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The "big book" [AOFD] by Vallis is a treasure,
but I suspect that this new Essentials is destined to be
used much more widely in classrooms. Vallis does
a superb job of communicating the peculiar tensions
between deductive reasoning and physical intuition
that underlie this science. The new book is more ap-
proachable but no less rigorous. I especially appreci-
ate how the various equation sets are derived in suc-
cinct but meaningful ways in the first few chapters,
and then used as tools to explore the dynamics in the
chapters that follow. It’s almost the perfect introduc-
tory textbook on this subject, and I plan to use it in my
own courses.

Brian E. J. Rose,
University at Albany

He’s done it again. In Essentials, Geoff Vallis
has produced a text that is useful to the student and
the experienced scientist alike. While the content is
simplified and shortened compared to its parent text,
Vallis now provides even more descriptive explana-
tions to support readers in their quest to navigate the
physics of fluid flows. These explanations pair well
with the theory, serving as an accessible introduction
to students while also supporting the more experi-
enced scientist as they put all of the pieces together.
This will certainly be a future favourite for reading
groups. Even readers with dog-eared versions of the
parent book will want a copy of Essentials, for in it
Vallis has added an entirely new chapter on planetary
atmospheres, allowing the interested reader to venture
into outer space to apply their newly honed GFD ex-
pertise.

Elizabeth A. Barnes,
Colorado State University

For the past decade, Geoff Vallis’ book Atmo-
spheric and Oceanic Fluid Dynamics has been the
"go to" encyclopaedic resource, but it is too lengthy
and comprehensive to use as a course textbook. With
this superb new shorter volume, Geoff Vallis pro-
vides us with the definitive graduate-level textbook,
with just the right balance of essential topics along-
side glimpses of more advanced topics at the cutting
edge of research. The extensive use of margin notes,
diamonds to indicate advanced topics, and a compre-
hensive set of problems will ensure that Essentials of
Atmospheric and Oceanic Dynamics has much to of-
fer students and researchers at all levels. The book
opens with the quote: "Seek simplicity, accept com-
plexity. Exploit simplification, avoid complication.”
On all counts, this book succeeds magnificently!

David Marshall,
University of Oxford

Vallis’ insights into the fundamentals and ap-
plications go a long way towards making otherwise
complex topics readily grasped by those willing to
study. He does not shy away from mathematics where
needed, nor does he smother the reader with mathe-
matics where pedagogically unnecessary. Those mak-
ing it through this book will be ready to tackle a huge
suite of research questions related to atmosphere and
ocean fluid mechanics. Hence, this book serves an
incredibly important role to the academic community.
In a nutshell, we need more smart researchers who are
adept at atmosphere and ocean dynamics to help un-
derstand how those dynamics are increasingly being
affected by humanity’s choices.

Essentials of Atmospheric and Oceanic Dynamics
(EAOD) fills an important niche by offering an artic-
ulate and authoritative textbook to be worked through
by advanced undergraduates and/or entering graduate
students taking courses. The inclusion of exercises
in EAOD is incredibly valuable for both students and
teachers clamouring for more problem sets to test un-
derstanding. Whereas Vallis’ previous book, Atmo-
spheric and Oceanic Fluid Dynamics (AOFD) is the
mother reference, EAOD offers a pedagogical entrée
for those wishing to test the waters, including some
deep waters. I will happily keep both books on my
shelf and make use of them for personal study and to
support the teaching of geophysical fluid dynamics.

Vallis has a clear writing style that brings the
reader into the subject in an authoritative and friendly
manner. He is a wise guru and gentle tutor. The subject
of ocean and atmosphere fluid mechanics has matured
greatly through his efforts at writing AOFD. EAOD
furthers that maturation by allowing for a broader
readership to tap into his brain. Well done Geoff!

Stephen M. Griffies,
GFDL, Princeton University.

As its parent book became the bible of the field,
but also grew in size and the number of topics it cov-
ered in its latest edition, this new book provides a per-
fect balance and introduction to the essential topics,
giving a quick reference without going into all the de-
tails. In the Vallis tradition, it is presented clearly, per-
fectly packaged, and is well organized for both atmo-
spheric and oceanic fluid dynamics. Its simplicity will
make it majestically appealing both for people out-
side the discipline looking for an accessible, yet com-
plete, introduction, and for students within the field
at all levels. The inclusion of planetary atmospheres
broadens the scope and makes it appealing to a wider
and growing audience. Anyone with a background in
physics can get the essentials using this book.

Yohai Kaspi,
Weizmann Institute of Science
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Preface

Seek simplicity, accept complexity.
Exploit simplification, avoid complication.

This is an introductory book on the dynamics of atmospheres and oceans,
with a healthy dose of geophysical fluid dynamics. It is written roughly
at the level of advanced or upper-division undergraduates and beginning
graduate students, but parts of it will be accessible to first- or second-year
undergraduates and I hope that practising scientists will also find it useful.
The book is designed for students and scientists who want an introduc-
tion to the subject but whomay notwant all the detail, at least not yet, and
its prerequisites are just familiarity with some vector calculus and basic
classical physics. Thus, it is meant to be accessible to non-specialists and
students who will not necessarily go on to become professional dynami-
cists. However, as well as very basic material the book does include some
elementary introductions to a few ‘advanced’ topics, such as the residual
circulation and turbulence theory, as well asmaterial on the general circu-
lation of the atmosphere and ocean. Themore advanced parts could easily
be omitted for a first course and, like difficult ski slopes, are marked with
a diamond, ♦. Readers may explore these topics more in the references
provided, or in this book’s parent,Atmospheric andOceanic Fluid Dynamics.
Nearly all the topics in this book, except those in the chapter on planetary
atmospheres, are dealt with in greater detail there.

What is in the book

The book is divided into three Parts. The first, and longest, provides the
foundation for the study of the dynamics of the atmosphere and ocean.
It does not assume any prior knowledge of fluid dynamics or thermo-
dynamics, although readers who have such knowledge may be able to
skim Chapter 1. The rest of Part I provides an introduction to ‘geophys-
ical fluid dynamics’, the subject that remains at the heart of atmospheric
and oceanic dynamics and without which the subject would be largely
qualitative and/or computational. Here we discuss the effects of rota-

ix



x Preface

Margin notes that are set in a
roman (i.e., upright) font em-
phasize or expand on some-

thing that is in the main text.

Margin notes set in italics are
asides or historical anecdotes.

tion and stratification, leading into shallow water theory and the quasi-
geostrophic and planetary-geostrophic equations. Rossby waves, gravity
waves, baroclinic instability and elementary treatments of wave–mean-
flow interaction and turbulence round out Part I.

Parts II and III focus on the large scale dynamics and circulation of
the atmosphere and ocean, respectively. Our main focus in both Parts
is what is sometimes called ‘the general circulation’, meaning the large-
scale quasi-steady and/or time-averaged circulation, but this circulation
depends on the effects of time-dependent eddies — the atmosphere’s Fer-
rel Cell may be considered to be ‘driven’ by the effects of baroclinic insta-
bility and Rossby waves. And the El Niño phenomenon, described in the
final chapter, is explicitly time dependent. One feature of this book that
is not in the parent book is a chapter discussing some of the general prin-
ciples of planetary atmospheres, a topic of increasing interest because of
the new, sometimes quite spectacular, observations of the planets in our
Solar System and beyond.

How to use the book

The contents of the book are about enough for a two-term course in
atmosphere–ocean dynamics. A term-long, first course in geophysical
fluid dynamics could, for example, be based on Part I, omitting some of
the earlier or later chapters depending on the students’ backgrounds and
interests. A term-long course in atmospheric and/or oceanic circulation
could be based on Part II and/or Part III, supplementing thematerial with
review articles or research papers as needed, perhaps using data sets to
look at the real world (and other planets, if Chapter 13 is to be studied).
Alternatively, one could combine aspects of Parts I and II, or Parts I and III,
to construct an ‘Atmospheric Dynamics’ or ‘Oceanic Dynamics’ course.

If the book is to be used for self-study it could simply be read from
beginning to end, although many other pathways are possible and may
be preferable. Parts II and III depend on the material in Part I, but the
material is reasonably self-contained, and readers who already have some
knowledge of geophysical fluid dynamics should feel free to start at a later
chapter, or with Part II or Part III. A few problems are collected at the end
of some chapters; these are designed to test understanding aswell as to fill
in gaps and extend the material in the book itself. Many other problems
at varying levels of difficulty can be found on the web site of this book,
which can easily be found with a search engine. The reader will also see a
number of margin notes throughout the book, rather like the ones to the
left. The book itself was typeset using LATEX with Crimson fonts for text,
Cronos Pro for sans serif and Minion Math for equations.

I would like to thank Matt Lloyd, Zoë Pruce and Richard Smith at
Cambridge University Press for their expert guidance through the writ-
ing and production process, as well as many colleagues and students —
toomany to list, but they knowwho they are— for their many comments,
corrections and criticisms. If you, the reader, have other comments, ma-
jor or minor, do please contact me.
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Geophysical Fluids





The fluid dynamical equa-
tions of motion determine
the evolution of a fluid. The
equations are based on New-
ton’s laws of motion and the
laws of thermodynamics, and
embody the principles of
conservation of momentum,
energy and mass. Initial con-
ditions and boundary condi-
tions are needed to solve the
equations.

Chapter

1
Fluid Fundamentals

F luids, like solids, move if they are pushed and they warm if they
are heated. But, unlike solids, they flow and deform. In this chapter
we establish the governing equations ofmotion for a fluid, with par-

ticular attention to air and seawater — the fluids of the atmosphere and
ocean, respectively. Readers who already have knowledge of fluid dynam-
ics may skim this chapter and begin reading more seriously at Chapter 2,
where we begin to look at the effects of rotation and stratification.

1.1 Time Derivatives for Fluids

1.1.1 Field and Material Viewpoints

In solid-bodymechanics one is normally concernedwith the position and
momentum of an identifiable object, such as a football or a planet, as it
moves through space. In principle we could treat fluids the same way
and try to follow the properties of individual fluid parcels as they flow
along, perhaps getting hotter or colder as they move. This perspective
is known as the material or Lagrangian viewpoint. However, in fluid dy-
namical problems we generally would like to know what the values of
velocity, density and so on are at fixed points in space as time passes. A
weather forecast we care about tells us how warm it will be where we live
and, if we are given that, we may not care where a particular fluid parcel
comes from orwhere it subsequently goes. Since the fluid is a continuum,
this knowledge is equivalent to knowing how the fields of the dynamical
variables evolve in space and time. This viewpoint is known as the field
or Eulerian viewpoint.

Although the field viewpoint will often turn out to be the most prac-
tically useful, the material description is invaluable both in deriving the
equations and in the subsequent insight it frequently provides. This is
because the important quantities from a fundamental point of view are

3



4 Chapter 1. Fluid Fundamentals

The Lagrangian viewpoint is
named for the Franco-Italian

J. L. Lagrange (1736–1813), one
of the most renowned mathe-
maticians of his time. The Eu-
lerian point of view is named

for Leonhard Euler (1707–
1783), the great Swiss mathe-
matician. In fact, Euler is also
largely responsible for the La-

grangian view, but the attribu-
tion became tangled over time.

often those which are associated with a given fluid element: it is these
which directly enter Newton’s laws of motion and the thermodynamic
equations. It is thus important to have a relationship between the rate
of change of quantities associated with a given fluid element and the local
rate of change of a field. Thematerial derivative (also called the advective
derivative or Lagrangian derivative) provides this relationship.

1.1.2 The Material Derivative of a Fluid Property

A fluid element is an infinitesimal, indivisible, piece of fluid — effectively
a very small fluid parcel of fixed mass. The material derivative, or the La-
grangian derivative, is the rate of change of a property (such as temperature
or momentum) of a particular fluid element or finite mass of fluid; that is,
it is the total time derivative of a property of a piece of fluid.

Let us suppose that a fluid is characterized by a given velocity field
𝒗(𝒙, 𝑡), which determines its velocity throughout. Let us also suppose that
the fluid has another property 𝜑, and let us seek an expression for the rate
of change of 𝜑 of a fluid element. Since 𝜑 is changing in time and in space
we use the chain rule,

𝛿𝜑 = ∂𝜑
∂𝑡
𝛿𝑡 + ∂𝜑
∂𝑥
𝛿𝑥 + ∂𝜑
∂𝑦
𝛿𝑦 + ∂𝜑
∂𝑧
𝛿𝑧 = ∂𝜑
∂𝑡
𝛿𝑡 + 𝛿𝒙 ⋅ ∇𝜑. (1.1)

This is true in general for any 𝛿𝑡, 𝛿𝑥, etc. The total time derivative is then

d𝜑
d𝑡
= ∂𝜑
∂𝑡
+ d𝒙

d𝑡
⋅ ∇𝜑. (1.2)

If this equation is to provide a material derivative we must identify the
time derivative in the second term on the right-hand side with the rate
of change of position of a fluid element, namely its velocity. Hence, the
material derivative of the property 𝜑 is

d𝜑
d𝑡
= ∂𝜑
∂𝑡
+ 𝒗 ⋅ ∇𝜑. (1.3)

The right-hand side expresses thematerial derivative in terms of the local
rate of change of 𝜑 plus a contribution arising from the spatial variation
of 𝜑, experienced only as the fluid parcel moves. Because the material
derivative is so common, and to distinguish it from other derivatives, we
denote it by the operator D/D𝑡. Thus, the material derivative of the field
𝜑 is

D𝜑
D𝑡
= ∂𝜑
∂𝑡
+ (𝒗 ⋅ ∇)𝜑. (1.4)

The brackets in the last term of this equation are helpful in reminding us
that (𝒗 ⋅ ∇) is an operator acting on 𝜑. The operator ∂/∂𝑡 + (𝒗 ⋅ ∇) is the
Eulerian representation of the Lagrangian derivative as applied to a field.
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The Eulerian derivative is the
rate of change of a property
at a fixed location in space.
The material derivative is
the rate of change of a prop-
erty of a given piece of fluid,
which may be moving and so
changing its position.

Material derivative of vector field

The material derivative may act on a vector field 𝒃, in which case

D𝒃
D𝑡
= ∂𝒃
∂𝑡
+ (𝒗 ⋅ ∇)𝒃. (1.5)

In Cartesian coordinates this is

D𝒃
D𝑡
= ∂𝒃
∂𝑡
+ 𝑢∂𝒃
∂𝑥
+ 𝑣∂𝒃
∂𝑦
+ 𝑤∂𝒃
∂𝑧
, (1.6)

and for a particular component of 𝒃, 𝑏𝑥 say,

D𝑏𝑥
D𝑡
= ∂𝑏
𝑥

∂𝑡
+ 𝑢∂𝑏

𝑥

∂𝑥
+ 𝑣∂𝑏

𝑥

∂𝑦
+ 𝑤∂𝑏

𝑥

∂𝑧
, (1.7)

and similarly for 𝑏𝑦 and 𝑏𝑧. In coordinate systems other than Cartesian
the advective derivative of a vector is not simply the sum of the advective
derivatives of its components, because the coordinate vectors themselves
change direction with position; this will be important when we deal with
spherical coordinates.

1.1.3 Material Derivative of a Volume

The volume that a given, unchanging, mass of fluid occupies is deformed
and advected by the fluid motion, and there is no reason why it should
remain constant. Rather, the volume will change as a result of the move-
ment of each element of its bounding material surface, and in particular
it will change if there is a non-zero normal component of the velocity at
the fluid surface. That is, if the volume of some fluid is ∫ d𝑉, then

D
D𝑡
∫
𝑉
d𝑉 = ∫

𝑆
𝒗 ⋅ d𝑺, (1.8)

where the subscript𝑉 indicates that the integral is a definite integral over
some finite volume 𝑉, and the limits of the integral are functions of time
since the volume is changing. The integral on the right-hand side is over
the closed surface, 𝑆, bounding the volume. Although intuitively apparent
(to some), this expression may be derived more formally using Leibniz’s
formula for the rate of change of an integral whose limits are changing.
Using the divergence theorem on the right-hand side, (1.8) becomes

D
D𝑡
∫
𝑉
d𝑉 = ∫

𝑉
∇ ⋅ 𝒗 d𝑉. (1.9)

The rate of change of the volume of an infinitesimal fluid element of vol-
ume 𝛥𝑉 is obtained by taking the limit of this expression as the volume
tends to zero, giving

lim
𝛥𝑉→0
1
𝛥𝑉

D𝛥𝑉
D𝑡
= ∇ ⋅ 𝒗. (1.10)
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We will often write such expressions informally as
D𝛥𝑉
D𝑡
= 𝛥𝑉∇ ⋅ 𝒗, (1.11)

with the limit implied.
Consider now the material derivative of some fluid property, 𝜉 say,

multiplied by the volume of a fluid element, 𝛥𝑉. Such a derivative arises
when 𝜉 is the amount per unit volume of 𝜉-substance — the mass density
or the amount of a dye per unit volume, for example. Then we have

D
D𝑡
(𝜉𝛥𝑉) = 𝜉D𝛥𝑉

D𝑡
+ 𝛥𝑉D𝜉

D𝑡
. (1.12)

Using (1.11) this becomes
D
D𝑡
(𝜉𝛥𝑉) = 𝛥𝑉(𝜉∇ ⋅ 𝒗 + D𝜉

D𝑡
) , (1.13)

and the analogous result for a finite fluid volume is just
D
D𝑡
∫
𝑉
𝜉 d𝑉 = ∫

𝑉
(𝜉∇ ⋅ 𝒗 + D𝜉

D𝑡
) d𝑉. (1.14)

This expression is to be contrasted with the Eulerian derivative for which
the volume, and so the limits of integration, are fixed and we have

d
d𝑡
∫
𝑉
𝜉 d𝑉 = ∫

𝑉

∂𝜉
∂𝑡

d𝑉. (1.15)

Now consider the material derivative of a fluid property 𝜑multiplied
by the mass of a fluid element, 𝜌𝛥𝑉, where 𝜌 is the fluid density. Such
a derivative arises when 𝜑 is the amount of 𝜑-substance per unit mass
(note, for example, that the momentum of a fluid element is 𝜌𝒗𝛥𝑉). The
material derivative of 𝜑𝜌𝛥𝑉 is given by

D
D𝑡
(𝜑𝜌𝛥𝑉) = 𝜌𝛥𝑉D𝜑

D𝑡
+ 𝜑 D

D𝑡
(𝜌𝛥𝑉). (1.16)

But 𝜌𝛥𝑉 is just the mass of the fluid element, and that is constant — that
is how a fluid element is defined. Thus the second term on the right-hand
side vanishes and

D
D𝑡
(𝜑𝜌𝛥𝑉) = 𝜌𝛥𝑉D𝜑

D𝑡
and D

D𝑡
∫
𝑉
𝜑𝜌 d𝑉 = ∫

𝑉
𝜌D𝜑
D𝑡

d𝑉,
(1.17a,b)

where (1.17b) applies to a finite volume. That expression may also be de-
rived more formally using Leibniz’s formula for the material derivative
of an integral, and the result also holds when 𝜑 is a vector. The result is
quite different from the corresponding Eulerian derivative, in which the
volume is kept fixed; in that case we have:

d
d𝑡
∫
𝑉
𝜑𝜌 d𝑉 = ∫

𝑉

∂
∂𝑡
(𝜑𝜌) d𝑉. (1.18)

Various material and Eulerian derivatives are summarized in the shaded
box on the facing page.
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Material and Eulerian Derivatives

The material derivatives of a scalar (𝜑) and a vector (𝒃) field are
given by:

D𝜑
D𝑡
= ∂𝜑
∂𝑡
+ 𝒗 ⋅ ∇𝜑, D𝒃

D𝑡
= ∂𝒃
∂𝑡
+ (𝒗 ⋅ ∇)𝒃. (D.1)

Various material derivatives of integrals are:

D
D𝑡
∫
𝑉
𝜑 d𝑉 = ∫

𝑉
(D𝜑

D𝑡
+ 𝜑∇ ⋅ 𝒗) d𝑉 = ∫

𝑉
(∂𝜑
∂𝑡
+ ∇ ⋅ (𝜑𝒗)) d𝑉,

(D.2)
D
D𝑡
∫
𝑉
d𝑉 = ∫

𝑉
∇ ⋅ 𝒗 d𝑉, (D.3)

D
D𝑡
∫
𝑉
𝜌𝜑 d𝑉 = ∫

𝑉
𝜌D𝜑
D𝑡

d𝑉. (D.4)

These formulae also hold if 𝜑 is a vector. The Eulerian derivative
of an integral is:

d
d𝑡
∫
𝑉
𝜑 d𝑉 = ∫

𝑉

∂𝜑
∂𝑡

d𝑉, (D.5)

so that

d
d𝑡
∫
𝑉

d𝑉 = 0 and d
d𝑡
∫
𝑉
𝜌𝜑 d𝑉 = ∫

𝑉

∂𝜌𝜑
∂𝑡

d𝑉. (D.6)

1.2 The Mass Continuity Equation

In classical mechanicsmass is absolutely conserved and in solid-bodyme-
chanics we normally do not need an explicit equation of mass conserva-
tion. However, in fluid mechanics a fluid may flow into and away from a
particular location, and fluid density may change, and we need an equa-
tion to describe that change.

