dt

+ 2Ø × v) = −∇äp − gäñk. (1.64)

If density variations are small this becomes

Dv
Dt

+ 2Ø × v = −∇õ + bk, (1.65)

where õ = äp/ñ0 and b = −g äñ/ñ0 is the buoyancy. Note that we should not and do not
neglect the term g äñ, for there is no reason to believe it to be small (äñmay be small, but g
is big). Equation (1.65) is themomentum equation in the Boussinesq approximation, and it
is common to say that the Boussinesq approximation ignores all variations of density of a
�uid in themomentum equation, except when associated with the gravitational term.

For most large-scalemotions in the ocean the deviation pressure and density ûelds are
also approximately in hydrostatic balance, and in that case the vertical component of (1.65)
becomes

àõ
àz

= b. (1.66)

A condition for (1.66) to hold is that vertical accelerations are small compared to g äñ/ñ0,
and not compared to the acceleration due to gravity itself. For more discussion of this point,
see section 1.7.

Mass Conservation
_e unapproximatedmass conservation equation is

Däñ
Dt

+ (ñ0 + äñ)∇⋅ v = 0. (1.67)

Provided that time scales advectively— that is to say that D/Dt scales in the same way as
v ⋅ ∇— then wemay approximate this equation by

∇⋅ v = 0 , (1.68)

which is the same as that for a constant density �uid. _is absolutely does not allow one
to go back and use (1.67) to say that Däñ/Dt = 0; the evolution of density is given by
the thermodynamic equation in conjunction with an equation of state, and this should
not be confused with themass conservation equation. Note also that in eliminating the
time-derivative of density we eliminate the possibility of sound waves.
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Summary of Boussinesq Equations

_e simple Boussinesq equations are, for an inviscid �uid:

momentum equations: Dv
Dt

+ f × v = −∇õ + bk, (B.1)

mass conservation: ∇⋅ v = 0, (B.2)

buoyancy equation: Db
Dt

= ḃ. (B.3)

Amore general form replaces the buoyancy equation by:

thermodynamic equation: Dè
Dt

= ̇è, (B.4)

salinity equation: DS
Dt

= ̇S, (B.5)

equation of state: b = b(è, S, z). (B.6)

_ermodynamic equation and equation of state
[_is section is even more informal and non-rigorous than other sections.]We write the
thermodynamic equation as

DI
Dt

+
p
ñ
∇⋅ v = Q̇ (1.69)

We neglect the second term on the le�-hand side (because the �uid is incompressible), and
write the ûrst term in terms of temperature

C
DT
Dt

= Q̇ (1.70)

where c is the heat capacity of the �uid. We further suppose that the temperature is
linearly related to the buoyancy, b. _at is, we assume a linear equation of state, b =
b0 (1 + A(T − T0)) where A is a constant coeõcient of thermal expansion. _e thermody-
namic equation becomes

Db
Dt

= Qb, (1.71)

where Qb = AQ̇/C. _emomentum equation (1.65),mass continuity equation (1.68) and
thermodynamic equation (1.71) then form a closed set, called the Boussinesq equations.
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♦ Mean stratiûcation and the buoyancy frequency
_e processes that cause density to vary in the vertical o�en diòer from those that cause it
to vary in the horizontal. For this reason it is sometimes useful to write ñ = ñ0 + ñ̂(z) +
ñ�(x, y, z, t) and deûne b̃(z) ≡ −gñ̂/ñ0 and b� ≡ −gñ�/ñ0. _e thermodynamic equation
(1.69) becomes

Db�
Dt

+N2w = 0, (1.72)

where D/Dt remains a three-dimensional operator and

N2(z) = db̃ò
dz

, (1.73)

_e quantity N2 is a measure of the mean stratiûcation of the �uid. N is known as the
buoyancy frequency, something we return to later on.

1.6.3 Energetics of the Boussinesq system
In a uniform gravitational ûeld butwith no other forcing or dissipation, wewrite the simple
Boussinesq equations as

Dv
Dt

+ 2Ø × v = bk − ∇õ, ∇⋅ v = 0,
Db
Dt

= 0. (1.74a,b,c)

From (1.74a) and (1.74b) the kinetic energy density evolution is given by

1
2
Dv2
Dt

= bw − ∇⋅ (õv), (1.75)

where the constant reference density ñ0 is omitted. Let us now deûne the potential Õ ≡ −z,
so that ∇Õ = −k and

DÕ
Dt

= ∇⋅ (vÕ) = −w, (1.76)

and using this and (1.74c) gives
D
Dt

(bÕ) = −wb. (1.77)

Adding (1.77) to (1.75) and expanding thematerial derivative gives

à
àt

(
1
2
v2 + bÕ) + ∇⋅ [v(

1
2
v2 + bÕ + õ)] = 0. (1.78)

_is constitutes an energy equation for the Boussinesq system. _e energy density (divided
by ñ0) is just v2/2 + bÕ. What does the term bÕ represent? Its integral,multiplied by ñ0, is
the potential energy of the �ow minus that of the basic state, or ∫g(ñ − ñ0)z dz. If there
were a heating term on the right-hand side of (1.74c) this would directly provide a source
of potential energy, rather than internal energy as in the compressible system. Because
the �uid is incompressible, there is no conversion from kinetic and potential energy into
internal energy.
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1.7 Scaling for Hydrostatic Balance
We now look in more detail at the conditions required for hydrostatic balance to hold.
Along with geostrophic balance, considered in the next section, it is one of the most
fundamental balances in geophysical �uid dynamics. _e corresponding states, hydrostasy
and geostrophy, are not exactly realized, but their approximate satisfaction has profound
consequences on the behaviour of the atmosphere and ocean.

1.7.1 Preliminaries
Consider the relative sizes of terms in (1.48c):

W
T

+
UW
L

+
W2
H

+ ØU ∼
!!!!!!!!

1
ñ
àp
àz

!!!!!!!!
+ g. (1.79)

For most large-scalemotion in the atmosphere and ocean the terms on the right-hand side
are orders ofmagnitude larger than those on the le�, and thereforemust be approximately
equal. Explicitly, supposeW ∼ 1 cm s−1, L ∼ 105 m, H ∼ 103 m, U ∼ 10m s−1, T = L/U.
_en by substituting into (1.79) it seems that the pressure term is the only one which could
balance the gravitational term, and we are led to approximate (1.48c) by,

àp
àz

= −ñg. (1.80)

_is equation, which is a vertical momentum equation, is known as hydrostatic balance.
However, (1.80) is not always a useful equation! Let us suppose that the density is a

constant, ñ0 . We can then write the pressure as

p(x, y, z, t) = p0(z) + p�(x, y, z, t), (1.81)

where
àp0
àz

≡ −ñ0g. (1.82)

_at is, p0 and ñ0 are in hydrostatic balance. On the f-plane, the inviscid vertical momen-
tum equation becomes, without approximation,

Dw
Dt

= −
1
ñ0 àp�

àz
. (1.83)

_us, for constant density �uids the gravitational term has no dynamical eòect: there is no
buoyancy force, and the pressure term in the horizontal momentum equations can be
replaced by p�. Hydrostatic balance, and in particular (1.82), is certainly not an appropriate
vertical momentum equation in this case. If the �uid is stratiûed, we should therefore sub-
tract oò the hydrostatic pressure associated with themean density before we can determine
whether hydrostasy is a useful dynamical approximation, accurate enough to determine
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the horizontal pressure gradients. _is is automatic in the Boussinesq equations, where the
vertical momentum equation is

Dw
Dt

= −
àõ
àz

+ b, (1.84)

and the hydrostatic balance of the basic state is already subtracted out. In themore general
equation,

Dw
Dt

= −
1
ñ
àp
àz

− g, (1.85)

we need to compare the advective term on the le�-hand side with the pressure variations
arising from horizontal �ow in order to determine whether hydrostasy is an appropriate
vertical momentum equation. Nevertheless, if we only need to determine the pressure for
use in an equation of state then we simply need to compare the sizes of the dynamical
terms in (1.48c) with g itself, in order to determine whether a hydrostatic approximation
will suõce.

1.7.2 Scaling and the aspect ratio
In a Boussinesq �uid we write the horizontal and vertical momentum equations as

Du
Dt

+ f × u = −∇zõ, Dw
Dt

= −
àõ
àz

+ b. (1.86a,b)

With f = 0, (1.86a) implies the scaling

õ ∼ U2. (1.87)

If we usemass conservation, ∇z ⋅ u + àw/àz = 0, to scale vertical velocity then

w ∼ W =
H
L
U = áU, (1.88)

where á ≡ H/L is the aspect ratio. _e advective terms in the vertical momentum equation
all scale as

Dw
Dt

∼
UW
L

=
U2H
L2 . (1.89)

Using (1.87) and (1.89) the ratio of the advective term to the pressure gradient term in the
vertical momentum equations then scales as

|Dw/Dt|
|àõ/àz|

∼
U2H/L2
U2/H ∼ (

H
L
)
2
. (1.90)

_us, the condition for hydrostasy, that |Dw/Dt|/|àõ/àz| ≪ 1, is:

á2 ≡ (
H
L
)
2
≪ 1 . (1.91)
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_e advective term in the vertical momentum may then be neglected. _us, hydrostatic
balance is a small aspect ratio approximation.

We can obtain the same result more formally by non-dimensionalizing themomentum
equations. Using uppercase symbols to denote scaling values we write

(x, y) = L(x̂, ŷ), z = Hẑ,

u = Uû, w = Wŵ =
HU
L

ŵ,

t = Tt̂ =
L
U
t̂, õ = Õõ̂ = U2õ̂, b = Bb̂ =

U2
H

b̂,

(1.92)

where the hatted variables are non-dimensional and the scaling for w is suggested by the
mass conservation equation, ∇z ⋅ u + àw/àz = 0. Substituting (1.92) into (1.86) (with f = 0)
gives us the non-dimensional equations

Dû
Dt̂

= −∇õ̂, á2Dŵ
Dt̂

= −
àõ̂
àẑ

+ b̂, (1.93a,b)

where D/Dt̂ = à/àt̂ + ûà/àx̂ + v̂à/àŷ + ŵà/àẑ and we use the convention that when ∇
operates on non-dimensional quantities the operator itself is non-dimensional. From
(1.93b) it is clear that hydrostatic balance pertains when á2 ≪ 1.

1.8 Geostrophic and ThermalWind Balance
We now consider the dominant dynamical balance in the horizontal components of the
momentum equation. In the horizontal plane (meaning along geopotential surfaces) we
ûnd that the Coriolis term is much larger than the advective terms and the dominant
balance is between it and the horizontal pressure force. _is balance is called geostrophic
balance, and it occurs when the Rossby number is small, as we now investigate.

1.8.1 _e Rossby number
_e Rossby number characterizes the importance of rotation in a �uid. It is, essentially, the
ratio of themagnitude of the relative acceleration to the Coriolis acceleration, and it is of
fundamental importance in geophysical �uid dynamics. It arises from a simple scaling of
the horizontal momentum equation, namely

àu
àt

+(v ⋅ ∇)u + f × u = −
1
ñ
∇zp, (1.94a)

U2/L fU (1.94b)

where U is the approximatemagnitude of the horizontal velocity and L is a typical length
scale over which that velocity varies. (We assume that W/H ≲ U/L, so that vertical
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Variable Scaling Meaning Atmos. value Ocean value
symbol

(x, y) L Horizontal length scale 106 m 105 m
t T Time scale 1 day (105 s) 10 days (106 s)

(u, v) U Horizontal velocity 10m s−1 0.1m s−1
Ro Rossby number, U/fL 0.1 0.01

Table 1.1 Scales of large-scale �ow in atmosphere and ocean. The choices given are repre-
sentative of large-scale mid-latitude eddying motion in both systems.

advection does not dominate the advection.) _e ratio of the sizes of the advective and
Coriolis terms is deûned to be the Rossby number,

Ro ≡
U
fL

. (1.95)

If the Rossby number is small then rotation eòects are important, and as the values in Table
1.1 indicate this is the case for large-scale �ow in both ocean and atmosphere.

Another intuitive way to think about the Rossby number is in terms of time scales. _e
Rossby number based on a time scale is

RoT ≡
1
fT

, (1.96)

whereT is a time scale associatedwith the dynamics at hand. If the time scale is an advective
one,meaning that T ∼ L/U, then this deûnition is equivalent to (1.95). Now, f = 2Ø sin ú,
where Ø is the angular velocity of the rotating frame and equal to 2π/Tp where Tp is the
period of rotation (24 hours). _us,

RoT =
Tp

4πT sin ú
=

Ti
T
, (1.97)

where Ti = 1/f is the ‘inertial time scale’, about three hours in mid-latitudes. _us, for
phenomena with time scales much longer than this, such as themotion of the Gulf Stream
or amid-latitude atmospheric weather system, the eòects of the Earth’s rotation can be
expected to be important, whereas a short-lived phenomena, such as a cumulus cloud or
tornado,may be oblivious to such rotation. _e expressions (1.95) and (1.96) are, of course,
just approximatemeasures of the importance of rotation.
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Figure 1.3 Schematic of geostrophic �ow with a positive value of the Coriolis parameter f. Flow
is parallel to the lines of constant pressure (isobars). Cyclonic �ow is anticlockwise around a low
pressure region and anticyclonic �ow is clockwise around a high. If f were negative, as in the
Southern Hemisphere, (anti)cyclonic �ow would be (anti)clockwise.

1.8.2 Geostrophic balance
If the Rossby number is suõciently small in (1.94a) then the rotation term will dominate
the nonlinear advection term, and if the time period of themotion scales advectively then
the rotation term also dominates the local time derivative. _e only term that can then
balance the rotation term is the pressure term, and therefore wemust have

f × u ≈ −
1
ñ
∇zp, (1.98)

or, in Cartesian component form

fu ≈ −
1
ñ
àp
ày

, fv ≈
1
ñ
àp
àx

. (1.99)

_is balance is known as geostrophic balance, and its consequences are profound, giving
geophysical �uid dynamics a special place in the broader ûeld of �uid dynamics. We deûne
the geostrophic velocity by

fug ≡ −
1
ñ
àp
ày

, fvg ≡
1
ñ
àp
àx

, (1.100)

and for low Rossby number �ow u ≈ ug and v ≈ vg.
Geostrophic balance has a number of immediate ramiûcations:

∙ Geostrophic �ow is parallel to lines of constant pressure (isobars). If f > 0 the �ow
is anticlockwise round a region of low pressure and clockwise around a region of
high pressure (see Fig. 1.3).
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∙ If the Coriolis force is constant and if the density does not vary in the horizontal the
geostrophic �ow is horizontally non-divergent and

∇z ⋅ ug =
àug
àx

+
àvg
ày

= 0. (1.101)

Wemay deûne the geostrophic streamfunction, ÷, by

÷ ≡
p

f0ñ0 , (1.102)

whence
ug = −

à÷
ày

, vg =
à÷
àx

. (1.103)

_e vertical component of vorticity, æ, is then given by

æ = k ⋅ ∇ × v =
àv
àx

−
àu
ày

= ∇2z÷. (1.104)

∙ If the Coriolis parameter is not constant, then cross-diòerentiating (1.100) gives, for
constant density geostrophic �ow,

vg àfày + f∇z ⋅ ug = 0, (1.105)

which, using themass continuity equation ∇z ⋅ ug = −àw/àz,

âvg = f
àw
àz

. (1.106)

where â ≡ àf/ày = 2Ø cos ú/a. _is geostrophic vorticity balance is sometimes
known as ‘Sverdrup balance’, although that expression is better restricted to the case
when the vertical velocity from a wind stress.

1.8.3 Taylor–Proudman eòect
If â = 0, then (1.106) implies that the vertical velocity is not a function of height. In fact, in
that case none of the components of velocity vary with height if density is also constant.
To show this, in the limit of zero Rossby number we ûrst write the three-dimensional
momentum equation as

f0 × v = −∇õ − ∇ö, (1.107)

where f0 = 2Ø = 2Øk, õ = p/ñ0, and ∇ö represents other potential forces. If ö = gz then
the vertical component of this equation represents hydrostatic balance, and the horizontal
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components represent geostrophic balance. On taking the curl of this equation, the terms
on the right-hand side vanish and the le�-hand side becomes

(f0 ⋅ ∇)v − f0∇⋅ v − (v ⋅ ∇)f0 + v∇⋅ f0 = 0. (1.108)

But ∇⋅ v = 0 by mass conservation, and because f0 is constant both ∇⋅ f0 and (v ⋅ ∇)f0
vanish. Equation (1.108) thus reduces to

(f0 ⋅ ∇)v = 0, (1.109)

which, since f0 = f0k, implies f0àv/àz = 0, and in particular we have

àu
àz

= 0,
àv
àz

= 0,
àw
àz

= 0. (1.110)

A diòerent presentation of this argument proceeds as follows. If the �ow is exactly in
geostrophic and hydrostatic balance then

v =
1
f0 àõàx , u = −

1
f0 àõày ,

àõ
àz

= −g. (1.111a,b,c)

Diòerentiating (1.111a,b) with respect to z, and using (1.111c) yields

àv
àz

=
−1
f0 àg

àx
= 0,

àu
àz

=
1
f0 àgày = 0. (1.112)

Noting that the geostrophic velocities are horizontally non-divergent (∇z ⋅ u = 0), and using
mass continuity then gives àw/àz = 0, as before.

If there is a solid horizontal boundary anywhere in the �uid, for example at the surface,
then w = 0 at that surface and thus w = 0 everywhere. Hence themotion occurs in planes
that lie perpendicular to the axis of rotation, and the �ow is eòectively two dimensional.
_is result is known as the Taylor–Proudman eòect, namely that for constant density �ow
in geostrophic and hydrostatic balance the vertical derivatives of the horizontal and the
vertical velocities are zero. At zeroRossby number, if the vertical velocity is zero somewhere
in the �ow, it is zero everywhere in that vertical column; furthermore, the horizontal �ow
has no vertical shear, and the �uidmoves like a slab. _e eòects of rotation have provided
a stiòening of the �uid in the vertical.

In neither the atmospherenor the ocean dowe observe precisely such vertically coherent
�ow,mainly because of the eòects of stratiûcation. However, it is typical of geophysical
�uid dynamics that the assumptions underlying a derivation are not fully satisûed, yet
there aremanifestations of it in real �ow. _us, onemight have naïvely expected, because
àw/àz = −∇z ⋅ u, that the scales of the various variables would be related byW/H ∼ U/L.
However, if the �ow is rapidly rotating we expect that the horizontal �ow will be in near
geostrophic balance and therefore nearly divergence free; thus ∇z ⋅ u ≪ U/L, andW ≪
HU/L.
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Figure 1.4 The mechanism of thermal wind. A cold �uid is denser than a warm �uid, so by
hydrostasy the vertical pressure gradient is greater where the �uid is cold. Thus, the pressure
gradients form as shown, where ‘higher’ and ‘lower’ mean relative to the average at that height.
The horizontal pressure gradients are balanced by the Coriolis force, producing (for f > 0) the
horizontal winds shown (⊗ into the paper, and ⊙ out of the paper). Only the wind shear is given by
the thermal wind.

1.8.4 _ermal wind balance
_ermalwind balance arises by combining the geostrophic and hydrostatic approximations,
and this is most easily done in the context of the anelastic (or Boussinesq) equations, or in
pressure coordinates. For the anelastic equations, geostrophic balancemay be written

− fvg = −
àõ
àx

= −
1

a cos ú
àõ
àë

, fug = −
àõ
ày

= −
1
a
àõ
àú

. (1.113a,b)

Combining these relations with hydrostatic balance, àõ/àz = b, gives

−f
àvg
àz

= −
àb
àx

,

f
àug
àz

= −
àb
ày

.

(1.114a)

(1.114b)

_ese equations represent thermal wind balance, and the vertical derivative of the
geostrophic wind is the ‘thermal wind’.

If the density or buoyancy is constant then there is no shear and (1.114b) gives the
Taylor–Proudman result. But suppose that the temperature falls in the poleward direction.
_en thermal wind balance implies that the (eastward) wind will increase with height—
just as is observed in the atmosphere! In general, a vertical shear of the horizontal wind is
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associated with a horizontal temperature gradient, and this is one of themost simple and
far-reaching eòects in geophysical �uid dynamics. _e underlying physical mechanism is
illustrated in Fig. 1.4.

1.8.5 Vertical velocity and hydrostatic balance
Scaling for vertical velocity
If the Coriolis parameter is constant then the horizontal component of �ows that are in
geostrophic balance have zero horizontal divergence (∇x ⋅ u = 0) and zero vertical velocity.
We can therefore expect that any �ow with small Rossby number will have a ‘small’ vertical
velocity. Let us make this statement more precise using the rotating Boussinesq equations,
(1.86)with constant Coriolis parameter. Let u = ug +ua where the geostrophic �ow satisûes
f0 × ug = −∇õ. _e horizontal momentum equation, with corresponding scales for each
term, then becomes

àu
àt

+ u ⋅ ∇u + w
àu
àz

+ f0 × ua = 0, (1.115)

U2
L

U2
L

WU
H

f0Ua. (1.116)

_is equation suggests a scaling for the ageostrophic �ow of

Ua =
U
f0LU = RoU. (1.117)

_at is, the ageostrophic �ow is Rossby number smaller (at least) than the geostrophic �ow.
To obtain a scaling for the vertical velocity we look to themass continuity equation written
in the form

àw
àz

= −∇⋅ ua, (1.118)

since only the ageostrophic �ow has a divergence. Equations (1.117) and (1.118) suggest the
scaling

W = Ro
HU
L

. (1.119)

_at is, the vertical velocity is order Rossby number smaller than an estimate based purely
on themass continuity equation would suggest.

