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SECTION A

1. a The horizontal momentum equation for a Boussinesq fluid may be written as

Du
Dt
� f v D �

@�

@x
;

Dv
Dt
C f u D �

@�

@y

Define the Rossby number, and show that if the Rossby number is small then
the flow can be expected to be close to geostrophic balance. Suppose that the
flow is in hydrostatic balance, which we write as

@�

@z
D b: (A)

where b is the buoyancy, which you may think of as temperature. By combin-
ing geostrophic balance with equation (A), show that a horizontal gradient of
buoyancy is associated with a vertical shear. [11]

Begin solution
The Rossby number is Ro � U=.fL/ where U is a scale for the horizontal
velocity and L a horizontal length scale.
If Roł1 then the Coriolis term is much larger than the material derivative and
must be balanced by the pressure gradient, and this is geostrophic balance.
Take the vertical derivative of geostrophic balance:

�f
@v

@z
D �

@

@z

@�

@x
; f

@u

@z
D �

@

@z

@�

@y

Then use (A) to give

f
@v

@z

@b

@x
; f

@u

@z
D �

@b

@y

Hence a horizontal gradient of b gives rise to a vertical gradient of u.
End Solution

b The shallow water equations may be written as

@h

@t
C
@.uh/

@x
C
@.vh/

@y
D 0;

Du

Dt
� f v C g

@h

@x
D 0;
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Dv

Dt
C f uC g

@h

@y
D 0;

in Cartesian coordinates .x; y/. Here u and v are the velocity components, h
is the layer thickness, f is the Coriolis parameter, and g is a constant. Derive
the energy conservation law

@E

@t
C
@F .x/

@x
C
@F .y/

@y
D 0;

where

E D g
h2

2
C h

u2 C v2

2
;

and give explicit expressions for the components of the energy flux .F .x/; F .y//.
[15]

Begin solution
Multiply the height equation by h and the momentum equations by hu to
give

@

@t

h2

2
Cr �

�
u
h2

2

�
C
h2

2
r � u D 0;

and
D
Dt
hu2

2
C
u2h

2
r � u D �gu � r

h2

2
(1)

or
@

@t

hu2

2
Cr �

�
u
hu2

2

�
C gu � r

h2

2
D 0: (2)

Adding these gives

@

@t

1

2

�
hu2
C gh2

�
Cr �

�
1

2
u
�
gh2
C hu2

C gh2
��
D 0; (3)

or
@E

@t
Cr � F D 0; (4)

where E D KE C PE D .hu2 C gh2/=2 is the density of the total energy
and F D u.hu2=2C gh2/ is the energy flux, and u D .u; v/.

End Solution
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c In a rotating frame of reference the rate of change of a vector B in an inertial
frame is related to its rate of change in the rotating frame by the formula�

dB
dt

�
I

D

�
dB
dt

�
R

C˝ �B: (B)

Use this relation to obtain an expression for the second derivative, namely�
d2B

dt2

�
I

in terms of rotating frame quantities. If B D r then identify the Coriolis
force and the centrifugal force in your expression and briefly give a physical
interpretation.
Can we apply equation (B) directly to velocity? That is, is it correct to say
that the acceleration a D dv=dt in the rotating frame and in the inertial frame
are related by

aI D aR C˝ � v:

Explain your answer. (12)
Begin solution

Apply (B) to itself to obtain�
d2B

dt2

�
I

D

��
d
dt

�
R

C˝ �

���
dB
dt

�
R

C˝ �B

�
:

or �
d2B

dt2

�
I

D

�
d2B

dt2

�
R

C 2˝ �

�
@B

@t

�
R

C˝ �˝ �B:

If B D r then the second and third terms on the RHS are the Coriolis and
centrifugal terms, respectively.
We cannot apply this to velocity because velocity is not measured to be the
same in the rotating and inertial frames.

End Solution

d Consider the vertical momentum equation in the form

Dw
Dt
D �

1

�

@p

@z
� g: (C)
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Is it always correct to say that the hydrostatic approximation is appropriate
when the vertical acceleration is much less than g? That is, whenˇ̌̌̌

Dw
Dt

ˇ̌̌̌
� g:

Explain your answer. In general, under what circumstances does hydrostatic
balance hold?
Suppose that the density is constant with � D �0. Show that equation (C) can
be written in the form

Dw
Dt
D �

1

�0

@p0

@z
:

where p0 D p C �0gz. Can the hydrostatic approximation be valid here?
Briefly explain. [12]

Begin solution

It is not always correct to say this. We need for the vertical acceleration to be
smaller than g0, where g0 D gı�=�0. Thus, if ı� D 0, as in a constant density fluid,
the hydrostatic balance doesn’t normally hold.
If we write � D �0 C �

0and p D p0 C p
0, where p0 D ��0gz, then (C) becomes

Dw
Dt
D �

1

�0

@p0

@z
:

The gravity term now has no dynamical effect and the hydrostatic approximation
is not really meaningful.