1.2.1 An Eulerian Derivation

We first derive the mass conservation equation from an Eulerian point
of view; that is, our reference frame is fixed in space and the fluid flows
through it. Consider an infinitesimal, rectangular cuboid, control volume,
𝛥𝑉 = 𝛥𝑥𝛥𝑦𝛥𝑧 that is fixed in space, as in Fig. 1.1. Fluid moves into or out
of the volume through its surface, including through its faces in the 𝑦–𝑧
plane of area 𝛥𝐴 = 𝛥𝑦𝛥𝑧 at coordinates 𝑥 and 𝑥 + 𝛥𝑥. The accumulation
of fluid within the control volume due to motion in the 𝑥-direction is



Chapter

2
Equations for a Rotating
Planet

P lanets are almost spheres. They also rotate. Here we consider
how the equations of motion are affected by these facts, first by
looking at how rotation affects the dynamics and then by express-

ing the equations in spherical coordinates.

2.1 Equations in a Rotating Frame of Reference

Newton’s second law of motion, that the rate of change of momentum
of a body is proportional to the imposed force, applies in so-called iner-
tial frames of reference that are either stationary or moving only with a
constant rectilinear velocity relative to the distant galaxies. Now Earth
spins around its axis once a day, so the surface of the Earth is not an iner-
tial frame. Nevertheless, it is very convenient to describe the motion of
the atmosphere or ocean relative to Earth’s surface rather than in some
inertial frame. How we do that is the subject of this section.

2.1.1 Rate of Change of a Vector

Consider first a vector𝑪 of constant length rotating relative to an inertial
frame at a constant angular velocity𝜴. Then, in a frame rotatingwith that
same angular velocity it appears stationary and constant. If in a small
interval of time 𝛿𝑡 the vector 𝑪 rotates through a small angle 𝛿𝜆 then the
change in 𝑪, as perceived in the inertial frame, is given by (see Fig. 2.1)

𝛿𝑪 = |𝑪| cos 𝜗 𝛿𝜆𝒎, (2.1)

where the vector𝒎 is the unit vector in the directionof change of𝑪, which
is perpendicular to both 𝑪 and𝜴. But the rate of change of the angle 𝜆 is
just, by definition, the angular velocity so that 𝛿𝜆 = |𝜴|𝛿𝑡 and

𝛿𝑪 = |𝑪||𝜴| sin 𝜗𝒎𝛿𝑡 = 𝜴 × 𝑪𝛿𝑡, (2.2)
24



2.1 Equations in a Rotating Frame of Reference 25

Fig. 2.1: A vector 𝑪 rotat-
ing at an angular velocity
𝜴. It appears to be a con-
stant vector in the rotating
frame, whereas in the inertial
frame it evolves according to
(d𝑪/d𝑡)𝐼 = 𝜴 × 𝑪.

using the definition of the vector cross-product, where 𝜗 = (π/2 − 𝜗) is
the angle between𝜴 and 𝑪. Thus

(d𝑪
d𝑡
)
𝐼
= 𝜴 × 𝑪, (2.3)

where the left-hand side is the rate of change of 𝑪 as perceived in the
inertial frame.

Now consider a vector 𝑩 that changes in the inertial frame. In a small
time 𝛿𝑡 the change in 𝑩 as seen in the rotating frame is related to the
change seen in the inertial frame by

(𝛿𝑩)𝐼 = (𝛿𝑩)𝑅 + (𝛿𝑩)rot, (2.4)

where the terms are, respectively, the change seen in the inertial frame, the
change due to the vector itself changing asmeasured in the rotating frame,
and the change due to the rotation. Using (2.2) (𝛿𝑩)rot = 𝜴 × 𝑩𝛿𝑡, and so
the rates of change of the vector 𝑩 in the inertial and rotating frames are
related by

(d𝑩
d𝑡
)
𝐼
= (d𝑩

d𝑡
)
𝑅
+ 𝜴 × 𝑩. (2.5)

This relation applies to a vector𝑩 that, as measured at any one time, is the
same in both inertial and rotating frames.

2.1.2 Velocity and Acceleration in a Rotating Frame

The velocity of a body is not measured to be the same in the inertial and
rotating frames, so care must be taken when applying (2.5) to velocity.
First apply (2.5) to 𝒓, the position of a particle, to obtain

(d𝒓
d𝑡
)
𝐼
= (d𝒓

d𝑡
)
𝑅
+ 𝜴 × 𝒓 (2.6)
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or
𝒗𝐼 = 𝒗𝑅 + 𝜴 × 𝒓. (2.7)

We refer to 𝒗𝑅 and 𝒗𝐼 as the relative and inertial velocity, respectively, and
(2.7) relates the two. Apply (2.5) again, this time to the velocity 𝒗𝑅 to give

(d𝒗𝑅
d𝑡
)
𝐼
= (d𝒗𝑅

d𝑡
)
𝑅
+ 𝜴 × 𝒗𝑅, (2.8)

or, using (2.7)

( d
d𝑡
(𝒗𝐼 − 𝜴 × 𝒓))

𝐼
= (d𝒗𝑅

d𝑡
)
𝑅
+ 𝜴 × 𝒗𝑅, (2.9)

or

(d𝒗𝐼
d𝑡
)
𝐼
= (d𝒗𝑅

d𝑡
)
𝑅
+ 𝜴 × 𝒗𝑅 +

d𝜴
d𝑡
× 𝒓 + 𝜴 × (d𝒓

d𝑡
)
𝐼
. (2.10)

Then, noting that

(d𝒓
d𝑡
)
𝐼
= (d𝒓

d𝑡
)
𝑅
+ 𝜴 × 𝒓 = (𝒗𝑅 + 𝜴 × 𝒓), (2.11)

and assuming that the rate of rotation is constant, (2.10) becomes

(d𝒗𝑅
d𝑡
)
𝑅
= (d𝒗𝐼

d𝑡
)
𝐼
− 2𝜴 × 𝒗𝑅 − 𝜴 × (𝜴 × 𝒓). (2.12)

This equation may be interpreted as follows. The term on the left-
hand side is the rate of change of the relative velocity as measured in the
rotating frame. The first term on the right-hand side is the rate of change
of the inertial velocity as measured in the inertial frame (the inertial ac-
celeration, which is, by Newton’s second law, equal to the force on a fluid
parcel divided by its mass). The second and third terms on the right-hand
side (including the minus signs) are the Coriolis force and the centrifugal
force per unit mass. Neither of these are usually regarded as true forces —
they may be thought of as quasi-forces (i.e., ‘as if’ forces); that is, when a
body is observed from a rotating frame it behaves as if unseen forces are
present that affect its motion.

Centrifugal force

If 𝒓⟂ is the perpendicular distance from the axis of rotation (see Fig. 2.1
and substitute 𝒓 for 𝑪), then, because 𝜴 is perpendicular to 𝒓⟂, 𝜴 × 𝒓 =
𝜴×𝒓⟂. Then, using the vector identity𝜴×(𝜴×𝒓⟂) = (𝜴 ⋅𝒓⟂)𝜴−(𝜴⋅𝜴)𝒓⟂
and noting that the first term is zero, we see that the centrifugal force per
unit mass is just given by

𝑭ce = −𝜴 × (𝜴 × 𝒓) = 𝛺2𝒓⟂. (2.13)

This may usefully be written as the gradient of a scalar potential,

𝑭ce = −∇𝛷ce. (2.14)

where 𝛷ce = −(𝛺2𝑟2⟂)/2 = −(𝜴 × 𝒓⟂)2/2.
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The Coriolis force is named for
Gaspard-Gustave de Coriolis
(1792–1843) who discussed
the effect in an engineering
context in 1835, although the
basic effect may have been
first recognized (as were so
many things) by Leonhard
Euler (1707–1783). The (now-
called) Coriolis term is also
contained in Laplace’s tidal
equations, formulated in 1776,
published in English in Laplace
(1832). William Ferrel (1817–
1891) was perhaps the first
to appreciate the effect of the
force on Earth’s circulation,
identifying and discussing the
relevant term (2𝛺𝑣 sin 𝜗) in
Laplace’s equations.

Coriolis force

The Coriolis force per unit mass is given by

𝑭Co = −2𝜴 × 𝒗𝑅. (2.15)

We consider the effects of the Coriolis force extensively, but for now we
just note three basic properties:

(i) There is no Coriolis force on bodies that are stationary in the rotat-
ing frame.

(ii) The Coriolis force acts to deflect moving bodies at right angles to
their direction of travel.

(iii) The Coriolis force does no work on a body because it is perpendic-
ular to the velocity, and so 𝒗𝑅 ⋅ (𝜴 × 𝒗𝑅) = 0.

2.1.3 Equations of Motion in a Rotating Frame

Momentum equation

Since (2.12) simply relates the accelerations of a particle in the inertial
and rotating frames, then in the rotating frame of reference the three-
dimensional momentum equation may be written

D𝒗
D𝑡
+ 2𝜴 × 𝒗 = −1

𝜌
∇𝑝 − ∇𝛷ce + 𝒈, (2.16)

where all velocities and accelerations are measured with respect to the
inertial frame. Since the centrifugal term does not vary with the fluid
motion we can incorporate it into gravitational force, 𝒈, so giving an ‘ef-
fective gravity’ that varies slightly with position over Earth’s surface.

Mass continuity and the thermodynamic equation

Themass conservation equation and the thermodynamic equation are un-
changed in a rotating frame. To see this consider the material derivative
of some variable, 𝜑, such as temperature or density. The material deriva-
tive is just the rate of change of 𝜑 of an identifiable fluid parcel and that
clearly does not depend on the reference frame. Thus, without further
ado, we can write

(D𝜑
D𝑡
)
𝑅
= (D𝜑

D𝑡
)
𝐼
, (2.17)

where the material derivatives are (D𝜑/D𝑡)𝑅 = (∂𝜑/∂𝑡)𝑅 + 𝒗𝑅 ⋅ ∇𝜑 and
(D𝜑/D𝑡)𝐼 = (∂𝜑/∂𝑡)𝐼 + 𝒗𝐼 ⋅ ∇𝜑. The individual terms differ in the two
frames; that is (∂𝜑/∂𝑡)𝑅 ≠ (∂𝜑/∂𝑡)𝐼, but the material derivatives are equal.

Further, the divergence operator is the same in the inertial and rotat-
ing frame. Using (2.7), we have that

∇ ⋅ 𝒗𝐼 = ∇ ⋅ (𝒗𝑅 + 𝜴 × 𝒓) = ∇ ⋅ 𝒗𝑅 (2.18)

since ∇ ⋅ (𝜴 × 𝒓) = 0. Thus, using (2.17) and (2.18), the mass conservation
equation (1.27b) may be written

D𝜌
D𝑡
+ 𝜌∇ ⋅ 𝒗𝑅 = 0, (2.19)
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�
Fig. 2.3: (a) On the sphere
the rotation vector 𝜴 can
be decomposed into two
components, one in the local
vertical and one in the local
horizontal, pointing toward
the pole. That is, 𝜴 = 𝛺𝑦 ̂𝐣 +
𝛺𝑧𝐤̂ where 𝛺𝑦 = 𝛺 cos 𝜗 and
𝛺𝑧 = 𝛺 sin𝜗. In geophysical
fluid dynamics, the rotation
vector in the local vertical is
often the more important
component in the horizontal
momentum equations. On a
rotating disk, (b), the rotation
vector 𝜴 is parallel to the
local vertical 𝐤̂.

The thermodynamic equation, in potential temperature form, is just
an advection equation so that using (2.20), its (adiabatic) spherical coordi-
nate form is

D𝜃
D𝑡
= ∂𝜃
∂𝑡
+ 𝑢
𝑟 cos 𝜗
∂𝜃
∂𝜆
+ 𝑣
𝑟
∂𝜃
∂𝜗
+ 𝑤∂𝜃
∂𝑟
= 0, (2.35)

and similarly for tracers such as water vapour or salt.

Momentum equation

Recall that the inviscid momentum equation is:

D𝒗
D𝑡
+ 2𝜴 × 𝒗 = −1

𝜌
∇𝑝 − ∇𝛷, (2.36)

where𝛷 is the geopotential. In spherical coordinates the directions of the
coordinate axes changewith position and so the component expansion of
(2.36) is

D𝒗
D𝑡
= D𝑢

D𝑡
̂𝐢 + D𝑣

D𝑡
̂𝐣 + D𝑤

D𝑡
𝐤̂ + 𝑢D

̂𝐢
D𝑡
+ 𝑣D
̂𝐣

D𝑡
+ 𝑤D𝐤̂

D𝑡
(2.37a)

= D𝑢
D𝑡
̂𝐢 + D𝑣

D𝑡
̂𝐣 + D𝑤

D𝑡
𝐤̂ + 𝜴flow × 𝒗, (2.37b)

using (2.32). Using either (2.37a) and the expressions for the rates of
change of the unit vectors given in (2.32), or (2.37b) and the expression
for𝜴flow given in (2.31), (2.37) becomes

D𝒗
D𝑡
= ̂𝐢 (D𝑢

D𝑡
− 𝑢𝑣 tan 𝜗
𝑟
+ 𝑢𝑤
𝑟
) + ̂𝐣 (D𝑣

D𝑡
+ 𝑢
2 tan 𝜗
𝑟
+ 𝑣𝑤
𝑟
)

+ 𝐤̂ (D𝑤
D𝑡
− 𝑢
2 + 𝑣2
𝑟
) .

(2.38)

Using the definition of a vector cross-product, the Coriolis term is:

2𝜴 × 𝒗 = |
|

̂𝐢 ̂𝐣 𝐤̂
0 2𝛺 cos 𝜗 2𝛺 sin 𝜗
𝑢 𝑣 𝑤

|
|

= ̂𝐢 (2𝛺𝑤 cos 𝜗 − 2𝛺𝑣 sin 𝜗) + ̂𝐣 2𝛺𝑢 sin 𝜗 − 𝐤̂ 2𝛺𝑢 cos 𝜗. (2.39)



Osborne Reynolds (1842–
1912) was an Irish born
(Belfast) physicist who was
professor of engineering at
Manchester University from
1868–1905. He was also one
of the first scientists to think
about the concept of group
velocity.

Chapter

3
Dynamics on a Rotating
Planet

W e now put the equations of motion to use, and in sodoing
start our journey into the dynamics of fluid motion on a rotat-
ing planet. We begin rather gently by way of an introduction

to scaling, which is the basis of the art of making sensible approximations.

3.1 A Gentle Introduction to Scaling

The units we use to measure length, velocity and so on are irrelevant to
the dynamics, and SI units may not be the most appropriate ones for a
given problem. Rather, it is useful to express the equations of motion in
terms of ‘nondimensional’ variables, by which we mean expressing every
variable as the ratio of its value to some reference value. We try to choose
the reference value as a natural one for a given flow, in order that, where
possible, the nondimensional variables are order-unity quantities, and do-
ing this is called scaling the equations. Much of the art of fluid dynamics
lies in choosing sensible scaling factors for the problem at hand for then
the sizes of the various terms become clear, and we here we give a simple,
non-rotating, example.

3.1.1 The Reynolds Number

Consider the constant-density momentum equation in Cartesian coordi-
nates. If a typical velocity is 𝑈, a typical length is 𝐿, a typical time scale is
𝑇, and a typical value of the pressure deviation is𝛷, then the approximate
sizes of the various terms in the momentum equation are given by

∂𝒗
∂𝑡
+ (𝒗 ⋅ ∇)𝒗 = −∇𝜙 + 𝜈∇2𝒗, (3.1a)

𝑈
𝑇

𝑈2
𝐿
∼ 𝛷
𝐿
𝜈 𝑈
𝐿2
. (3.1b)

47
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The ratio of the inertial (i.e., the advective) terms to the viscous terms is
(𝑈2/𝐿)/(𝜈𝑈/𝐿2) = 𝑈𝐿/𝜈, and this is the Reynolds number. More formally,
we can nondimensionalize the momentum equation by writing

𝒗 = 𝒗
𝑈
, 𝒙 = 𝒙

𝐿
, ̂𝑡 = 𝑡

𝑇
, 𝜙 = 𝜙

𝛷
, (3.2)

where the terms with hats on are nondimensional values of the variables
and the capitalized quantities are knownas scaling values, and these are the
approximate magnitudes of the variables. We now choose the scaling val-
ues so that the nondimensional variables are of order unity, or 𝑢 = (1).
Thus, for example, we choose 𝑈 so that 𝑢 = (𝑈), where the notation
should be taken to mean that the magnitude of the variable 𝑢 is approxi-
mately 𝑈, or that 𝑢 ∼ 𝑈, and we say that ‘𝑢 scales like 𝑈’.

In this problem,wehave noway to scale pressure and time exceptwith
the velocity and length scales we have chosen, and the only dimensionally
correct choices are then

𝑇 = 𝐿
𝑈
, 𝛷 = 𝑈2. (3.3)

Substituting (3.2) and (3.3) into the momentum equation gives
𝑈2
𝐿
[∂𝒗
∂ ̂𝑡
+ (𝒗 ⋅ ∇)𝒗] = −𝑈

2

𝐿
∇𝜙 + 𝜈𝑈
𝐿2
∇2𝒗, (3.4)

where we use the convention that when ∇ operates on a nondimensional
variable it is a nondimensional operator. Equation (3.4) simplifies to

∂𝒗
∂ ̂𝑡
+ (𝒗 ⋅ ∇)𝒗 = −∇𝜙 + 1

Re
∇2𝒗, (3.5)

where

Re ≡ 𝑈𝐿
𝜈

(3.6)

is, again, the Reynolds number. If we have chosen our length and velocity
scales sensibly — that is, if we have scaled them properly — each variable
in (3.5) is order unity, with the viscous term being multiplied by the pa-
rameter 1/Re. There are two important conclusions:

(i) The ratio of the importance of the inertial terms to the viscous
terms is given by the Reynolds number, defined by (3.6). In the ab-
sence of other forces, such as those due to gravity and rotation, the
Reynolds number is the only nondimensional parameter explicitly
appearing in the momentum equation. Hence its value, along with
the boundary conditions and geometry, controls the behaviour of
the system.

(ii) More generally, by scaling the equations of motion appropriately
the parameters determining the behaviour of the system become
explicit. Scaling the equations is intelligent nondimensionalization.

Nondimensionalizing the equations does not, however, absolve the inves-
tigator from the responsibility of producing dimensionally correct equa-
tions. One should regard nondimensional equations as dimensional equa-
tions in units appropriate for the problem at hand.
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3.2 Hydrostatic Balance

Life is too short to solve every complex problem in detail, and the atmo-
spheric and oceanic sciences abound with complex problems. In their
usual form the fluid dynamical equations alone are a set of six nonlinear
partial differential equations (three momentum equations, a thermody-
namic equation, a mass continuity equation and an equation of state) de-
scribing velocity, pressure, temperature and density. To solve real-world
problems we need to add water vapour or salinity, as well as the equa-
tions of radiative transfer. All this makes for a complex system, and to
make progress we need to simplify where possible and eliminate unim-
portant effects. We have already seen how we might do that for fluids
of nearly constant density in making the Boussinesq approximation, and
we now look at the effects of gravity and rotation and see how these give
rise hydrostatic balance and geostrophic balance, the dominant balances
in the vertical and horizontal directions, respectively. The correspond-
ing states, hydrostasy and geostrophy, are not exactly realized, but their
approximate satisfaction has profound consequences on the behaviour of
atmospheres and oceans.

We begin with hydrostatic balance. We first encountered it in Section
1.3.3 but nowwe take a closer look. We start by scaling the equations, just
as we did in the previous section.

3.2.1 Scaling Estimates

Consider the relative sizes of terms in the vertical momentum equation,
(2.42c):

𝑊
𝑇
+ 𝑈𝑊
𝐿
+ 𝑊
2

𝐻
+ 𝛺𝑈 ∼ | 1

𝜌
∂𝑝
∂𝑧
| + 𝑔. (3.7)

Formost large-scalemotion in the atmosphere andocean the termson the
right-hand side are orders of magnitude larger than those on the left, and
therefore must be approximately equal. Explicitly, suppose𝑊 ∼ 1 cm s−1,
𝐿 ∼ 105m,𝐻 ∼ 103m, 𝑈 ∼ 10ms−1, 𝑇 = 𝐿/𝑈. Then by substituting into
(3.7) it seems that the pressure term is the only one which could balance
the gravitational term, and we are led to approximate (2.42c) by,

∂𝑝
∂𝑧
= −𝜌𝑔. (3.8)

This equation, which is a vertical momentum equation, is known as hy-
drostatic balance.