If the Coriolis parameter is not constant then the geostrophic �ow itself is divergent
and this induces a vertical velocity, as in (1.106). _e scaling for vertical velocity is now

W =
â
f
HU = RoâHU

L
. (1.120)

where Roâ = âL/f is the beta Rossby number. It is less than one for all �ows except those
with a truly global scale.
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Scaling for hydrostatic balance
Let us non-dimensionalize the rotating Boussinesq equations, (1.86), by writing

(x, y) = L(x̂, ŷ), z = Hẑ, u = Uû,

t = Tt̂ =
L
U
t̂, f = f0f̂,

w =
åHU
L

ŵ, õ = Õõ̂ = f0ULõ̂,
b = Bb̂ =

f0UL
H

b̂,

(1.121)

_ese relations are almost the same as (1.92), except for the factor of å in the scaling of w. If
the Coriolis parameter is constant or nearly so then, from (1.119), å = Ro, whereas if the
Coriolis parameter varies then å = Roâ, as in (1.119). _e scaling for õ and b� are suggested
by geostrophic and thermal wind balance with f0 a representative value of f. Substituting
these values into (1.86) we obtain the following scaledmomentum equations:

Ro
Dû
Dt̂

+ f̂ × û = −∇õ̂, Roåá2Dŵ
Dt̂

= −
àõ̂
àẑ

− b̂. (1.122a,b)

where D/Dt̂ = à/àt̂ + û ⋅ ∇z + åŵà/àẑ. _ere are two notable aspects to these equations.
First andmost obviously, when Ro ≪ 1, (1.122a) reduces to geostrophic balance, f × u ≈
−∇õ̂. Second, thematerial derivative in (1.122b) is multiplied by three non-dimensional
parameters, and we can understand the appearance of each as follows.

(i) _e aspect ratio dependence (á2) arises in the same way as for non-rotating �ows—
that is, because of the presence of w and z in the vertical momentum equation as
opposed to (u, v) and (x, y) in the horizontal equations.

(ii) _e Rossby number dependence (Ro) arises because in rotating �ow the pressure
gradient is balanced by the Coriolis force, which is Rossby number larger than the
advective terms.

(iii) _e factor å arises because in rotating �ow w is smaller than u by å times the aspect
ratio. _e factor may be the Rossby number itself, or the beta Rossby number.

_e factor Roåá2 is very small for large-scale �ow; the reader is invited to calculate rep-
resentative values. Evidently, a rapidly rotating �uid is more likely to be in hydrostatic
balance than a non-rotating �uid, other conditions being equal. _e combined eòects of
rotation and stratiûcation are, not surprisingly, quite subtle and we leave that topic for
chapter 3.



Chapter 2
ShallowWater Systems
Weeks 3 to 5

2.1 Dynamics of a Single, Shallow Layer
Consider �uid in a container above which is another �uid of negligible density (and
therefore negligible inertia) relative to the �uid of interest, as illustrated in Fig. 2.1. Our
notation is that v = ui + vj + wk is the three-dimensional velocity and u = ui + vj is the
horizontal velocity. ℎ(x, y) is the thickness of the liquid column,H is its mean height, and
ç is the height of the free surface. In a �at-bottomed container ç = ℎ, whereas in general
ℎ = ç − çb, where çb is the height of the �oor of the container.

2.1.1 Momentum equations
_e vertical momentum equation is just the hydrostatic equation,

àp
àz

= −ñ0g, (2.1)

and, because density is assumed constant, wemay integrate this to

p(x, y, z, t) = −ñ0gz + po. (2.2)

At the top of the �uid, z = ç, the pressure is determined by the weight of the overlying �uid
and this is assumed to be negligible. _us, p = 0 at z = ç, giving

p(x, y, z, t) = ñ0g(ç(x, y, t) − z). (2.3)

_e consequence of this is that the horizontal gradient of pressure is independent of height.
_at is

∇zp = ñ0g∇zç, (2.4)

27
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Figure 2.1 A shallow water system. ℎ is the thickness of a water column,H its mean thickness, ç
the height of the free surface and çb is the height of the lower, rigid, surface, above some arbitrary
origin, typically chosen such that the average of çb is zero. Äç is the deviation free surface height,
so we have ç = çb + ℎ = H + Äç.

where
∇z = i à

àx
+ j à

ày
(2.5)

is the gradient operator at constant z. (In the rest of this chapter we will drop the subscript
z unless that causes ambiguity. _e three-dimensional gradient operator will be denoted
by ∇3. We will also mostly use Cartesian coordinates, but the shallow water equations
may certainly be applied over a spherical planet— indeed, ‘Laplace’s tidal equations’ are
essentially the shallow water equations on a sphere.) _e horizontal momentum equations
therefore become

Du
Dt

= −
1
ñ0∇p = −g∇ç. (2.6)

_e right-hand side of this equation is independent of the vertical coordinate z. _us, if the
�ow is initially independent of z, it must stay so. (_is z independence is unrelated to that
arising from the rapid rotation necessary for the Taylor–Proudman eòect.) _e velocities u
and v are functions of x, y and t only, and the horizontal momentum equation is therefore

Du
Dt

=
àu
àt

+ u
àu
àx

+ v
àu
ày

= −g∇ç. (2.7)

_at the horizontal velocity is independent of z is a consequence of the hydrostatic equation,
which ensures that the horizontal pressure gradient is independent of height. (Another
starting point would be to take this independence of the horizontal motion with height as
the deûnition of shallow water �ow. In real physical situations such independence does not
hold exactly— for example, friction at the bottom may induce a vertical dependence of
the �ow in a boundary layer.) In the presence of rotation, (2.7) easily generalizes to

Du
Dt

+ f × u = −g∇ç , (2.8)
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Figure 2.2 The mass budget for a column of area A in a shallow water system. The �uid leaving
the column is ∮ ñ0ℎu ⋅ n dlwhere n is the unit vector normal to the boundary of the �uid column.
There is a non-zero vertical velocity at the top of the column if the mass convergence into the
column is non-zero.

where f = fk. Just as with the primitive equations, f may be constant or may vary with
latitude, so that on a spherical planet f = 2Ø sin ú and on the â-plane f = f0 + ây.

2.1.2 Mass continuity equation
_emass contained in a �uid column of height ℎ and cross-sectional area A is given by
∫A ñ0ℎ dA (see Fig. 2.2). If there is a net �ux of �uid across the column boundary (by
advection) then this must be balanced by a net increase in themass in A, and therefore a
net increase in the height of the water column. _emass convergence into the column is
given by

Fm = mass �ux in = −∫S ñ0u ⋅ dS, (2.9)

where S is the area of the vertical boundary of the column. _e surface area of the column
is composed of elements of area ℎn äl, where äl is a line element circumscribing the column
and n is a unit vector perpendicular to the boundary, pointing outwards. _us (2.9) becomes

Fm = −∮ ñ0ℎu ⋅ n dl. (2.10)

Using the divergence theorem in two dimensions, (2.10) simpliûes to

Fm = −∫A ∇⋅ (ñ0uℎ) dA, (2.11)
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where the integral is over the cross-sectional area of the �uid column (looking down from
above). _is is balanced by the local increase in height of the water column, given by

Fm =
d
dt

∫ ñ0 dV =
d
dt

∫A ñ0ℎ dA = ∫A ñ0 àℎàt dA. (2.12)

Because ñ0 is constant, the balance between (2.11) and (2.12) leads to

∫A [
àℎ
àt

+ ∇⋅ (uℎ)] dA = 0, (2.13)

and because the area is arbitrary the integrand itselfmust vanish, whence,

àℎ
àt

+ ∇⋅ (uℎ) = 0, (2.14)

or equivalently
Dℎ
Dt

+ ℎ∇ ⋅ u = 0. (2.15)

_is derivation holds whether or not the lower surface is �at. If it is, then ℎ = ç, and if not
ℎ = ç − çb.
From the 3Dmass conservation equation
Since the �uid is incompressible, the three-dimensional mass continuity equation is just
∇⋅ v = 0. Writing this out in component form

àw
àz

= −(
àu
àx

+
àv
ày

) = −∇ ⋅ u. (2.16)

Integrating this from the bottom of the �uid to the top, and using the boundary conditions
of w (express w in terms of ℎ) gives (2.15). Details le� to the reader.

2.2 Reduced Gravity Equations
Consider now a single shallow moving layer of �uid on top of a deep, quiescent �uid layer
(Fig. 2.3), and beneath a �uid of negligible inertia. _is conûguration is o�en used as
a model of the upper ocean: the upper layer represents �ow in perhaps the upper few
hundredmetres of the ocean, the lower layer being the near-stagnant abyss. If we turn the
model upside-down we have a perhaps slightly less realisticmodel of the atmosphere: the
lower layer represents motion in the troposphere above which lies an inactive stratosphere.
_e equations ofmotion are virtually the same in both cases.
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_e ShallowWater Equations

For a single-layer �uid, and including the Coriolis term, the inviscid shallow
water equations are

momentum: Du
Dt

+ f × u = −g∇ç. (SW.1)

mass continuity: Dℎ
Dt

+ ℎ∇⋅ u = 0 or àℎ
àt

+ ∇⋅ (ℎu) = 0, (SW.2)

where u is the horizontal velocity, ℎ is the total �uid thickness, ç is the height
of the upper free surface and çb is the height of the lower surface (the bottom
topography). _us, ℎ(x, y, t) = ç(x, y, t) − çb(x, y). _ematerial derivative is

D
Dt

=
à
àt

+ u ⋅ ∇ =
à
àt

+ u
à
àx

+ v
à
ày

, (SW.3)

with the rightmost expression holding in Cartesian coordinates.

2.2.1 Pressure gradient in the active layer
We will derive the equations for the oceanic case (active layer on top) in two cases, which
diòer slightly in the assumption made about the upper surface.

I Free upper surface
_e pressure in the upper layer is given by integrating the hydrostatic equation down from
the upper surface. _us, at a height z in the upper layer

p1(z) = gñ1(ç0 − z), (2.17)

where ç0 is the height of the upper surface. Hence, everywhere in the upper layer,

1
ñ1∇p1 = g∇ç0, (2.18)

and themomentum equation is

Du
Dt

+ f × u = −g∇ç0. (2.19)

In the lower layer the pressure is also given by the weight of the �uid above it. _us, at
some level z in the lower layer,

p2(z) = ñ1g(ç0 − ç1) + ñ2g(ç1 − z). (2.20)
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Figure 2.3 The reduced gravity shallow water system. An active layer lies over a deep, more
dense, quiescent layer. In a common variation the upper surface is held �at by a rigid lid, and
ç0 = 0.

But if this layer is motionless the horizontal pressure gradient in it is zero and therefore

ñ1gç0 = −ñ1g�ç1 + constant, (2.21)

where g� = g(ñ2 − ñ1)/ñ1 is the reduced gravity. _emomentum equation becomes

Du
Dt

+ f × u = g�∇ç1. (2.22)

_e equations are completed by the usual mass conservation equation,

Dℎ
Dt

+ ℎ∇⋅ u = 0, (2.23)

where ℎ = ç0 − ç1. Because g ≫ g�, (2.21) shows that surface displacements are much
smaller than the displacements at the interior interface. We see this in the real ocean where
themean interior isopycnal displacements may be several tens ofmetres but variations in
themean height of ocean surface are of the order of centimetres.

II _e rigid lid approximation
_e smallness of the upper surface displacement suggests that we will make little error is
we impose a rigid lid at the top of the �uid. Displacements are no longer allowed, but the
lid will in general impart a pressure force to the �uid. Suppose that this is P(x, y, t), then
the horizontal pressure gradient in the upper layer is simply

∇p1 = ∇P. (2.24)

_e pressure in the lower layer is again given by hydrostasy, and is

p2 = −ñ1gç1 + ñ2g(ç1 − z) + P = ñ1gℎ − ñ2g(ℎ + z) + P, (2.25)
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so that
∇p2 = −g(ñ2 − ñ1)∇ℎ + ∇P. (2.26)

_en if ∇p2 = 0 we have
g(ñ2 − ñ1)∇ℎ = ∇P, (2.27)

and themomentum equation for the upper layer is just

Du
Dt

+ f × u = −g�1∇ℎ. (2.28)

where g� = g(ñ2 − ñ1)/ñ1. _ese equations diòer from the usual shallow water equations
only in the use of a reduced gravity g� in place of g itself. It is the density diòerence between
the two layers that is important. Similarly, if we take a shallow water system, with the
moving layer on the bottom, and we suppose that overlying it is a stationary �uid of ûnite
density, then we would easily ûnd that the �uid equations for themoving layer are the same
as if the �uid on top had zero inertia, except that g would be replaced by an appropriate
reduced gravity (problem 2.??).

2.3 Geostrophic Balance
Geostrophic balance occurs in the shallow water equations, just as in the continuously
stratiûed equations, when the Rossby number U/fL is small and the Coriolis term domi-
nates the advective terms in themomentum equation. In the single-layer shallow water
equations the geostrophic �ow is:

f × ug = −g∇ç. (2.29)

_us, the geostrophic velocity is proportional to the slope of the surface, as sketched in
Fig. 2.4. (For the rest of this section, we will drop the subscript g, and take all velocities to
be geostrophic.)

In both the single-layer and multi-layer cases, the slope of an interfacial surface is
directly related to the diòerence in pressure gradient on either side and so, by geostrophic
balance, to the shear of the �ow. _is is the shallow water analogue of the thermal wind
relation. To obtain an expression for this, consider the interface, ç, between two layers
labelled 1 and 2. _e pressure in two layers is given by the hydrostatic relation and so,

p1 = A(x, y) − ñ1gz (at some z in layer 1) (2.30a)
p2 = A(x, y) − ñ1gç + ñ2g(ç − z)

= A(x, y) + ñ1g�1ç − ñ2gz (at some z in layer 2) (2.30b)

where A(x, y) is a function of integration. _us we ûnd

1
ñ1∇(p1 − p2) = −g�1∇ç. (2.31)
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Figure 2.4 Geostrophic �ow in a shallow water system, with a positive value of the Coriolis
parameter f, as in the Northern Hemisphere. The pressure force is directed down the gradient of
the height �eld, and this can be balanced by the Coriolis force if the �uid velocity is at right angles
to it. If fwere negative, the geostrophic �ow would be reversed.

If the �ow is geostrophically balanced and Boussinesq then, in each layer, the velocity obeys

fui = 1
ñ1 k × ∇pi. (2.32)

Using (2.31) then gives
f(u1 − u2) = −k × g�1∇ç, (2.33)

or in general
f(un − un+1) = −k × g�n∇ç. (2.34)

_is is the thermal wind equation for the shallow water system. It applies at any interface,
and it implies the shear is proportional to the interface slope, a result known as the ‘Margules
relation’ (Fig. 2.5).

Suppose that we represent the atmosphere by two layers of �uid; a meridionally de-
creasing temperaturemay then be represented by an interface that slopes upwards toward
the pole. _en, in either hemisphere, we have

u1 − u2 = g�1
f

àç
ày

> 0, (2.35)

and the temperature gradient is associated with a positive shear (see problem 2.??).

2.4 Conservation Properties of ShallowWater Systems
_ere are two common types of conservation property in �uids: (i) material invariants and
(ii) integral invariants. Material invariance occurs when a property (õ say) is conserved
on each �uid element, and so obeys the equation Dõ/Dt = 0. An integral invariant is one
that is conserved following an integration over some, usually closed, volume; energy is an
example.
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Figure 2.5 Margules’ relation: using hydrostasy, the di�erence in the horizontal pressure gradient
between the upper and the lower layer is given by −g�ñ1s, where s = tanõ = Äz/Äy is the interface
slope and g� = g(ñ2 − ñ1)/ñ1. Geostrophic balance then gives f(u1 − u2) = g�s, which is a special
case of (2.34).

2.4.1 Potential vorticity: amaterial invariant
_e vorticity of a �uid, denoted ø, is deûned to be the curl of the velocity ûeld. Let us also
deûne the shallow water vorticity, ø∗, as the curl of the horizontal velocity. We therefore
have:

ø ≡ ∇ × v, ø∗ ≡ ∇ × u. (2.36)

Because àu/àz = àv/àz = 0, only the vertical component of ø∗ is non-zero and

ø∗ = k (àv
àx

−
àu
ày

) ≡ k æ. (2.37)

Considering ûrst the non-rotating case, we use the vector identity

(u ⋅ ∇)u =
1
2
∇(u ⋅ u) − u × (∇ × u), (2.38)

to write themomentum equation, (2.8) with f = 0, as

àu
àt

+ ø∗ × u = −∇(gç +
1
2
u2) . (2.39)

To obtain an evolution equation for the vorticity we take the curl of (2.39), andmake use
of the vector identity

∇ × (ø∗ × u) = (u ⋅ ∇)ø∗ − (ø∗ ⋅ ∇)u + ø∗∇⋅ u − u∇⋅ ø∗
= (u ⋅ ∇)ø∗ + ø∗∇⋅ u, (2.40)

using the fact that ∇⋅ ø∗ is the divergence of a curl and therefore zero, and (ø∗ ⋅ ∇)u = 0
because ø∗ is perpendicular to the surface in which u varies. Taking the curl of (2.39) gives

àæ
àt

+ (u ⋅ ∇)æ = −æ∇⋅ u, (2.41)
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where æ = k ⋅ ø∗. Now, themass conservation equation may be written as

− æ∇⋅ u =
æ
ℎ
Dℎ
Dt

, (2.42)

and using this (2.41) becomes
Dæ
Dt

=
æ
ℎ
Dℎ
Dt

, (2.43)

which simpliûes to
D
Dt

(
æ
ℎ
) = 0. (2.44)

_e important quantity æ/ℎ, o�en denoted by Q, is known as the potential vorticity, and
(2.44) is the potential vorticity equation. We re-derive this conservation law in a more
general way in section ??

Because Q is conserved on parcels, then so is any function of Q; that is, F(Q) is a
material invariant, where F is any function. To see this algebraically, multiply (2.44) by
F�(Q), the derivative of F with respect to Q, giving

F�(Q)
DQ
Dt

=
D
Dt

F(Q) = 0. (2.45)

Since F is arbitrary there are an inûnite number ofmaterial invariants corresponding to
diòerent choices of F.

Eòects of rotation
In a rotating frame of reference, the shallow water momentum equation is

Du
Dt

+ f × u = −g∇ç, (2.46)

where (as before) f = fk. _is may be written in vector invariant form as

àu
àt

+ (ø∗ + f) × u = −∇(gç +
1
2
u2) , (2.47)

and taking the curl of this gives the vorticity equation

àæ
àt

+ (u ⋅ ∇)(æ + f) = −(f + æ)∇⋅ u. (2.48)

_is is the same as the shallow water vorticity equation in a non-rotating frame, save that æ
is replaced by æ + f, the reason for this being that f is the vorticity that the �uid has by
virtue of the background rotation. _us, (2.48) is simply the equation ofmotion for the
total or absolute vorticity, øa = ø∗ + f = (æ + f)k.
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_e potential vorticity equation in the rotating case follows,much as in the non-rotating
case, by combining (2.48) with themass conservation equation, giving

D
Dt

(
æ + f
ℎ

) = 0 . (2.49)

_at is, Q ≡ (æ + f)/ℎ, the potential vorticity in a rotating shallow system, is a material
invariant.

Vorticity and circulation
Although vorticity itself is not amaterial invariant, its integral over a horizontal material
area is invariant. To demonstrate this in the non-rotating case, consider the integral

C = ∫A æ dA = ∫A Qℎ dA, (2.50)

over a surface A, the cross-sectional area of a column of height ℎ (as in Fig. 2.2). Taking
thematerial derivative of this gives

DC
Dt

= ∫A DQ
Dt

ℎ dA + ∫A Q
D
Dt

(ℎ dA). (2.51)

_e ûrst term is zero, by (2.43); the second term is just the derivative of the volume of a
column of �uid and it too is zero, by mass conservation. _us,

DC
Dt

=
D
Dt

∫A æ dA = 0. (2.52)

_us, the integral of the vorticity over a some cross-sectional area of the �uid is unchanging,
although both the vorticity and area of the �uidmay individually change. Using Stokes’
theorem, it may be written as

DC
Dt

=
D
Dt

∮ u ⋅ dl, (2.53)

where the line integral is around the boundary ofA. _is is an example ofKelvin’s circulation
theorem, which we shall meet again in amore general form in chapter ??, where we also
consider the rotating case.

A slight generalization of (2.52) is possible. Consider the integral I = ∫F(Q)ℎ dAwhere
again F is any diòerentiable function of its argument. It is clear that

D
Dt

∫A F(Q)ℎ dA = 0. (2.54)

If the area of integration in (2.39) or (2.54) is the whole domain (enclosed by frictionless
walls, for example) then it is clear that the integral of ℎF(Q) is a constant, including as a
special case the integral of æ.
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2.4.2 Energy conservation: an integral invariant
Since we have made various simpliûcations in deriving the shallow water system, it is
not self-evident that energy should be conserved, or indeed what form the energy takes.
_e kinetic energy density (KE), that is the kinetic energy per unit area, is ñ0ℎu2/2. _e
potential energy density of the �uid is

PE = ∫
ℎ0 ñ0gz dz =

1
2
ñ0gℎ2. (2.55)

_e factor ñ0 appears in both kinetic and potential energies and, because it is a constant,
we will omit it. For algebraic simplicity we also assume the bottom is �at, at z = 0.