End Solution

[50]

End of Part A
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SECTION B

2. a Begin with the shallow water potential vorticity equation,

D
Dt
� C f

h
D 0

where � is the relative vorticity, h is the height field and f D f0Cˇy, where
jˇyj � f0. By supposing that the flow is nearly in geostrophic balance, and
that the perturbations in the height field are small (that is, h D H C � where
H is a constant and j�j � H ) derive the quasi-geostrophic potential vorticity
equation

D
Dt

�
r

2 � k2
d 
�
C ˇv D 0;

where  is the streamfunction and r2 D @2
x C @

2
y . What is kd ? [9]

Begin solution
If the flow is nearly in geostrophic balance then the flow is non-divergent and
u D �@ =@y and v D @ =@z where  D g�=f0. Also, � D r2 . Now,
the shallow water potential vorticity may be approximated as

Q D
� C f

h
D

1

H

� C f

1C �=H
�

1

H
.� C f /.1 � �=H/

�
1

H
.f0 C � C ˇy � f0�=H/ ;

dropping the smallest terms. The term f0=H is dynamically unimportant,
as is the constant factor of H on the other terms, so that the dynamically
important part of PV is

q D � C ˇy � f0

�

H
D r

2 �
f 2

0  

gH
:

We thus recover the answer given with kd D f0=
p
gH .

End Solution

b Let kd D 0 and linearize the system about a state of rest. By considering
perturbations of the form

 D Re f	 exp Œi.kx C ly � !t/�g ;
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or otherwise, show that the dispersion relation for this system is

! D �
ˇk

k2 C l2
;

and hence obtain an expression for the y–component of the group velocity. [7]

Begin solution
The linear equation is

@

@t
r

2 C ˇ
@ 

@x
:

Substituting
 D Re f	 exp Œi.kx C ly � !t/�g ;

immediately gives the answer. The y–component of the group velocity is
given by

c2
g D

@!

@y
D

2ˇkl

.k2 C l2/2

End Solution

c The meridional component of the eddy momentum flux (per unit mass) is
given by:

uv D
1

L

Z
L

uv dx D
1

L

Z
L

�
�
@ 

@y

��
@ 

@x

�
dx;

where L is one wavelength. Using this, show that

uv D �
1

2
kl j	 j2:

Hence infer that the meridional component of the group velocity has the
opposite sign to the momentum flux. Briefly explain how this can produce
westerly jets in midlatitude atmospheres. [9]

Begin solution
The harmonic forms of u and v are

u0 D �ReC il ei.kxCly�!t/; v0 D ReC ikei.kxCly�!t/; (5)

where C is a constant. The associated momentum flux is

u0v0 D �
1

2
C 2kl: (6)
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which is of opposite direction to the group velocity. Hence a source of Rossby
waves is associated with a convergence of momentum.

End Solution

[25]
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3. Consider a layer of fluid of constant density in the upper ocean that satisfies the
Ekman-layer equations:

�f v D �
@�

@x
C
@�x

@z
; f u D �

@�

@y
C
@�y

@z
; (E)

where �x; �y are components of the stress, �, in the x- and y-directions and
f D f0 C ˇy. Assume that the pressure, �, is not a function of z, that the Ekman
layer has some finite depth, HE , below which the stress is zero, and that the
vertical velocity is zero at the top of the ocean, z D 0, and at the bottom.

a Define the geostrophic velocity, .ug ; vg/, in terms of the components of the
pressure. Show that the divergence of the geostrophic velocity satisfies

f

�
@ug

@x
C
@vg

@y

�
D �ˇvg :

Show also that equations (E) may be written as

f .vg � v/ D
@�x

@z
; f .u � ug/ D

@�y

@z
: (F)

[6]

Begin solution
The geostrophic velocity is defined to be such that

�f vg D �
@�

@x
f ug D �

@�

@y

Cross differentiate the above to give

f

�
@ug

@x
C
@vg

@y

�
D �ˇvg :

where ˇ D @f=@y . Substituting the defintion of the geostrophic velocity
into equation (E) gives

f .vg � v/ D
@�x

@z
; f .u � ug/ D

@�y

@z
:

End Solution
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b Suppose that the stress is imposed at the top of the layer (z D 0) such that

�x D �x0; �y D �y0 at z D 0:

At the bottom of the Ekman layer suppose that the stress is zero.
By integrating equations (F) over the depth of the Ekman layer show that the
transport induced by the stress (i.e., the ageostrophic mass flux) is at right
angles to the direction of the surface stress. [6]

Begin solution
Integrate (F) from the top of the ocean to the bottom of the Ekman layer to
give Z

f vE dz D ��x.0/;

Z
f vE dz D �yz.0/:

where uE D .u � ug ; v � vg/ is the ageostrophic Ekman velocity. From the
above it is clear that

R
uE dz is at right angles to the stress.