However, (3.8) is not always a useful equation! Let us suppose that the
density is a constant, 𝜌0 . We can then write the pressure as

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝0(𝑧) + 𝑝′(𝑥, 𝑦, 𝑧, 𝑡), where ∂𝑝0
∂𝑧
≡ −𝜌0𝑔. (3.9)

That is, 𝑝0 and 𝜌0 are in hydrostatic balance. On the 𝑓-plane, the inviscid
vertical momentum equation becomes, without approximation,

D𝑤
D𝑡
= − 1
𝜌0
∂𝑝′
∂𝑧
. (3.10)
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Thus, for constant density fluids the gravitational term has no dynamical ef-
fect: there is no buoyancy force, and the pressure term in the horizontal
momentum equations can be replaced by 𝑝′. Hydrostatic balance, and in
particular (3.9), is not a useful vertical momentum equation in this case. If
the fluid is stratified, we should therefore subtract off the hydrostatic pres-
sure associated with the mean density before we can determine whether
hydrostasy is a useful dynamical approximation, accurate enough to deter-
mine the horizontal pressure gradients. This is automatic in the Boussi-
nesq equations, where the vertical momentum equation is

D𝑤
D𝑡
= −∂𝜙
∂𝑧
+ 𝑏, (3.11)

and the hydrostatic balance of the basic state is already subtracted out. In
the more general equation,

D𝑤
D𝑡
= −1
𝜌
∂𝑝
∂𝑧
− 𝑔, (3.12)

we need to compare the advective term on the left-hand side with the
pressure variations arising from horizontal flow in order to determine
whether hydrostasy is an appropriate vertical momentum equation.

3.2.2 Hydrostatic Balance and the Aspect Ratio

In a Boussinesq fluid we write the horizontal and vertical momentum
equations as

D𝒖
D𝑡
+ 𝒇 × 𝒖 = −∇𝑧𝜙,

D𝑤
D𝑡
= −∂𝜙
∂𝑧
+ 𝑏. (3.13a,b)

With 𝒇 = 0, (3.13a) implies the scaling

𝜙 ∼ 𝑈2. (3.14)

If we then use mass conservation, ∇𝑧 ⋅ 𝒖 + ∂𝑤/∂𝑧 = 0, to scale vertical
velocity we find

𝑤 ∼ 𝑊 = 𝐻
𝐿
𝑈 = 𝛼𝑈, (3.15)

where 𝛼 = 𝐻/𝐿 is the aspect ratio. The advective terms in the vertical
momentum equation all scale as

D𝑤
D𝑡
∼ 𝑈𝑊
𝐿
= 𝑈
2𝐻
𝐿2
. (3.16)

Using (3.14) and (3.16) the ratio of the advective term to the pressure gra-
dient term in the vertical momentum equations then scales as

|D𝑤/D𝑡|
|∂𝜙/∂𝑧|

∼ 𝑈
2𝐻/𝐿2
𝑈2/𝐻

∼ (𝐻
𝐿
)
2
. (3.17)
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The Rossby number, U/f L, is
named for C.-G. Rossby (1898–
1957), a Swedish scientist who
worked for many years in the
United States and who was
one of the great pioneers of
dynamical meteorology in the
mid-twentieth century. The
Russian meteorologist I. Kibel
introduced a similar number
in 1940 and the number is
sometimes called the Kibel or
Rossby–Kibel number.

Thus, the condition for hydrostasy, that |D𝑤/D𝑡|/|∂𝜙/∂𝑧| ≪ 1, is

𝛼2 ≡ (𝐻
𝐿
)
2
≪ 1. (3.18)

The advective term in the vertical momentum may then be neglected.
Thus, hydrostatic balance arises from a small aspect ratio approximation.

We can obtain the same result more formally by nondimensionalizing
the momentum equations. Using uppercase symbols to denote scaling
values we write

(𝑥, 𝑦) = 𝐿(𝑥, 𝑦), 𝑧 = 𝐻𝑧, 𝒖 = 𝑈𝒖, 𝑤 = 𝑊𝑤̂ = 𝐻𝑈
𝐿
𝑤̂,

𝑡 = 𝑇 ̂𝑡 = 𝐿
𝑈
̂𝑡, 𝜙 = 𝛷𝜙 = 𝑈2𝜙, 𝑏 = 𝐵𝑏̂ = 𝑈

2

𝐻
𝑏̂,

(3.19)
where the hatted variables are nondimensional and the scaling for 𝑤 is
suggested by the mass conservation equation, ∇𝑧 ⋅ 𝒖 + ∂𝑤/∂𝑧 = 0. Sub-
stituting (3.19) into (3.13) (with 𝒇 = 0) gives us the nondimensional equa-
tions

D𝒖
D ̂𝑡
= −∇𝜙, 𝛼2D𝑤̂

D ̂𝑡
= −∂𝜙
∂𝑧
+ 𝑏̂, (3.20a,b)

where D/D ̂𝑡 = ∂/∂ ̂𝑡 +𝑢∂/∂𝑥 +𝑣∂/∂𝑦 + 𝑤̂∂/∂𝑧 and we use the convention
that when ∇ operates on nondimensional quantities the operator itself is
nondimensional. From (3.20b) it is clear that hydrostatic balance obtains
when 𝛼2 ≪ 1, that is when the aspect ratio is small.

3.3 Geostrophic and Thermal Wind Balance

We now consider the dominant dynamical balance in the horizontal com-
ponents of the momentum equation. In the horizontal plane (meaning
along geopotential surfaces) we find that the Coriolis term is much larger
than the advective terms and the dominant balance is between it and the
horizontal pressure force. This balance is called geostrophic balance, and it
occurs when the Rossby number is small, as we now investigate.

3.3.1 The Rossby Number

The Rossby number characterizes the importance of rotation in a fluid. It
is, essentially, the ratio of themagnitude of the relative acceleration to the
Coriolis acceleration, and it is of fundamental importance in geophysical
fluid dynamics. It arises from a simple scaling of two of the terms hori-
zontal momentum equation, namely

∂𝒖
∂𝑡
+(𝒗 ⋅ ∇)𝒖 + 𝒇 × 𝒖 = −1

𝜌
∇𝑧𝑝, (3.21a)

𝑈2
𝐿

𝑓𝑈 (3.21b)
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The Taylor–Proudman effect
is named for G. I. Taylor and
I. Proudman who wrote pa-
pers developing the result in
1921 and 1916, respectively.
The effect is sometimes called
the Taylor–Proudman ‘the-
orem’, but it is more usefully
thought of as a physical ef-
fect, with manifestations even
when the conditions for its sat-
isfaction are not precisely met
— which they never are.

axis of rotation, and the flow is effectively two dimensional. This result
is known as the Taylor–Proudman effect, namely that for constant density
flow in geostrophic and hydrostatic balance the vertical derivatives of the
horizontal and the vertical velocities are zero. At zero Rossby number, if
the vertical velocity is zero somewhere in the flow, it is zero everywhere
in that vertical column; furthermore, the horizontal flow has no vertical
shear, and the fluid moves like a slab. The effects of rotation have pro-
vided a stiffening of the fluid in the vertical.

In neither the atmosphere nor the ocean do we observe precisely such
vertically coherent flow, mainly because of the effects of stratification.
However, it is typical of geophysical fluid dynamics that the assumptions
underlying a derivation are not fully satisfied, yet there aremanifestations
of it in real flow. For example, one might have naïvely expected, because
∂𝑤/∂𝑧 = −∇𝑧 ⋅ 𝒖, that the scales of the various variables would be related
by𝑊/𝐻 ∼ 𝑈/𝐿. However, if the flow is rapidly rotatingwe expect that the
horizontal flow will be in near geostrophic balance and therefore nearly
divergence free; thus ∇𝑧 ⋅ 𝒖 ≪ 𝑈/𝐿, and𝑊 ≪ 𝐻𝑈/𝐿.

3.3.4 Thermal Wind Balance

Thermal wind balance arises by combining the geostrophic and hydro-
static approximations, and this is most easily done in the context of the
Boussinesq equations, or in pressure coordinates. Beginning with the
Boussinesq equations, geostrophic balance may be written

− 𝑓𝑣𝑔 = −
∂𝜙
∂𝑥
, 𝑓𝑢𝑔 = −

∂𝜙
∂𝑦
. (3.37a,b)

Combining these relations with hydrostatic balance, ∂𝜙/∂𝑧 = 𝑏, gives

𝑓
∂𝑣𝑔
∂𝑧
= ∂𝑏
∂𝑥
, 𝑓

∂𝑢𝑔
∂𝑧
= − ∂𝑏
∂𝑦
. (3.38a,b)

These equations represent thermal wind balance, and the vertical derivative
of the geostrophic wind is the ‘thermal wind’.

If the density or buoyancy is constant then the right-hand sides of
(3.38) are zero and there is no shear, recovering the Taylor–Proudman
result. But suppose that the temperature falls in the poleward direction.
Then thermal wind balance implies that the (eastward) wind will increase
with height — just as is observed in the atmosphere! In general, a vertical
shear of the horizontal wind is associated with a horizontal temperature
gradient, and this is one of the most simple and far-reaching effects in
geophysical fluid dynamics. The underlying physical mechanism is illus-
trated in Fig. 3.2.

Geostrophic and thermal wind balance in pressure coordinates

In pressure coordinates geostrophic balance is just

𝒇 × 𝒖𝑔 = −∇𝑝𝛷, (3.39)



Chapter

4
Shallow Water Equations

T he shallow water equations are a set of equations that describe,
not surprisingly, a shallow layer of fluid, and in particular one that
is in hydrostatic balance and has constant density. The equations

are useful for two reasons:
(i) They are a simpler set of equations than the full three-dimensional

ones, and so allow for a much more straightforward analysis of
sometimes complex problems.

(ii) In spite of their simplicity, the equations provide a reasonably real-
istic representation of a variety of phenomena in atmospheric and
oceanic dynamics.

Put simply, the shallow water equations are a very useful model for geo-
physical fluid dynamics. Let’s dive head first into the equations and see
what they can do for us.

4.1 Shallow Water Equations of Motion

The shallow water equations apply, by definition, to a fluid layer of con-
stant density inwhich the horizontal scale of the flow ismuch greater than
the layer depth, and which have a free surface at the top (or sometimes at
the bottom). Because the fluid is of constant density the fluid motion is
fully determined by the momentum and mass continuity equations, and
because of the assumed small aspect ratio the hydrostatic approximation
is well satisfied, as we discussed in Section 3.2.2. Thus, consider a fluid
above which is another fluid of negligible density, as illustrated in Fig. 4.1.
Our notation is that 𝒗 = 𝑢 ̂𝐢 + 𝑣 ̂𝐣 + 𝑤𝐤̂ is the three-dimensional velocity
and 𝒖 = 𝑢 ̂𝐢 + 𝑣 ̂𝐣 is the horizontal velocity, ℎ(𝑥, 𝑦) is the thickness of the
liquid column,𝐻 is its mean height, and 𝜂 is the height of the free surface.
In a flat-bottomed container 𝜂 = ℎ, whereas in general ℎ = 𝜂 − 𝜂𝐵, where
𝜂𝐵 is the height of the floor of the container.
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T

B

Fig. 4.1: A shallow water
system where ℎ is the thick-

ness of a water column,𝐻 its
mean thickness, 𝜂 the height
of the free surface and 𝜂𝐵 is

the height of the lower, rigid,
surface above some arbitrary
origin, typically chosen such
that the average of 𝜂𝐵 is zero.
The quantity 𝜂𝐵 is the devia-

tion free surface height so we
have 𝜂 = 𝜂𝐵 + ℎ = 𝐻 + 𝜂𝑇.

The key assumption underly-
ing the shallow water equa-

tions is that of a small as-
pect ratio, so that H/L ≪ 1,
where H is the fluid depth
and L the horizontal scale

of motion. This gives rise to
the hydrostatic approxima-
tion, and this in turn leads
to the z-independence of
the velocity field and the

‘sloshing’ nature of the flow.

4.1.1 Momentum Equations

The vertical momentum equation is just the hydrostatic equation,

∂𝑝
∂𝑧
= −𝜌0𝑔, (4.1)

and, because density is assumed constant, we may integrate this to

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = −𝜌0𝑔𝑧 + 𝑝𝑜. (4.2)

At the top of the fluid, 𝑧 = 𝜂, the pressure is determined by the weight of
the overlying fluid and this is negligible. Thus, 𝑝 = 0 at 𝑧 = 𝜂, giving

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝜌0𝑔(𝜂(𝑥, 𝑦, 𝑡) − 𝑧). (4.3)

The consequence of this is that the horizontal gradient of pressure is indepen-
dent of height. That is

∇𝑧𝑝 = 𝜌0𝑔∇𝑧𝜂, where ∇𝑧 = ̂𝐢
∂
∂𝑥
+ ̂𝐣 ∂
∂𝑦
. (4.4)

(In the rest of this chapter we drop the subscript 𝑧 unless that causes ambi-
guity; the three-dimensional gradient operator is denoted by ∇3. We also
mostly use Cartesian coordinates, but the shallow water equations may
certainly be applied over a spherical planet.) The horizontal momentum
equations therefore become

D𝒖
D𝑡
= − 1
𝜌0
∇𝑝 = −𝑔∇𝜂. (4.5)

The right-hand side of this equation is independent of the vertical coordi-
nate 𝑧. Thus, if the flow is initially independent of 𝑧, it must stay so. (This
𝑧-independence is unrelated to that arising from the rapid rotation neces-
sary for theTaylor–Proudman effect.) The velocities𝑢 and 𝑣 are functions
of 𝑥, 𝑦 and 𝑡 only, and the horizontal momentum equation is therefore

D𝒖
D𝑡
= ∂𝒖
∂𝑡
+ 𝑢∂𝒖
∂𝑥
+ 𝑣∂𝒖
∂𝑦
= −𝑔∇𝜂. (4.6)
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Fig. 4.2: The mass budget
for a column of area 𝐴 in a
flat-bottomed shallow water
system. The fluid leaving the
column is ∮𝜌ℎ𝒖 ⋅ 𝒏 d𝑙 where
𝒏 is the unit vector normal
to the boundary of the fluid
column. There is a non-zero
vertical velocity at the top
of the column if the mass
convergence into the column
is non-zero.

In the presence of rotation, (4.6) easily generalizes to

D𝒖
D𝑡
+ 𝒇 × 𝒖 = −𝑔∇𝜂, (4.7)

where 𝒇 = 𝑓𝐤̂. Just as with the fully three-dimensional equations, 𝑓may
be constant or may vary with latitude, so that on a spherical planet 𝑓 =
2𝛺 sin 𝜗 and on the 𝛽-plane 𝑓 = 𝑓0 + 𝛽𝑦.

4.1.2 Mass Continuity Equation

The mass contained in a fluid column of height ℎ and cross-sectional area
𝐴 is given by ∫𝐴 𝜌0ℎ d𝑨 (see Fig. 4.2). If there is a net flux of fluid across
the column boundary (by advection) then this must be balanced by a net
increase in the mass in𝐴, and therefore a net increase in the height of the
water column. The mass convergence into the column is given by

𝐹𝑚 = mass flux in = −∫
𝑆
𝜌0𝒖 ⋅ d𝑺, (4.8)

where 𝑆 is the area of the vertical boundary of the column. The surface
area of the column is composed of elements of area ℎ𝒏 𝛿𝑙, where 𝛿𝑙 is a line
element circumscribing the column and 𝒏 is a unit vector perpendicular
to the boundary, pointing outwards. Thus (4.8) becomes

𝐹𝑚 = −∮𝜌0ℎ𝒖 ⋅ 𝒏 d𝑙. (4.9)

Using the divergence theorem in two dimensions, (4.9) simplifies to

𝐹𝑚 = −∫
𝐴
∇ ⋅ (𝜌0𝒖ℎ) d𝐴, (4.10)

where the integral is over the cross-sectional area of the fluid column
(looking down from above). This is balanced by the local increase in
height of the water column, given by

𝐹𝑚 =
d
d𝑡
∫ 𝜌0 d𝑉 =

d
d𝑡
∫
𝐴
𝜌0ℎ d𝐴 = ∫

𝐴
𝜌0
∂ℎ
∂𝑡

d𝐴. (4.11)
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The Shallow Water Equations
For a single-layer fluid, and including the Coriolis term, the

inviscid shallow water equations are:

momentum: D𝒖
D𝑡
+ 𝒇 × 𝒖 = −𝑔∇𝜂, (SW.1)

mass continuity: Dℎ
D𝑡
+ ℎ∇ ⋅ 𝒖 = 0, (SW.2)

or ∂ℎ
∂𝑡
+ ∇ ⋅ (ℎ𝒖) = 0, (SW.3)

where 𝒖 is the horizontal velocity, ℎ is the total fluid thickness, 𝜂
is the height of the upper free surface, and ℎ and 𝜂 are related by

ℎ(𝑥, 𝑦, 𝑡) = 𝜂(𝑥, 𝑦, 𝑡) − 𝜂𝐵(𝑥, 𝑦), (SW.4)

where 𝜂𝐵 is the height of the lower surface (the bottom topogra-
phy). The material derivative is

D
D𝑡
= ∂
∂𝑡
+ 𝒖 ⋅ ∇ = ∂

∂𝑡
+ 𝑢 ∂
∂𝑥
+ 𝑣 ∂
∂𝑦
, (SW.5)

with the rightmost expression holding in Cartesian coordinates.

Because 𝜌0 is constant, the balance between (4.10) and (4.11) leads to

∫
𝐴
[∂ℎ
∂𝑡
+ ∇ ⋅ (𝒖ℎ)] d𝐴 = 0, (4.12)

and because the area is arbitrary the integrand itself must vanish, whence,

∂ℎ
∂𝑡
+ ∇ ⋅ (𝒖ℎ) = 0 or Dℎ

D𝑡
+ ℎ∇ ⋅ 𝒖 = 0. (4.13a,b)

This derivation holds whether or not the lower surface is flat. If it is, then
ℎ = 𝜂, and if not ℎ = 𝜂 − 𝜂𝐵. Equations (4.7) and (4.13) form a complete
set, summarized in the shaded box above.

4.1.3 Reduced Gravity Equations

Consider now a single shallow moving layer of fluid on top of a deep, qui-
escent fluid layer (Fig. 4.3), and beneath a fluid of negligible inertia. This
configuration is often used as a model of the upper ocean: the upper layer
represents flow in perhaps the upper fewhundredmetres of the ocean, the
lower layer being the near-stagnant abyss. If we turn the model upside-
down we have a perhaps slightly less realistic model of the atmosphere:
the lower layer represents motion in the troposphere above which lies an
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Fig. 4.3: The reduced gravity
shallow water system. An
active layer lies over a deep,
denser, quiescent layer. In a
common variation the upper
surface is held flat by a rigid
lid, and 𝜂0 = 0.

inactive stratosphere. The equations of motion are virtually the same in
both cases, but for definiteness we’ll think about the oceanic case.

The pressure in the upper layer is given by integrating the hydrostatic
equation down from the upper surface. Thus, at a height 𝑧 in the upper
layer

𝑝1(𝑧) = 𝑔𝜌1(𝜂0 − 𝑧), (4.14)
where 𝜂0 is the height of the upper surface. Hence, everywhere in the
upper layer,

1
𝜌1
∇𝑝1 = 𝑔∇𝜂0, (4.15)

and the momentum equation is

D𝒖
D𝑡
+ 𝒇 × 𝒖 = −𝑔∇𝜂0. (4.16)

In the lower layer the pressure is also given by the weight of the fluid
above it. Thus, at some level 𝑧 in the lower layer,

𝑝2(𝑧) = 𝜌1𝑔(𝜂0 − 𝜂1) + 𝜌2𝑔(𝜂1 − 𝑧). (4.17)

But if this layer is motionless the horizontal pressure gradient in it is zero
and therefore

𝜌1𝑔𝜂0 = −𝜌1𝑔′𝜂1 + constant, (4.18)
where 𝑔′ = 𝑔(𝜌2 − 𝜌1)/𝜌1 is the reduced gravity, and in the ocean 𝜌2 −
𝜌1)/𝜌 ≪ 1 and 𝑔′ ≪ 𝑔. The momentum equation becomes

D𝒖
D𝑡
+ 𝒇 × 𝒖 = 𝑔′∇𝜂1. (4.19)

The equations are completed by the usual mass conservation equation,

Dℎ
D𝑡
+ ℎ∇ ⋅ 𝒖 = 0, (4.20)

where ℎ = 𝜂0 − 𝜂1. Because 𝑔 ≫ 𝑔′, (4.18) shows that surface displace-
ments are much smaller than the displacements at the interior interface.
We see this in the real ocean where the mean interior isopycnal displace-
ments may be several tens of metres but variations in the mean height of
the ocean surface are of the order of centimetres.