Using themass conservation equation (2.15) we obtain an equation for the evolution of
potential energy density, namely

D
Dt

gℎ2
2

+ gℎ2∇⋅ u = 0 (2.56a)

or
à
àt

gℎ2
2

+ ∇⋅ (u
gℎ2
2

) +
gℎ2
2

∇⋅ u = 0. (2.56b)

From themomentum andmass continuity equationswe obtain an equation for the evolution
of kinetic energy density, namely

D
Dt

ℎu2
2

+
u2ℎ
2

∇⋅ u = −gu ⋅ ∇
ℎ2
2

(2.57a)

or
à
àt

ℎu2
2

+ ∇⋅ (u
ℎu2
2

) + gu ⋅ ∇
ℎ2
2

= 0. (2.57b)

Adding (2.56b) and (2.57b) we obtain

à
àt

1
2
(ℎu2 + gℎ2) + ∇⋅ [

1
2
u (gℎ2 + ℎu2 + gℎ2)] = 0, (2.58)

or
àE
àt

+ ∇⋅ F = 0, (2.59)

where E = KE+PE = (ℎu2+gℎ2)/2 is the density of the total energy and F = u(ℎu2/2+gℎ2)
is the energy �ux. If the �uid is conûned to a domain bounded by rigid walls, on which the
normal component of velocity vanishes, then on integrating (2.58) over that area and using
Gauss’s theorem, the total energy is seen to be conserved; that is

dÊ
dt

=
1
2
d
dt

∫A(ℎu2 + gℎ2) dA = 0. (2.60)
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Such an energy principle also holds in the case with bottom topography. Note that, as we
found in the case for a compressible �uid in chapter ??, the energy �ux in (2.59) is not just
the energy densitymultiplied by the velocity; it contains an additional term guℎ2/2, and
this represents the energy transfer occurring when the �uid does work against the pressure
force (see problem 2.??).

2.5 ShallowWaterWaves
Let us now look at the gravity waves that occur in shallow water. To isolate the essence of
the phenomena, we will consider waves in a single �uid layer, with a �at bottom and a free
upper surface, in which gravity provides the sole restoring force.

2.5.1 Non-rotating shallow water waves
Given a �at bottom the �uid thickness is equal to the free surface displacement (Fig. 2.1),
and taking the basic state of the �uid to be at rest we let

ℎ(x, y, t) = H + ℎ�(x, y, t) = H + ç�(x, y, t), (2.61a)

u(x, y, t) = u�(x, y, t). (2.61b)

_emass conservation equation, (2.15), then becomes

àç�
àt

+ (H + ç�)∇⋅ u� + u� ⋅ ∇ç� = 0, (2.62)

and neglecting squares of small quantities this yields the linear equation

àç�
àt

+H∇⋅ u� = 0. (2.63)

Similarly, linearizing themomentum equation, (2.8) with f = 0, yields

àu�
àt

= −g∇ç�. (2.64)

Eliminating velocity by diòerentiating (2.63) with respect to time and taking the diver-
gence of (2.64) leads to

à2ç�
àt2 − gH∇2ç� = 0, (2.65)

which may be recognized as a wave equation. We can ûnd the dispersion relationship for
this by substituting the trial solution

ç� = Re ç̃ei(k⋅x−øt), (2.66)
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where ç̃ is a complex constant, k = ik + jl is the horizontal wavenumber and Re indicates
that the real part of the solution should be taken. If, for simplicity, we restrict attention to
the one-dimensional problem, with no variation in the y-direction, then substituting into
(2.65) leads to the dispersion relationship

ø = ±ck, (2.67)

where c = √gH; that is, the wave speed is proportional to the square root of themean �uid
depth and is independent of the wavenumber— the waves are dispersionless. _e general
solution is a superposition of all such waves, with the amplitudes of each wave (or Fourier
component) being determined by the Fourier decomposition of the initial conditions.

Because the waves are dispersionless, the general solution can be written as

ç�(x, t) = 1
2
[F(x − ct) + F(x + ct)] , (2.68)

where F(x) is the height ûeld at t = 0. From this, it is easy to see that the shape of an initial
disturbance is preserved as it propagates both to the right and to the le� at speed c, (see
also problem 2.??).

2.5.2 Rotating shallow water (Poincaré) waves
We now consider the eòects of rotation on shallow water waves. Linearizing the rotating,
�at-bottomed f-plane shallow water equations [i.e., (SW.1) and (SW.2) on page 31] about a
state of rest we obtain

àu�
àt

− f0v� = −g
àç�
àx

,
àv�
àt

+ f0u� = −g
àç�
ày

,

àç�
àt

+H(
àu�
àx

+
àv�
ày

) = 0.
(2.69a,b,c)

To obtain a dispersion relationship we let

(u, v, ç) = (ũ, ṽ, ç̃)ei(k⋅x−øt), (2.70)

and substitute into (2.69), giving

(
−i ø −f0 i gk
f0 −i ø i gl
iHk iHl −i ø

)(
ũ
ṽ
ç̃
) = 0. (2.71)

_is homogeneous equation has non-trivial solutions only if the determinant of thematrix
vanishes. _is condition gives

ø(ø2 − f20 − c2K2) = 0. (2.72)
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Figure 2.6 Dispersion relation for Poincaré waves (solid) and non-rotating shallow water waves
(dashed). Frequency is scaled by the Coriolis frequency f, and wavenumber by the inverse de-
formation radius √gH/f. For small wavenumbers the frequency is approximately f; for high
wavenumbers it asymptotes to that of non-rotating waves.

where K2 = k2 + l2 and c2 = gH. _ere are two classes of solution to (2.72). _e ûrst is
simply ø = 0, i.e., time-independent �ow corresponding to geostrophic balance in (2.69).
Because geostrophic balance gives a divergence-free velocity ûeld for a constant Coriolis
parameter the equations are satisûed by a time-independent solution. _e second set of
solutions gives the dispersion relation

ø2 = f20 + c2(k2 + l2), (2.73)

or
ø2 = f20 + gH(k2 + l2). (2.74)

_e corresponding waves are known as Poincaré waves,2 and the dispersion relationship is
illustrated in Fig. 2.6. Note that the frequency is always greater than the Coriolis frequency
f0. _ere are two interesting limits.

(i) The short wave limit. If

K2 ≫ f20
gH

, (2.75)

where K2 = k2 + l2, then the dispersion relationship reduces to that of the non-
rotating case (2.67). _is condition is equivalent to requiring that the wavelength be
much shorter than the deformation radius, Ld ≡ √gH/f. Speciûcally, if l = 0 and
ë = 2π/k is the wavelength, the condition is

ë2 ≪ L2d(2π)2. (2.76)
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_e numerical factor of (2π)2 is more than an order ofmagnitude, so caremust be
taken when deciding if the condition is satisûed in particular cases. Furthermore,
the wavelength must still be longer than the depth of the �uid, otherwise the shallow
water condition is not met.

(ii) The long wave limit. If

K2 ≪ f20
gH

, (2.77)

that is if the wavelength is much longer than the deformation radius Ld, then the
dispersion relationship is

ø = f0. (2.78)

_ese are known as inertial oscillations. _e equations ofmotion giving rise to them
are

àu�
àt

− f0v� = 0,
àv�
àt

+ f0u� = 0, (2.79)

which are equivalent to material equations for free particles in a rotating frame,
unconstrained by pressure forces, namely

d2x
dt2 − f0v = 0,

d2y
dt2 + f0u = 0. (2.80)

2.5.3 Kelvin waves
_e Kelvin wave is a particular type of gravity wave that exists in the presence of both
rotation and a lateral boundary. Suppose there is a solid boundary aty = 0; clearly harmonic
solutions in the y-direction are not allowable, as these would not satisfy the condition of
no normal �ow at the boundary. Do any wave-like solutions exist? _e aõrmative answer
to this question was provided by Kelvin and the associated waves are now eponymously
known as Kelvin waves.3 We begin with the linearized shallow water equations, namely

àu�
àt

− f0v� = −g
àç�
àx

,
àv�
àt

+ f0u� = −g
àç�
ày

,

àç�
àt

+H(
àu�
àx

+
àv�
ày

) = 0.
(2.81a,b,c)

_e fact that v� = 0 at y = 0 suggests that we look for a solution with v� = 0 everywhere,
whence these equations become

àu�
àt

= −g
àç�
àx

, f0u� = −g
àç�
ày

,
àç�
àt

+H
àu�
àx

= 0. (2.82a,b,c)
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Equations (2.82a) and (2.82c) lead to the standard wave equation

à2u�
àt2 = c2 à2u�

àx2 , (2.83)

where c = √gH, the usual wave speed of shallow water waves. _e solution of (2.83) is

u� = F1(x + ct, y) + F2(x − ct, y), (2.84)

with corresponding surface displacement

ç� = √H/g [−F1(x + ct, y) + F2(x − ct, y)] . (2.85)

_e solution represents the superposition of two waves, one (F1) travelling in the negative
x-direction, and the other in the positive x-direction. To obtain the y dependence of these
functions we use (2.82b) which gives

àF1
ày

=
f0

√gH
F1, àF2

ày
= −

f0
√gH

F2, (2.86)

with solutions
F1 = F(x + ct)ey/Ld F2 = G(x − ct)e−y/Ld , (2.87)

where Ld = √gH/f0 is the radius of deformation. If we consider �ow in the half-plane in
which y > 0, then for positive f0 the solution F1 grows exponentially away from the wall,
and so fails to satisfy the condition of boundedness at inûnity. It thus must be eliminated,
leaving the general solution

u� = e−y/LdG(x − ct), v� = 0,

ç� = √H/ge−y/LdG(x − ct).
(2.88a,b,c)

_ese are Kelvin waves, and they decay exponentially away from the boundary. In general,
for f0 positive the boundary is to the right of an observer moving with the wave. Given a
constantCoriolis parameter,we could equally well have obtained a solution on ameridional
wall, in which case we would ûnd that the wave again moves such that the wall is to the
right of the wave direction. (_is is obvious once it is realized that f-plane dynamics are
isotropic in x and y.) _us, in the Northern Hemisphere the wavemoves anticlockwise
round a basin, and conversely in the Southern Hemisphere, and in both hemispheres the
direction is cyclonic.
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2.6 Geostrophic Adjustment
Large-scale, extratropical circulation of the atmosphere is in near-geostrophic balance.
Why is this? Why should the Rossby number be small? It turs out there is in fact a powerful
and ubiquitous process whereby a �uid in an initially unbalanced state naturally evolves
toward a state of geostrophic balance, namely geostrophic adjustment. _is process occurs
quite generally in rotating �uids, whether stratiûed or not. We consider the free evolution
of a single shallow layer of �uid whose initial state is manifestly unbalanced, and we will
suppose that surface displacements are small so that the evolution of the system is described
by the linearized shallow equations ofmotion. _ese are

àu
àt

+ f × u = −g∇ç,
àç
àt

+H∇⋅ u = 0, (2.89a,b)

where ç is the free surface displacement andH is themean �uid depth, and we omit the
primes on the linearized variables.

2.6.1 Non-rotating �ow
We consider ûrst the non-rotating problem set, with little loss of generality, in one dimen-
sion. We suppose that initially the �uid is at rest but with a simple discontinuity in the
height ûeld so that

ç(x, t = 0) = {
+ç0 x < 0
−ç0 x > 0

(2.90)

and u(x, t = 0) = 0 everywhere. We can realize these initial conditions physically by
separating two �uidmasses of diòerent depths by a thin dividing wall, and then quickly
removing the wall. What is the subsequent evolution of the �uid? _e general solution to
the linear problem is given by (2.68) where the functional form is determined by the initial
conditions so that here

F(x) = ç(x, t = 0) = −ç0 sgn(x). (2.91)

Equation (2.68) states that this initial pattern is propagated to the right and to the le�.
_at is, two discontinuities in �uid height move to the right and le� at a speed c = √gH.
Speciûcally, the solution is

ç(x, t) = −
1
2
ç0[sgn(x + ct) + sgn(x − ct)]. (2.92)

_e initial conditions may bemuch more complex than a simple front, but, because the
waves are dispersionless, the solution is still simply a sum of the translation of those initial
conditions to the right and to the le� at speed c. _e velocity ûeld in this class of problem
is obtained from

àu
àt

= −g
àç
àx

, (2.93)
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Perturbation height

Figure 2.7 The time development of an initial ‘top hat’ height disturbance, with zero initial
velocity, in non-rotating �ow. Fronts propagate in both directions, and the velocity is non-zero
between fronts, but ultimately the disturbance are radiated away to in�nity, and the �uid is left at
rest with zero perturbation height.

which gives, using (2.68),

u = −
g
2c

[F(x + ct) − F(x − ct)]. (2.94)

Consider the casewith initial conditions given by (2.90). At a given location, away from
the initial disturbance, the �uid remains at rest and undisturbed until the front arrives.
A�er the front has passed, the �uid surface is again undisturbed and the velocity is uniform
and non zero. Speciûcally:

ç = {
−ç0sgn(x)
0

u = {
0 |x| > ct
(ç0g/c) |x| < ct.

(2.95)

_e solution with ‘top-hat’ initial conditions in the height ûeld, and zero initial velocity,
is a superposition two discontinuities similar to (2.95) and is illustrated in Fig. 2.7. Two
fronts propagate in either direction from each discontinuity and, in this case, the ûnal
velocity, as well as the �uid displacement, is zero a�er all the fronts have passed. _at is,
the disturbance is radiated completely away.

2.6.2 Rotating �ow
Rotation makes a profound diòerence to the adjustment problem of the shallow water
system, because a steady, adjusted, solution can exist with non-zero gradients in the height
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ûeld — the associated pressure gradients being balanced by the Coriolis force — and
potential vorticity conservation provides a powerful constraint on the �uid evolution.4 In
a rotating shallow �uid that conservation is represented by

àQ
àt

+ u ⋅ ∇Q = 0, (2.96)

where Q = (æ + f)/ℎ. In the linear case with constant Coriolis parameter, (2.96) becomes

àq
àt

= 0, q = (æ − f0 çH) . (2.97)

_is equation may be obtained either from the linearized velocity andmass conservation
equations, (2.89), or from (2.96) directly. In the latter case, we write

Q =
æ + f0
H + ç

≈
1
H
(æ + f0)(1 − ç

H
) ≈

1
H

(f0 + æ − f0 çH) =
f0
H

+
q
H

(2.98)

having used f0 ≫ |æ| and H ≫ |ç|. _e term f0/H is a constant and so dynamically
unimportant, as is theH−1 factor multiplying q. Further, the advective term u ⋅∇Q becomes
u ⋅ ∇q, and this is second order in perturbed quantities and so is neglected. _us,making
these approximations, (2.96) reduces to (2.97). _e potential vorticity ûeld is therefore ûxed
in space! Of course, this was also true in the non-rotating case where the �uid is initially at
rest. _en q = æ = 0 and the �uid remains irrotational throughout the subsequent evolution
of the �ow. However, this is rather a weak constraint on the subsequent evolution of the
�uid; it does nothing, for example, to prevent the conversion of all the potential energy
to kinetic energy. In the rotating case the potential vorticity is non-zero, and potential
vorticity conservation and geostrophic balance are all we need to infer the ûnal steady state,
assuming it exists, without solving for the details of the �ow evolution, as we now see.

With an initial condition for the height ûeld given by (2.90), the initial potential vorticity
is given by

q(x, y) = {
−f0ç0/H x < 0
f0ç0/H x > 0,

(2.99)

and this remains unchanged throughout the adjustment process. _e ûnal steady state is
then the solution of the equations

æ − f0 çH = q(x, y), f0u = −g
àç
ày

, f0v = g
àç
àx

, (2.100a,b,c)

where æ = àv/àx − àu/ày. Because the Coriolis parameter is constant, the velocity ûeld
is horizontally non-divergent and wemay deûne a streamfunction ÷ = gç/f0. Equations
(2.100) then reduce to

(∇2 − 1
L2d)÷ = q(x, y), (2.101)
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Figure 2.8 Solutions of a linear geostrophic adjustment problem. Top panel: the initial height
�eld, given by (2.90) with ç0 = 1. Second panel: equilibrium (�nal) height �eld, ç given by (2.103)
and ç = f0÷/g. Third panel: equilibrium geostrophic velocity (normal to the gradient of height
�eld), given by (2.104). Bottom panel: potential vorticity, given by (2.99), and this does note evolve.
The distance, x is non-dimensionalized by the deformation radius Ld = √gH/f0, and the velocity
by ç0(g/f0Ld). Changes to the initial state occur only withinO(Ld) of the initial discontinuity; and
as x → ±∞ the initial state is unaltered.

where Ld = √gH/f0 is known as the Rossby radius of deformation or o�en just the ‘defor-
mation radius’ or the ‘Rossby radius’. It is a naturally occurring length scale in problems
involving both rotation and gravity, and arises in a slightly diòerent form in stratiûed �uids.

_e initial conditions (2.99) admit of a nice analytic solution, for the �ow will remain
uniform in y, and (2.101) reduces to

à2÷
àx2 −

1
L2d÷ =

f0ç0
H

sgn(x). (2.102)

We solve this separately for x > 0 and x < 0 and then match the solutions and their ûrst
derivatives at x = 0, also imposing the condition that the velocity decays to zero as x → ±∞.
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_e solution is

÷ = {
−(gç0/f0)(1 − e−x/Ld) x > 0
+(gç0/f0)(1 − ex/Ld) x < 0.

(2.103)

_e velocity ûeld associated with this is obtained from (2.100b,c), and is

u = 0, v = −
gç0
f0Ld e−|x|/Ld . (2.104)

_e velocity is perpendicular to the slope of the free surface, and a jet forms along the
initial discontinuity, as illustrated in Fig. 2.8.

_e important point of this problem is that the variations in the height and ûeld are
not radiated away to inûnity, as in the non-rotating problem. Rather, potential vorticity
conservation constrains the in�uence of the adjustment to within a deformation radius
(we see now why this name is appropriate) of the initial disturbance. _is property is a
general one in geostrophic adjustment— it also arises if the initial condition consists of a
velocity jump, as considered in problem 2.??.

2.6.3 ♦ Energetics of adjustment
How much of the initial potential energy of the �ow is lost to inûnity by gravity wave
radiation, and howmuch is converted to kinetic energy? _e linear equations (2.89) lead to

1
2
à
àt

(Hu2 + gç2) + gH∇⋅ (uç) = 0, (2.105)

so that energy conservation holds in the form

E =
1
2
∫(Hu2 + gç2) dx, dE

dt
= 0, (2.106)

provided the integral of the divergence term vanishes, as it normally will in a closed domain.
_e �uid has a non-zero potential energy, (1/2)∫∞−∞ gç2 dx, if there are variations in �uid
height, and with the initial conditions (2.90) the initial potential energy is

PEI = ∫
∞0 gç20 dx. (2.107)

_is is nominally inûnite if the �uid has no boundaries, and the initial potential energy
density is gç20/2 everywhere.

In the non-rotating case, and with initial conditions (2.90), a�er the front has passed,
the potential energy density is zero and the kinetic energy density is Hu2/2 = gç20/2, using
(2.95) and c2 = gH. _us, all the potential energy is locally converted to kinetic energy as
the front passes, and eventually the kinetic energy is distributed uniformly along the line.
In the case illustrated in Fig. 2.7, the potential energy and kinetic energy are both radiated
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away from the initial disturbance. (Note that althoughwe can superpose the solutions from
diòerent initial conditions, we cannot superpose their potential and kinetic energies.) _e
general point is that the evolution of the disturbance is not conûned to its initial location.

In contrast, in the rotating case the conversion from potential to kinetic energy is largely
conûned to within a deformation radius of the initial disturbance, and at locations far from
the initial disturbance the initial state is essentially unaltered. _e conservation of potential
vorticity has prevented the complete conversion of potential energy to kinetic energy, a
result that is not sensitive to the precise form of the initial conditions (see also problem
2.??).

In fact, in the rotating case, some of the initial potential energy is converted to kinetic
energy, some remains as potential energy and some is lost to inûnity; let us calculate these
amounts. _e ûnal potential energy, a�er adjustment, is, using (2.103),

PEF =
1
2
gç20 [∫∞0 (1 − e−x/Ld)2 dx + ∫

0−∞ (1 − ex/Ld)2 dx] . (2.108)

_is is nominally inûnite, but the change in potential energy is ûnite and is given by

PEI − PEF = gç20 ∫∞0 (2e−x/Ld − e−2x/Ld) dx =
3
2
gç20Ld. (2.109)

_e initial kinetic energy is zero, because the �uid is at rest, and its ûnal value is, using
(2.104),

KEF =
1
2
H∫ u2 dx = H(

gç0
fLd)2 ∫∞0 e−2x/Ld dx =

gç20Ld
2

. (2.110)

_us one-third of the diòerence between the initial and ûnal potential energies is converted
to kinetic energy, and this is trapped within a distance of the order of a deformation radius
of the disturbance; the remainder, an amount gLdç20 is radiated away and lost to inûnity.
In any ûnite region surrounding the initial discontinuity the ûnal energy is less than the
initial energy.