End Solution

c By integrating the mass continuity equation over the depth of the Ekman
layer show that the vertical velocity at the base of the Ekman layer, wE , is
given by

wE D

�
@

@x

�
�y0

f

�
�
@

@y

�
�x0

f

��
�

Z 0

�HE

ˇ

f
vg dz

[7]
Begin solution

The mass continuity equation is @w=@z D �r � u. Start with (E), divide
through by f and then take the divergence to give

r � u D �
ˇ

f 2

@�

@x
C

@

@x

1

f

@�y

@z
�
@

@y

1

f

@�x

@z

The first term on the rhs is ˇvg=f . Integrating over the depth of the Ekmnan
layer gives, using the mass continuity equation,

wE D

�
@

@x

�
�y0

f

�
�
@

@y

�
�x0

f

��
�

Z 0

�HE

ˇ

f
vg dz

End Solution
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d By cross-differentiating equations (E) and vertically integrating over the total
depth of the ocean, or otherwise, derive the Sverdrup relation,Z

ˇv dz D
@�y0

@x
�
@�x0

@y

where v is the meridional component of the total velocity (i.e. geostrophic
and ageostrophic). [6]

Begin solution
If we begin (E) and cross differentiate (without dividing by f first) we obtain

f r � uC ˇv D
@

@x

@�y

@z
�
@

@y

@�x

@z

If we integrate over the full depth of the ocean the divergence term on the lhs
cancels and we obtain Z

ˇv dz D
@�y0

@x
�
@�x0

@y

End Solution

[25]
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4. a A planet rotates with angular velocity ˝. Write down an expression for the
absolute angular momentum of a fluid parcel at a distance r from the centre
of the planet and latitude � with relative zonal velocity u. An air parcel is
initially at rest relative to the rotating Earth at the surface on the equator.
Calculate its absolute angular momentum per unit mass. (Assume the Earth
to be spherical with radius a D 6:4 � 106 m and ˝ D 7:292 � 10�5 s�1.) [5]

Begin solution

Ma D .˝r
2 cos� C ur/ cos� D .˝r cos� C u/r cos�

On the Earth at the equator at rest we have

Ma D ˝a
2
D 7:292 � 10�5a2

D 2:98 � 109 m2 s�1

per unit mass.
End Solution

b The air parcel rises to a height of 10 km while conserving its absolute angular
momentum. What is the velocity u acquired by the the parcel and in what
direction is this? Finally the parcel moves to 30° N at the same height, again
conserving its absolute angular momentum. What is its final value of u?, and
in what direction is the flow? [7]

Begin solution
The final value of u is given by solving

.˝a cos� C 0/a cos� D .˝.aC h/ cos� C u/.aC h/ cos� (7)

where h is 10 km and cos� D 1 (at equator). Thus, to a good approximation,

u.aC h/ D �2˝ah �˝h2 giving u � �2˝h

Putting in numbers gives u D �0:15m.
Moving to 30° N we calculate the velocity there using

.˝a cos 30C u/ cos 30 D ˝a

Or

u D
˝a

cos 30
.1 � cos2 30/ D

˝a sin2 30

cos 30
D 269m s�1:

End Solution
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c Suppose that at the ground the velocity of the air is zero, and that it increases
linearly to its value at 10 km at 30° N, as calculated above. Suppose also that
the flow obeys the thermal wind relation in the form

f
@u

@z
D �

g

T0

@T

@y
;

where f D 2˝ sin� where � is latitude, T is temperature, T0 D 300K and
g D 10m s�2. Calculate the meridional temperature gradient. Using this
value, or otherwise, estimate the temperature fall off between the equator and
30° N. (You may assume � is small and sin� � �.) [8]

[8]Begin solution
Let f D 10�4 and g D 10. Then the temperature gradient is

@T

@y
D
f T0

g

@u

@z
�
10�4 300

10

269

104
� 7 � 10�5 K m�1 (8)

or about 7 K per hundred kilomenters. This is too rapid - the temperature
would fall by 70 degrees over 1000 kilometers.

End Solution

d Are the values you obtained in parts (b) and (c) realistic for the Earth’s
atmosphere? Explain you answer, and discuss the relevance of this to the
extent of Earth’s Hadley circulation. [5]

Begin solution

The value of the wind at the equator is reasonably okay (it is small). The value
at 30° is too big - the flow is not in fact angular momentum conserving. And the
temperature fall off is far too large.

End Solution

[25]

Page 13 of 13 ECMM719U/P/END OF PAPER