70 Chapter 4. Shallow Water Equations

The mass conservation equation, (4.13b) may be written as

− (𝜁 + 𝑓)∇ ⋅ 𝒖 = 𝜁 + 𝑓
ℎ

Dℎ
D𝑡
, (4.34)

and using this equation and (4.32) we obtain

D
D𝑡
(𝜁 + 𝑓) = 𝜁 + 𝑓

ℎ
Dℎ
D𝑡
, (4.35)

which is equivalent to

D𝑄
D𝑡
= 0 where 𝑄 = (𝜁 + 𝑓

ℎ
) . (4.36)

The important quantity 𝑄 is known as the potential vorticity, and (4.36) is
the potential vorticity equation.

4.3 Shallow Water Waves

Let us now look at the gravity waves that occur in shallow water. To iso-
late the essence we consider waves in a single fluid layer, with a flat bot-
tom and a free upper surface, in which gravity provides the sole restoring
force.

4.3.1 Non-Rotating Shallow Water Waves

Given a flat bottom the fluid thickness is equal to the free surface displace-
ment (Fig. 4.1), and taking the basic state of the fluid to be at rest we let

ℎ(𝑥, 𝑦, 𝑡) = 𝐻 + ℎ′(𝑥, 𝑦, 𝑡) = 𝐻 + 𝜂′(𝑥, 𝑦, 𝑡), (4.37a)
𝒖(𝑥, 𝑦, 𝑡) = 𝒖′(𝑥, 𝑦, 𝑡). (4.37b)

The mass conservation equation, (4.13b), then becomes

∂𝜂′
∂𝑡
+ (𝐻 + 𝜂′)∇ ⋅ 𝒖′ + 𝒖′ ⋅ ∇𝜂′ = 0, (4.38)

and neglecting squares of small quantities this yields the linear equation

∂𝜂′
∂𝑡
+ 𝐻∇ ⋅ 𝒖′ = 0. (4.39)

Similarly, linearizing the momentum equation, (4.7) with 𝒇 = 0, yields

∂𝒖′
∂𝑡
= −𝑔∇𝜂′. (4.40)

Eliminating velocity by differentiating (4.39) with respect to time and
taking the divergence of (4.40) leads to

∂2𝜂′
∂𝑡2
− 𝑔𝐻∇2𝜂′ = 0, (4.41)



Chapter

5
Geostrophic Theory

G eostrophic and hydrostatic balance are the two dominant
balances in meteorology and oceanography and in this chapter
we exploit these balances to derive various simplified sets of equa-

tion. The ‘problem’ with the full equations is that they are too complete,
and they contain motions that we don’t always care about — sound waves
and gravity waves for example. If we can eliminate these modes from the
outset then our path toward understanding is not littered with obstacles.

Our specific goal is to derive various sets of ‘geostrophic equations’, in
particular the planetary-geostrophic and quasi-geostrophic equations, by
making use of the fact that geostrophic and hydrostatic balance are closely
satisfied. We do this first for the shallow water equations and then for the
stratified, three-dimensional equations. We will use the Boussinesq equa-
tions, but a treatment in pressure coordinates would be very similar. The
bottom topography, 𝜂𝐵, can be an unneeded complication in the deriva-
tions below and readers may wish to simplify by setting 𝜂𝐵 = 0.

5.1 Scaling the Shallow Water Equations

In order to simplify the equations of motion we first scale them — we
choose the scales we wish to describe, and then determine the approx-
imate sizes of the terms in the equations. We then eliminate the small
terms and derive a set of equations that is simpler than the original set
but that consistently describes motion of the chosen scale. With the odd
exception, we will denote the scales of variables by capital letters; thus, if
𝐿 is a typical length scale of the motion we wish to describe, and 𝑈 is a
typical velocity scale, then

(𝑥, 𝑦) ∼ 𝐿 or (𝑥, 𝑦) = (𝐿),
(𝑢, 𝑣) ∼ 𝑈 or (𝑢, 𝑣) = (𝑈),

(5.1)

and similarly for the other variables in the equations.
83
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The geostrophic theory of
this chapter applies when

the Rossby number is small.
On Earth the theory is gen-
erally appropriate for large-
scale flow in the mid- and
high latitude atmosphere

and ocean. On other plan-
ets the applicability of

geostrophic theory depends
on how rapidly the planet

rotates and how big it is.
Venus has a rotation rate

some 200 times slower than
Earth and the Rossby num-
ber of the large-scale circu-
lation is quite large. Jupiter

rotates much faster than
Earth (a Jupiter day is about
10 hours), and the planet is
also much bigger, and the

Rossby number remains small
even close to the equator.

We then write the equations of motion in a nondimensional form by
writing the variables as

(𝑥, 𝑦) = 𝐿(𝑥, 𝑦), (𝑢, 𝑣) = 𝑈(𝑢, 𝑣), (5.2)

where the hatted variables are nondimensional and, by supposition, are
(1). The various terms in the momentum equation then scale as:

∂𝒖
∂𝑡
+ 𝒖 ⋅ ∇𝒖 + 𝒇 × 𝒖 = −𝑔∇𝜂, (5.3a)

𝑈
𝑇
𝑈2
𝐿
𝑓𝑈 ∼ 𝑔

𝐿
, (5.3b)

where the ∇ operator acts in the 𝑥–𝑦 plane and is the amplitude of the
variations in the surface displacement. We choose an ‘advective scale’ for
time, meaning that 𝑇 = 𝐿/𝑈 and 𝑡 = ̂𝑡𝐿/𝑈, and the time derivative then
scales the same way as the advection. The ratio of the advective term to
the rotational term in the momentum equation (5.3) is (𝑈2/𝐿)/(𝑓𝑈) =
𝑈/𝑓𝐿; this is the Rossby number that we previously encountered.

We are interested in flows for which the Rossby number is small, in
which case the Coriolis term is largely balanced by the pressure gradient.
From (5.3b), variations in 𝜂 scale according to

= 𝑓𝑈𝐿
𝑔
= Ro𝑓

2𝐿2
𝑔
= Ro𝐻𝐿

2

𝐿2𝑑
, (5.4)

where 𝐿𝑑 = √𝑔𝐻/𝑓 is the deformation radius and 𝐻 is the mean depth
of the fluid. The ratio of variations in fluid height to the total fluid height
thus scales as

𝐻
∼ Ro 𝐿

2

𝐿2𝑑
. (5.5)

Now, the thickness of the fluid, ℎ, may be written as the sum of its
mean and a deviation, ℎ𝐷

ℎ = 𝐻 + ℎ𝐷 = 𝐻 + (𝜂𝑇 − 𝜂𝐵), (5.6)

where, referring to Fig. 4.1, 𝜂𝐵 is the height of the bottom topography and
𝜂𝑇 is the height of the fluid above itsmean value. Given the scalings above,
the deviation height of the fluid may be written as

𝜂𝑇 = Ro
𝐿2
𝐿2𝑑
𝐻𝜂𝑇 and 𝜂 = 𝐻 + 𝜂𝑇 = 𝐻(1 + Ro

𝐿2
𝐿2𝑑
𝜂𝑇) , (5.7)

where 𝜂𝑇 is the (1)nondimensional value of the surface height deviation.
We apply the same scalings to ℎ itself and, if ℎ𝐷 = ℎ − 𝐻 = 𝜂𝑇 − 𝜂𝐵 is the
deviation of the thickness from its mean value, then

ℎ = 𝐻 + ℎ𝐷 = 𝐻(1 + Ro
𝐿2
𝐿2𝑑
ℎ̂𝐷) , (5.8)

where ℎ̂𝐷 is the nondimensional deviation thickness of the fluid layer.
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Nondimensional momentum equation

If we use (5.7) and (5.8) to scale height variations, (5.2) to scale lengths and
velocities, and an advective scaling for time, then, and since∇𝜂 = ∇𝜂𝑇, the
momentum equation (5.3) becomes

Ro [∂𝒖
∂ ̂𝑡
+ (𝒖 ⋅ ∇)𝒖] + 𝒇 × 𝒖 = −∇𝜂, (5.9)

where 𝒇 = 𝐤̂𝑓 = 𝐤̂𝑓/𝑓0, where 𝑓0 is a representative value of the Coriolis
parameter. (If 𝑓 is a constant, then 𝑓 = 1, but it is informative to explic-
itly write 𝑓 in the equations. Also, where the operator ∇ operates on a
nondimensional variable, the differentials are taken with respect to the
nondimensional variables 𝑥, 𝑦.) All the variables in (5.9) will now be as-
sumed to be of order unity, and the Rossby number multiplying the local
time derivative and the advective terms indicates the smallness of those
terms. By construction, the dominant balance in (5.9) is the geostrophic
balance between the last two terms.

Nondimensional mass continuity (height) equation

The (dimensional) mass continuity equation can be written as

Dℎ
D𝑡
+ ℎ∇ ⋅ 𝒖 = 0 or 1

𝐻
Dℎ𝐷
D𝑡
+ (1 + ℎ𝐷
𝐻
)∇ ⋅ 𝒖 = 0, (5.10)

since Dℎ/D𝑡 = Dℎ𝐷/D𝑡. Using (5.2) and (5.8) the above equation may be
written

Ro( 𝐿
𝐿𝑑
)
2 Dℎ̂𝐷

D ̂𝑡
+ [1 + Ro( 𝐿

𝐿𝑑
)
2
ℎ̂𝐷]∇ ⋅ 𝒖 = 0. (5.11)

Equations (5.9) and (5.11) are the nondimensional versions of the full shal-
low water equations of motion. Since the Rossby number is small we
might expect that some terms in this equation can be eliminated with lit-
tle loss of accuracy, depending on the size of the second nondimensional
parameter, (𝐿/𝐿𝑑)2, as we now explore.

5.2 Geostrophic Shallow Water Equations

5.2.1 Planetary-Geostrophic Equations

We now derive simplified equation sets that are appropriate in particular
parameter regimes, beginning with an equation set appropriate for the
very largest scales. Specifically, we take

Ro ≪ 1, 𝐿
𝐿𝑑
≫ 1 such that Ro( 𝐿

𝐿𝑑
)
2
= (1). (5.12)

The first inequality implies we are considering flows in geostrophic bal-
ance. The second inequality means we are considering flows much larger
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The planetary-geostrophic
equations are appropriate

for geostrophically balanced
flow at very large scales. In
the shallow water version,

they consist of the full mass
conservation equation along

with geostrophic balance.

than the deformation radius. The ratio of the deformation radius to scale
of motion of the fluid is called the Burger number; that is, Bu ≡ 𝐿𝑑/𝐿, so
here we are considering small Burger-number flows.

The smallness of the Rossby number means that we can neglect the
material derivative in the momentum equation, (5.9), leaving geostrophic
balance. Thus, in dimensional form, the momentum equation may be
written, in vectorial or component forms, as

𝒇 × 𝒖 = −∇𝜂,
or

𝑓𝑣 = 𝑔∂𝜂
∂𝑥
, 𝑓𝑢 = −𝑔∂𝜂

∂𝑦
.

(5.13)

Looking now at themass continuity equation, (5.11), we see that there
are no small terms that can be eliminated. Thus, we have simply the full
mass conservation equation,

∂ℎ
∂𝑡
+ ∇ ⋅ (ℎ𝒖) = 0, (5.14)

where ℎ and 𝜂 are related by 𝜂 = 𝜂𝐵 + ℎ, where 𝜂𝐵 is the height of the bot-
tom topography. Equations (5.13) and (5.14) form the planetary geostrophic
shallowwater equations. There is only one time derivative in the equations, so
there can be no gravity waves. The system is evolved purely through the
mass continuity equation, and the flow field is diagnosed from the height
field.

Planetary-geostrophic potential vorticity

In the (full) shallow water equations potential vorticity is conserved,
meaning that

D
D𝑡
(𝜁 + 𝑓
ℎ
) = 0. (5.15)

In the planetary-geostrophic equations we can use (5.13) and (5.14) to
show that this conservation law becomes

D
D𝑡
(𝑓
ℎ
) = 0, (5.16)

as might be expected since 𝜁 is smaller than 𝑓 by a factor of the Rossby
number. An alternate derivation of the planetary-geostrophic equations
is to go directly from (5.15) to (5.16), by virtue of the smallness of the
Rossby number, and then simply use (5.16) instead of (5.14) as the evolu-
tion equation.
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The quasi-geostrophic equa-
tions are appropriate for
geostrophically balanced flow
at so-called synoptic scales,
or weather scales. This scale
is mainly determined by the
Rossby radius of deformation
which is about 1000 km in the
atmosphere and 100 km (and
less in high latitudes) in the
ocean.

5.2.2 Quasi-Geostrophic Equations

The quasi-geostrophic equations are appropriate for scales of the same order
as the deformation radius, and so for

Ro ≪ 1, 𝐿
𝐿𝑑
= (1) so that Ro( 𝐿

𝐿𝑑
)
2
≪ 1. (5.17)

Since the Rossby number is small the momentum equations again reduce
to geostrophic balance, namely (5.13). In the mass continuity equation,
we now eliminate all terms involving Rossby number to give

∇ ⋅ 𝒖 = 0. (5.18)

Neither geostrophic balance nor (5.18) are prognostic equations, and it
appears we have derived an uninteresting, static, set of equations. In
fact we haven’t gone far enough, since nothing in our derivation says
that these quantities do not evolve. To see this, let us suppose that the
Coriolis parameter is nearly constant, which is physically consistent with
the idea that scales of motion are comparable to the deformation scale.
Geostrophic balance with a constant Coriolis parameter gives

𝑓0𝑢 = −𝑔
∂𝜂
∂𝑦
, −𝑓0𝑣 = −𝑔

∂𝜂
∂𝑧
, giving ∇ ⋅ 𝒖 = 0. (5.19)

That it to say, the geostrophic flow is divergence-free and we therefore
should not suppose that ∇ ⋅ 𝒖 = 0 is the dominant term in the height
equation.

However, with a littlemore carewe can in fact derive a set of equations
that evolves under these conditions, and that furthermore is extraordinar-
ily useful, for it describes the flow on the scales of motion corresponding
to weather. We make three explicit assumptions:

(i) The Rossby number is small and the flow is in near geostrophic
balance.

(ii) The scales of motion are similar to the deformation scales, so that
𝐿 ∼ 𝐿𝑑 and Ro(𝐿/𝐿𝑑)2 ≪ 1.

(iii) Variations of the Coriolis parameter are small, so that 𝑓 = 𝑓0 + 𝛽𝑦
where 𝛽𝑦 ≪ 𝑓0.

The velocity is then equal to a geostrophic component, 𝒖𝑔 plus an
ageostrophic component, 𝒖𝑎 where |𝒖𝑔| ≫ |𝒖𝑎| and the geostrophic ve-
locity satisfies

𝑓0 × 𝒖𝑔 = −𝑔∇𝜂, (5.20)

which, because of the use of a constant Coriolis parameter (assumption
(iii)), implies ∇ ⋅ 𝒖𝑔 = 0.

We proceed from the shallow water vorticity equation which, as in
(4.32), is

∂𝜁
∂𝑡
+ (𝒖 ⋅ ∇)(𝜁 + 𝑓) = − (𝜁 + 𝑓)∇ ⋅ 𝒖. (5.21)
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The thermodynamic equation then becomes

D𝑏′
D𝑡
+ 𝑁2𝑤 = 0, (5.33)

where𝑁2 = ∂𝑏̃/∂𝑧 and the advective derivative is still three-dimensional.
We then let 𝜙 = 𝜙(𝑧) + 𝜙′, where 𝜙 is hydrostatically balanced by 𝑏̃, and
the hydrostatic equation becomes

∂𝜙′
∂𝑧
= 𝑏′. (5.34)

Equations (5.33) and (5.34) replace (5.31c) and (5.31b), and 𝜙′ is used in
(5.31a).

5.3.1 Scaling the Equations

We scale the basic variables by supposing that

(𝑥, 𝑦) ∼ 𝐿, (𝑢, 𝑣) ∼ 𝑈, 𝑡 ∼ 𝐿
𝑈
, 𝑧 ∼ 𝐻, 𝑓 ∼ 𝑓0 , 𝑁 ∼ 𝑁0 , (5.35)

where the scaling variables (capitalized, except for 𝑓0) are chosen to be
such that the nondimensional variables have magnitudes of the order of
unity, and the constant 𝑁0 is a representative value of the stratification.
We presume that the scales chosen are such that the Rossby number is
small; that is Ro = 𝑈/(𝑓0𝐿) ≪ 1. In the momentum equation the pressure
term then balances the Coriolis force,

|𝒇 × 𝒖| ∼ |∇𝜙′| , (5.36)

and so the pressure scales as

𝜙′ ∼ 𝛷 = 𝑓𝑜𝑈𝐿. (5.37)

Using the hydrostatic relation, (5.37) implies that the buoyancy scales as

𝑏′ ∼ 𝐵 = 𝑓0𝑈𝐿
𝐻
, (5.38)

and from this we obtain

(∂𝑏′/∂𝑧)
𝑁2
∼ Ro 𝐿

2

𝐿2𝑑
, (5.39)

where
𝐿𝑑 =
𝑁0𝐻
𝑓0

(5.40)

is the deformation radius in the continuously-stratified fluid, analogous
to the quantity√𝑔𝐻/𝑓0 in the shallow water system, and we use the same
symbol for both. In the continuously-stratified system, if the scale of mo-
tion is the same as or smaller than the deformation radius, and the Rossby
number is small, then the variations in stratification are small. The choice of
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scale is the key difference between the planetary-geostrophic and quasi-
geostrophic equations.

Finally, at least for now, we nondimensionalize the vertical velocity
by using the mass conservation equation,

∂𝑤
∂𝑧
= −(∂𝑢
∂𝑥
+ ∂𝑣
∂𝑦
) , (5.41)

with the scaling
𝑤 ∼ 𝑊 = 𝑈𝐻

𝐿
. (5.42)

This scaling will not necessarily be correct if the flow is geostrophically
balanced. In this case we can then estimate 𝑤 by cross-differentiating
geostrophic balance (with 𝜌 constant for simplicity) to obtain the linear
geostrophic vorticity equation and corresponding scaling:

𝛽𝑣 ≈ 𝑓∂𝑤
∂𝑧
, 𝑤 ∼ 𝑊 = 𝛽𝑈𝐻

𝑓0
. (5.43a,b)

If variations in the Coriolis parameter are large and 𝛽 ∼ 𝑓0/𝐿, then (5.43b)
is the same as (5.42), but if 𝑓 is nearly constant then𝑊 ≪ 𝑈𝐻/𝐿.

Given the scalings above (using (5.42) for𝑤) we nondimensionalize by
setting

(𝑥, 𝑦) = 𝐿−1(𝑥, 𝑦), 𝑧 = 𝐻−1𝑧, (𝑢, 𝑣) = 𝑈−1(𝑢, 𝑣), ̂𝑡 = 𝑈
𝐿
𝑡,

𝑤̂ = 𝐿
𝑈𝐻
𝑤, 𝑓 = 𝑓−10 𝑓, 𝜙 =

𝜙′
𝑓0𝑈𝐿
, 𝑏̂ = 𝐻
𝑓0𝑈𝐿
𝑏′,

(5.44)

where the hatted variables are nondimensional. The horizontal momen-
tum and hydrostatic equations then become

Ro
D𝒖
D ̂𝑡
+ 𝒇 × 𝒖 = −∇𝜙, (5.45)

and
∂𝜙
∂𝑧
= 𝑏̂. (5.46)

The nondimensional mass conservation equation is simply

∇ ⋅ 𝒗 = (∂𝑢
∂𝑥
+ ∂𝑣
∂𝑦
+ ∂𝑤̂
∂𝑧
) = 0, (5.47)

and the nondimensional thermodynamic equation is

𝑓0𝑈𝐿
𝐻
𝑈
𝐿

D𝑏̂
D ̂𝑡
+ 𝑁̂2𝑁20

𝐻𝑈
𝐿
𝑤̂ = 0, (5.48)

or, re-arranging,

Ro
D𝑏̂
D ̂𝑡
+ (𝐿𝑑
𝐿
)
2
𝑁̂2𝑤̂ = 0. (5.49)

The nondimensional equations are summarized in the box on the follow-
ing page.



Chapter

6
Rossby Waves

W aves are familiar to almost everyone. Gravity waves cover
the ocean surface, soundwaves allowus to talk and lightwaves
enable us to see. This chapter provides an introduction to their

properties, paying particular attention to a wave that is especially impor-
tant to the large scale flow in both ocean and atmosphere — the Rossby
wave. We start with an elementary introduction to wave kinematics, dis-
cussing such concepts as phase speed and group velocity. Then, beginning
with Section 6.3, we discuss the dynamics of Rossby waves, and this part
may be considered to be the natural follow-on from the geostrophic the-
ory of the previous chapter. Rossby waves then reappear frequently in
later chapters.