2.6.4 A variational perspective
In the non-rotating problem, all of the initial potential energy is eventually radiated away
to inûnity. In the rotating problem, the ûnal state contains both potential and kinetic
energy. Why is the energy not all radiated away to inûnity? It is because potential vorticity
conservation on parcels prevents all of the energy being dispersed. _is suggests that it may
be informative to think of the geostrophic adjustment problem as a variational problem:
we seek to minimize the energy consistent with the conservation of potential vorticity. We
stay in the linear approximation in which, because the advection of potential vorticity is
neglected, potential vorticity remains constant at each point.

_e energy of the �ow is given by the sum of potential and kinetic energies, namely

energy = ∫(Hu2 + gç2) dA, (2.111)
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(where dA ≡ dx dy) and the potential vorticity ûeld is

q = æ − f0 çH = (vx − uy) − f0 çH, (2.112)

where the subscripts x, y denote derivatives. _e problem is then to extremize the energy
subject to potential vorticity conservation. _is is a constrained problem in the calculus of
variations, sometimes called an isoperimetric problem because of its origins in maximizing
the area of a surface for a given perimeter.5 _emathematical problem is to extremize the
integral

I = ∫ {H(u2 + v2) + gç2 + ë(x, y)[(vx − uy) − f0ç/H]} dA, (2.113)

where ë(x, y) is a Lagrangemultiplier, undetermined at this stage. It is a function of space:
if it were a constant, the integral wouldmerely extremize energy subject to a given integral
of potential vorticity, and rearrangements of potential vorticity (which here we wish to
disallow) would leave the integral unaltered.

As there are three independent variables there are three Euler–Lagrange equations that
must be solved in order to minimize I. _ese are

àL
àç

−
à
àx

àL
àçx −

à
ày

àL
àçy = 0,

àL
àu

−
à
àx

àL
àux −

à
ày

àL
àuy = 0,

àL
àv

−
à
àx

àL
àvx −

à
ày

àL
àvy = 0,

(2.114)

where L is the integrand on the right-hand side of (2.113). Substituting the expression for L
into (2.114) gives, a�er a little algebra,

2gç −
ëf0
H

= 0, 2Hu +
àë
ày

= 0, 2Hv −
àë
àx

= 0, (2.115)

and then eliminating ë gives the simple relationships

u = −
g
f0 àçày , v =

g
f0 àçàx , (2.116)

which are the equations of geostrophic balance. _us, in the linear approximation, geo-
strophic balance is theminimum energy state for a given ûeld of potential vorticity.



Chapter 3
Geostrophic Theory
Weeks 5 to 7

_is chapter is concerned with �ows that are close to geostrophic balance, with the speciûc
goal of deriving equation sets that exploit this closeness and that are simpler than the
original, ‘primitive’ equations. We will in particular derive the quasi-geostrophic and
planetary-geostrophic sets of equations. We do this ûrst for shallow water and then for the
stratiûed three-dimensional equations.

3.1 Geostrophic Scaling in the ShallowWater Equations
For simplicity we will assume a �at bottom, so that ç = ℎ. With the odd exception, we
will denote the scales of variables by capital letters; thus, if L is a typical length scale of the
motion we wish to describe, and U is a typical velocity scale, and assuming the scales are
horizontally isotropic, we write

(x, y) ∼ L or (x, y) = O(L)

(u, v) ∼ U or (u, v) = O(U).
(3.1)

and similarly for other variables. Wemay then non-dimensionalize the variables by writing

(x, y) = L(x̂, ŷ), (u, v) = U(û, v̂), (3.2)

where the hatted variables are non-dimensional and, by supposition, areO(1). _e various
terms in themomentum equation then scale as:

àu
àt

+ u ⋅ ∇u + f × u = −g∇ç, (3.3a)

U
T

U2
L

fU g
H
L
, (3.3b)

51
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where the ∇ operator acts in the x, y plane and H is the amplitude of the variations in
the surface displacement. (We use ç to denote the height of the free surface above some
arbitrary reference level, as in Fig. 2.1. _us, ç = H + Äç, where Äç denotes the variation of
ç about its mean position.)

_e ratio of the advective term to the rotational term in themomentum equation (3.3)
is (U2/L)/(fU) = U/fL; this is the Rossby number, ûrst encountered in chapter ??.6 Using
values typical of the large-scale circulation (e.g., from Table 1.1) we ûnd that Ro ≈ 0.1 for
the atmosphere and Ro ≈ 0.01 for the ocean: small in both cases. If we are interested in
motion that has the advective time scale T = L/U then we scale time by L/U so that

t =
L
U
t̂, (3.4)

and the local time derivative and the advective term then both scale as U2/L, and both are
smaller than the rotation term by a factor of the order of the Rossby number. _en, either
the Coriolis term is the dominant term in the equation, in which case we have a state of no
motion with −fv = 0, or else the Coriolis force is balanced by the pressure force, and the
dominant balance is

−fv = −g
àç
àx

, (3.5)

namely geostrophic balance. If wemake this non-trivial choice, then variations in ç (i.e.,
Äç) scale according to

Äç ∼ H =
fUL
g

. (3.6)

We can also writeH as

H = Ro
f2L2
g

= RoH
L2
L2d , (3.7)

where Ld = √gH/f is the deformation radius andH is themean depth of the �uid. _e
variations in �uid height thus scale as

Äç
H

∼ Ro
L2
L2d , (3.8)

and the height of the �uidmay be written as

ç = H(1 + Ro
L2
L2d ç̂) and Äç = Ro

L2
L2dHç̂, (3.9)

where ç̂ is theO(1) non-dimensional value of the surface height deviation.
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Non-dimensional momentum equation
If we use (3.9) to scale height variations, (3.2) to scale lengths and velocities, and (3.4) to
scale time, then themomentum equation (3.3) becomes

Ro [
àû
àt̂

+ (û ⋅ ∇)û] + f̂ × û = −∇ç̂ , (3.10)

where f̂ = kf̂ = kf/f0, where f0 is a representative value of the Coriolis parameter. (If
f is a constant, then f̂ = 1, but it is informative to explicitly write f̂ in the equations.
Also, where the operator ∇ operates on a non-dimensional variable then the diòerentials
are taken with respect to the non-dimensional variables x̂, ŷ.) All the variables in (3.10)
will be assumed to be of order unity, and the Rossby number multiplying the local time
derivative and the advective terms indicates the smallness of those terms. By construction,
the dominant balance in this equation is the geostrophic balance between the last two
terms.

Non-dimensional mass continuity (height) equation
_e (dimensional) mass continuity equation can be written as

1
H

Dç
Dt

+ (1 +
Äç
H

)∇⋅ u = 0, (3.11)

Using (3.2), (3.4) and (3.9) this equation may be written

Ro (
L
Ld)2 Dç̂

Dt̂
+ [1 + Ro (

L
Ld)2 ç̂]∇⋅ û = 0 . (3.12)

Equations (3.10) and (3.12) are the non-dimensional versions of the full shallow water
equations ofmotion. Evidently, some terms in the equations ofmotion are small andmay
be eliminated with little loss of accuracy, and the way this is done will depend on the size
of the second non-dimensional parameter, (L/Ld)2. We explore this in sections 3.2 and 3.3.

Froude and Burger numbers
_e Froude number may be generally deûned as the ratio of a �uid particle speed to a wave
speed. In a shallow water system this gives

Fr ≡
U

√gH
=

U
f0Ld = Ro

L
Ld . (3.13)

_e Burger number is a useful measure of the scale ofmotion of the �uid, relative to the
deformation radius, andmay be deûned by

Bu ≡ (
Ld
L
)
2
=

gH
f20 L2 = (

Ro
Fr

)
2
. (3.14)
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It is also useful to deûne the parameter F ≡ Bu−1, which is like the square of a Froude
number but uses the rotational speed fL instead of U in the numerator.

3.2 The ShallowWater Planetary-Geostrophic Equations
3.2.1 Informal derivation
_e advection and time derivative terms in themomentum equation (3.10) are order Rossby
number smaller than the Coriolis and pressure terms (the term in square brackets is multi-
plied by Ro), and therefore let us neglect them. _emomentum equation straightforwardly
becomes

f̂ × û = −∇ç̂. (3.15)

_emass conservation equation (3.12), contains two non-dimensional parameters, Ro =
U/(f0L) (the Rossby number), and F = (L/Ld)2 (the ratio of the length scale of themotion
to the deformation scale; F = Bu−1) and we must make a choice as to the relationship
between these two numbers. We will choose

FRo = O(1), (3.16)

which implies

L2 ≫ L2d or equivalently F ≫ 1, Bu ≪ 1. (3.17)

_at is to say, we suppose that the scales ofmotion aremuch larger than the deformation
scale. Given this choice, all the terms in the mass conservation equation, (3.12), are of
roughly the same size, andwe retain them all. _us, the shallowwater planetary geostrophic
equations are the full mass continuity equation along with geostrophic balance and a
geometric relationship between the height ûeld and the �uid thickness, and in dimensional
form these are:

Dℎ
Dt

+ ℎ∇⋅ u = 0

f × u = −g∇ç, ç = ℎ + çb. (3.18a,b)

We emphasize that the planetary-geostrophic equations are only valid for scales ofmotion
much larger than the deformation radius. _e height variations are then as large as themean
height ûeld itself; that is, using (3.8), Äç/H = O(1).

♦ Formal derivation
Wemake the following assumptions.

(i) _e Rossby number is small. Ro = U/f0L ≪ 1.
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(ii) _e scale of the motion is signiûcantly larger than the deformation scale. _at is,
(3.16) holds or

F = Bu−1 = (
L
Ld)2 ≫ 1 (3.19)

and in particular
FRo = O(1). (3.20)

(iii) Time scales advectively, so that T = L/U.
We expand the non-dimensional variables velocity and height ûelds in an asymptotic series
with the Rossby number as the small parameter, substitute into the equations ofmotion
and derive a simpler set of equations. It is a nearly trivial exercise in this instance, and so it
illustrates themethodology well. _e expansions are

û = û0 + Ro û1 + Ro2û2 + ⋅ ⋅ ⋅ (3.21a)

and
ç̂ = ç̂0 + Ro ç̂1 + Ro2ç̂2 + ⋅ ⋅ ⋅ . (3.21b)

_en substituting (3.21a) and (3.21b) into themomentum equation gives

Ro [
àû0
àt̂

+ û0 ⋅ ∇û0 + f̂ × û1] + f̂ × û0 = −∇ç̂0 − Ro [∇ç̂1] +O(Ro2) (3.22)

_e Rossby number is an asymptotic ordering parameter; thus, the sum of all the terms at
any particular order in Rossby number must vanish. At lowest order we obtain the simple
expression

f̂ × û0 = −∇ç̂0. (3.23)

Note that although f0 is a representative value of f, we havemade no assumptions about
the constancy of f. In particular, f is allowed to vary by an order one amount, provided
that it does not become so small that the Rossby number U/(f0L) is not small.

_e appropriate height (mass conservation) equation is similarly obtained by substi-
tuting (3.21a) and (3.21b) into the shallow water mass conservation equation. Because
FRo = O(1) at lowest order we simply retain all the terms in the equation to give

FRo [
àç̂0
àt

+ û0 ⋅ ∇ç̂0] + [1 + FRo ç̂]∇⋅ û0 = 0. (3.24)

Equations (3.23) and (3.24) are a closed set, and constitute the non-dimensional planetary-
geostrophic equations. _e dimensional forms of these equations are just (3.18).
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Variation of the Coriolis parameter
Suppose then that f is a constant (f0). _en, from the curl of (3.23), ∇⋅ u0 = 0. _is means
that we can deûne a streamfunction for the �ow and, from geostrophic balance, the height
ûeld is just that streamfunction. _at is, in dimensional form,

÷ =
g
f0 ç, u = k × ∇÷, (3.25a,b)

and (3.24) becomes, in dimensional form,

àç
àt

+ u ⋅ ∇ç = 0 or
àç
àt

+ J(÷, ç) = 0, (3.26)

where J(a, b) ≡ axby − aybx. But since ç ∝ ÷ the advective term is proportional to J(÷, ÷),
which is zero. _us, the �ow does not evolve at this order. _e planetary-geostrophic
equations are uninteresting if the scale of themotion is such that the Coriolis parameter is
not variable. On Earth, the scale ofmotion on which this parameter regime exists is rather
limited, since the planetary-geostrophic equations require that the scale ofmotion also be
larger than the deformation radius. In the Earth’s atmosphere, any scale that is larger than
the deformation radius will be such that the Coriolis parameter varies signiûcantly over it,
and we do not encounter this parameter regime. On the other hand, in the Earth’s ocean
the deformation radius is relatively small and there exists a small parameter regime that
has scales larger than the deformation radius but smaller than that on which the Coriolis
parameter varies.

Potential vorticity
_e shallow water PG equations may be written as an evolution equation for an approxi-
mated potential vorticity. A littlemanipulation reveals that (3.18) are equivalent to:

DQ
Dt

= 0

Q =
f
ℎ
, f × u = −g∇ç, ç = ℎ + çb. (3.27)

_us, potential vorticity is amaterial invariant in the approximate equation set, just as it
is in the full equations. _e other variables— the free surface height and the velocity—
are diagnosed from it, a process known as potential vorticity inversion. In the planetary
geostrophic approximation, the inversion proceeds using the approximate form f/ℎ rather
than the full potential vorticity, (f + æ)/ℎ. (Strictly speaking, we do not approximate poten-
tial vorticity, because this is the evolving variable. Rather, we approximate the inversion
relations from which we derive the height and velocity ûelds.) _e simplest way of all to
derive the shallowwater PG equations is to beginwith the conservation of potential vorticity,
and to note that at small Rossby number the expression (æ + f)/ℎ may be approximated
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by f/ℎ. _en, noting in addition that the �ow is geostrophic, (3.27) immediately emerges.
Every approximate set of equations that we derive in this chapter may be expressed as the
evolution of potential vorticity, with the other ûelds being obtained diagnostically from it.

3.3 The ShallowWater Quasi-Geostrophic Equations
We now derive a set of geostrophic equations that is valid (unlike the PG equations) when
the horizontal scale ofmotion is similar to that of the deformation radius. _ese equations
are called the quasi-geostrophic equations, and are perhaps the most widely used set of
equations for theoretical studies of the atmosphere and ocean. _e speciûc assumptions
wemake are as follows.

(i) _e Rossby number is small, so that the �ow is in near-geostrophic balance.

(ii) _e scale of themotion is not signiûcantly larger than the deformation scale. Speciû-
cally, we shall require that

Ro (
L
Ld)2 = O(Ro). (3.28)

For the shallow water equations, this assumption implies, using (3.9), that the vari-
ations in �uid depth are small compared to its total depth. For the continuously
stratiûed system it implies, using (3.53), that the variations in stratiûcation are small
compared to the background stratiûcation.

(iii) Variations in the Coriolis parameter are small; that is, |âL| ≪ |f0| where L is the
length scale of themotion.

(iv) Time scales advectively; that is, the scaling for time is given by T = L/U.
_e second and third of these diòer from the planetary-geostrophic counterparts: wemake
the second assumption because we wish to explore a diòerent parameter regime, and we
then ûnd that the third assumption is necessary to avoid a rather trivial state [i.e., a leading
order balance of âv = 0, see the discussion surrounding (3.44)]. All of the assumptions
are the same whether we consider the shallow water equations or a continuously stratiûed
�ow, and in this section we consider the former.

3.3.1 Shallow water quasi-geostrophic equations
let us set the velocity equal to a geostrophic component, ug plus an ageostrophic component,
ua. We will suppose that f = f0 +ây, where |f0| ≫ |ây|, and we will deûne the geostrophic
�ow to be the �ow that satisûes

f0 × ug = −g∇ç, (3.29)

which in turn implies ∇⋅ ug = 0. Rather than make approximations to the momentum
approximation let us begin with the shallow water vorticity equation which, reprising 2.41,
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is
àæ
àt

+ (u ⋅ ∇)(æ + f) = − (æ + f)∇⋅ u. (3.30)

_e right-hand side contains only the ageostrophic velocity, which is small, and since æ
is smaller than f by a factor of the Rossby number we can ignore æ∇⋅ u and take f to be
equal to f0. _e le�-hand sidemay be well-approximated by using the geostrophic �ow,
(3.29), so that we have

àæg
àt

+ (ug ⋅ ∇)(æg + f) = −f0∇⋅ ua. (3.31)

Note that on the le�-hand side f can be replaced by ây.
We now use themass continuity equation to obtain an expression for the divergence.

From (??) themass continuity equation may be written as

Dç
Dt

+ (H + Äæ)∇⋅ u = 0, (3.32)

and sinceH ≫ Äæ (using (3.12),H is bigger by a factor (Ld/L)2Ro−1), the equation becomes
Dç
Dt

+H∇⋅ ua = 0. (3.33)

Combining (3.31) and (3.33) gives

D
Dt

(æg + f −
f0ç
H

) = 0. (3.34)

It appears that we have two variables here, æg and ç. However, they are related through
geostrophic balance, and the fact that the geostrophic �ow is non-divergent. _us, wemay
deûne a streamfunction ÷ such that ug = −à÷/ày, vg = à÷/àx, whence àu/àx + àv/ày = 0,
_e vorticity and height ûeld are related to the streamfunction by

æg =
àv
àx

−
àu
ày

= ∇2÷, and ç =
f0÷
g

, (3.35a,b)

where the second relation comes from geostrophic balance. Eqrefgs:pg10 may then be
written as

Dq
Dt

= 0, q = ∇2÷ + ây −
÷
L2d , (3.36)

where Ld = √gH/f0. _e variable q is the quasi-geostrophic potential vorticity.
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Connection to shallow water potential vorticity
_e quantity q given by (3.36) is an approximation (except for dynamically unimportant
constant additive andmultiplicative factors) to the shallow water potential vorticity. To
see the truth of this statement, begin with the expression for the shallow water potential
vorticity,

Q =
f + æ
ℎ

. (3.37)

Now let ℎ = H(1 + ç�/H), where ç� is the perturbation of the free-surface height, and
assume that ç�/H is small to obtain

Q =
f + æ

H(1 + ç�/H)
≈

1
H
(f + æ)(1 −

ç�
H
)

≈
1
H

(f0 + ây + æ − f0 ç�H) .
(3.38)

Because f0/H is a constant it has no eòect in the evolution equation, and the quantity given
by

q = ây + æ − f0 ç�H (3.39)

is materially conserved. Using geostrophic balance we have æ = ∇2÷ and ç� = f0÷/g so
that (3.39) is identical to the q given in (3.36).

_e approximations needed to go from (3.37) to (3.39) are the same as those used in
our earlier,more long-winded, derivation of the quasi-geostrophic equations. _at is, we
assumed that f itself is nearly constant, and that f0 is much larger than æ, equivalent to a
low Rossby number assumption. It was also necessary to assume that H ≫ ç� to enable the
expansion of the height ûeld which, using assumption ((ii)) on page 57, is equivalent to
requiring that the scale ofmotion not be signiûcantly larger than the deformation scale.
_e derivation is completed by noting that the advection of the potential vorticity should
be by the geostrophic velocity alone, and we recover (??) or (??).

Two interesting limits
_ere are two interesting limits to the quasi-geostrophic potential vorticity equation which,
taking â = 0 for simplicity, are as follows.

(i) Motion on scales much smaller than the deformation radius. _at is, L ≪ Ld and thus
Bu ≫ 1 or F ≪ 1. _en (??) becomes

àæ
àt

+ J(÷, æ) = 0, (3.40)

where æ = ∇2÷ and J(÷, æ) = ÷xæy − ÷yæx. _us, the motion obeys the two-
dimensional vorticity equation. Physically, on small length scales the deviations
in the height ûeld are very small andmay be neglected.
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(ii) Motion on scales much larger than the deformation radius. Although scales are not
allowed to become so large that Ro(L/Ld)2 is of order unity, we may, a posteriori,
still have L ≫ Ld, whence the potential vorticity equation, (??), becomes

à÷
àt

+ J(÷, ÷) = 0 or
àç
àt

+ J(÷, ç) = 0, (3.41)

because ÷ = gç/f0. _e Jacobian term evidently vanishes. _us, one is le� with a
trivial equation that implies there is no advective evolution of the height ûeld. _ere
is nothing wrong with our reasoning; themathematics has indeed pointed out a limit
interesting in its uninterestingness. From a physical point of view, however, such a
lack ofmotion is likely to be rare, because on such large scales the Coriolis parameter
varies considerably, and we are led to the planetary-geostrophic equations.

In practice, o�en themost severe restriction of quasi-geostrophy is that variations in layer
thickness are small: what does this have to do with geostrophy? If we scale ç assuming
geostrophic balance then ç ∼ fUL/g and ç/H ∼ Ro(L/Ld)2. _us, if Ro is to remain small,
ç/H can only be of order one if (L/Ld)2 ≫ 1. _at is, the height variations must occur on a
large scale, or we are led to a scaling inconsistency. Put another way, if there are order-one
height variations over a length scale of less than or of the order of the deformation scale, the
Rossby number will not be small. Large height variations are allowed if the scale ofmotion
is large, but this contingency is described by the planetary-geostrophic equations.

Another �ow regime
Although perhaps of little terrestrial interest,we can imagine a regime inwhich the Coriolis
parameter varies fully, but the scale of motion remains no larger than the deformation
radius. _is parameter regime is not quasi-geostrophic, but it gives an interesting result.
Because ç�/H ∼ Ro(L/Ld)2 deviations of the height ûeld are at least of order Rossby
number smaller than the reference height and |ç�| ≪ H. _e dominant balance in the
height equation is then

H∇⋅ u = 0, (3.42)

presuming that time still scales advectively. _is zero horizontal divergencemust remain
consistent with geostrophic balance

f × u = −g∇ç, (3.43)

where now f is a fully variable Coriolis parameter. Taking the curl of (that is, cross-
diòerentiating) (3.43) gives

âv + f∇⋅ u = 0, (3.44)

whence, using (3.42), v = 0, and the �ow is purely zonal. Although not at all useful as an
evolution equation, this illustrates the constraining eòect that diòerential rotation has on
meridional velocity. _is eòect may be the cause of the banded, highly zonal �ow on some
of the giant planets.
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3.4 Geostrophic scaling in the stratified equations
We use the hydrostatic Boussinesq equations, which we write as

Du
Dt

+ f × u = −∇zõ, (3.45a)

àõ
àz

= b, (3.45b)

Db
Dt

= 0, (3.45c)

∇⋅ v = 0. (3.45d)

where b is the buoyancy. Anticipating that the average stratiûcation may not scale in the
same way as the deviation from it, let us separate out the contribution of the advection of a
reference stratiûcation in (3.45c) by writing

b = b̃(z) + b�(x, y, z, t). (3.46)

_en the thermodynamic equation becomes

Db�
Dt

+N2w = 0, (3.47)

whereN2 ≡ àb̃/àz (and the advective derivative is still three-dimensional). We then let
õ = õ̃(z) + õ�, where õ̃ is hydrostatically balanced by b̃, and the hydrostatic equation
becomes

àõ�
àz

= b�. (3.48)

Equations (3.47) and (3.48) replace (3.45c) and (3.45b), and õ� is used in (3.45a).

3.4.1 Non-dimensional equations
We scale the basic variables by supposing that

(x, y) ∼ L, (u, v) ∼ U, t ∼
L
U
, z ∼ H,

f ∼ f0, N ∼ N0, (3.49)

where the scaling variables (capitalized, except for f0) are chosen to be such that the
non-dimensional variables havemagnitudes of the order of unity. We presume that the
scales chosen are such that the Rossby number is small; that is Ro = U/(f0L) ≪ 1. In the
momentum equation the pressure term then balances the Coriolis force,

|f × u| ∼ |∇õ�| (3.50)
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and so the pressure scales as
õ� ∼ Õ = foUL. (3.51)

Using the hydrostatic relation, (3.51) implies that the buoyancy scales as

b� ∼ B =
f0UL
H

, (3.52)

and from this we obtain
(àb�/àz)

N20 ∼ Ro
L2
L2d , (3.53)

where Ld = N0H/f0 is the deformation radius in the continuously stratiûed �uid, analogous
to the quantity √gH/f0 in the shallow water system, and we use the same symbol, Ld, for
both. In the continuously stratiûed system, if the scale ofmotion is the same as or smaller than
the deformation radius, and the Rossby number is small, then the variations in stratiûcation
are small. _e choice of scale is the key diòerence between the planetary-geostrophic and
quasi-geostrophic equations.

Finally,wewill non-dimensionalize the vertical velocity by using themass conservation
equation,

àw
àz

= −(
àu
àx

+
àv
ày

) , (3.54)

and we suppose that this implies

w ∼ W =
UH
L

. (3.55)

_is is a naïve scaling for rotating �ow: if the Coriolis parameter is nearly constant the
geostrophic velocity is nearly horizontally non-divergent and the right-hand side of (3.54)
is small, andW ≪ UH/L. Wemight then estimate w by cross-diòerentiating geostrophic
balance to obtain the linear geostrophic vorticity equation and corresponding scaling:

âv ≈ f
àw
àz

, w ∼ W =
âUH
f0 . (3.56a,b)

However, rather than using (3.56b) from the outset, we will use (3.55) and let the proper
scaling emerge in the fullness of time. Note that if variations in the Coriolis parameter are
large and â ∼ f0/L, then (3.56b) is the same as (3.55).

Given the scalings above [using (3.55) for w] we non-dimensionalize by setting

(x̂, ŷ) = L−1(x, y), ẑ = H−1z,
(û, v̂) = U−1(u, v), ŵ =

L
UH

w, t̂ =
U
L
t,

f̂ = f−10 f, õ̂ =
õ�

f0UL, b̂ =
H

f0ULb�,
(3.57)
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Non-dimensional Primitive Equations

_e non-dimebnsional, hydrostatic, Boussinesq equations in a rotating frame
of reference are

Horizontal momentum: Ro
Dû
Dt̂

+ f̂ × û = −∇õ̂ (PE.1)

Hydrostatic:
àõ̂
àẑ

= b̂ (PE.2)

Mass continuity: (
àû
àx̂

+
àv̂
àŷ

+
àŵ
àẑ

) = 0 (PE.3)

_ermodynamic: Ro
Db̂
Dt̂

+ (
Ld
L
)
2
N̂2ŵ = 0. (PE.4)

where the hatted variables are non-dimensional. _e horizontal momentum and hydrostatic
equations then become

Ro
Dû
Dt̂

+ f̂ × û = −∇õ̂, (3.58)

and
àõ̂
àẑ

= b̂. (3.59)

_e non-dimensional mass conservation equation is simply

∇⋅ v̂ = (
àû
àx̂

+
àv̂
àŷ

+
àŵ
àẑ

) = 0, (3.60)

and the nondimensional thermodynamic equation is

f0UL
H

U
L
Db̂
Dt̂

+ N̂2N20 HU
L

ŵ = 0, (3.61)

or, re-arranging,

Ro
Db̂
Dt̂

+ (
Ld
L
)
2
N̂2ŵ = 0. (3.62)

_e nondimensional primitive equations are summarized in the box above.

3.5 Planetary-geostrophic equations for stratified flow
We use the inviscid and adiabatic Boussinesq equations ofmotion with the hydrostatic
approximation. _e essential assumptions in deriving the PG equations are:
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1. Ro ≪ 1

2. (Ld/L)2 ≪ 1. And speciûcally (Ld/L)2 = O(Ro) .
We are also assuming that time scales advectively and we allow f to have a full variation.

Given these assumptions the only simpliûcationwemake to the equations in the shaded
box on the preceding page is that the momentum equation is replaced by geostrophic
balance. _en, in dimensional form, the planetary-geostrophic equations ofmotion are:

Db�
Dt

+ wN2 = 0.

f × u = −∇õ�, àõ�
àz

= b�, ∇⋅ v = 0
. (3.63)

_e thermodynamic equation may also be written simply as

Db
Dt

= ḃ, (3.64)

where b now represents the total stratiûcation. _e relevant pressure, õ, is then the pressure
that is in hydrostatic balance with b, so that geostrophic and hydrostatic balance aremost
usefully written as

f × u = −∇õ,
àõ
àz

= b. (3.65a,b)

3.5.1 Potential vorticity
Manipulation of (3.63) reveals that we can equivalently write the equations as an evolution
equation for potential vorticity. _us, the evolution equations may be written as

DQ
Dt

= Q̇

Q = f
àb
àz

, (3.66)

where Q̇ = fàḃ/àz, and the inversion — i.e., the diagnosis of velocity, pressure and
buoyancy — is carried out using the hydrostatic, geostrophic and mass conservation
equations.

3.5.2 Applicability to the ocean and atmosphere
In the atmosphere a typical deformation radiusNH/f is about 1 000 km. _e constraint that
the scale ofmotion bemuch larger than the deformation radius is thus quite hard to satisfy,
since one quickly runs out of room on a planetwhose equator-to-pole distance is 10 000 km.
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_us, only the largest planetary waves can satisfy the planetary-geostrophic scaling in the
atmosphere and we should then also write the equations in spherical coordinates. In the
ocean the deformation radius is about 100 km, so there is lots of room for the planetary-
geostrophic equations to hold, and indeedmuch of the theory of the large-scale structure
of the ocean involves the planetary-geostrophic equations.

3.6 The Continuously StratifiedQuasi-Geostrophic System
We now consider the quasi-geostrophic equations for the continuously stratiûed hydrostatic
system. _e primitive equations ofmotion are given by (3.45), and we extract themean
stratiûcation so that the thermodynamic equation is given by (3.47). We stay on the â-plane
for simplicity.

3.6.1 Scaling and assumptions
_e non-dimensionalization and scaling are initially precisely that of section 3.4 and the
nondimensional equations are just those in the shaded box on page 63. _e Coriolis
parameter is given

f = (f0 + ây) k̂ (3.67)

_e variation of the Coriolis parameter is assumed to be small (this is a key diòerence
between the quasi-geostrophic system and the planetary-geostrophic system), and in
particular we shall assume that ây is approximately the size of the relative vorticity, and so
is much smaller than f0 itself. _e assumptions needed to derive the QG system are:

1. _e Rossby number is small, Ro ≪ 1.

2. Length scales are of the same order as the deformation radius, L ∼ Ld or L/Ld = O(1).

3. Variations in Coriolis parameter are small, and speciûcally |ây| ∼ Rof0.
Given these assumptions, we can write the horizontal velocity as the sum of a geo-

strophic component and an ageostrophic one:

u = ug + ua,
where f0k̂ × ug = −∇õ and |ug| ≫ |ua|. (3.68)

I follows from the deûnition of the geostrophic velocity that its divergence is zero; that is

àug
àx

+
àvg
ày

= 0. (3.69)

_e vertical velocity is thus given by the divergence of the ageostrophic velocity,

àw
àz

= −
àua
àx

+
àva
ày

. (3.70)
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Since the ageostrophic velocity is small, the actual vertical velocity is smaller than the
scaling suggested by themass conservation equation in its original form. _at is,

W ≪
UH
L

. (3.71)

3.6.2 Derivation of StratiûedQG Equations
For reference we write down the primitive equations ofmotion again. _ese are

Du
Dt

+ f × u = −∇zõ, (3.72a)

àõ
àz

= b, (3.72b)

Db
Dt

�
+N2w = 0, (3.72c)

àu
àx

+
àv
ày

+
àw
àz

= 0. (3.72d)

_ese are thehorizontalmomentum equation, thehydrostatic equation, the thermodynamic
equation and themass continuity equation. _ematerial derivative is three dimensional.

We being by cross diòerentiating the horizontal momentum equation to give, a�er a
few lines of algebra, the vorticity equation:

D
Dt

(æ + f) = −(æ + f)(
àu
àx

+
àv
ày

) + (
àu
àz

àw
ày

−
àv
àz

àw
àx

) . (3.73)

We now apply the above quasi-geostrophic assumptions, so that:
1. _e geostrophic velocity and vorticity aremuch larger than their ageostrophic coun-

terparts, so we use geostrophic values for the terms on the le�-hand side.

2. On the right hand side we keep the horizontal divergence (which is small) on the
right-hand side where it is multiplied by the big term f. Furthermore, because f is
nearly constant we replace it with f0 except where it is diòerentiated.

3. _e second term (tilting) on the right-hand side is smaller than the advection terms
on the le�-hand side by the ratio [UW/(HL)]/[U2/L2] = [W/H]/[U/L] ≪ 1, because
w is small, as noted above

Given the above, (3.73) becomes

Dg
Dt

(æg + f) = −f0 (àu
àx

+
àv
ày

) = f0 àwàz , (3.74)

where the second equality uses mass continuity and Dg/Dt = à/àt + ug ⋅ ∇— note that
only the (horizontal) geostrophic velocity does any advecting.
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Now consider the three-dimensional thermodynamic equation. Since w is small it only
advects the basic state, and the perturbation buoyancy is advected only by the geostrophic
velocity. _us, (3.72c) becomes

Dgb�
Dt

+ wN2 = 0. (3.75)

We now eliminate w between (3.74) and (3.75), and (with some algebra) gives

Dgq
Dt

= 0, q = æg + f +
à
àz

(
f0b�
N2 ) . (3.76)

Hydrostatic and geostrophic wind balance enable us to write the geostrophic velocity,
vorticity, and buoyancy in terms of streamfunction ÷ [= p/(f0ñ0)]:

ug = k × ∇÷, æg = ∇2÷, b� = f0à÷/àz. (3.77)

_us, we have, now omitting the subscript g,

Dq
Dt

= 0,

q = ∇2÷ + f + f20 à
àz

(
1
N2 à÷àz )

, (3.78a,b)

Only the variable part of f (e.g., ây) is relevant in the second term on the right-hand side
of the expression for q. _ematerial derivativemay be expressed as

Dw
Dt

= àq/àt + J(÷, q). (3.79)

_e quantity q is known as the quasi-geostrophic potential vorticity. It is analogous to
the exact (Ertel) potential vorticity (see section ?? for more about this), and it is conserved
when advected by the horizontal geostrophic �ow. All the other dynamical variables may
be obtained from potential vorticity as follows.

(i) Streamfunction, using (3.78b).
(ii) Velocity: u = k × ∇÷ [≡ ∇⊥÷ = −∇ × (k÷)].
(iii) Relative vorticity: æ = ∇2÷ .
(iv) Perturbation pressure: õ = f0÷.
(v) Perturbation buoyancy: b� = f0à÷/àz.
_e length scale Ld = NH/f0, emerges naturally from the QG dynamics. It is the scale

at which buoyancy and relative vorticity eòects contribute equally to the potential vorticity,
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and is called the deformation radius; it is analogous to the quantity √gH/f0 arising in
shallow water theory. In the upper ocean, with N ≈ 10−2 s−1,H ≈ 103 m and f0 ≈ 10−4 s−1,
then Ld ≈ 100 km. At high latitudes the ocean is much less stratiûed and f is somewhat
larger, and the deformation radius may be as little as 30 km. In the atmosphere, with
N ≈ 10−2 s−1, H ≈ 104 m, then Ld ≈ 1000 km. It is this order ofmagnitude diòerence in
the deformation scales that accounts for a great deal of the quantitative diòerence in the
dynamics of the ocean and the atmosphere. If we take the limit Ld → ∞ then the stratiûed
quasi-geostrophic equations reduce to

Dq
Dt

= 0, q = ∇2÷ + f. (3.80)

_is is the two-dimensional vorticity equation, identical to (??). _e high stratiûcation of
this limit has suppressed all vertical motion, and variations in the �ow become conûned to
the horizontal plane. Finally, we note that it is typical in quasi-geostrophic applications to
omit the prime on the buoyancy perturbations, and write b = f0à÷/àz; however, we will
keep the prime in this chapter.

3.6.3 Buoyancy advection at the surface
_e solution of the elliptic equation in (3.78) requires vertical boundary conditions on
÷ at the ground and at the top of the atmosphere, and these are given by use of the
thermodynamic equation. For a �at, slippery, rigid surface the vertical velocity is zero so
that the thermodynamic equation may be written as

Db�
Dt

= 0, b� = f0 à÷àz . (3.81)

We apply this at the ground and at the tropopause, treating the latter as a lid on the lower
atmosphere. In the presence of friction and topography the vertical velocity is not zero, but
is given by

w = r∇2÷ + u ⋅ ∇çb (3.82)

where the ûrst term represents Ekman friction (with the constant r proportional to the
thickness of the Ekman layer) and the second term represents topographic forcing. _e
boundary condition becomes

à
àt

(f0 à÷àz ) + u ⋅ ∇(f0 à÷àz +N2çb) +N2r∇2÷ = 0, (3.83)

where all the ûelds are evaluated at z = 0 or z = H, the height of the lid. _us, the quasi-
geostrophic system is characterized by the horizontal advection of potential vorticity in
the interior and the advection of buoyancy at the boundary. Instead of a lid at the top, then
in a compressible �uid such as the atmosphere wemay suppose that all disturbances tend
to zero as z → ∞.
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3.7 Energetics of Quasi-Geostrophy
If the quasi-geostrophic set of equations is to represent a real �uid system in a physically
meaningful way, then it should have a consistent set of energetics. In particular, the total
energy should be conserved, and there should be analogs of kinetic and potential energy
and conversion between the two. We now show that such energetic properties do hold,
using the Boussinesq set as an example.

Let us write the governing equations as a potential vorticity equation in the interior,

D
Dt

[∇2÷ +
à
àz

(
f20
N2 à÷àz )] + â

à÷
àx

= 0, 0 < z < 1, (3.84)

and buoyancy advection at the boundary,

D
Dt

(
à÷
àz

) = 0, z = 0, 1. (3.85)

For lateral boundary conditions wemay assume that ÷ = constant, or impose periodic
conditions. If wemultiply (3.84) by −÷ and integrate over the domain, using the boundary
conditions, we easily ûnd

dÊ
dt

= 0, Ê =
1
2
∫V [(∇÷)2 + f20

N2 (à÷
àz

)
2
] dV. (3.86a,b)

_e term involving â makes no direct contribution to the energy budget. Equation (3.86)
is the fundamental energy equation for quasi-geostrophicmotion, and it states that in the
absence of viscous or diabatic terms the total energy is conserved. _e two terms in (3.86b)
can be identiûed as the kinetic energy (KE) and available potential energy (APE) of the
�ow, where

KE =
1
2
∫V(∇÷)2 dV, APE =

1
2
∫V f20

N2 (à÷
àz

)
2
dV. (3.87a,b)

_e available potential energy may also be written as

APE =
1
2
∫V H2

L2d (
à÷
àz

)
2
dV, (3.88)

where Ld is the deformation radius NH/f0 and we may choose H such that z ∼ H. At
some scale L the ratio of the kinetic energy to the potential energy is thus, roughly,

KE
APE

∼
L2d
L2 . (3.89)

For scales much larger than Ld the potential energy dominates the kinetic energy, and
contrariwise.
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3.7.1 Conversion between APE and KE
Let us return to the vorticity and thermodynamic equations,

Dæ
Dt

= f
àw
àz

(3.90)

where æ = ∇2÷, and
Db�
Dt

+N2w = 0 (3.91)

where b� = f0à÷/àz. From (3.90) we form a kinetic energy equation namely

1
2
d
dt

∫V(∇÷)2 dV = −∫V f0 àwàz ÷ dV = ∫V f0wà÷
àz

dV. (3.92)

From (3.91) we form a potential energy equation, namely

d
dt

1
2
∫V f20

N2 (à÷
àz

)
2
dV = −∫V f0wà÷

àz
dV. (3.93)

_us, the conversion from APE to KE is represented by

d
dt

KE = −
d
dt
APE = ∫v f0wà÷

àz
dV. (3.94)

Because the buoyancy is proportional to à÷/àz,whenwarm�uid rises there is a correlation
between w and à÷/àz and APE is converted to KE. Whether such a phenomenon occurs
depends of course on the dynamics of the �ow; however, such a conversion is, in fact, a
common feature of geophysical �ows.



Chapter 4
RossbyWaves
Weeks 7 to 9

4.1 Fundamentals and Formalities
4.1.1 Wave propagation and phase speed
Consider the propagation ofmonochromatic plane waves satisfying

÷ = Re ÷̃eiè(x,t) = Re ÷̃ei(k⋅x−øt), (4.1)

where ÷̃ is a complex constant, è is the phase, ø is the wave frequency and k is the vector
wavenumber (k, l, m) (also written as (kx, ky, kz) or, in subscript notation, ki). _e preûx
Re denotes the real part of the expression, butwewill drop it if there is no ambiguity. Given
(4.1) a wave will propagate in the direction of k (Fig. 4.1). At a given instant and location
we can align our coordinate axis along this direction, and we write k ⋅ x = Kx∗, where x∗
increases in the direction of k and K2 = |k|2 is themagnitude of the wavenumber. With
this, we can write (4.1) as

÷ = Re ÷̃ei(Kx∗−øt) = Re ÷̃eiK(x∗−ct), (4.2)

where c = ø/K. From this equation it is evident that the phase of the wave propagates at
the speed c in the direction of k, and we deûne the phase speed by

cp ≡
ø
K
. (4.3)

_e wavelength of the wave, ë, is the distance between two wavecrests— that is, the
distance between two locations along the line of travel whose phase diòers by 2π— and
evidently this is given by

ë =
2π
K

. (4.4)

71
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Figure 4.1 The propagation of a two-dimensional wave. (a) Two lines of constant phase (e.g., two
wavecrests) at a time t1. The wave is propagating in the direction k with wavelength ë. (b) The
same line of constant phase at two successive times. The phase speed is the speed of advancement
of the wavecrest in the direction of travel, and so cp = l/(t2 − t1). The phase speed in the x-direction
is the speed of propagation of the wavecrest along the x-axis, and cxp = lx/(t2 − t1) = cp/ cosõ.
In (for simplicity) a two-dimensional wave, and referring to Fig. 4.1, the wavelength and
wave vectors in the x- and y-directions are given by,

ëx =
ë

cosõ
, ëy =

ë
sinõ

, kx = K cosõ, ky = K sinõ. (4.5)

In general, lines of constant phase intersect both the coordinate axes and propagate along
them. _e speed of propagation along these axes is given by

cxp = cp lxl =
cp

cosõ
= cp K

kx =
ø
kx , cyp = cp lyl =

cp
sinõ

= cp K
ky =

ø
ky , (4.6)

using (4.3) and (4.5), and again referring to Fig. 4.1 for notation. _e speed of phase
propagation along any one of the axis is in general larger than the phase speed in the
primary direction of the wave. _e phase speeds are clearly not components of a vector:
for example, cxp ̸= cp cosõ. Analogously, the wavevector k is a true vector, whereas the
wavelength ë is not.