6.1 Fundamentals and Formalities

6.1.1 Definitions and Kinematics

A wave is more easily recognized than defined. Loosely speaking, a wave
is a propagating disturbance that has a characteristic relationship between
its frequency and size, called a dispersion relation. To see what all this
means, and what a dispersion relation is, suppose that a disturbance,
𝜓(𝒙, 𝑡) (where 𝜓 might be velocity, streamfunction, pressure, etc.), satis-
fies the equation

𝐿(𝜓) = 0, (6.1)

where 𝐿 is a linear operator, typically a polynomial in time and space
derivatives; one example is 𝐿(𝜓) = ∂∇2𝜓/∂𝑡 + 𝛽∂𝜓/∂𝑥. If (6.1) has con-
stant coefficients (if 𝛽 is constant in this example) then harmonic solu-
tions may often be found that are a superposition of plane waves, each of
which satisfy

𝜓 = Re 𝜓̃ei𝜃(𝒙,𝑡) = Re 𝜓̃ei(𝒌⋅𝒙−𝜔𝑡), (6.2)
104
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Fig. 6.1: The propagation of
a two-dimensional wave. (a)
Two lines of constant phase
(e.g., two wavecrests) at a
time 𝑡1. The wave is propa-
gating in the direction 𝒌 with
wavelength 𝜆. (b) A line of
constant phase at two succes-
sive times. The phase speed is
the speed of advancement of
the wavecrest in the direction
of travel, and so 𝑐𝑝 = 𝑙/(𝑡2 − 𝑡1).
The phase speed in the 𝑥-
direction is the speed of
propagation of the wave-
crest along the 𝑥-axis, and
𝑐𝑥𝑝 = 𝑙𝑥/(𝑡2 − 𝑡1) = 𝑐𝑝/ cos𝜙.

where 𝜓̃ is a complex constant, 𝜃 is the phase, 𝜔 is the wave frequency and
𝒌 is the vector wavenumber (𝑘, 𝑙, 𝑚) (also written as (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) or, in sub-
script notation, 𝑘𝑖). The prefix Re denotes the real part of the expression,
but we will drop it if there is no ambiguity.

Waves are characterized by having a particular relationship between
the frequency and wavevector known as the dispersion relation. This is an
equation of the form

𝜔 = 𝛺(𝒌), (6.3)
where 𝛺(𝒌), or 𝛺(𝑘𝑖), and meaning 𝛺(𝑘, 𝑙, 𝑚), is some function deter-
mined by the form of 𝐿 in (6.1) and which thus depends on the particu-
lar type of wave — the function is different for sound waves, light waves
and the Rossby waves and gravity waves we will encounter in this book.
Unless it is necessary to explicitly distinguish the function 𝛺 from the
frequency 𝜔, we often write 𝜔 = 𝜔(𝒌).

6.1.2 Wave Propagation and Phase Speed

A common property of waves is that they propagate through space with
some velocity, which in special cases might be zero. Waves in fluids
may carry energy and momentum but do not necessarily transport fluid
parcels themselves. Further, it turns out that the speed at which proper-
ties like energy are transported (the group speed) may be different from
the speed at which the wave crests themselves move (the phase speed).
Let’s try to understand this statement, beginning with the phase speed. A
summary of key results is given on page 107.

Phase speed

Consider the propagation of monochromatic plane waves, for that is all
that is needed to introduce the phase speed. Given (6.2) a wavewill propa-
gate in the direction of 𝒌 (Fig. 6.1). At a given instant and location we can
align our coordinate axis along this direction, and we write 𝒌 ⋅ 𝒙 = 𝐾𝑥∗,
where 𝑥∗ increases in the direction of 𝒌 and𝐾2 = |𝒌|2 is the magnitude of
the wavenumber. With this, we can write (6.2) as

𝜓 = Re 𝜓̃ei(𝐾𝑥∗−𝜔𝑡) = Re 𝜓̃ei𝐾(𝑥∗−𝑐𝑡), (6.4)



106 Chapter 6. Rossby Waves

where 𝑐 = 𝜔/𝐾. From this equation it is evident that the phase of the
wave propagates at the speed 𝑐 in the direction of 𝒌, and we define the
phase speed by

𝑐𝑝 ≡
𝜔
𝐾
. (6.5)

Thewavelength of thewave, 𝜆, is the distance between twowavecrests
— that is, the distance between two locations along the line of travelwhose
phase differs by 2π— and evidently this is given by

𝜆 = 2π
𝐾
. (6.6)

In (for simplicity) a two-dimensional wave, and referring to Fig. 6.1, the
wavelength and wave vectors in the 𝑥- and 𝑦-directions are given by,

𝜆𝑥 = 𝜆
cos𝜙
, 𝜆𝑦 = 𝜆

sin𝜙
, 𝑘𝑥 = 𝐾 cos𝜙, 𝑘𝑦 = 𝐾 sin𝜙. (6.7)

In general, lines of constant phase intersect both the coordinate axes and
propagate along them. The speed of propagation along these axes is given
by

𝑐𝑥𝑝 = 𝑐𝑝
𝑙𝑥
𝑙
=
𝑐𝑝

cos𝜙
= 𝑐𝑝
𝐾
𝑘𝑥
= 𝜔
𝑘𝑥
, 𝑐𝑦𝑝 = 𝑐𝑝

𝑙𝑦
𝑙
=
𝑐𝑝

sin𝜙
= 𝑐𝑝
𝐾
𝑘𝑦
= 𝜔
𝑘𝑦
,

(6.8)
using (6.5) and (6.7), and again referring to Fig. 6.1 for notation. The speed
of phase propagation along any one of the axes is in general larger than the
phase speed in the primary direction of the wave. The phase speeds are
clearly not components of a vector: for example, 𝑐𝑥𝑝 ≠ 𝑐𝑝 cos𝜙. Analo-
gously, the wavevector 𝒌 is a true vector, whereas the wavelength 𝜆 is not.

To summarize, the phase speed and its components are given by

𝑐𝑝 =
𝜔
𝐾
, 𝑐𝑥𝑝 =

𝜔
𝑘𝑥
, 𝑐𝑦𝑝 =

𝜔
𝑘𝑦
. (6.9)

6.1.3 The Dispersion Relation

The above description is kinematic, in that it applies to almost any distur-
bance that has a wavevector and a frequency. The particular dynamics of
a wave are determined by the relationship between the wavevector and
the frequency; that is, by the dispersion relation. Once the dispersion re-
lation is known a great many of the properties of the wave follow in a
more-or-less straightforward manner. Picking up from (6.3), the disper-
sion relation is a functional relationship between the frequency and the
wavevector of the general form

𝜔 = 𝛺(𝒌). (6.10)

Perhaps the simplest example of a linear operator that gives rise to
waves is the one-dimensional equation

∂𝜓
∂𝑡
+ 𝑐∂𝜓
∂𝑥
= 0. (6.11)
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Wave Fundamentals
• A wave is a propagating disturbance that has a characteristic relationship between its fre-

quency and size, known as the dispersion relation. Waves typically arise as solutions to a
linear problem of the form 𝐿(𝜓) = 0, where 𝐿 is, commonly, a linear operator in space and
time. Two examples are

∂2𝜓
∂𝑡2
− 𝑐2∇2𝜓 = 0 and ∂

∂𝑡
∇2𝜓 + 𝛽∂𝜓

∂𝑥
= 0, (WF.1)

where the second example gives rise to Rossby waves.
• Solutions to the governing equation are often sought in the form of plane waves that have

the form
𝜓 = Re𝐴ei(𝒌⋅𝒙−𝜔𝑡), (WF.2)

where 𝐴 is the wave amplitude, 𝒌 = (𝑘, 𝑙, 𝑚) is the wavevector, and 𝜔 is the frequency.
• The dispersion relation connects the frequency and wavevector through an equation of the

form 𝜔 = 𝛺(𝒌)where𝛺 is some function. The relation is normally derived by substituting a
trial solution like (WF.2) into the governing equation. For the examples of (WF.1) we obtain
𝜔 = 𝑐2𝐾2 and 𝜔 = −𝛽𝑘/𝐾2 where𝐾2 = 𝑘2 + 𝑙2 + 𝑚2 or, in two dimensions,𝐾2 = 𝑘2 + 𝑙2.
• The phase speed is the speed at which the wave crests move. In the direction of propagation

and in the 𝑥, 𝑦 and 𝑧 directions the phase speeds are given by, respectively,

𝑐𝑝 =
𝜔
𝐾
, 𝑐𝑥𝑝 =

𝜔
𝑘
, 𝑐𝑦𝑝 =

𝜔
𝑙
, 𝑐𝑧𝑝 =

𝜔
𝑚
, (WF.3)

where 𝐾 = 2π/𝜆 and 𝜆 is the wavelength. The wave crests have both a speed (𝑐𝑝) and a
direction of propagation (the direction of 𝒌), like a vector, but the components defined in
(WF.3) are not the components of that vector.
• The group velocity is the velocity at which a wave packet or wave group moves. It is a vector

and is given by

𝒄𝑔 =
∂𝜔
∂𝒌

with components 𝑐𝑥𝑔 =
∂𝜔
∂𝑘
, 𝑐𝑦𝑔 =

∂𝜔
∂𝑙
, 𝑐𝑧𝑔 =

∂𝜔
∂𝑚
. (WF.4)

Most physical quantities of interest are transported at the group velocity.

Substituting a trial solution of the form 𝜓 = Re𝐴ei(𝑘𝑥−𝜔𝑡) into (6.11) we
obtain (−i𝜔 + 𝑐i𝑘)𝐴 = 0, giving the dispersion relation

𝜔 = 𝑐𝑘. (6.12)

The phase speed of this wave is 𝑐𝑝 = 𝜔/𝑘 = 𝑐. A couple of other examples
of governing equations, dispersion relations and phase speeds are:

∂2𝜓
∂𝑡2
− 𝑐2∇2𝜓 = 0, 𝜔2 = 𝑐2𝐾2, 𝑐𝑝 = ±𝑐, 𝑐𝑥𝑝 = ±

𝑐𝐾
𝑘
, 𝑐𝑦𝑝 = ±

𝑐𝐾
𝑙
,

(6.13a)
∂
∂𝑡
∇2𝜓 + 𝛽∂𝜓

∂𝑥
= 0, 𝜔 = −𝛽𝑘

𝐾2
, 𝑐𝑝 =

𝜔
𝐾
, 𝑐𝑥𝑝 = −

𝛽
𝐾2
, 𝑐𝑦𝑝 = −

𝛽𝑘/𝑙
𝐾2
,

(6.13b)
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Fig. 6.2: Superposition of
two sinusoidal waves with

wavenumbers 𝑘 and 𝑘 + 𝛿𝑘,
producing a wave (solid

line) that is modulated by
a slowly varying wave en-

velope or packet (dashed).
The envelope moves at the
group velocity, 𝑐𝑔 = ∂𝜔/∂𝑘,

and the phase moves at
the group speed, 𝑐𝑝 = 𝜔/𝑘.

Group velocity seems to have
been first articulated in about
1841 by the Irish mathemati-

cian and physicist William
Rowan Hamilton (1806–1865),

who is also remembered for
his formulation of ‘Hamilto-
nian mechanics’. Hamilton
was largely motivated by
optics, and it was George
Stokes, Osborne Reynolds

and John Strutt (also known
as Lord Rayleigh) who fur-
ther developed and gener-
alized the idea in fluid dy-
namics in the nineteenth

and early twentieth centuries.

where𝐾2 = 𝑘2 + 𝑙2 and the examples are two-dimensional, with variation
in 𝑥 and 𝑦 only.

A wave is said to be nondispersive if the phase speed is independent of
the wavelength. This condition is satisfied for the simple example (6.11)
but is manifestly not satisfied for (6.13b), and these waves (Rossby waves,
in fact) are dispersive. Waves of different wavelengths then travel at differ-
ent speeds so that a group of waves will spread out — disperse — even if
the medium is homogeneous. When a wave is dispersive there is another
characteristic speed atwhich thewaves propagate, the group velocity, and
we come to this shortly.

Most media are inhomogeneous, but if the medium varies sufficiently
slowly in space and time — and in particular if the variations are slow
compared to the wavelength and period — we may still have a local dis-
persion relation between frequency and wavevector,

𝜔 = 𝛺(𝒌; 𝒙, 𝑡), (6.14)

where𝑥 and 𝑡 are slowly varyingparameters. We resumeourdiscussionof
this topic in Section 6.5, but before that we introduce the group velocity.

6.2 Group Velocity

Information and energy do not, in general, propagate at the phase speed.
Rather, most quantities of interest propagate at the group velocity, a quan-
tity of enormous importance in wave theory. Roughly speaking, group
velocity is the velocity at which a packet or a group of waves will travel,
whereas the individual wave crests travel at the phase speed. To introduce
the idea we will consider the superposition of plane waves, noting that a
truly monochromatic plane wave already fills all space uniformly so that
there can be no propagation of energy from place to place.

6.2.1 Superposition of Two Waves

Consider the linear superposition of two waves. Limiting attention to
the one-dimensional case, consider a disturbance that is the sum of two
waves,

𝜓 = Re 𝜓̃(ei(𝑘1𝑥−𝜔1𝑡) + ei(𝑘2𝑥−𝜔2𝑡)). (6.15)
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We linearize about a constant zonal flow, 𝑈, by writing

∂
∂𝑡
∇2𝜓′ + 𝑈∂∇

2𝜓′
∂𝑥
+ 𝛽∂𝜓

′

∂𝑥
= 0. (6.24)

This equation is just a single-layer version of (6.22), with ∂𝑞/∂𝑦 = 𝛽, 𝑞′ =
∇2𝜓′ and 𝑣′ = ∂𝜓′/∂𝑥.

The coefficients in (6.24) are not functions of 𝑦 or 𝑧; this is not a re-
quirement for wave motion to exist but it does enable solutions to be
found more easily. Let us seek solutions in the form of a plane wave,
namely

𝜓′ = Re 𝜓̃ei(𝑘𝑥+𝑙𝑦−𝜔𝑡), (6.25)
where 𝜓̃ is a complex constant. Solutions of this form are valid in a do-
main with doubly-periodic boundary conditions; solutions in a channel
can be obtained using a meridional variation of sin 𝑙𝑦, with no essential
changes to the dynamics. The amplitude of the oscillation is given by 𝜓̃
and the phase by 𝑘𝑥+𝑙𝑦−𝜔𝑡, where 𝑘 and 𝑙 are the 𝑥- and 𝑦-wavenumbers
and 𝜔 is the frequency of the oscillation.

Substituting (6.25) into (6.24) yields

[(−𝜔 + 𝑈𝑘)(−𝐾2) + 𝛽𝑘]𝜓̃ = 0, (6.26)

where𝐾2 = 𝑘2 + 𝑙2. For non-trivial solutions the above equation implies

𝜔 = 𝑈𝑘 − 𝛽𝑘
𝐾2
, (6.27)

and this is the dispersion relation for barotropic Rossby waves. Evidently
the velocity 𝑈 Doppler shifts the frequency by the amount 𝑈𝑘. The com-
ponents of the phase speed and group velocity are given by, respectively,

𝑐𝑥𝑝 ≡
𝜔
𝑘
= 𝑈 − 𝛽
𝐾2
, 𝑐𝑦𝑝 ≡

𝜔
𝑙
= 𝑈𝑘
𝑙
− 𝛽𝑘
𝐾2𝑙
, (6.28a,b)

and

𝑐𝑥𝑔 ≡
∂𝜔
∂𝑘
= 𝑈 + 𝛽(𝑘

2 − 𝑙2)
(𝑘2 + 𝑙2)2

, 𝑐𝑦𝑔 ≡
∂𝜔
∂𝑙
= 2𝛽𝑘𝑙
(𝑘2 + 𝑙2)2

. (6.29a,b)

The phase speed in the absence of a mean flow is westward, with waves
of longer wavelengths travelling more quickly, and the eastward current
speed required to hold the waves of a particular wavenumber stationary
(i.e., 𝑐𝑥𝑝 = 0) is 𝑈 = 𝛽/𝐾2. The background flow 𝑈 evidently just provides
a uniform shift to the phase speed, and (in this case) can be transformed
away by a change of coordinate. The 𝑥-component of the group velocity
may also be written as the sum of the phase speed plus a positive quantity,
namely

𝑐𝑥𝑔 = 𝑐𝑥𝑝 +
2𝛽𝑘2
(𝑘2 + 𝑙2)2

. (6.30)

This means that the zonal group velocity for Rossby wave packets moves
eastward relative to its zonal phase speed. A stationary wave (𝑐𝑥𝑝 = 0) has



Gravity waves are those waves
that exist in a fluid for which
gravity provides the restoring
force. Gravitational waves
are a disturbance in the fab-
ric of spacetime caused by
accelerating massive bodies,
as predicted by the general
theory of relativity.

Chapter

7
Gravity Waves

W aves arise when a system is perturbed and a restoring force
tries to bring the system back to equilibrium; the system then
overshoots and oscillations ensue. Gravity waves are waves in

a fluid in which gravity provides the restoring force. For gravity to have
an effect the fluid density must vary, and thus the waves must either exist
at a fluid interface or in a stratified fluid — and a fluid interface is just
an abrupt form of stratification. It is thus common to think of gravity
waves as being either internal waves or surface waves: the former being
in the interior of a fluid where the density changes may be continuous
and the latter at a fluid interface, and naturally enough the two waves
have many similarities. We considered surface waves in the hydrostatic,
shallow water case in Chapter 4; now we consider internal waves in the
continuously-stratified equations.

7.1 Internal Waves in a Continuously-Stratified Fluid

Internal gravity waves are waves that are internal to a stratified fluid and
that owe their existence to the restoring force of gravity. In this section
we will consider the simplest and most fundamental case, that of inter-
nal waves in a Boussinesq fluid with constant stratification and no back-
ground rotation. To this end, consider a fluid, initially at rest, in which
the background buoyancy varies only with height and so the buoyancy
frequency,𝑁, is a function only of 𝑧. The system satisfies the Boussinesq
equations (Section 2.5) and linearizing those equations of motion about
this basic state gives the linear momentum equations,

∂𝒖′
∂𝑡
= −∇𝜙′, ∂𝑤′

∂𝑡
= −∂𝜙

′

∂𝑧
+ 𝑏′, (7.1a,b)

123



124 Chapter 7. Gravity Waves

and the mass continuity and thermodynamic equations,
∂𝑢′
∂𝑥
+ ∂𝑣
′

∂𝑦
+ ∂𝑤
′

∂𝑧
= 0, ∂𝑏′

∂𝑡
+ 𝑤′𝑁2 = 0. (7.1c,d)

Our notation is such that 𝒖 ≡ 𝑢 ̂𝐢 + 𝑣 ̂𝐣, 𝒗 ≡ 𝑢 ̂𝐢 + 𝑣 ̂𝐣 + 𝑤𝐤̂, where ( ̂𝐢, ̂𝐣, 𝐤̂) are
the unit vectors in the 𝑥, 𝑦 and 𝑧 directions, and the gradient operator is
horizontal unless noted. Thus, ∇ ≡ ̂𝐢 ∂𝑥 + ̂𝐣 ∂𝑦 and ∇3 ≡ ̂𝐢 ∂𝑥 + ̂𝐣 ∂𝑦 + 𝐤̂ ∂𝑧.

A little algebra gives a single equation for 𝑤′,

[ ∂
2

∂𝑡2
(∇2 + ∂

2

∂𝑧2
) + 𝑁2∇2]𝑤′ = 0. (7.2)

This equation is evidently not isotropic. If 𝑁2 is a constant — that is, if
the background buoyancy varies linearly with 𝑧 — then the coefficients
of each term are constant, and we may then seek solutions of the form

𝑤′ = Re 𝑤̃ei(𝑘𝑥+𝑙𝑦+𝑚𝑧−𝜔𝑡), (7.3)

where Re denotes the real part, a denotation that will frequently be
dropped unless ambiguity arises, and other variables oscillate in a simi-
lar fashion. Using (7.3) in (7.2) yields the dispersion relation:

𝜔2 = (𝑘
2 + 𝑙2)𝑁2
𝑘2 + 𝑙2 + 𝑚2

= 𝐾
2𝑁2
𝐾23
, (7.4)

where𝐾2 = 𝑘2+𝑙2 and𝐾23 = 𝑘2+𝑙2+𝑚2. The frequency (see Fig. 7.1) is thus
always less than𝑁, approaching𝑁 for small horizontal scales, 𝐾2 ≫ 𝑚2.
If we neglect pressure perturbations, as in the parcel argument of Section
3.4, then the two equations,

∂𝑤′
∂𝑡
= 𝑏′, ∂𝑏′

∂𝑡
+ 𝑤′𝑁2 = 0, (7.5)

form a closed set, and give 𝜔2 = 𝑁2.
If the basic state density increases with height then 𝑁2 < 0 and the

basic state is unstable. The disturbance grows exponentially according to
exp(𝜎𝑡) where

𝜎 = i𝜔 = ±𝐾𝑁̃
𝐾3
, (7.6)

where 𝑁̃2 ≡ −𝑁2 and 𝐾3 = √𝐾23 . Most convective activity in the ocean
and atmosphere is, ultimately, related to an instability of this form, al-
though of course there are many complicating issues — water vapour in
the atmosphere, salt in the ocean, the effects of rotation and so forth.