To summarize, the phase speed and its components are given by

cp =
ø
K
, cxp =

ø
kx , cyp =

ø
ky . (4.7)
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4.1.2 _e dispersion relation
_e above description is mostly kinematic and a little abstract, applying to almost any
disturbance that has a wavevector and a frequency. _e particular dynamics of a wave are
determined by the relationship between the wavevector and the frequency; that is, by the
dispersion relation. Once the dispersion relation is known a great many of the properties
of the wave follow in amore-or-less straightforwardmanner, as we will see. Picking up
from (??), the dispersion relation is a functional relationship between the frequency and
the wavevector of the general form

ø = Ø(k). (4.8)

Perhaps the simplest example of a linear operator that gives rise to waves is the one-
dimensional equation

à÷
àt

+ c
à÷
àx

= 0. (4.9)

Substituting a trial solution of the form ÷ = ReAei(kx−øt), where Re denotes the real part,
we obtain (−iø + cik)A = 0, giving the dispersion relation

ø = ck. (4.10)

_e phase speed of this wave is cp = ø/k = c. A few other examples of governing equations,
dispersion relations and phase speeds are:

à÷
àt

+ c ⋅ ∇÷ = 0, ø = c ⋅ k, cp = |c| cos è, cxp =
c ⋅ k
k

, cyp =
c ⋅ k
l

(4.11a)

à2÷
àt2 − c2∇2÷ = 0, ø2 = c2K2, cp = ±c, cxp = ±

cK
k
, cyp = ±

cK
l
, (4.11b)

à
àt

∇2÷ + â
à÷
àx

= 0, ø =
−âk
K2 , cp =

ø
K
, cxp = −

â
K2 , cyp = −

âk/l
K2 . (4.11c)

where K2 = k2 + l2 and è is the angle between c and k, and the examples are all two-
dimensional, with variation in x and y only.

A wave is said to be nondispersive or dispersionless if the phase speed is independent
of the wavelength. _is condition is clearly satisûed for the simple example (4.9) but is
manifestly not satisûed for (4.11c), and these waves (Rossby waves, in fact) are dispersive.
Waves of diòerent wavelengths then travel at diòerent speeds so that a group of waves will
spread out— disperse — even if themedium is homogeneous. When a wave is dispersive
there is another characteristic speed at which the waves propagate, known as the group
velocity, and we come to this in the next section.

Most media are, of course, inhomogeneous, but if the medium varies suõciently
slowly in space and time — and in particular if the variations are slow compared to the
wavelength and period — wemay still have a local dispersion relation between frequency
and wavevector,

ø = Ø(k;x, t). (4.12)
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Figure 4.2 Superposition of two sinusoidal waves with wavenumbers k and k + äk, producing
a wave (solid line) that is modulated by a slowly varying wave envelope or wave packet (dashed
line). The envelope moves at the group velocity, cg = àø/àk and the phase of the wave moves at
the group speed cp = ø/k.

Although Ø is a function of k,x and t the semi-colon in (4.12) is used to suggest that x and
t are slowly varying parameters of a somewhat diòerent nature than k. We’ll resume our
discussion of this topic in section ??, but before that wemust introduce the group velocity.

4.2 Group Velocity
Information and energy clearly cannot travel at the phase speed, for as the direction of
propagation of the phase line tends to a direction parallel to the y-axis, the phase speed
in the x-direction tends to inûnity! Rather, it turns out that most quantities of interest,
including energy, propagate at the group velocity, a quantity of enormous importance inwave
theory.7 Roughly speaking, group velocity is the velocity at which a packet or a group of
waves will travel, whereas the individual wave crests travel at the phase speed. To introduce
the idea we will consider the superposition of plane waves, noting that amonochromatic
plane wave already ûlls space uniformly so that there can be no propagation of energy from
place to place. We will restrict attention to waves propagating in one direction, but the
argument may be extended to two or three dimensions.

4.2.1 Superposition of two waves
Consider the linear superposition of two waves. Limiting attention to the one-dimensional
case for simplicity, consider a disturbance represented by

÷ = Re ÷̃(ei(k1x−ø1t) + ei(k2x−ø2t)). (4.13)

Let us further suppose that the two waves have similar wavenumbers and frequency, and,
in particular, that k1 = k + Äk and k2 = k − Äk, and ø1 = ø + Äø and ø2 = ø − Äø. With
this, (4.13) becomes

÷ = Re ÷̃ei(kx−øt)[ei(Äk x−Äø t) + e−i(Äk x−Äø t)]
= 2Re ÷̃ei(kx−øt) cos(Äk x − Äø t).

(4.14)
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Wave Fundamentals

∙ A wave is a propagating disturbance that has a characteristic relationship between its frequency
and size, known as the dispersion relation. Waves typically arise as solutions to a linear problem of
the form

L(÷) = 0, (WF.1)

where L is, commonly, a linear operator in space and time. Two examples are

à2÷
àt2 − c2∇2÷ = 0 and à

àt
∇2÷ + â

à÷
àx

= 0. (WF.2)

_e ûrst example is s
∙ Solutions to the governing equation are o�en sought in the form of plane waves that have the form

÷ = ReAei(k⋅x−øt), (WF.3)

where A is the wave amplitude, k = (k, l, m) is the wavevector, and ø is the frequency.
∙ _e dispersiono common in all areas of physics it is sometimes called ‘the’ wave equation. _e

second example gives rise toRossby waves. relation connects the frequency andwavevector through
an equation of the form ø = Ø(k) where Ø is some function. _e relation is normally derived
by substituting a trial solution like (WF.3) into the governing equation (WF.1). For the examples
of (WF.2) we obtain ø = c2K2 and ø = −âk/K2 where K2 = k2 + l2 + m2 or, in two dimensions,
K2 = k2 + l2.

∙ _e phase speed is the speed at which the wave crests move. In the direction of propagation and in
the x, y and z directions the phase speed is given by, respectively,

cp =
ø
K
, cxp =

ø
k
, cyp =

ø
l
, czp =

ø
m
. (WF.4)

where K = 2π/ë where ë is the wavelength. _e wave crests have both a speed (cp) and a direction
of propagation (the direction of k), like a vector, but the components deûned in (WF.4) are not the
components of that vector.

∙ _e group velocity is the velocity at which a wave packet or wave group moves. It is a vector and is
given by

cg =
àø
àk

with components cxg =
àø
àk

, cyg =
àø
àl

, czg =
àø
àm

. (WF.5)

Most physical quantities of interest are transported at the group velocity.
∙ If the coeõcients of the wave equation are not constant (for example if themedium is inhomoge-

neous) then, if the coeõcients are only slowly varying, approximate solutions may sometimes be
found in the form

÷ = ReA(x, t)eiè(x,t), (WF.6)

where the amplitude A is also slowly varying and the local wavenumber and frequency are related
to the phase, è, by k = ∇è and ø = −àè/àt. _e dispersion relation is then a local one of the form
ø = Ø(k; x, t).
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_e resulting disturbance, illustrated in Fig. 4.2 has two aspects: a rapidly varying com-
ponent, with wavenumber k and frequency ø, and amore slowly varying envelope, with
wavenumber Äk and frequency Äø. _e envelopemodulates the fast oscillation, andmoves
with velocity Äø/Äk; in the limit Äk → 0 and Äø → 0 this is the group velocity, cg = àø/àk.
Group velocity is equal to the phase speed, ø/k, only when the frequency is a linear function
of wavenumber. _e energy in the disturbancemust move at the group velocity— note
that the node of the envelopemoves at the speed of the envelope and no energy can cross
the node. _ese concepts generalize to more than one dimension, and if thewavenumber is
the three-dimensional vector k = (k, l, m) then the three-dimensional envelope propagates
at the group velocity given by

cg =
àø
àk

≡ (
àø
àk

,
àø
àl

,
àø
àm

) . (4.15)

_e group velocity is also written as cg = ∇kø or, in subscript notation, cgi = àØ/àki, with
the subscript i denoting the component of a vector.

4.3 RossbyWaves
4.3.1 _e linear equation ofmotion
For most of the rest of this chapter we will be concerned with the quasi-geostrophic
equations ofmotion for which (as discussed in chapter 3) the inviscid, adiabatic potential
vorticity equation is

àq
àt

+ u ⋅ ∇q = 0, (4.16)

where q(x, y, z, t) is the potential vorticity and u(x, y, z, t) is the horizontal velocity. _e
velocity is related to a streamfunction by u = −à÷/ày, v = à÷/àx and the potential vorticity
is some function of the streamfunction, which might diòer from system to system. Two
examples, one applying to a continuously stratiûed system and the second to a single layer
system, are

q = f + æ +
à
àz

(S(z)
à÷
àz

) , q = æ + f − k2d÷. (4.17a,b)

where S(z) = f20 /N2, æ = ∇2÷ is the relative vorticity and kd = 1/Ld is the inverse radius
of deformation for a shallow water system. (Note that deûnitions of kd and Ld can vary,
typically by factors of 2, π, etc.) Boundary conditions may be needed to form a complete
system.

We now linearize (4.16); that is,we suppose that the �ow consists of a time-independent
component (the ‘basic state’) plus a perturbation, with the perturbation being small com-
pared with themean �ow. _e basic statemust satisfy the time-independent equation of
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motion, and it is common and useful to linearize about a zonal �ow, u(y, z). _e basic state
is then purely a function of y and so we write

q = q(y, z) + q�(x, y, t), ÷ = ÷(y, z) + ÷�(x, y, z, t) (4.18)

with a similar notation for the other variables. Note that u = −à÷/ày and v = 0. Substituting
into (4.16) gives, without approximation,

àq�
àt

+ u ⋅ ∇q + u ⋅ ∇q� + u� ⋅ ∇q + u� ⋅ ∇q� = 0. (4.19)

_e primed quantities are presumptively small sowe neglect terms involving their products.
Further, we are assuming that we are linearizing about a state that is a solution of the
equations ofmotion, so that u ⋅ ∇q = 0. Finally, since v = 0 and àq/àx = 0 we obtain

àq�
àt

+ u
àq�
àx

+ v� àq
ày

= 0. (4.20)

_is equation or one very similar appears very commonly in studies of Rossby waves. To
proceed, let us consider the simple example of waves in a single layer.

4.3.2 Waves in a single layer
Consider a system obeying (4.16) and (4.17b). _e equation could be written in spherical
coordinates with f = 2Ø sin ú, but the dynamics aremore easily illustrated on Cartesian â-
plane for which f = f0 +ây, and since f0 is a constant it does not appear in our subsequent
derivations.

Inûnite deformation radius
If the scale ofmotion is much less than the deformation scale then wemake the approxi-
mation that kd = 0 and the equation ofmotion may be written as

àæ
àt

+ u ⋅ ∇æ + âv = 0 (4.21)

We linearize about a constant zonal �ow, u = U, by writing

÷ = ÷(y) + ÷�(x, y, t), (4.22)

where ÷ = −Uy. Substituting(4.22) into (4.21) and neglecting the nonlinear terms involving
products of ÷� to give

à
àt

∇2÷� + U
à∇2÷�
àx

+ â
à÷�
àx

= 0. (4.23)
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_is equation is just a single-layer version of (4.20), with àq/ày = â, q� = ∇2÷� and
v� = à÷�/àx.

_e coeõcients in (4.23) are not functions of y or z; this is not a requirement for wave
motion to exist but it does enable solutions to be foundmore easily. Let us seek solutions
in the form of a plane wave, namely

÷� = Re ÷̃ei(kx+ly−øt), (4.24)

where ÷̃ is a complex constant and Re indicates the real part of the function (a notation
sometimes omitted if no ambiguity is so-caused). Solutions of this form are valid in a
domain with doubly-periodic boundary conditions; solutions in a channel can be obtained
using a meridional variation of sin ly, with no essential changes to the dynamics. _e
amplitude of the oscillation is given by ÷̃ and the phase by kx + ly − øt, where k and l are
the x- and y-wavenumbers and ø is the frequency of the oscillation.

Substituting (4.24) into (4.23) yields

[(−ø + Uk)(−K2) + âk]÷̃ = 0, (4.25)

where K2 = k2 + l2. For non-trivial solutions this implies

ø = Uk −
âk
K2 . (4.26)

_is is the dispersion relation for barotropic Rossby waves, and evidently the velocity U
Doppler shi�s the frequency. _e components of the phase speed and group velocity are
given by, respectively,

cxp ≡
ø
k
= U −

â
K2 , cyp ≡

ø
l
= U

k
l
−

âk
K2l , (4.27a,b)

and

cxg ≡
àø
àk

= U +
â(k2 − l2)
(k2 + l2)2 , cyg ≡

àø
àl

=
2âkl

(k2 + l2)2 . (4.28a,b)

_e phase speed in the absence of amean �ow is westwards, with waves of longer wave-
lengths travelling more quickly, and the eastward current speed required to hold the waves
of a particular wavenumber stationary (i.e., cxp = 0) is U = â/K2. _e background �ow U
evidently just provides a uniform shi� to the phase speed, and could be transformed away
by a change of coordinate.

Finite deformation radius
For a ûnite deformation radius the basic state × = −Uy is still a solution of the original
equations ofmotion, but the potential vorticity corresponding to this state is q = Uyk2d +ây
and its gradient is ∇q = (â + Uk2d)j. _e linearized equation ofmotion is thus

(
à
àt

+ U
à
àx

) (∇2÷� − ÷�k2d) + (â + Uk2d)à÷�
àx

= 0. (4.29)
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Substituting ÷� = ÷̃ei(kx+ly−øt) we obtain the dispersion relation,

ø =
k(UK2 − â)
K2 + k2d = Uk − k

â + Uk2d
K2 + k2d . (4.30)

_e corresponding components of phase speed and group velocity are

cxp = U −
â + Uk2d
K2 + k2d =

UK2 − â
K2 + k2d , cyp = U

k
l
−
k
l
(
UK2 − â
K2 + k2d ) (4.31a,b)

and

cxg = U +
(â + Uk2d)(k2 − l2 − k2d)

(k2 + l2 + k2d)2 , cyg =
2kl(â + Uk2d)
(k2 + l2 + k2d)2 . (4.32a,b)

_e uniform velocity ûeld now no longer provides just a simple Doppler shi� of the
frequency, nor a uniform addition to the phase speed. From (4.31a) thewaves are stationary
when K2 = â/U ≡ K2s ; that is, the current speed required to hold waves of a particular
wavenumber stationary is U = â/K2. However, this is not simply the magnitude of the
phase speed of waves of that wavenumber in the absence of a current— this is given by

cxp =
−â

K2s + k2d =
−U

1 + k2d/K2s ̸= −U. (4.33)

Why is there a diòerence? It is because the current does not just provide a uniform
translation, but, if kd is non-zero, it also modiûes the basic potential vorticity gradient.
_e basic state height ûeld ç0 is sloping; that is ç0 = −(f0/g)Uy, and the ambient potential
vorticity ûeld increases with y and q = (â +Uk2d)y. _us, the basic state deûnes a preferred
frame of reference, and the problem is not Galilean invariant.8

We also note that, from (4.31b), the group velocity is negative (westward) if the x-
wavenumber is suõciently small, compared to the y-wavenumber or the deformation
wavenumber. _at is, said a little loosely, long waves move information westward and short
waves move information eastward, and this is a common property of Rossby waves. _e
x-component of the phase speed, on the other hand, is always westward relative to the
mean �ow.

4.3.3 _emechanism of Rossby waves
_e fundamental mechanism underlying Rossby waves is easily understood. Consider a
material line of stationary �uid parcels along a line of constant latitude, and suppose that
some disturbance causes their displacement to the linemarked ç(t = 0) in Fig. 4.3. In the
displacement, the potential vorticity of the �uid parcels is conserved, and in the simplest
case of barotropic �ow on the â-plane the potential vorticity is the absolute vorticity, ây+ æ.
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η(t > 0)

η(t = 0) ζ < 0

ζ > 0

Figure 4.3 The mechanism of a two-dimensional (x–y) Rossby wave. An initial disturbance
displaces a material line at constant latitude (the straight horizontal line) to the solid line marked
ç(t = 0). Conservation of potential vorticity, ây + æ, leads to the production of relative vorticity, as
shown for two parcels. The associated velocity �eld (arrows on the circles) then advects the �uid
parcels, and the material line evolves into the dashed line. The phase of the wave has propagated
westwards.

_us, in either hemisphere, a northward displacement leads to the production of negative
relative vorticity and a southward displacement leads to the production of positive relative
vorticity. _e relative vorticity gives rise to a velocity ûeld which, in turn, advects the
parcels in material line in themanner shown, and the wave propagates westwards.

In more complicated situations, such as �ow in two layers, considered below, or in
a continuously stratiûed �uid, themechanism is essentially the same. A displaced �uid
parcel carries with it its potential vorticity and, in the presence of a potential vorticity
gradient in the basic state, a potential vorticity anomaly is produced. _e potential vorticity
anomaly produces a velocity ûeld (an example of potential vorticity inversion) which
further displaces the �uid parcels, leading to the formation of a Rossby wave. _e vital
ingredient is a basic state potential vorticity gradient, such as that provided by the change
of the Coriolis parameter with latitude.

4.4 RossbyWaves in StratifiedQuasi-Geostrophic Flow
4.4.1 Setting up the problem
Let us now consider the dynamics of linear waves in stratiûed quasi-geostrophic �ow on a
â-plane, with a resting basic state.

_e interior �ow is governed by the potential vorticity equation, (3.78), and linearizing
this about a uniform E–W �ow gives rest gives

[
à
àt

+ U
à
àx

] [∇2÷� + à
àz

(F(z)
à÷�
àz

)] + â
à÷�
àx

= 0, (4.34)

where F(z) = f20 /N2. (F is the square of the inverse Prandtl ratio, N/f0.) _e vertical
boundary conditions are determined by the thermodynamic equation, (3.81). If the bound-
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aries are �at, rigid, slippery surfaces then w = 0 at the boundaries and if there is no surface
buoyancy gradient the linearized thermodynamic equation is

à
àt

(
à÷�
àz

) = 0. (4.35)

We apply this at the ground and at the tropopause, so at z = 0 and at z = H.

4.4.2 Wavemotion
Wemay seek solutions of the form

÷� = Re ÷̃(z)ei(kx+ly−øt), (4.36)

where ÷̃(z) will determine the vertical structure of the waves. In the zonal direction (the
x-direction) the �ow is periodic, and if the domain is of horizontal length Lx then we have
k = 2πnx/Lx where nx = 1, 2, 3 . . . . In there are ‘walls’ at y = 0 and y = Ly where ÷ = 0
then the y variation should be of the form ÷� ∼ sin ly where l = πny/Ly where ny is an
integer. However, wewill keep the exponential form (4.36) for the y variation for simplicity.
Finally, if F(z) is a constant then the problem further simpliûes and we can seek solutions
of the form

÷� = Re ÷̃ei(kx+ly+mz−øt), (4.37)

and this is what we shall do. _is solution does not of itself satisfy (4.35), and we can make
it do so by restricting the vertical variations to be of the form:

÷� = A cosmz where m = nzπ/H, (4.38)

where nz is an integer. _ese solutions then satisfy à÷/àz at z = 0 and z = H. Having
said this, we will stick with eqref[qg:sepwave2] for our manipulations, just because that
is simpler, bearing in mind that the y and z variations should just be sines and cosines,
respectively.

_e dispersion relation is obtained by substituting (??)qg;sepwave2] into (4.34) giving

ø = Uk −
âk

k2 + l2 + (f20 /N2)m2 . (4.39)

It is interesting to re-write this as an equation for m, and we obtain

f20
N2m2 = â

U − c
−K2 (4.40)

where K2 = k2 + l2 and c = ø/k. We’ll come back to this in section 4.5, and the next
subsection may be skipped if you wish.
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4.4.3 ♦ _e case with non-constant N2
For simplicity let U = 0, and then substituting (4.36) into (4.34) gives

ø [−K2÷̃(z) + 1
ñ̃

d
dz

(ñ̃F(z)
d÷̃
dz

)] − âk÷̃(z) = 0. (4.41)

Now, if ÷̃ satisûes
1
ñ̃

d
dz

(ñ̃F(z)
d÷̃
dz

) = −Ã÷̃, (4.42)

where Ã is a constant, then the equation ofmotion becomes

− ø [K2 + Ã] ÷̃ − âk÷̃ = 0, (4.43)

and the dispersion relation follows, namely

ø = −
âk

K2 + Ã
. (4.44)

Equation (4.42) constitutes an eigenvalue problem for the vertical structure; the boundary
conditions, derived from (4.35), are à÷̃/àz = 0 at z = 0 and z = H. _e resulting
eigenvalues, Ã are proportional to the inverse of the squares of the deformation radii for
the problem and the eigenfunctions are the vertical structure functions.

Consider the case in which F(z) is constant, and in which the domain is conûned
between two rigid surfaces at z = 0 and z = H. _en the eigenvalue problem for the vertical
structure is

F
d2÷̃
dz2 = −Ã÷̃ (4.45a)

with boundary conditions of

d÷̃
dz

= 0, at z = 0,H. (4.45b)

_ere is a sequence of solutions to this, namely

÷̃n(z) = cos(nπz/H), n = 1, 2 . . . (4.46)

with corresponding eigenvalues

Ãn = n2Fπ2
H2 = (nπ)2 ( f0

NH
)
2
, n = 1, 2 . . . . (4.47)

Equation (4.47) may be used to deûne the deformation radii for this problem, namely

Ln ≡
1

√Ãn =
NH
nπf0 . (4.48)
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_e ûrst deformation radius is the same as the expression obtained by dimensional analysis,
namelyNH/f, except for a factor of π. (Deûnitions of the deformation radii both with and
without the factor of π are common in the literature, and neither is obviously more correct.
In the latter case, the ûrst deformation radius in a problem with uniform stratiûcation
is given byNH/f, equal to π/√Ã1.) In addition to these baroclinicmodes, the case with
n = 0, that is with ÷̃ = 1, is also a solution of (4.45) for any F(z).

Using (4.44) and (4.47) the dispersion relation becomes

ø = −
âk

K2 + (nπ)2(f0/NH)2 , n = 0, 1, 2 . . . (4.49)

and, of course, the horizontal wavenumbers k and l are also quantized in a ûnite domain.
_is equation is the same as (4.39)

_e dynamics of the barotropicmode (n = 0) are independent of height and indepen-
dent of the stratiûcation of the basic state, and so these Rossby waves are identical with the
Rossby waves in a two-dimensional �uid.

4.5 Vertical Propagation of Rossby waves
4.5.1 Conditions for wave propagation
_e dispersion relation is

m2 = N2
f20 (

â
U − c

− (k2 + l2)) . (4.50)

For waves to propagate upwards we require that m2 > 0 and, from (4.50), that

0 < U − c <
â

k2 + l2 , (4.51)

where uc = â/(k2 + l2) is the Rossby critical velocity. For waves of some given frequency
(ø = kc) the above expression provides a condition on U for the vertical propagation of
planetary waves. For stationary waves c = 0 and the criterion is

0 < U <
â

k2 + l2 , (4.52)

and this is illustrated in Fig. 4.4. _at is to say, the vertical propagation of stationary Rossby
waves occurs only in westerly winds, and winds that are weaker than some critical value,
uc = â/(k2 + l2) that depends on the scale of the wave. If the waves can take any frequency
there is no such condition on U, for (4.50) is just a form of the dispersion relation and
(4.51) is naturally satisûed.
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Essentials of Rossby Waves

∙ Rossby waves owe their existence to a gradient of potential vorticity in the �uid. If a �uid parcel is
displaced, it conserves its potential vorticity and so its relative vorticity will in general change. _e
relative vorticity creates a velocity ûeld that displaces neighbouring parcels, whose relative vorticity
changes and so on.

∙ A common source of a potential vorticity gradient is diòerential rotation, or the â-eòect, and
planetary waves is the name given to this type of Rossby wave. In the presence of non-zero â the
ambient potential vorticity increases northward and the phase of the Rossby waves propagates
westward. In general, Rossby waves propagate pseudo-westwards, meaning to the le� of the
direction of the potential vorticity gradient.

∙ A common equation ofmotion for Rossby waves is

àq�
àt

+ u
àq�
àx

+ v� àq
ày

= 0, (RW.1)

with an overbar denoting the basic state and a prime a perturbation. In the case of a single layer of
�uid with no mean �ow this equation becomes

à
àt

(∇2 + k2d)÷� + â
à÷�
àx

= 0 (RW.2)

with dispersion relation

ø =
−âk

k2 + l2 + k2d . (RW.3)

∙ _e phase speed in the zonal direction (cxp = ø/k) is always negative, or westward, and is larger for
large waves. For (RW.2) components of the group velocity are given by

cxg =
â(k2 − l2 − k2d)
(k2 + l2 + k2d)2 , cyg =

2âkl

(k2 + l2 + k2d)2 . (RW.4)

_e group velocity is westward if the zonal wavenumber is suõciently small, and eastward if the
zonal wavenumber is suõciently large.

∙ Rossby waves exist in stratiûed �uids, and have a similar dispersion relation to (RW.3) with an
appropriate vertical wavenumber appearing in place of the inverse deformation radius, kd.

∙ _e re�ection of such Rossby waves at a wall is specular,meaning that the group velocity of the
re�ected wavemakes the same angle with the wall as the group velocity of the incident wave. _e
energy �ux of the re�ected wave is equal and opposite to that of the incoming wave in the direction
normal to the wall.
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Figure 4.4 The boundary between propagating waves and evanescent waves as a function of
zonal wind and wavenumber, using (4.52), for a couple of values of l (labelled ã here).

Stationary, vertically oscillatorymodes can exist only for zonal �ows that are eastwards
and that are less than the critical velocity Uc = â/(k2 + l2). One way to interpret this
condition is note that in a resting medium the Rossby wave frequency has a minimum
value (andmaximum absolute value), when m = 0, of

ø = −
âk

k2 + l2 . (4.53)

Note too that in a framemoving with speed U our Rossby waves (stationary in the Earth’s
frame) have frequency −Uk, and this is the forcing frequency arising from the now-moving
bottom topography. _us, (4.52) is equivalent to saying that for oscillatory waves to exist
the forcing frequency must lie within the frequency range of vertically propagating Rossby
waves.

Forwestward�ow, or for suõciently strong eastward�ow, thewavesdecay exponentially
as Õ = Õ0 exp(−áz) where

á =
N
f0 (k2 + l2 − â

U
)
1/2

. (4.54)

Note that the critical velocity uc = (â/k2 + l2) is a function of wavenumber, and that it
increases with horizontal wavelength. _us, for a given eastward �ow long waves may
penetrate vertically when short waves are trapped, an eòect sometimes referred to as
‘Charney–Drazin ûltering’.9 One important consequence of this is that the stratospheric
motion is typically of larger scales than that of the troposphere, because Rossby waves tend
to be excited ûrst in the troposphere (by baroclinic instability and by �ow over topography,
among other things), but the shorter waves are trapped and only the longer ones reach
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the stratosphere. In the summer, the stratospheric winds are o�en westwards (because
the pole is warmer than the equator) and all waves are trapped in the troposphere; the
eastward stratospheric winds that favour vertical penetration occur in the other three
seasons, although very strong eastward winds can suppress penetration in mid-winter.

4.5.2 Dispersion relation and group velocity
_e dispersion relation for three-dimensional Rossby waves is again

ø = Uk −
âk

K2 + ã2 +m2f20 /N2 . (4.55)

_e three components of the group velocity for these waves are then:

cxg = U +
â[k2 − (l2 +m2f20 /N2)]

(K2 +m2f20 /N2)2 , (4.56a)

cyg =
2âkl

(K2 +m2f20 /N2)2 , czg =
2âkmf20 /N2

(K2 +m2f20 /N2)2 . (4.56b,c)

_e propagation in the horizontal is analogous to the propagation in a shallow water
model [c.f. (4.31b)]; note also that higher baroclinicmodes (bigger m) will have amore
westward group velocity. _e vertical group velocity is proportional to m, and for waves
that propagate signals upward wemust choosem to have the same sign as k so that czg is
positive. If there is no mean �ow then the zonal wavenumber k is negative (in order that
frequency is positive) andm must then also be negative. Energy then propagates upward
but the phase propagates downward.

4.5.3 Vertical wave propagation and heat transport
If the group velocity in the z-direction, given by (4.56) is to be positive, then we require
the product km > 0. _is has consequences for the heat transport.

Remember that the buoyancy b, which is a proxy for temperature, is given by f0à÷/àz.
And the northward velocity is v = à÷/àx. _us, the northward �ux of heat,H say, is given
by

H = vb = f0 à÷àz à÷
àx

, (4.57)

where an overbar denotes a zonal average. _us

H = vb = f0 à÷àz à÷
àx

= f0Re ÷̃im exp(iè)Re ÷̃ik exp(iè) (4.58)
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Figure 4.5 A schematic east-west section of an upwardly propagating Rossby wave. The slanting
lines are lines of constant phase and ‘high’ and ‘low’ refer to the pressure or streamfunction values.
Both k andm are negative so the phase lines are oriented up and to thewest. The phase propagates
westward and downward, but the group velocity is upward.

where è = (kx + ly +mz). Following manipulations exactly analogous to those given in the
appendix, we ûnd

H =
1
2
f0|÷̃|2km. (4.59)

_e conclusion is that vertical propagation of Rossby waves is associated with a pole-
wards heat �ux.

4.6 RossbyWaves and Jets
4.6.1 I. _e vorticity budget
Suppose that the absolute vorticity normal to the surface (i.e., æ + 2Ø sin ú) increases
monotonically polewards. (A suõcient condition for this is that the �uid is at rest.) By
Stokes’ theorem, the circulation around a line of latitude circumscribing the polar cap, I, is
equal to the integral of the absolute vorticity over the cap. _at is,

Ii = ∫
cap
øia ⋅ dA = ∮C uia dl = ∮C(ui + Øa cos ú) dl, (4.60)

where øia and uia are the initial absolute vorticity and velocity, respectively, ui is the initial
zonal velocity in the Earth’s frame of reference, and the line integrals are around the line of
latitude. For simplicity let us take ui = 0 and suppose there is a disturbance equatorwards
of the polar cap, and that this results in a distortion of thematerial line around the latitude
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absolute vorticity 

increasing poleward

Figure 4.6 The e�ects of a mid-latitude disturbance on the circulation around the latitude line C.
If initially the absolute vorticity increases monotonically polewards, then the disturbance will bring
�uid with lower absolute vorticity into the cap region. Then, using Stokes theorem, the velocity
around the latitude line C will becomemore westwards.

circle C (Fig. 4.6). Since we are supposing the source of the disturbance to be distant from
the latitude of interest, then if we neglect viscosity the circulation along thematerial line is
conserved, by Kelvin’s circulation theorem. _us, vorticity with a lower value is brought
into the region of the polar cap— that is, the region polewards of the latitude line C. Using
Stokes’ theorem again the circulation around the latitude circle C must therefore fall; that
is, denoting values a�er the disturbance with a subscript f,

If = ∫
cap
ø fa ⋅ dA < Ii (4.61)

so that
∮C(uf + Øa cos ú) dl < ∮C(ui + Øa cos ú) dl (4.62)

and
uf < ui (4.63)

with the overbar indicating a zonal average. _us, there is a tendency to produce westward
�ow polewards of the disturbance. By a similar argument westward �ow is also produced
equatorwards of the disturbance — to see this onemight apply Kelvin’s theorem over all
of the globe south of the source of the disturbance (taking care to take the dot-product
correctly between the direction of the vorticity vector and the direction normal to the
surface). Finally, note that the overall situation is the same in the Southern Hemisphere.
_us, on the surface of a rotating sphere, external stirring will produce westward �ow away
from the region of the stirring.

Now suppose, furthermore, that the disturbance imparts no net angular momentum
to the �uid. _en the integral of ua cos ú over the entire hemisphere must be constant.
But the �uid is accelerating westwards away from the disturbance. _erefore, the �uid in
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zonal velocity

Figure 4.7 Generation of zonal �ow on a â-plane or on a rotating sphere. Stirring inmid-latitudes
(by baroclinic eddies) generates Rossby waves that propagate away from the disturbance. Momen-
tum converges in the region of stirring, producing eastward �ow there and weaker westward �ow
on its �anks.

the region of the disturbancemust accelerate eastwards; that is, angular momentum must
converge into the stirred region, producing an eastward �ow. _is simplemechanism is
the essence of the production of eastward eddy-driven jets in the atmosphere, and of the
eastward surface winds in mid-latitudes. _e stirring that here we have externally imposed
comes, in reality, from baroclinic instability.

If the stirring subsides then the �owmay reversibly go back to its initial condition, with
a concomitant reversal of themomentum convergence that caused the zonal �ow. _us,
wemust have some form of dissipation and irreversibility in order to produce permanent
changes, and in particular we need to irreversibly mix vorticity. If the �uid is continuously
mixed, then of course we also need a source that restores the absolute vorticity gradient,
otherwise we will completely homogenize the vorticity over the hemisphere, so let us now
set up a simplemodel that shows how a permanent jet structure can bemaintained.

4.6.2 II. Rossby waves andmomentum �ux
We saw above that amean gradient of vorticity is an essential ingredient in themechanism
whereby amean �ow is generated by stirring. Given such, we expect Rossby waves to be
excited, and we now show how Rossby waves are intimately related to themomentum �ux
maintaining themean �ow.

If a stirring is present in mid-latitudes then we expect that Rossby waves will be gen-
erated there, propagate away and break and dissipate. To the extent that the waves are
quasi-linear and do not interact, then just away from the source region each wave has the
form

÷ = ReCei(kx+ly−øt) = ReCei(kx+ly−kct), (4.64)
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Figure 4.8 The momentum transport in physical space, caused by the propagation of Rossby
waves away from a source in mid-latitudes. The ensuing bow-shaped eddies are responsible for a
convergence of momentum, as indicated in the idealization pictured.

where C is a constant, with dispersion relation

ø = ck = Uk −
âk

k2 + l2 ≡ øR, (4.65)

provided that there is no meridional shear in the zonal �ow. _emeridional component of
the group velocity is given by

cyg =
àø
àl

=
2âkl

(k2 + l2)2 . (4.66)

Now, the direction of the group velocity must be away from the source region; this is a
radiation condition (discussedmore in the next subsection), demanded by the requirement
that Rossby waves transport energy away from the disturbance. _us, northwards of the
source kl is positive and southwards of the source kl is negative. _at the product kl can be
positive or negative arises because for each k there are two possible values of l that satisfy
the dispersion relation (4.65), namely

l = ±(
â

U − c
− k2)1/2 , (4.67)

assuming that the quantity in parentheses is positive.
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_e velocity variations associated with the Rossby waves are

u� = −ReC ilei(kx+ly−øt), v� = ReC ikei(kx+ly−øt), (4.68a,b)

and the associatedmomentum �ux is (see appendix for algebraic details)

u�v� = −
1
2
C2kl. (4.69)

_us, given that the sign of kl is determined by the group velocity, northwards of the source
themomentum �ux associated with the Rossby waves is southward (i.e., u�v� is negative),
and southwards of the source the momentum �ux is northward (i.e., u�v� is positive).
_at is, themomentum �ux associated with the Rossby waves is toward the source region.
Momentum converges in the region of the stirring, producing net eastward �ow there and
westward �ow to either side (Fig. 4.7).

Another way of describing the same eòect is to note that if kl is positive then lines of
constant phase (kx + ly = constant) are tilted north-west/south-east, and themomentum
�ux associatedwith such a disturbance is negative (u�v� < 0). Similarly, if kl is negative then
the constant-phase lines are tilted north-east/south-west and the associatedmomentum
�ux is positive (u�v� > 0). _e net result is a convergence of momentum �ux into the
source region. In physical space this is re�ected by having eddies that are ‘bow-shaped’, as
in Fig. 4.8.

Appendix: Calculation of Fluxes
In two places in this chapter we had to calculate the average �ux of a quantity and in this
appendix we do that explicitly in the case of the northward �ux ofmomentum in a Rossby
wave. _e samemethod can be used to calculate the vertical �ux of buoyancy in a Rossby
wave. It is important to take the real part of each expression before taking the average. To
proceed, let

÷ = ReAei(kx+ly−øt) (4.70)

where A = a + ib. _e velocities are given by

u = −
à÷
ày

, v =
à÷
àx

. (4.71)

_us,
u = −Re ilAeiè = al sin è + bl cos è (4.72)

and
v = +Re ikAeiè = −ak sin è − bk cos è (4.73)

where è = kx + ly − øt. _e northwards momentum �ux is then

uv =
1
L
∫
L0 uv dx (4.74)
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where L is a wavelength or amultiple of wavelengths. Now, a standard result is that

1
L
∫
L0 sin2 kx dx =

1
L
∫
L0 cos2 kx dx =

1
2
, (4.75)

and
1
L
∫
L0 sin kx cos kx dx = 0. (4.76)

_us,

uv =
1
L
∫
L0 (al sin è + bl cos è) × (−ak sin è − bk cos è)

= −
kl
2
(a2 + b2) = −

1
2
|A|2kl (4.77)

_us, the poleward �ux ofmomentum is proportional to −kl.
A similar methodology applies when calculating the poleward �ux of buoyancy, vb.

Since v = à÷/àx = Re ikA exp(iè) and b = f0à÷/àz = Re if0mA exp(iè) then by the same
technique we ûnd, skipping some algebra,

vb =
f0
L

∫
L0 (−ak sin è − bk cos è) × (−am sin è − bm cos è)

=
f0km
2

(a2 + b2) = f0
2
|A|2km (4.78)

and is proportional to +km.



Chapter 5
Ekman Layers andOcean Gyre
Weeks 9 to 11

5.1 Ekman Layers
_e �uid ûelds in the interior of a domain are o�en set by diòerent physical processes than
those occurring at a boundary, and consequently o�en change rapidly in a thin boundary
layer, as in Fig. 5.1. Such boundary layers nearly always involve one or both of viscosity and
diòusion, because these appear in the terms of highest diòerential order in the equations
ofmotion, and so are responsible for the number and type of boundary conditions that
the equations must satisfy— for example, the presence ofmolecular viscosity leads to the
condition that the tangential �ow (aswell as the normal �ow) must vanish at a rigid surface.
In many boundary layers in non-rotating �ow the dominant balance in themomentum
equation is between the advective and viscous terms. In large-scale atmospheric and
oceanic �ow the eòects of rotation are large and the dominant balance is between Coriolis
and frictional or stress terms.

_e atmospheric Ekman layer occurs near the ground, and the stress at the ground
itself is due to the surface wind (and its vertical variation). In the ocean themain Ekman
layer is near the surface, and the stress at ocean surface is largely due to the presence of the
overlying wind. _ere is also a weak Ekman layer at the bottom of the ocean, analogous to
the atmospheric Ekman layer. To analyze all these layers we assume:

∙ _e Ekman layer is Boussinesq.
∙ _e Ekman layer has a ûnite depth that is less than the total depth of the �uid, this
depth being given by the level at which the frictional stresses essentially vanish.
Within the Ekman layer, frictional terms are important, whereas geostrophic balance
holds beyond it.

∙ _e nonlinear and time-dependent terms in the equations ofmotion are negligible,
hydrostatic balance holds in the vertical, and buoyancy is constant, not varying in

93
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Figure 5.1 An idealized boundary layer. The values of a �eld, such as velocity,U, may vary rapidly
in a boundary in order to satisfy the boundary conditions at a rigid surface. The parameter ä is a
measure of the boundary layer thickness,H is a typical scale of variation away from the boundary,
and typically a boundary layer has ä ≪ H.

the horizontal.
∙ Friction can be parameterized by a viscous term of the form ñ−10 àó/àz = Aà2u/àz2,
where A is constant and ó is the stress. [In general, stress is a tensor, óij, with an
associated force given by Fi = àóij/àxj, summing over the repeated index. It is
common in geophysical �uid dynamics that the vertical derivative dominates, and
in this case the force is F = àó/àz. We still use the word stress for ó, but it now
refers to a vectorwhose derivative in a particular direction (z in this case) is the force
on a �uid.] In laboratory settings A may be themolecular viscosity, whereas in the
atmosphere and ocean it is a so-called eddy viscosity.

5.1.1 Equations ofmotion and scaling
Frictional–geostrophic balance in the horizontal momentum equation is:

f × u = −∇zõ +
àó̃
àz

, (5.1)

where ó̃ ≡ ó/ñ0 is the kinematic stress and f = fk, where the Coriolis parameter f is
allowed to vary with latitude. If wemodel the stress with an eddy viscosity, (5.1) becomes

f × u = −∇zõ + A
à2u
àz2 . (5.2)
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_e vertical momentum equation is àõ/àz = b, i.e., hydrostatic balance, and, because
buoyancy is constant, wemay without loss of generality write this as

àõ
àz

= 0. (5.3)

_e equation set is completed by themass continuity equation, ∇⋅ v = 0.

_e Ekman number
We non-dimensionalize the equations by setting

(u, v) = U(û, v̂), (x, y) = L(x̂, ŷ), f = f0f̂, z = Hẑ, õ = Õõ̂, (5.4)

where hatted variables are non-dimensional. H is a scaling for the height, and at this stage
we will suppose it to be some height scale in the free atmosphere or ocean, not the height
of the Ekman layer itself. Geostrophic balance suggests that Õ = f0UL. Substituting (5.4)
into (5.2) we obtain

f̂ × û = −∇̂õ̂ + Ek
à2û
àẑ2 , (5.5)

where the parameter

Ek ≡ (
A

f0H2) , (5.6)

is the Ekman number, and it determines the importance of frictional terms in the horizontal
momentum equation. If Ek ≪ 1 then the friction is small in the �ow interior where
ẑ = O(1). However, the friction term cannot necessarily be neglected in the boundary
layer because it is of the highest diòerential order in the equation, and so determines the
boundary conditions; if Ek is small the vertical scales become small and the second term
on the right-hand side of (5.5) remains ûnite. _e case when this term is simply omitted
from the equation is therefore a singular limit,meaning that it diòers from the case with
Ek → 0. If Ek ≥ 1 friction is important everywhere, but it is usually the case that Ek is
small for atmospheric and oceanic large-scale �ow, and the interior �ow is very nearly
geostrophic. (In part this is because A itself is only large near a rigid surface where the
presence of a shear creates turbulence and a signiûcant eddy viscosity.)