7.1.1 Hydrostatic Internal Waves

Let us now suppose that the fluid satisfies the hydrostatic Boussinesq
equations. The linearized two-dimensional equations of motion become

∂𝒖′
∂𝑡
= −∇𝜙′, 0 = −∂𝜙

′

∂𝑧
+ 𝑏′, (7.7a)
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Fig. 7.1: Scaled frequency,
𝜔/𝑁, plotted as a function of
scaled horizontal wavenum-
ber, 𝑘/𝑚, using the full dis-
persion relation of (7.4) with
𝑙 = 0 (solid line, asymptoting
to unit value for large 𝑘/𝑚),
and with the hydrostatic dis-
persion relation (7.8) (dashed
line, tending to∞ for large
𝑘/𝑚).

∂𝑢′
∂𝑥
+ ∂𝑣
′

∂𝑦
+ ∂𝑤
′

∂𝑧
= 0, ∂𝑏′

∂𝑡
+ 𝑤′𝑁2 = 0, (7.7b)

where these are the horizontal and vertical momentum equations, the
mass continuity equation and the thermodynamic equation respectively.
A little algebra gives the dispersion relation,

𝜔2 = (𝑘
2 + 𝑙2)𝑁2
𝑚2

. (7.8)

The frequency and, if 𝑁2 is negative, the growth rate, are unbounded as
𝐾2/𝑚2 → ∞, and the hydrostatic approximation thus has quite unphysi-
cal behaviour for small horizontal scales. Many numerical models of the
large-scale circulation in the atmosphere and ocean do make the hydro-
static approximation. In these models convection must be parameterized;
otherwise, itwould simply occur at the smallest scale available, namely the
size of the numerical grid, and this type of unphysical behaviour should
be avoided. In nonhydrostatic models convection must also be parame-
terized if the horizontal resolution of the model is too coarse to properly
resolve the convective scales.

7.2 Properties of Internal Waves

Internal waves have a number of interesting and counter-intuitive prop-
erties — let’s discuss them.

7.2.1 The Dispersion Relation

We can write the dispersion relation, (7.4), as

𝜔 = ±𝑁 cos 𝜗, (7.9)
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where cos2 𝜗 = 𝐾2/(𝐾2 + 𝑚2) so that 𝜗 is the angle between the three-
dimensional wave-vector, 𝒌 = 𝑘 ̂𝐢 + 𝑙 ̂𝐣 + 𝑚𝐤̂, and the horizontal. The fre-
quency is evidently a function only of 𝑁 and 𝜗, and, if this is given, the
frequency is not a function of wavelength. This has some interesting con-
sequences for wave reflection, as we see below.

We can also write the dispersion relation, (7.4), as

𝜔2
𝑁2 − 𝜔2

= 𝐾
2

𝑚2
. (7.10)

Thus, and consistently with our first point, given the wave frequency the
ratio of the vertical to the horizontal wavenumber is fixed.

7.2.2 Polarization Relations

The oscillations of pressure, velocity and buoyancy are, naturally, con-
nected, and we can obtain the relations between them with some simple
manipulations. If the pressure field is oscillating like 𝜙′ = 𝜙 exp[i(𝒌 ⋅ 𝒙 −
𝜔𝑡)] = 𝜙 exp[i(𝑘𝑥+𝑙𝑦+𝑚𝑧−𝜔𝑡)] then, using (7.1a), the horizontal velocity
components satisfy

(𝑢, 𝑣) = (𝑘, 𝑙) 𝜔−1𝜙. (7.11)
Evidently, since the frequency is real, the velocities are in phase with the
pressure. We can obtain similar relations for the other variables and, since
all the fields are real, it is convenient to express the relations in terms of
sines and cosines. If we choose pressure to vary as a cosine then after
some algebra we obtain

𝜙 = 𝛷0 cos(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 − 𝜔𝑡), (7.12a)

(𝑢, 𝑣) = (𝑘, 𝑙)𝛷0
𝜔

cos(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 − 𝜔𝑡), (7.12b)

𝑤 = −𝐾
2

𝑚𝜔
𝛷0 cos(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 − 𝜔𝑡), (7.12c)

𝑏 = 𝑁
2𝐾2
𝑚𝜔2
𝛷0 sin(𝑘𝑥 + 𝑙𝑦 + 𝑚𝑧 − 𝜔𝑡), (7.12d)

where 𝛷0 is a constant. The vertical velocity is thus in phase with the
pressure perturbation, and for regions of positive𝑚 (and so with upward
phase propagation) regions of high relative pressure are associated with
downward fluidmotion. The above relations betweenpressure, buoyancy
and velocity are known as polarization relations.

7.2.3 Relation between Wave Vector and Velocity

Onmultiplying (7.12b) and (7.12c) by (𝑘, 𝑙) and𝑚, respectively, we see that

𝒌 ⋅ 𝒗 = 0, (7.13)

where 𝒌 and 𝒗 are three-dimensional vectors. This means that, at any
instant, the wave vector is perpendicular to the velocity vector, and the
velocity is therefore aligned along the direction of the troughs and crests,
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Fig. 7.2: An internal wave
propagating in the direction
𝒌. Both 𝑘 and𝑚 are positive
for the wave shown. The solid
lines show crests and troughs
of constant pressure, and
the dashed lines the corre-
sponding crests and troughs
of buoyancy (or density). The
motion of the fluid parcels
is along the lines of constant
phase, as shown, and is paral-
lel to the group velocity and
perpendicular to the phase
speed.

along which there is no pressure gradient. If the wave vector is purely
horizontal (i.e.,𝑚 = 0), then the motion is purely vertical and 𝜔 = 𝑁.

The vertical and horizontal velocities are related to the wavenumbers.
If (for simplicity, and with no loss of generality) the motion is in the 𝑥–𝑦
plane with 𝑣 = 𝑙 = 0, then it is a corollary of (7.13) that

𝑢
𝑤̃
= −𝑚
𝑘
. (7.14)

Furthermore, from (7.3) with 𝑙 = 0, at any given instant all of the perturba-
tion quantities in thewave are constant along the lines 𝑘𝑥+𝑚𝑧 = constant.
Thus, all fluid parcel motions are parallel to the wave fronts. Now, since
the wave frequency is related to the background buoyancy frequency by
𝜔 = ±𝑁 cos 𝜗, it follows that the fluid parcels oscillate along lines that
are at an angle 𝜗 = cos−1(𝜔/𝑁) to the vertical. The polarization relations
and the group and phase velocities are illustrated in Fig. 7.2. Let us now
discuss the wave properties in a little more detail.

7.2.4 A Parcel Argument and Physical Interpretation

Let us consider first the dispersion relation itself and try to derive it more
physically, or at least heuristically. Let us suppose there is a wave prop-
agating in the (𝑥, 𝑧) plane at some angle 𝜗 to the horizontal, with fluid
parcels moving parallel to the troughs and crests, as in Fig. 7.2. In general
the restoring force on a parcel is due to both the pressure gradient and
gravity, but along the crests there is no pressure gradient. Referring to
Fig. 7.3, for a total displacement 𝛥𝑠 the restoring force, 𝐹res, in the direc-
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Fig. 7.3: Parcel displacements
and associated forces in an

internal gravity wave in which
the parcel displacements

are occurring at an angle 𝜗
to the vertical, as in Fig. 7.2.

tion of the particle displacement is

𝐹res = 𝑔 cos 𝜗𝛥𝜌 = 𝑔 cos 𝜗
∂𝜌
∂𝑧
𝛥𝑧 = 𝑔 cos 𝜗 ∂𝜌

∂𝑧
𝛥𝑠 cos 𝜗 = 𝜌0

∂𝑏
∂𝑧

cos2𝜗𝛥𝑠,
(7.15)

noting that 𝛥𝑧 = cos 𝜗𝛥𝑠. The equation of motion of a parcel moving
along a trough or crest is therefore

𝜌0
d2𝛥𝑠
d𝑡2
= −𝜌0𝑁2 cos2𝜗𝛥𝑠, (7.16)

which implies a frequency 𝜔 = 𝑁 cos 𝜗, as in (7.9). One of the cos 𝜗 fac-
tors in (7.16) comes from the fact that the parcel displacement is at an
angle to the direction of gravity, and the other comes from the fact that
the restoring force that a parcel experiences is proportional to 𝑁 cos 𝜗.
(The reader may also wish to refer ahead to Fig. 7.6 and Section 7.3.1 for
a similar argument.)

Now consider the wave illustrated in Fig. 7.2. For this wave both 𝑘
and𝑚 are positive, and the frequency is assumed positive by convention
to avoid duplicative solutions. The slanting solid and dashed lines are
lines of constant phase, and from (7.12) the buoyancy and pressure are
1/4 of a wavelength out of phase. When 𝑘 and 𝑚 are both positive the
extrema in the buoyancy field lag the extrema in the vertical velocity by
π/2, as illustrated. The perturbation velocities are zero along the lines of
extreme buoyancy. This follows because the velocities are in phase with
the pressure, which as we noted is out of phase with the buoyancy.

Given the direction of the fluid parcel displacement in Fig. 7.2, the
direction of the phase propagation 𝑐𝑝 up and to the right may be deduced
from the following argument. Buoyancy perturbations arise because of
vertical advection of the background stratification, 𝑤′∂𝑏0/∂𝑧 = 𝑤′𝑁2. A
local maximum in risingmotion, and therefore a tendency to increase the
fluid density, is present along the ‘Low’ line 1/4 wavelength upward and
to the right of the ‘Dense’ phase line. Thus, the density of fluid along the
‘Low’ phase line increases and the ‘Dense’ phase linemoves upward and to
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Fig. 7.6: Parcel displacements
and associated forces in an

inertia-gravity wave in which
the parcel displacements

are occurring at an angle 𝜗
to the vertical. Coriolis and

buoyancy forces are present,
and 𝛥s= 𝛥z/ cos 𝜗 = 𝛥x/ sin 𝜗.

7.3♦ Internal Waves in a Rotating Frame of Reference

In the presence of both a Coriolis force and stratification a displaced fluid
will feel two restoring forces — one due to gravity and the other to rota-
tion. The first gives rise to gravity waves, as we have discussed, and the
second to inertial waves. When the two forces both occur the resulting
waves are called inertia-gravity waves. The algebra describing them can
be complicated so we begin with a simple parcel argument to lay bare the
basic dynamics; refer to Section 7.2.4 as needed.

7.3.1 A Parcel Argument

Consider a parcel that is displaced along a slantwise path in the 𝑥–𝑧 plane,
as shown in Fig. 7.6, with a horizontal displacement of 𝛥𝑥 and a vertical
displacement of 𝛥𝑧. Let us suppose that the fluid is Boussinesq and that
there is a stable and uniform stratification given by𝑁2 = −𝑔𝜌−10 ∂𝜌0/∂𝑧 =
∂𝑏/∂𝑧. Referring to (7.15) as needed, the component of the restoring
buoyancy force, 𝐹𝑏 say, in the direction of the parcel oscillation is given
by (7.15),

𝐹𝑏 = −𝑁2 cos 𝜗𝛥𝑧 = −𝑁2 cos2𝜗𝛥𝑠. (7.28)

The parcel also experiences a restoring Coriolis force, 𝐹𝐶, and the compo-
nent of this in the direction of the parcel displacement is

𝐹𝐶 = −𝑓2 sin 𝜗𝛥𝑥 = −𝑓2 sin2𝜗𝛥𝑠. (7.29)

Here, and for the rest of the chapter, we denote the Coriolis parameter
by 𝑓. It should be regarded as a constant in any given problem (so there
are no Rossby waves), but its value varies with latitude. Using (7.28) and
(7.29) the (Lagrangian) equation of motion for a displaced parcel is

d2𝛥𝑠
d𝑡2
= −(𝑁2 cos2𝜗 + 𝑓2 sin2𝜗)𝛥𝑠, (7.30)



Chapter

8
Instability

W hat hydrodynamic states occur in nature? Any flow must
of course be a solution of the equations of motion, subject to
the relevant initial and boundary conditions. There are many

steady solutions to the equations of motion — certain purely zonal flows,
for example— but the flowswe experience are unsteady, time-dependent
solutions, not steady solutions. Why should this be? It is because for any
steady flow to persist it must be stable to those small perturbations that
inevitably arise, but all the steady solutions that are known for the large-
scale flow in the Earth’s atmosphere and ocean have been found to be
unstable.

Our focus in this chapter is on barotropic and baroclinic instability.
Baroclinic instability (and we will define the term more precisely later on)
is an instability that arises in rotating, stratified fluids that are subject to
a horizontal temperature gradient. It is the instability that gives rise to
the large- and mesoscale motion in the atmosphere and ocean — it pro-
duces atmospheric weather systems, for example — and so is, perhaps,
the form of hydrodynamic instability that most affects the human condi-
tion. Barotropic instability is an instability that arises because of the shear
in a flow, and may occur in fluids of constant density. It is important
to us for two reasons: first, in its own right as an instability mechanism
for jets and vortices and as an important process in turbulence; second,
many problems in barotropic and baroclinic instability are very similar,
so that the solutions and insight we obtain in the often simpler problems
in barotropic instability may be useful in the baroclinic problem.

8.1 Kelvin–Helmholtz Instability

We first consider what is perhaps the simplest physically interesting in-
stance of a fluid-dynamical instability — that of a constant-density flow
with a shear perpendicular to the fluid’s mean velocity, this being an ex-

144
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Fig. 8.1: A simple basic state
giving rise to shear-flow in-
stability. The velocity profile
is discontinuous and the
density is uniform. In more
general problems in Kelvin–
Helmholtz instability the
density may also vary.

ample of aKelvin–Helmholtz instability. Specifically, we consider two fluid
masses of equal density, with an interface at 𝑦 = 0, movingwith velocities
−𝑈 and +𝑈 in the 𝑥-direction, respectively, as in Fig. 8.1. There is no vari-
ation in the basic flow in the 𝑧-direction (normal to the page), and we will
assume this is also true for the instability. This flow is clearly a solution
of the Euler equations.

What happens if the flow is perturbed slightly? If the perturbation is
initially small then even if it grows we can, for small times after the onset
of instability, neglect the nonlinear interactions in the governing equa-
tions because these are the squares of small quantities. The equations
determining the evolution of the initial perturbation are then the Euler
equations linearized about the steady solution. Thus, denoting perturba-
tion quantities with a prime and basic state variables with capital letters,
for 𝑦 > 0 the perturbation satisfies

∂𝒖′
∂𝑡
+ 𝑈∂𝒖

′

∂𝑥
= −∇𝑝′, ∇ ⋅ 𝒖′ = 0, (8.1a,b)

and a similar equation holds for 𝑦 < 0, but with𝑈 replaced by −𝑈. Given
periodic boundary conditions in the 𝑥-direction, we may seek solutions
of the form

𝜙′(𝑥, 𝑦, 𝑡) = Re ∑
𝑘
𝜙𝑘(𝑦) exp[i𝑘(𝑥 − 𝑐𝑡)], (8.2)

where 𝜙 is any field variable (e.g., pressure or velocity), and Re denotes
that only the real part should be taken. (Typically we use tildes over vari-
ables to denote Fourier-like modes, and we often omit the marker ‘Re’.)
Because (8.1a) is linear, the Fourier modes do not interact and we may
confine attention to just one. Taking the divergence of (8.1a), the left-
hand side vanishes and the pressure satisfies Laplace’s equation

∇2𝑝′ = 0. (8.3)

This has solutions in the form

𝑝′ = {𝑝1e
i𝑘𝑥−𝑘𝑦e𝜎𝑡 𝑦 > 0,
𝑝2ei𝑘𝑥+𝑘𝑦e𝜎𝑡 𝑦 < 0,

(8.4)

where, anticipating the possibility of growing solutions, we have written
the time variation in terms of a growth rate, 𝜎 = −i𝑘𝑐. In general 𝜎 is
complex: if it has a positive real component, the amplitude of the pertur-
bation will grow and there is an instability; if 𝜎 has a non-zero imaginary
component, then there will be oscillatory motion, and there may be both
oscillatory motion and an instability. To obtain the dispersion relation-
ship, we consider the 𝑦-component of (8.1a), namely (for 𝑦 > 0)

∂𝑣′1
∂𝑡
+ 𝑈∂𝑣

′
1
∂𝑥
= −∂𝑝

′
1
∂𝑦
. (8.5)

Substituting a solution of the form 𝑣′1 = 𝑣1 exp(i𝑘𝑥+𝜎𝑡) yields, with (8.4),

(𝜎 + i𝑘𝑈)𝑣1 = 𝑘𝑝1. (8.6)



146 Chapter 8. Instability

But the velocity normal to the interface is, at the interface, nothing but
the rate of change of the position of the interface itself; that is, at 𝑦 = +0

𝑣1 =
∂𝜂′
∂𝑡
+ 𝑈∂𝜂

′

∂𝑥
, (8.7)

or
𝑣1 = (𝜎 + i𝑘𝑈)𝜂, (8.8)

where 𝜂′ is the displacement of the interface from its equilibriumposition.
Using this in (8.6) gives

(𝜎 + i𝑘𝑈)2𝜂 = 𝑘𝑝1. (8.9)

The above few equations pertain to motion on the 𝑦 > 0 side of the inter-
face. Similar reasoning on the other side gives (at 𝑦 = −0)

(𝜎 − i𝑘𝑈)2𝜂 = −𝑘𝑝2. (8.10)

But at the interface 𝑝1 = 𝑝2, because pressure must be continuous. The
dispersion relationship then emerges from (8.9) and (8.10), giving

𝜎2 = 𝑘2𝑈2. (8.11)

This equation has two roots, one ofwhich is positive. Thus, the amplitude
of the perturbation grows exponentially, like e𝜎𝑡, and the flow is unstable.
The instability itself can be seen in the natural world when billow clouds
appear wrapped up into spirals: the clouds are acting as tracers of fluid
flow, and are a manifestation of the instability at finite amplitude, as seen
later in Fig. 8.2.

8.2 Instability of Parallel Shear Flow

We now consider a little more systematically the instability of parallel
shear flows. This is a classic problem in hydrodynamic stability theory,
and there are two particular reasons for our own interest:

(i) The instability is an example of barotropic instability,which abounds
in the ocean and atmosphere. Roughly speaking, barotropic insta-
bility arises when a flow is unstable by virtue of its horizontal shear,
with gravitational and buoyancy effects being secondary.

(ii) The instability is in many ways analogous to baroclinic instability,
which is the main instability giving rise to weather systems in the
atmosphere and similar phenomena in the ocean.

We restrict attention to two-dimensional, incompressible flow; this il-
lustrates the physical mechanisms in the most transparent way, in part
because it allows for the introduction of a streamfunction and the au-
tomatic satisfaction of the mass continuity equation. In fact, for paral-
lel two-dimensional shear flows the most unstable disturbances are two-
dimensional ones.
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John Strutt (1842–1919) be-
came 3rd Baron Rayleigh on
the death of his father in 1873
and, in a testament to the en-
during British class system, is
almost universally known as
Lord Rayleigh. He made major
contributions in many areas
of physics, among them fluid
mechanics (including the the-
ory of sound and instability
theory), the analysis of the
composition of gases (leading
to the discovery of argon), and
scattering theory.

The vorticity equation for incompressible two-dimensional flow is
just

D𝜁
D𝑡
= 0. (8.12)

We suppose the basic state to be a parallel flow in the 𝑥-direction thatmay
vary in the 𝑦-direction. That is

𝒖 = 𝑈(𝑦) ̂𝐢. (8.13)

The linearized vorticity equation is then

∂𝜁′
∂𝑡
+ 𝑈∂𝜁

′

∂𝑥
+ 𝑣′ ∂
∂𝑦
= 0, (8.14)

where = −∂𝑦𝑈. Because the mass continuity equation has the simple
form ∂𝑢′/∂𝑥 + ∂𝑣′/∂𝑦 = 0, we may introduce a streamfunction 𝜓 such
that 𝑢′ = −∂𝜓′/∂𝑦, 𝑣′ = ∂𝜓′/∂𝑥 and 𝜁′ = ∇2𝜓′. The linear vorticity
equation becomes

∂∇2𝜓′
∂𝑡
+ 𝑈∂∇

2𝜓′
∂𝑥
+ ∂
∂𝑦
∂𝜓′
∂𝑥
= 0. (8.15)

The coefficients of the 𝑥-derivatives are not themselves functions of
𝑥; thus, we may seek solutions that are harmonic functions (sines and
cosines) in the 𝑥-direction, but the 𝑦 dependence must remain arbitrary
at this stage and we write

𝜓′ = Re 𝜓̃(𝑦)ei𝑘(𝑥−𝑐𝑡). (8.16)

The full solution is a superposition of allwavenumbers, but since the prob-
lem is linear the waves do not interact and it suffices to consider them
separately. If 𝑐 is purely real then 𝑐 is the phase speed of the wave; if 𝑐 has
a positive imaginary component then the wave will grow exponentially
and is thus unstable.