Momentum balance in the Ekman layer
For deûniteness, suppose the �uid lies above a rigid surface at z = 0. Suõciently far away
from the boundary the velocity ûeld is known, andwe suppose this �ow to be in geostrophic
balance. We then write the velocity ûeld and the pressure ûeld as the sum of the interior
geostrophic part, plus a boundary layer correction:

û = ûg + ûE, õ̂ = õ̂g + õ̂E, (5.7)
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where the Ekman layer corrections, denoted with a subscript E, are negligible away from
the boundary layer. Now, in the �uid interior we have, by hydrostatic balance, àõ̂g/àẑ = 0.
In the boundary layer we still have àõ̂g/àẑ = 0 so that, to satisfy hydrostasy, àõ̂E/àẑ = 0.
But because õ̂E vanishes away from the boundary we have õ̂E = 0 everywhere. _us, there
is no boundary layer in the pressure ûeld. Note that this is amuch stronger result than saying
that pressure is continuous, which is nearly always true in �uids; rather, it is a special result
for Ekman layers.

Using (5.7)with õ̂E = 0, the dimensional horizontal momentum equation (5.1) becomes,
in the Ekman layer,

f × uE =
àó̃
àz

. (5.8)

_e dominant force balance in the Ekman layer is thus between the Coriolis force and the
friction. We can determine the thickness of the Ekman layer if wemodel the stress with an
eddy viscosity so that

f × uE = A
à2uE
àz2 , (5.9)

or, non-dimensionally,

f̂ × ûE = Ek
à2ûE
àẑ2 . (5.10)

It is evident this equation can only be satisûed if ẑ ̸= O(1), implying that H is not a proper
scaling for z in the boundary layer. Rather, if the vertical scale in the Ekman layer is ä̂
(meaning ẑ ∼ ä̂) wemust have ä̂ ∼ Ek1/2. In dimensional terms this means the thickness
of the Ekman layer is

ä = Hä̂ = HEk1/2 (5.11)

or

ä = (
A
f0)1/2 . (5.12)

[_is estimate also emerges directly from (5.9).] Note that (5.11) can be written as

Ek = (
ä
H
)
2
. (5.13)

_at is, the Ekman number is equal to the square of the ratio of the depth of the Ekman
layer to an interior depth scale of the �uid motion. In laboratory �ows where A is the
molecular viscosity we can thus estimate the Ekman layer thickness, and if we know the
eddy viscosity of the ocean or atmosphere we can estimate their respective Ekman layer
thicknesses. We can invert this argument and obtain an estimate of A if we know the
Ekman layer depth. In the atmosphere, deviations from geostrophic balance are very small
in the atmosphere above 1 km, and using this gives A ≈ 102 m2 s−1. In the ocean Ekman
depths are o�en 50m or less, and eddy viscosities are about 0.1m2 s−1.
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5.1.2 Integral properties of the Ekman layer
What can we deduce about the Ekman layer without specifying the detailed form of the
frictional term? Using dimensional notation we recall frictional–geostrophic balance,

f × u = −∇õ +
1
ñ0 àóàz , (5.14)

where ó is zero at the edge of the Ekman layer. In the Ekman layer itself we have

f × uE =
1
ñ0 àóàz . (5.15)

Consider either a top or bottom Ekman layer, and integrate over its thickness. From (5.15)
we obtain

f ×ME = óT − óB, (5.16)

where
ME = ∫

Ek
ñ0uE dz (5.17)

is the ageostrophicmass transport in the Ekman layer, and óT and óB are the respective
stresses at the top and the bottom of the Ekman layer at hand. _e stress at the top (bottom)
will be zero in a bottom (top) Ekman layer and therefore, from (5.16),

top Ekman layer: ME = −
1
f
k × óT

bottom Ekman layer: ME =
1
f
k × óB . (5.18a,b)

_e transport is thus at right angles to the stress at the surface, and proportional to the
magnitude of the stress. _ese properties have a simple physical explanation: integrated
over the depth of the Ekman layer the surface stress must be balanced by the Coriolis force,
which in turn acts at right angles to themass transport. A consequence of (5.18) is that the
mass transports in adjacent oceanic and atmospheric Ekman layers are equal and opposite,
because the stress is continuous across the ocean–atmosphere interface. Equation (5.18a) is
particularly useful in the ocean, where the stress at the surface is primarily due to the wind,
and is largely independent of the interior oceanic �ow. In the atmosphere, the surface stress
mainly arises as a result of the interior atmospheric �ow, and to calculate it we need to
parameterize the stress in terms of the �ow.

Finally, we obtain an expression for the vertical velocity induced by an Ekman layer.
_emass conservation equation is

àu
àx

+
àv
ày

+
àw
àz

= 0. (5.19)
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Integrating this over an Ekman layer gives

1
ñ0∇⋅MT = −(wT − wB), (5.20)

whereMT is the total (Ekman plus geostrophic) mass transport in the Ekman layer,

MT = ∫
Ek

ñ0u dz = ∫
Ek

ñ0(ug + uE) dz ≡Mg +ME, (5.21)

and wT and wB are the vertical velocities at the top and bottom of the Ekman layer; the
former (latter) is zero in a top (bottom) Ekman layer. Equations (5.21) and (5.16) give

k × (MT −Mg) = 1
f
(óT − óB). (5.22)

Taking the curl of this (i.e., cross-diòerentiating) gives

∇⋅ (MT −Mg) = curlz[(óT − óB)/f], (5.23)

where the curlz operator on a vector A is deûned by curlzA ≡ àxAy − àyAx. Using (5.20)
we obtain, for top and bottom Ekman layers respectively,

wB =
1
ñ0 (curlzóTf + ∇⋅Mg) , wT =

1
ñ0 (curlzóBf − ∇⋅Mg) , (5.24a,b)

where ∇⋅Mg = −(â/f)Mg ⋅ j is the divergence of the geostrophic transport in the Ekman
layer, and this is o�en small compared to the other terms in these equations. _us, friction
induces a vertical velocity at the edge of the Ekman layer, proportional to the curl of
the stress at the surface, and this is perhaps themost used result in Ekman layer theory.
Numerical models sometimes do not have the vertical resolution to explicitly resolve an
Ekman layer, and (5.24) provides ameans of parameterizing the Ekman layer in terms of
resolved or known ûelds. It is particularly useful for the top Ekman layer in the ocean,
where the stress can be regarded as a given function of the overlying wind.

5.1.3 Sverdrup Balance
In this section we rederive the above results in a slightly more direct way, and also obtain a
result for the total transport induced by a windstress. To this end, consider an ocean forced
by a windstress at the top that satisûes the Ekman-layer equations

− fv = −
àõ
àx

+
àó̃x
àz

, fu = −
àõ
ày

+
àó̃y
àz

. (5.25)
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Figure 5.2 Upper and lower Ekman layers. The upper Ekman layer in the ocean is primarily driven
by an imposed wind stress, whereas the lower Ekman layer in the atmosphere or ocean largely
results from the interaction of interior geostrophic velocity and a rigid lower surface. The upper
part of �gure shows the vertical Ekman ‘pumping’ velocities that result from the given wind stress,
and the lower part of the �gure shows the Ekmanpumping velocities given the interior geostrophic
�ow.

where ó̃ = ó/ñ0. Equivalently we have
f(vg − v) =

àó̃x
àz

, f(u − ug) = àó̃y
àz

. (5.26)

We note that the geostrophic velocity ûeld satisûes,

f(
àug
àx

+
àvg
ày

) = −âvg. (5.27)

If we integrate themass continuity equation over the depth of the Ekman layer, the
vertical velocity at its base is given by

wE = ∫
0−HE (àua

àx
+
àva
ày

+
àug
àx

+
àvg
ày

) . (5.28)

_e divergence of the geostrophic velocity is given by (5.27), and that of the ageostrophic
velocity is obtained from (5.26). We thus obtain

wE = [
à
àx

(
ó̃y0
f

) −
à
ày

(
ó̃x0
f

)] − ∫
0−HE â

f
vg dz, (5.29)

where ó̃x0, ó̃y0 are the components of the stress at the surface. _is equation is essentially
the same as (5.24a).
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Figure 5.3 Left: the time averaged velocity �eld at a depth of 75m in the North Atlantic. Right: the
streamfunction of the vertically integrated �ow, in Sverdrups (1 Sv = 109 kg s−1). Note the presence
of an anticyclonic subtropical gyre (clockwise circulation, shaded red), a cyclonic subpolar gyre
(anticlockwise, blue), and intense western boundary currents.

If we go back to (5.25), cross diòerentiate and integrate from the top down we obtain
an expression for the vertical velocity at the base of the Ekman layer in terms of the stress
and the total velocity,

wE =
1
f
[
àó̃y0
àx

−
àó̃x0
ày

] − ∫
0−HE â

f
v dz. (5.30)

If we let the integral go over the entire depth of the ocean, and assume that the vertical
velocity is zero at the bottom, we obtain

∫âv dz =
àó̃y0
àx

−
àó̃x0
ày

. (5.31)

_is is known as the Sverdrup relation, and is a relation between the stress at the surface
and the total meridional transport in the ocean.

5.2 Ocean Gyres
5.3 The Depth IntegratedWind-Driven Circulation
_e large-scalemean currents shown in Fig. 5.3 and in Fig. 5.4, where we see subtropical
and subpolar gyres, all of them intensiûed in the west. Our goal is to explain the main
features seen in these ûgures in as simple and straightforward amanner as is possible.

_e equations that govern the large-scale�ow in the oceans are theplanetary-geostrophic
equations, but these equations are still quite daunting: a prognostic equation for buoyancy
is coupled to the advecting velocity via hydrostatic and geostrophic balance, and the result-
ing problem is formidably nonlinear. However, it turns out that thermodynamic eòects can
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eòectively be eliminated by the simple device of vertical integration; the resulting equations
are linear, and the only external forcing is that due to the wind stress.

5.3.1 _e Stommel Model
_e planetary-geostrophic equations for a Boussinesq �uid are:

Db
Dt

= ḃ, ∇3 ⋅ v = 0, (5.32a,b)

f × u = −∇õ +
1
ñ0 àóàz , àõ

àz
= b. (5.33a,b)

_ese equations are, respectively, the thermodynamic equation (5.32a), themass continuity
equation (5.32b), the horizontal momentum equation (5.33a), (i.e., geostrophic balance, plus
a stress term), and the vertical momentum equation (5.33b)— that is, hydrostatic balance.
_ese equations are derivedmore fully in Chapter 3, but they are essentially the Boussinesq
primitive equations with the advection terms omitted from the horizontal momentum
equation, on the basis of small Rossby number. In this chapter we will henceforth absorb
the factor of ñ0 into the ó, so that ó denotes the kinematic stress, and the gradient operator
will be two dimensional, in the x-y plane, unless noted.

Take the curl of (5.33a) (that is, cross diòerentiate its x and y components) and integrate
over the depth of the ocean to give

∫f∇⋅ u dz +
àf
ày

∫ v dz = curlz(óT − óB), (5.34)

where the operator curlz is deûned by curlzA ≡ àAy/àx − àAx/ày = k ⋅ ∇ × A, and the
subscripts T and B are for top and bottom. _e divergence term vanishes if the vertical
velocity is zero at the top and bottomof the ocean. Strictly, at the top of the ocean the vertical
velocity is given by thematerial derivative of height of the ocean’s surface, Dℎ/Dt, but on
the large-scales this has a negligible eòect and wemay make the rigid-lid approximation
and set it to zero. At the bottom of the ocean the vertical velocity is only zero if the ocean is
�at-bottomed; otherwise it is u ⋅ ∇çB, where çB is the orographic height at the ocean �oor.
_e neglect of this topographic term is probably themost restrictive single approximation
in themodel. Given this neglect, (5.34) becomes

âv = curlz(óT − óB), (5.35)

where henceforth, in this section, quantities with an overbar are understood to be the
vertical integral over the depth of the ocean. If the stresses depend only on the velocity
ûelds then thermodynamic ûelds do not aòect the vertically integrated �ow.

At the top of the ocean, the stress is given by the wind. At the bottom, in the absence of
topography we assume that the stress may be parameterized by a linear drag, or Rayleigh
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Figure 5.4 The streamfunction of the vertically integrated �ow for the near global ocean. Red
shading indicates clockwise �ow, and blue shading anticlockwise, but in both hemispheres the
subtropical (subpolar) gyres are anticyclonic (cyclonic).

friction, as might be generated by an Ekman layer; it is this assumption that particularly
characterizes this model as being due to Stommel. Equation (5.35) then becomes

âv = −ræ + Fó(x, y), (5.36)

where Fó = curlzóT is the wind-stress curl at the top of the ocean and is a known function.
Because the velocity is divergence-free, we can deûne a streamfunction ÷ such that u =
−à÷/ày and v = à÷/àx. Equation (5.36) then becomes

r∇2÷ + â
à÷
àx

= Fó(x, y). (5.37)

_is equation is o�en referred to as the Stommel problem or the Stommel model, andmay
be posed in a variety of two dimensional domains.

5.3.2 Approximate Solution of Stommel Model
Sverdrup balance
Equation (5.37) is linear and it is possible to obtain an exact, analytic solution. However, it
is more insightful to approach the problem perturbatively, by supposing that the frictional
term is small, meaning there is an approximate balance between wind stress and the
â-eòect.10 Friction is small if |ræ| ≪ |âv| or

r
L
=

fäB
HL

≪ â (5.38)

using r = fäB/H, and where L is the horizontal scale of themotion, and generally speaking
this inequality is well satisûed for large-scale �ow. _e vorticity equation becomes

âv ≈ curlzóT, (5.39)
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which is known as Sverdrup balance.11 (Sometimes Sverdrup balance is taken to mean
the linear geostrophic vorticity balance âv = fàw/àz, but we will restrict its use to mean
a balance between the beta eòect and wind stress curl.) _e observational support for
Sverdrup balance is rather mixed, discrepancies arising not so much from the failure of
(5.38), but from the presence of small-scale eddying motion with concomitantly large
nonlinear terms, and the presence of non-negligible vertical velocities induced by the
interaction with bottom topography.12 Nevertheless, Sverdrup balance provides a useful, if
not impregnable, foundation on which to build.

Boundary-layer solution
For simplicity, consider a square domain of side a and rescale the variables by setting

x = ax̂, y = aŷ, ó = ó0ó̂, ÷ = ÷̂
ó0
â
, (5.40)

where ó0 is the amplitude of the wind stress. _e hatted variables are nondimensional and,
assuming our scaling to be sensible, these areO(1) quantities in the interior. Equation (??)
becomes

à÷̂
àx̂

+ åS∇2÷̂ = curlzó̂T, (5.41)

where åS = (r/aâ) ≪ 1, in accord with (5.38). For the rest of this section we will drop
the hats over nondimensional quantities. Over the interior of the domain, away from
boundaries, the frictional term in (5.41) is small. We can take advantage of this by writing

÷(x, y) = ÷I(x, y) + õ(x, y), (5.42)

where ÷I is the interior streamfunction and õ is a boundary layer correction. Away from
boundaries ÷I is presumed to dominate the �ow, and this satisûes

à÷I
àx

= curlzóT. (5.43)

_e solution of this equation (called the ‘Sverdrup interior’) is

÷I(x, y) = ∫
x0 curlzó(x�, y) dx� + g(y), (5.44)

where g(y) is an arbitrary function of integration that gives rise to an arbitrary zonal �ow.
_e corresponding velocities are

vI = curlzó, uI = −
à
ày

∫
x0 curlzó(x�, y) dx� − dg(y)

dy
. (5.45)
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Western boundary layer Wind stress Eastern boundary layer

Figure 5.5 Two possible Sverdrup �ows,÷I, for the wind stress shown in the centre. Each solution
satis�es the no-�ow condition at either the eastern or western boundary, and a boundary layer is
therefore required at the other boundary. Both �ows have the same, equatorward, meridional �ow
in the interior. Only the �ow with the western boundary current is physically realizable, however,
because only then can friction produce a curl that opposes that of the wind stress, so allowing the
�ow to equilibrate.

_e dynamics is most clearly illustrated if we now restrict our attention to a wind-stress
curl that is zonally uniform, and that vanishes at two latitudes, y = 0 and y = 1. An example
is

óyT = 0, óxT = − cos(πy), (5.46)

for which curlzóT = −π sin(πy). _e Sverdrup (interior) �ow may then be written as

÷I(x, y) = [x − C(y)]curlzóT = π[C(y) − x] sin πy, (5.47)

where C(y) is the arbitrary function of integration [C(y) = −g(y)/curlzó]. If we choose C
to be a constant, the zonal �ow associated with it is C curlzóT. We can then satisfy ÷ = 0 at
either x = 0 (if C = 0) or x = 1 (if C = 1). _ese solutions are illustrated in Fig. 5.5 for the
particular stress (5.46).

Regardless of our choice of C we cannot satisfy ÷ = 0 at both zonal boundaries. We
must choose one, and then construct a boundary layer solution (i.e., we determine õ) to
satisfy the other condition. Which choice do we make? On intuitive grounds it seems
that we should choose the solution that satisûes ÷ = 0 at x = 1 (the solution on the
le� in Fig. 5.5), for the interior �ow then goes round in the same direction as the wind:
the wind is supplying a clockwise torque, and to achieve an angular momentum balance
anticlockwise angular momentum must be supplied by friction. We can imagine that this
would be provided by the frictional forces at the western boundary layer if the interior
�ow is clockwise, but not by friction at an eastern boundary layer when the interior �ow is
anticlockwise. Note that this argument is not dependent on the sign of the wind-stress curl:
if the wind blew the other way a similar argument still implies that a western boundary
layer is needed. We will now see if and how the mathematics re�ects this intuitive but
non-rigorous argument.
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Asymptoticmatching
Near thewalls of the domain the boundary layer correction õ(x, y)must become important
in order that the boundary conditions may be satisûed, and the �ow, and in particular
õ(x, y), will vary rapidly with x. To re�ect this, let us stretch the x-coordinate near this
point of failure (i.e., at either x = 0 or x = 1, but we do not know at which yet) and let

x = åá or x − 1 = åá. (5.48a,b)

Here, á is the stretched coordinate, which has values O(1) in the boundary layer, and å is a
small parameter, as yet undetermined. We then suppose that õ = õ(á, y), and using (5.42)
in (5.41), we obtain

åS(∇2÷I + ∇2õ) + à÷I
àx

+
1
å
àõ
àá

= curlzóT, (5.49)

where õ = õ(á, y) and ∇2õ = å−2à2õ/àá2 + à2õ/ày2. Now, by choice, ÷I exactly satisûes
Sverdrup balance, and so (5.49) becomes

åS (∇2÷I + 1
å2 à2õàá2 +

à2õ
ày2) +

1
å
àõ
àá

= 0. (5.50)

We now choose å to obtain a physically meaningful solution. An obvious choice is
å = åS, for then the leading-order balance in (5.50) is

à2õ
àá2 +

àõ
àá

= 0, (5.51)

the solution of which is
õ = A(y) + B(y)e−á. (5.52)

Evidently, õ grows exponentially in the negative á direction. If this were allowed, it would
violate our assumption that solutions are small in the interior, and wemust eliminate this
possibility by allowing á to take only positive values in the interior of the domain, and by
setting A(y) = 0. We therefore choose x = åá so that á > 0 for x > 0; the boundary layer
is then at x = 0, that is, it is a western boundary, and it decays eastwards in the direction
of increasing á— that is, into the ocean interior. We now choose C = 1 in (5.47) to make
÷I = 0 at x = 1 in (5.47) and then, for the wind stress (5.46), the interior solution is given
by

÷I = π(1 − x) sin πy. (5.53)

_is alone satisûes the boundary condition at the eastern boundary. _e function B(y) is
chosen to satisfy the additional condition that

÷ = ÷I + õ = 0 at x = 0, (5.54)

and using (5.53) this gives
π sin πy + B(y) = 0. (5.55)
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Streamfunction Wind stress

Figure 5.6 Two solutions of the Stommel model. Upper panel shows the streamfunction of a
single-gyre solution, with a wind stress proportional to − cos(πy/a) (in a domain of side a), and
the lower panel shows a two-gyre solution, with wind stress proportional to cos(2πy/a). In both
cases åS = 0.04.

Using this in (5.52), with A(y) = 0, then gives the boundary layer solution

õ = −π sin πye−x/åS . (5.56)

_e composite (boundary layer plus interior) solution is the sum of (5.53) and (5.56),
namely

÷ = (1 − x − e−x/åS)π sin πy. (5.57)

With dimensional variables this is

÷ =
ó0π
â

(1 −
x
a
− e−x/(aåS)) sin πy

a
. (5.58)

_is is a ‘single gyre’ solution. Two or more gyres can be obtained with a diòerent wind
forcing, such as óx = −ó0 cos(2πy), as in Fig. 5.6.

It is a relatively straightforwardmatter to generalize to other wind stresses, provided
these also vanish at the two latitudes between which the solution is desired. It is le� as a
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problem to show that in general

÷I = ∫
xxE curlzó(x�, y) dx�, (5.59)

and that the composite solution is

÷ = ÷I − ÷I(0, y)e−x/(xEåS). (5.60)
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