From (8.16) we have

𝑢′ = 𝑢(𝑦)ei𝑘(𝑥−𝑐𝑡) = −𝜓̃𝑦ei𝑘(𝑥−𝑐𝑡), (8.17a)
𝑣′ = 𝑣(𝑦)ei𝑘(𝑥−𝑐𝑡) = i𝑘𝜓̃ei𝑘(𝑥−𝑐𝑡), (8.17b)
𝜁′ = ̃𝜁(𝑦)ei𝑘(𝑥−𝑐𝑡) = (−𝑘2𝜓̃ + 𝜓̃𝑦𝑦)ei𝑘(𝑥−𝑐𝑡), (8.17c)

where the 𝑦 subscript denotes a derivative. Using (8.17) in (8.14) gives

(𝑈 − 𝑐)(𝜓̃𝑦𝑦 − 𝑘2𝜓̃) − 𝑈𝑦𝑦𝜓̃ = 0, (8.18)

which is known as Rayleigh’s equation. It is the linear vorticity equation
for disturbances to parallel shear flow, and in the presence of a 𝛽-effect it
generalizes slightly to

(𝑈 − 𝑐)(𝜓̃𝑦𝑦 − 𝑘2𝜓̃) + (𝛽 − 𝑈𝑦𝑦)𝜓̃ = 0, (8.19)

which is known as the Rayleigh–Kuo equation.
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8.2.1 Piecewise Linear Flows

Although Rayleigh’s equation is linear and has a simple form, it is never-
theless quite difficult to analytically solve for an arbitrary smoothly vary-
ing profile. It is simpler to consider piecewise linear flows, in which 𝑈𝑦
is constant over some interval, with 𝑈 or 𝑈𝑦 changing abruptly to an-
other value at a line of discontinuity, as for example in Fig. 8.1. The curva-
ture,𝑈𝑦𝑦 is accounted for through the satisfaction ofmatching conditions,
analogous to boundary conditions, at the lines of discontinuity (as in Sec-
tion 8.1), and solutions in each interval are then exponential functions.

Jump or matching conditions

The idea, then, is to solve the linearized vorticity equation separately in
the continuous intervals in which vorticity is constant, matching the so-
lution with that in the adjacent regions. The matching conditions arise
from two physical conditions:

(i) That normal stress should be continuous across the interface. For
an inviscid fluid this implies that pressure be continuous.

(ii) That the normal velocity of the fluid on either side of the interface
should be consistent with the motion of the interface itself.

Let us consider the implications of these two conditions.

(i) Continuity of pressure
The linearized momentum equation in the direction along the in-
terface is:

∂𝑢′
∂𝑡
+ 𝑈∂𝑢

′

∂𝑥
+ 𝑣′ ∂𝑈
∂𝑦
= −∂𝑝

′

∂𝑥
. (8.20)

For normal modes, 𝑢′ = −𝜓̃𝑦ei𝑘(𝑥−𝑐𝑡), 𝑣′ = i𝑘𝜓̃ei𝑘(𝑥−𝑐𝑡) and 𝑝′ =
𝑝ei𝑘(𝑥−𝑐𝑡), and (8.20) becomes

i𝑘(𝑈 − 𝑐)𝜓̃𝑦 − i𝑘𝜓̃𝑈𝑦 = −i𝑘𝑝. (8.21)

Because pressure is continuous across the interfacewehave the first
matching or jump condition,

𝛥[(𝑈 − 𝑐)𝜓̃𝑦 − 𝜓̃𝑈𝑦] = 0, (8.22)

where the operator 𝛥 denotes the difference in the values of the ar-
gument (in square brackets) across the interface. That is, the quan-
tity (𝑈 − 𝑐)𝜓̃𝑦 − 𝜓̃𝑈𝑦 is continuous.
We can obtain this condition directly from Rayleigh’s equation,
(8.19), written in the form

[(𝑈 − 𝑐)𝜓̃𝑦 − 𝑈𝑦𝜓̃]𝑦 + [𝛽 − 𝑘2(𝑈 − 𝑐)]𝜓̃ = 0. (8.23)

Integrating across the interface gives (8.22).



152 Chapter 8. Instability

-

-

-

-

-

-

-

-

--

-

-

-

Fig. 8.5: Example parallel ve-
locity profiles (left column)

and their second derivatives
(right column). From the top:

Poiseuille flow (𝑢 = 1 − 𝑦2);
a Gaussian jet; a sinusoidal

profile; a polynomial profile.
By Rayleigh’s criterion, the

top profile is stable, whereas
the lower three are poten-

tially unstable. The bottom
profile is in fact stable (al-

though we do not demon-
strate that here). If the 𝛽-

effect were present and large
enough it would stabilize
the middle two profiles.

8.4.1 A Physical Picture

We first draw a picture of baroclinic instability as a form of ‘sloping con-
vection’ in which the fluid, although statically stable, is able to release
available potential energywhenparcelsmove along a sloping path. To this
end, let us first ask: what is the basic state that is baroclinically unstable?
In a stably stratified fluid potential density decreases with height; we can
also easily imagine a state in which the basic state temperature decreases,
and the potential density increases, polewards. (We couchmost of our dis-
cussion in terms of the Boussinesq equations and drop the qualifier ‘po-
tential’ from density.) Can we construct a steady solution from these two
conditions? The answer is yes, provided the fluid is also rotating; rota-
tion is necessary because the meridional temperature gradient generally
implies a meridional pressure gradient; there is nothing to balance this
in the absence of rotation, and a fluid parcel would therefore accelerate.
In a rotating fluid this pressure gradient can be balanced by the Coriolis
force and a steady solution can be maintained even in the absence of vis-
cosity. Consider a stably stratified Boussinesq fluid in geostrophic and
hydrostatic balance on an 𝑓-plane, with buoyancy decreasing uniformly



The Jacobian opera-
tor for any two quanti-
ties 𝑎 and 𝑏 is given by

𝐽(𝑎, 𝑏) = ∂𝑥𝑎 ∂𝑦𝑏 − ∂𝑦𝑎 ∂𝑥𝑏.
When 𝑎 is the streamfunc-

tion the Jacobian gives
the horizontal advec-

tion of 𝑏, namely 𝒖 ⋅ ∇𝑏.

Chapter

9
Waves and Mean-Flows

L inear dynamics is mainly concerned with waves and instabilities
that live on a pre-determined background flow. But the real world
isn’t quite like that. Rather, the mean state is the result of the com-

bined effects of thermal and mechanical forcing (by radiation from the
sun and, for the ocean, the winds) plus the action of the waves and instabili-
ties themselves. In this chapter we explore the geophysical fluid dynamics
underlying suchwave–mean-flow interactions. We try to keepour discus-
sion as elementary as possible by staying within the comfortable bounds
of the quasi-geostrophic approximation and considering only zonal aver-
ages. Nevertheless the subject is often regarded as an advanced one, and
all the sections in this chapter may be considered to be implicitly marked
with a diamond, ♦.

9.1 Quasi-Geostrophic Wave–Mean-Flow Interaction

9.1.1 Preliminaries

To fix our dynamical system and notation, we write down the Boussinesq
quasi-geostrophic potential vorticity equation

∂𝑞
∂𝑡
+ 𝐽(𝜓, 𝑞) = 𝐷, (9.1)

where 𝐽(𝜓, 𝑞) = ∂𝜓/∂𝑥 ∂𝑞/∂𝑦 − ∂𝜓/∂𝑦 ∂𝑞/∂𝑥 and𝐷 represents any non-
conservative terms. The potential vorticity in a Boussinesq system is

𝑞 = 𝛽𝑦 + 𝜁 + ∂
∂𝑧
( 𝑓0
𝑁2
𝑏) , (9.2)

where 𝜁 is the relative vorticity and 𝑏 is the buoyancy perturbation from a
background state characterized by𝑁2. (Nearly all the derivations in this
chapter could be done in pressure coordinateswithminormodifications.)

170
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We refer to lines of constant 𝑏 as isentropes. In terms of the streamfunc-
tion, the variables are

𝜁 = ∇2𝜓, 𝑏 = 𝑓0
∂𝜓
∂𝑧
, 𝑞 = 𝛽𝑦 + [∇2 + ∂

∂𝑧
( 𝑓
2
0
𝑁2
∂
∂𝑧
)]𝜓, (9.3)

where ∇2 ≡ (∂2𝑥 + ∂2𝑦). The potential vorticity equation holds in the fluid
interior; the boundary conditions on (9.3) are provided by the thermody-
namic equation

∂𝑏
∂𝑡
+ 𝐽(𝜓, 𝑏) + 𝑤𝑁2 = 𝑆, (9.4)

where 𝑆 represents heating terms. The vertical velocity at the boundary,
𝑤, is zero in the absence of topography and Ekman friction so that the
boundary condition is just

∂𝑏
∂𝑡
+ 𝐽(𝜓, 𝑏) = 𝑆. (9.5)

Equations (9.1) and (9.5) are the evolution equations for the system, and if
both𝐷 and 𝑆 are zero they conserve both the total energy, 𝐸 and the total
enstrophy, 𝑍:

d𝐸
d𝑡
= 0, 𝐸 = 1

2
∫
𝑉
(∇𝜓)2 + 𝑓

2
0
𝑁2
(∂𝜓
∂𝑧
)
2
d𝑉,

d𝑍
d𝑡
= 0, 𝑍 = 1

2
∫
𝑉
𝑞2 d𝑉,

(9.6)

where 𝑉 is a volume bounded by surfaces at which the normal velocity
is zero, or that has periodic boundary conditions. The enstrophy is also
conserved layerwise; that is, the horizontal integral of 𝑞2 is conserved at
every level.

9.1.2 Potential Vorticity Flux in the Linear Equations

Let us decompose the fields into a mean (to be denoted with an overbar)
plus a perturbation (denoted with a prime), and let us suppose the pertur-
bation fields are of small amplitude. (In linear problems, such as those
considered in Chapter 8, we decomposed the flow into a ‘basic state’ plus
a perturbation, with the basic state fixed in time. Our approach here is
similar, but soon we will allow the mean state to evolve.) The linearized
quasi-geostrophic potential vorticity equation is then

∂𝑞′
∂𝑡
+ 𝑢∂𝑞

′

∂𝑥
+ 𝑢′ ∂𝑞
∂𝑥
+ 𝑣∂𝑞

′

∂𝑦
+ 𝑣′ ∂𝑞
∂𝑦
= 𝐷′, (9.7)

where𝐷′ represents eddy forcing and dissipation and, in terms of stream-
function,

(𝑢′(𝑥, 𝑦, 𝑧, 𝑡), 𝑣′(𝑥, 𝑦, 𝑧, 𝑡)) = (−∂𝜓
′

∂𝑦
, ∂𝜓
′

∂𝑥
) , (9.8a)
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𝑞′(𝑥, 𝑦, 𝑧, 𝑡) = ∇2𝜓′ + ∂
∂𝑧
( 𝑓
2
0
𝑁2
∂𝜓′
∂𝑧
) . (9.8b)

If the mean is a zonal mean then ∂𝑞/∂𝑥 = 0 and 𝑣 = 0 (because 𝑣 is
purely geostrophic) and (9.7) simplifies to

∂𝑞′
∂𝑡
+ 𝑢∂𝑞

′

∂𝑥
+ 𝑣′ ∂𝑞
∂𝑦
= 𝐷′, (9.9)

where

𝑞 = 𝛽𝑦− ∂𝑢
∂𝑦
+ ∂
∂𝑧
( 𝑓0
𝑁2
𝑏) , ∂𝑞

∂𝑦
= 𝛽− ∂

2𝑢
∂𝑦2
− ∂
∂𝑧
( 𝑓
2
0
𝑁2
∂𝑢
∂𝑧
) , (9.10a,b)

having used the thermal wind relation,

𝑓0
∂𝑢
∂𝑧
= − ∂𝑏
∂𝑦
. (9.11)

Multiplying (9.9) by 𝑞′ and zonally averaging gives the enstrophy
equation:

1
2
∂
∂𝑡
𝑞′2 = −𝑣′𝑞′ ∂𝑞

∂𝑦
+ 𝐷′𝑞′ . (9.12)

The quantity 𝑣′𝑞′ is the meridional flux of potential vorticity; this is
downgradient (by definition) when the first term on the right-hand side
is positive (i.e., 𝑣′𝑞′∂𝑞/∂𝑦 < 0), and it then acts to increase the variance
of the perturbation. (This occurs, for example, when the flux is diffusive
so that 𝑣′𝑞′ = −𝜅∂𝑞/∂𝑦, where 𝜅 may vary but is everywhere positive.)
This argument may be inverted: for unforced, inviscid flow (𝐷 = 0), if
the waves are growing, as for example in the canonical models of baro-
clinic instability discussed in Chapter 8, then the potential vorticity flux is
downgradient.

If the second term on the right-hand side of (9.12) is negative, as it will
be if𝐷′ is a dissipative process (e.g., if𝐷′ = 𝐴∇2𝑞′ or if𝐷′ = −𝑟𝑞′, where
𝐴 and 𝑟 are positive) then a statistical balance can be achieved between
enstrophy production via downgradient transport, and dissipation. If the
waves are steady (by which we mean statistically steady, neither growing
nor decaying in amplitude) and conservative (i.e., 𝐷′ = 0) then we must
have

𝑣′𝑞′ = 0. (9.13)
Similar results follow for the buoyancy at the boundary; we start by

linearizing the thermodynamic equation (9.5) to give

∂𝑏′
∂𝑡
+ 𝑢∂𝑏

′

∂𝑥
+ 𝑣′ ∂𝑏
∂𝑦
= 𝑆′, (9.14)

where 𝑆′ is a diabatic source term. Multiplying (9.14) by 𝑏′ and averaging
gives

1
2
∂
∂𝑡
𝑏′2 = −𝑣′𝑏′ ∂𝑏

∂𝑦
+ 𝑆′𝑏′ . (9.15)
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If the flow is adiabatic (𝑆′ = 0) then growing waves have a downgradient
flux of buoyancy at the boundary. In the Eady problem there is no inte-
rior gradient of basic-state potential vorticity and all the terms in (9.12)
are zero, but the perturbation grows at the boundary. If the waves are
steady and adiabatic then, analogously to (9.13), 𝑣′𝑏′ = 0. In models with
discrete vertical layers or a finite number of levels it is common practice
to absorb the boundary conditions into the definition of potential vortic-
ity at top and bottom, as in the two level model of Section 5.6.

9.1.3 Wave–Mean-Flow Interaction

In linear problems we usually suppose that the mean-flow is fixed and
that the zonal mean terms, 𝑢 and 𝑞 in (9.9), are functions only of 𝑦 and
𝑧. However, in reality we might expect that the mean-flow would change
because ofmomentum and heat flux convergences arising from the eddy–
eddy interactions. To calculate these changes we begin with the potential
vorticity equation (9.1) and, in the usual way, express the variables as a
zonal mean plus an eddy term and obtain

∂𝑞
∂𝑡
+ 𝑣 ∂𝑞
∂𝑦
+ ∂
∂𝑦
(𝑣′𝑞′) = 𝐷. (9.16)

Now, 𝑣 = 0 (since the flow is geostrophic) and themean-flow thus evolves
according to

∂𝑞
∂𝑡
+ ∂
∂𝑦
𝑣′𝑞′ = 𝐷. (9.17)

Similarly, at the boundary the mean buoyancy evolution equation is

∂𝑏
∂𝑡
+ ∂
∂𝑦
𝑣′𝑏′ = 𝑆. (9.18)

To obtain 𝑢 from 𝑞 and 𝑏weuse thermalwind balance, (9.11), to define
a streamfunction 𝛹. That is, since 𝑓0∂𝑢/∂𝑧 = −∂𝑏/∂𝑦, then

(𝑢, 1
𝑓0
𝑏) = (−∂𝛹

∂𝑦
, ∂𝛹
∂𝑧
) , (9.19)

whence, using (9.10a), the zonal mean potential vorticity is

𝑞(𝑦, 𝑧, 𝑡) − 𝛽𝑦 = ∂
∂𝑧
( 𝑓
2
0
𝑁2
∂𝛹
∂𝑧
) + ∂
2𝛹
∂𝑦2
. (9.20)

If 𝑞 is known in the interior from (9.18), and 𝑏 (i.e., 𝑓0∂𝛹/∂𝑧) is known at
the boundaries, then 𝑢 and 𝑏 in the interior may be obtained using (9.20)
and (9.19b). The equations are also summarized in the shaded box onpage
176.

To close the systemwe suppose that the eddy terms themselves evolve
according to (9.9) and (9.14). If in those equations we were to include the
eddy–eddy interaction terms we would simply recover the full system, so



174 Chapter 9. Waves and Mean-Flows

in neglecting those terms we have constructed an eddy–mean-flow sys-
tem, commonly called a wave–mean-flow system because by eliminating
the nonlinear terms in the perturbation equation the eddies will often be
wavelike. It is important to realise that such systems do differ from lin-
ear ones in which we regard the mean flow as fixed; we have gone one
step further and allowed the mean flow to evolve because of the effects of
eddies, but we do not allow the eddies to interact with themselves.

We now consider some more properties of the waves themselves —
how they propagate and what they conserve — beginning with a discus-
sion of the potential vorticity flux and its relative, the so-called Eliassen–
Palm flux.

9.2 Potential Vorticity Flux

The eddy flux of potential vorticitymay be expressed in terms of vorticity
and buoyancy fluxes as

𝑣′𝑞′ = 𝑣′𝜁′ + 𝑓0𝑣′
∂
∂𝑧
( 𝑏
′

𝑁2
) . (9.21)

The second term on the right-hand side can be written as

𝑓0𝑣′
∂
∂𝑧
( 𝑏
′

𝑁2
) = 𝑓0
∂
∂𝑧
(𝑣
′𝑏′
𝑁2
) − 𝑓0
∂𝑣′
∂𝑧
𝑏′
𝑁2

= 𝑓0
∂
∂𝑧
(𝑣
′𝑏′
𝑁2
) − 𝑓0
∂
∂𝑥
(∂𝜓
′

∂𝑧
) 𝑏
′

𝑁2

= 𝑓0
∂
∂𝑧
(𝑣
′𝑏′
𝑁2
) − 𝑓

2
0
2𝑁2
∂
∂𝑥
(∂𝜓
′

∂𝑧
)
2
,

(9.22)

using 𝑏′ = 𝑓0∂𝜓′/∂𝑧.
Similarly, the flux of relative vorticity can be written

𝑣′𝜁′ = − ∂
∂𝑦
(𝑢′𝑣′) + 1

2
∂
∂𝑥
(𝑣′2 − 𝑢′2), (9.23)

and using (9.22) and (9.23), (9.21) becomes

𝑣′𝑞′ = − ∂
∂𝑦
(𝑢′𝑣′) + ∂

∂𝑧
( 𝑓0
𝑁2
𝑣′𝑏′) + 1

2
∂
∂𝑥
((𝑣′2 − 𝑢′2) − 𝑏

′2

𝑁2
) .

(9.24)
Thus the meridional potential vorticity flux, in the quasi-geostrophic ap-
proximation, can be written as the divergence of a vector: 𝑣′𝑞′ = ∇ ⋅
where

≡ 1
2
((𝑣′2 − 𝑢′2) − 𝑏

′2

𝑁2
) ̂𝐢 − (𝑢′𝑣′) ̂𝐣 + ( 𝑓0

𝑁2
𝑣′𝑏′) 𝐤̂. (9.25)

A particularly useful form of this arises after zonally averaging, for then
(9.24) becomes

𝑣′𝑞′ = − ∂
∂𝑦
𝑢′𝑣′ + ∂
∂𝑧
( 𝑓0
𝑁2
𝑣′𝑏′) . (9.26)
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The Eliassen–Palm flux and
Eliassen–Palm relation are
named for quantities that
appeared in Eliassen & Palm
(1961). That paper was mainly
concerned with the transfer
of energy in mountain waves
rather than with matters re-
lated to potential vorticity flux
and large-scale flow. ‘Wave
activity flux’ is a descriptive
alternative name for the EP
flux.

The vector defined by

≡ −𝑢′𝑣′ ̂𝐣 + 𝑓0
𝑁2
𝑣′𝑏′ 𝐤̂ (9.27)

is the wave activity flux, often called the (quasi-geostrophic) Eliassen–
Palm (EP) flux, and its divergence, given by (9.26), gives the poleward flux
of potential vorticity:

𝑣′𝑞′ = ∇𝑥 ⋅ , (9.28)
where ∇𝑥⋅ ≡ (∂/∂𝑦, ∂/∂𝑧)⋅ is the divergence in the meridional-vertical
plane, at constant 𝑥. Unless the meaning is unclear, the subscript 𝑥 will
be dropped.

9.2.1 The Eliassen–Palm Relation

On dividing by ∂𝑞/∂𝑦 and using (9.28), the enstrophy equation (9.12) be-
comes

∂
∂𝑡
+ ∇ ⋅ = , (9.29)

where
= 𝑞

′2

2∂𝑞/∂𝑦
, = 𝐷

′𝑞′
∂𝑞/∂𝑦
, (9.30a,b)

and is given by (9.27). Equation (9.29) is known as the Eliassen–Palm
relation, and it is a conservation law (when = 0) for the pseudomomentum
. The conservation law is exact (in the linear approximation) if themean-

flow is constant in time; it is a good approximation if ∂𝑞/∂𝑦 varies slowly
compared to the variation of 𝑞′2.

Ifwe integrate (9.29) over ameridional area𝐴boundedbywallswhere
the eddy activity vanishes, and if = 0, we obtain

d
d𝑡
∫
𝐴

d𝐴 = 0. (9.31)

The integral is a ‘wave activity’ — a quantity that is quadratic in the ampli-
tude of the perturbation and that is conserved in the absence of forcing
and dissipation. The quantity is an example of a ‘wave activity density’,
generically denoted ; other kinds of wave activity density exist — the
pseudoenergy for example, but we do not consider them here. If there
is no ambiguity we drop the word density and also refer to and as
wave activities. Note that neither the perturbation energy nor the pertur-
bation enstrophy are wave activities of the linearized equations, because
there can be an exchange of energy or enstrophy between mean and per-
turbation — indeed, this is how a perturbation grows in baroclinic or
barotropic instability! This is already evident from (9.12), or in general
take (9.7) with𝐷′ = 0 and multiply by 𝑞′ to give the enstrophy equation,

1
2
∂𝑞′2
∂𝑡
+ 1
2
𝒖 ⋅ ∇𝑞′2 + 𝒖′𝑞′ ⋅ ∇𝑞 = 0, (9.32)
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The value of this approach becomes more apparent when we con-
sider multiple layers of fluid, or equivalently if we express the continu-
ous system in isentropic coordinates, in which the thickness of isentropic
layer of fluid is used as one of the state variables. The residual velocity
in the TEM approach is the same as that which arises from a thickness-
weighted average, and this velocity represents the actual average flow of
fluid parcels more truthfully than does a conventional Eulerian average
at a fixed height. The interested reader may pursue this topic in the refer-
ences given at the end of the chapter.

9.4 The Non-Acceleration Result

In this section we derive an important result in wave–mean-flow dynam-
ics, the so-called non-acceleration condition. Under certain conditions,
to be made precise below, we can show that waves have no net effect on
the mean-flow, an important and somewhat counter-intuitive result.

9.4.1 A Derivation from the Potential Vorticity Equation

Consider how the potential vorticity fluxes affect the mean fields. The
unforced and inviscid zonally-averaged potential vorticity equation is

∂𝑞
∂𝑡
+ ∂𝑣
′𝑞′
∂𝑦
= 0. (9.62)

Now, in quasi-geostrophic theory the geostrophically balanced velocity
and buoyancy can be determined from the potential vorticity via an ellip-
tic equation, as in (9.20), namely

𝑞 − 𝛽𝑦 = ∂
2𝜓
∂𝑦2
+ ∂
∂𝑧
( 𝑓
2
0
𝑁2
∂𝜓
∂𝑧
) , (9.63)

where 𝜓 is such that (𝑢, 𝑏/𝑓0) = (−∂𝜓/∂𝑦, ∂𝜓/∂𝑧). Differentiating (9.62)
with respect to 𝑦 we obtain

[ ∂
2

∂𝑦2
+ ∂
∂𝑧
( 𝑓
2
0
𝑁2
∂
∂𝑧
)] ∂𝑢
∂𝑡
= (∇ ⋅ )𝑦𝑦, (9.64)

where ∇ ⋅ = 𝑣′𝑞′ is the divergence of the EP flux (in the 𝑦–𝑧 plane, i.e.,
∇𝑥 ⋅ ). This is determined using the wave activity equation for pseudo-
momentum which, from (9.29), is

∂
∂𝑡
+ ∇ ⋅ = , (9.65)

where is the pseudomomentum. If thewaves are statistically steady (i.e.,
∂ /∂𝑡 = 0) and have no dissipation ( = 0) then evidently ∇ ⋅ = 0. If
there is no acceleration at the boundaries then the solution of (9.64) is

∂𝑢
∂𝑡
= 0. (9.66)
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Chapter

10
Turbulence

A n apocryphal story that has been attributed to both Horace
Lamb and Werner Heisenberg goes as follows. ‘When I die and
go to Heaven,’ they are each said to have predicted, ‘I would like

to ask my Maker to explain two things, namely turbulence and quantum
electrodynamics. About the latter I am hopeful of getting an answer.’
Aside from the confidence of these twomen as towhere theywere headed,
the story speaks to the inherent difficulty of turbulence. But they may
have been more likely to get an answer had their lives been more disso-
lute, for it is said that turbulence is the invention of theDevil, put onEarth
to torment us.

Putting aside these metaphysical issues, in this chapter we will give
a introduction to three concrete aspects of turbulence: (i) turbulent dif-
fusion; (ii) the classical spectral scaling theory of turbulence in two and
three dimensions; and (iii) the theory of geostrophic turbulence. Before
all that we’ll describe what the ‘problem of turbulence’ actually is.

10.1 The Problem of Turbulence

What is turbulence? Roughly speaking, turbulence is high Reynolds num-
ber fluid flow with both spatial and temporal disorder, and a couple of
beautiful sketches of what Leonardo da Vinci called turbolenza are shown
in Fig. 10.1.

Traditionally, turbulent flow has often been thought of as occurring
at small scales but in fact a turbulent flow has, as a consequence of be-
ing so disordered, a range of scales from large to small. The weather it-
self is an example of a turbulent flow — the great storms sweeping across
the midlatitudes contain many scales of motion within them and, as we
know from experience, are very hard to predict. Still, turbulence in gen-
eral andweather in particular do have predictable aspects—we know that
next winter will be colder than this summer, and that any given month in

188
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Fig. 10.1: Two sketches of tur-
bulent flows from Leonardo’s
notebooks, from around the
year 1500.

Leonardo da Vinci (1452–
1519) is now most famous for
his paintings, in particular
Mona Lisa and The Last Sup-
per, but he was also a sculptor,
architect, inventor and scien-
tist — the embodiment of a
‘renaissance man’. He made a
number of drawings of eddy-
ing flow and coined the word
turbolenza to describe it.

Spainwill bewarmer than the samemonth in theUK, andwe know that if
a storm is approaching from the west it is likely to be windier and rainier
than normal, even if we do not know exactly when or where. We might
like to be able to predict the average flow over a wide area or over a pe-
riod of a time without necessarily predicting every detail. However, the
details may be important — if not in themselves but because they have
an effect on the large scale by transporting and mixing properties of the
fluid; thus, a turbulent fluid will become well-mixed much more quickly
than a laminar fluid. If we drop some ink into a glass of water then we
can speed up the mixing by stirring the water, creating turbulent eddies
that mix the ink into the water. However, to go beyond this picture and
to properly understand the effect of the small scales on the large ones is
very difficult because of the ‘closure problem’, as we now see.

10.1.1 The Closure Problem

Let us suppose that a flow has a mean component and a fluctuating com-
ponent, so that the velocity is given by

𝒗 = 𝒗 + 𝒗′. (10.1)

Here 𝒗 is the mean velocity field, and 𝒗′ is the deviation from that mean.
The mean might be a time average, in which case 𝒗 is a function only of
space and not of time, or it might be a time mean over a finite period (e.g.,
a season if we are dealing with the weather), or it might be some form
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of ensemble mean. The average of the deviation is, by definition, zero;
that is 𝒗′ = 0. We would like to predict the evolution of the mean flow,
𝒗, without predicting the evolution of the eddying flow and to do this we
might substitute (10.1) into the momentum equation and try to obtain a
closed equation for the mean quantity 𝒗. To keep the algebra simple, and
to avoid dealing with the full Navier–Stokes equations, let us carry out
this program for a model nonlinear system that obeys

d𝑢
d𝑡
+ 𝑢𝑢 + 𝑟𝑢 = 0, (10.2)

where 𝑟 is a constant. The average of this equation is:

d𝑢
d𝑡
+ 𝑢𝑢 + 𝑟𝑢 = 0. (10.3)

The value of the term 𝑢𝑢 (i.e., 𝑢2) is not deducible simply by knowing 𝑢,
since it involves correlations between eddy quantities, namely 𝑢′𝑢′. That
is, 𝑢𝑢 = 𝑢 𝑢 + 𝑢′𝑢′ ≠ 𝑢 𝑢. We can go to the next order to try (vainly!) to
obtain an equation for 𝑢 𝑢. First multiply (10.2) by 𝑢 to obtain an equation
for 𝑢2, and then average it to yield

1
2
d𝑢2
d𝑡
+ 𝑢𝑢𝑢 + 𝑟𝑢2 = 0. (10.4)

This equation contains the undetermined cubic term 𝑢𝑢𝑢. An equation
determining this would contain a quartic term, and so on in an unclosed
hierarchy. Many methods of closing the hierarchy make assumptions
about the relationship of (𝑛 + 1)th order terms to 𝑛th order terms, for
example by supposing that

𝑢𝑢𝑢𝑢 = 𝛼𝑢𝑢 𝑢𝑢 + 𝛽𝑢𝑢𝑢, (10.5)

where 𝛼 and 𝛽 are parameters to be determined, one may hope, by a the-
ory. If we know that the variables are distributed normally then such clo-
sures can be made exact, but this is not generally true in turbulence and
all closures that have been proposed so far are, at best, approximations.

This same closure problem arises in the Navier–Stokes equations. If
density is constant (as we shall assume in this chapter) the 𝑥-momentum
equation for an averaged flow is

∂𝑢
∂𝑡
+ (𝒗 ⋅ ∇)𝑢 = −∂𝜙

∂𝑥
− ∇ ⋅ 𝒗′𝑢′. (10.6)

Written out in full in Cartesian coordinates, the last term is

∇ ⋅ 𝒗′𝑢′ = ∂
∂𝑥
𝑢′𝑢′ + ∂
∂𝑦
𝑢′𝑣′ + ∂
∂𝑧
𝑢′𝑤′. (10.7)

These terms, and the similar ones in the 𝑦- and 𝑧-momentum equa-
tions, represent the effects of eddies on the mean flow and are known as
Reynolds stress terms. The ‘closure problem’ of turbulence may be thought
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To suppose that turbulence
acts like an enhanced diffusion
is probably the most widely
used parameterization of tur-
bulence in practical situations.
It is easily implemented and
has a rational basis. On the
other hand, there are many
circumstances when it does
not work, and momentum
in large-scale atmospheric
flows is typically not diffused
downgradient, or diffused at
all.

of as finding a representation of the Reynolds stresses in terms of mean
flow quantities. Nobody has been able to usefully close the system with-
out introducing physical assumptions not directly deducible from the
equations of motion themselves. Indeed it is not clear that in general a
useful closed-form solution even exists.

10.2 Turbulent Diffusion

The most widely used recipe to address the closure problem is by way
of turbulent diffusion, or eddy diffusion. The idea comes by way of an
analogy with molecular diffusion, and is roughly as follows. Suppose that
a fluid carries with it a tracer, 𝜑, that satisfies an equation like

D𝜑
D𝑡
= 𝜅∇2𝜑, (10.8)

where 𝜅 is a molecular diffusivity. For simplicity we suppose the flow
is two-dimensional and incompressible, and that the flow and the tracer
have both a mean and a fluctuating component. The mean component of
(10.8) may then be written as

∂𝜑
∂𝑡
+ ∂𝑢𝜑
∂𝑥
+ ∂𝑣𝜑
∂𝑦
= −∂𝑢

′𝜑′
∂𝑥
− ∂𝑣
′𝜑′
∂𝑦
+ 𝜅∇2𝜑, (10.9)

Now, consider a fluctuating parcel of fluid that, on average, carries
its value of 𝜑 with it a certain distance ℓ, a ‘mixing length’, before mixing
with its surroundings. If there is a mean gradient of 𝜑 in the direction of
movement (the 𝑦-direction, say) then the value of 𝜑′ is given by

𝜑′ = −ℓ∂𝜑
∂𝑦
. (10.10)

If the dominant eddies have a typical speed 𝑣′ then the eddy transport is
given by

𝑣′𝜑′ = −𝛫∂𝜑
∂𝑦
, where 𝛫 = 𝑣′ℓ. (10.11)

In this expression,𝛫 is an eddy diffusivity, the product of the velocity and
length scale of the dominant eddies in the system. If we assume that a
similar process occurs in the 𝑥-direction then (10.1) becomes

∂𝜑
∂𝑡
+ ∂𝑢𝜑
∂𝑥
+ ∂𝑣𝜑
∂𝑦
= 𝛫∇2𝜑 + 𝜅∇2𝜑. (10.12)

Inmost turbulent flows the eddy diffusivity ismuch larger than themolec-
ular diffusivity 𝜅 because the mixing length is orders of magnitude larger
than the corresponding molecular mixing length, which is the average
distance that a molecule goes before interacting with another molecule.
Thus, we commonly neglect the last termon the right-hand side in (10.12).
However, the presence of a molecular viscosity is important in that it al-
lows mixing to take place in the first instance; the turbulence amplifies
the molecular mixing enormously, but that mixing must be present.
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The theory of turbulent dif-
fusion stems from work by

G. I. Taylor and L. Prandtl, two
great figures in fluid dynamics
in the early twentieth century.

Equation (10.12) is a practical recipe, and no more, for treating the
enhanced transport associated with a turbulent flow. It says that if we are
unable to explicitly model the small scales of a turbulent flow, perhaps be-
cause we don’t know what is happening at those scales, then we might be
able to approximately simulate the effects of the small scales using a tur-
bulent diffusion. The idea is rather ad hoc, because we don’t have a good
theory for the magnitude and structure of the eddy diffusion coefficient
𝛫, but it is often better than doing nothing.

10.2.1 Homogenization and Lack of Extrema

Now consider a tracer that is advected and diffused. The diffusion might
be molecular or, if the effects of turbulence on a tracer are indeed dif-
fusive, there might be an eddy diffusion. An important consequence of
this is that, in the absence of additional forcing, there can be no extreme
values of the tracer in the interior of the fluid and the diffusion acts to
homogenize values of the tracer in broad regions.

Consider a tracer that obeys the equation

D𝜑
D𝑡
= ∇ ⋅ (𝜅∇𝜑), (10.13)

where 𝜅 > 0 and the advecting velocity is divergence-free. Given an ex-
tremum, therewill then be a surrounding surface (in three dimensions), or
a surrounding contour (in two), connecting constant values of 𝜑. For def-
initeness consider three-dimensional incompressible flow which in the
steady state flow satisfies

∇ ⋅ (𝒗𝜑) = ∇ ⋅ (𝜅∇𝜑). (10.14)

Integrating the left-hand side over the volume, 𝑉, enclosed by an iso-
surface, 𝐴, of 𝜑, and applying the divergence theorem, gives

∭
𝑉
∇ ⋅ (𝒗𝜑) d𝑉 = ∬

𝐴
(𝒗𝜑) ⋅ 𝒏 d𝐴 = 𝜑∬

𝐴
𝒗 ⋅ 𝒏 d𝐴 = 𝜑∭

𝑉
∇ ⋅ 𝒗 d𝑉 = 0,

(10.15)
where 𝒏 is a unit vector normal to the bounding surface. But the integral
of the right-hand side of (10.14) over the same area is non-zero; that is

∭
𝑉
∇ ⋅ (𝜅∇𝜑) d𝑉 = ∬

𝐴
𝜅∇𝜑 ⋅ 𝒏 d𝐴 ≠ 0, (10.16)

if the integral surrounds an extremum. This is a contradiction for steady
flow. Hence, there can be no isolated extrema of a conserved quantity in
the interior of a fluid, if there is any diffusion at all. The result is kine-
matic, in that 𝜑 can be any tracer at all, active or passive.

Interpretation and consequences

The physical essence of the result is that the integrated effects of diffu-
sion are non-zero surrounding an extremum, and cannot be balanced by
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The theory described in this
section is not an exact theory
of turbulence. It relies on as-
sumptions of spectral locality
and the near constancy of the
energy transfer across scales,
and these assumptions are
not exactly satisfied. Never-
theless, the theory has been
enormously useful and is one
of the enduring foundations of
the field.

where 𝐸 is the energy density per unit mass, 𝑉 is the volume of the do-
main, and the last equality serves to define the discrete energy spectrum
𝒌. We now assume that the turbulence is isotropic, and that the domain

is sufficiently large that the sums in the above equations may be replaced
by integrals. We may then write

𝐸 = 1
𝑉
𝐸 = 1
2𝑉
∫
𝑉
𝒗2 d𝑉 = ∫ (𝑘) d𝑘, (10.20)

where 𝐸 is the average energy, 𝐸 is the total energy and (𝑘) is the energy
spectral density, or the energy spectrum, so that (𝑘) 𝛿𝑘 is the energy in
the small wavenumber interval 𝛿𝑘. Because of the assumed isotropy, the
energy is a function only of the scalar wavenumber 𝑘, where 𝑘2 = 𝒌 ⋅ 𝒌 =
𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2. The units of (𝑘) are 𝐿3/𝑇2 and the units of 𝐸 are 𝐿2/𝑇2.

10.3.2 Inertial-Range Theory

Wenow suppose that the fluid is stirred at large scales and that this energy
is transferred to small scaleswhere it is dissipated by viscosity. The key as-
sumption is to suppose that, if the forcing scale is sufficiently larger than
the dissipation scale, there exists a range of scales that is intermediate be-
tween the large scale and the dissipation scale and where neither forcing
nor dissipation are explicitly important to the dynamics. This assump-
tion, known as the locality hypothesis, depends on the nonlinear transfer
of energy being sufficiently local (in spectral space). This intermediate
range is known as the inertial range, because the inertial terms and not
forcing or dissipation dominate in the momentum balance. If the rate of
energy input per unit volume by stirring is equal to 𝜀, then if we are in a
steady state there must be a flux of energy from large to small scales that
is also equal to 𝜀, and an energy dissipation rate, also 𝜀.

Now, we have no general theory for the energy spectrum of a turbu-
lent fluid, but we might suppose it takes the general form

(𝑘) = 𝑓(𝜀, 𝑘, 𝑘0, 𝑘𝜈), (10.21)

where the right-hand side denotes a function of the spectral energy flux
or cascade rate 𝜀, the wavenumber 𝑘, the forcing wavenumber 𝑘0 and the
wavenumber at which dissipation acts, 𝑘𝜈 (and 𝑘𝜈 ∼ 𝐿−1𝜈 ). In general, the
function𝑓depends on the particular nature of the forcing. Now, the local-
ity hypothesis essentially says that at some scale within the inertial range
the flux of energy to smaller scales depends only on processes occurring
at or near that scale. That is to say, the energy flux is only a function of

and 𝑘, or equivalently that the energy spectrum can be a function only
of the energy flux 𝜀 and the wavenumber itself. From a physical point of
view, as energy cascades to smaller scales the details of the forcing are
forgotten but the effects of viscosity are not yet apparent, and the energy
spectrum takes the form,

(𝑘) = 𝑔(𝜀, 𝑘). (10.22)

The function 𝑔 is assumed to be universal, the same for every turbulent
flow.
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Chapter

11
The Tropical Atmosphere

I n this chapter and the two following we discuss the structure
and circulation of planetary atmospheres. This chapter and the next
focus mainly on Earth, first on the tropical circulation and then on

the midlatitudes and the stratosphere. Then, in Chapter 13, we look at
planetary atmospheres a little more generally. We begin with a brief ob-
servational overview of Earth’s atmosphere as a whole.

11.1 An Observational Overview

Many of the main zonally- and/or time-averaged features of Earth’s at-
mosphere can be seen in Figs. 11.1–11.3. The most prominent features
are:

(i) The temperature falls monotonically with height to an altitude of
about 16 km (in the tropics) or 8 kmat high latitudes, before increas-
ing with height. The lower region is called the troposphere, above
which lies the stratosphere, and the boundary between the two is the
tropopause.

(ii) The temperature also falls monotonically from equator to pole, at
the surface falling from about 300K to 240K at the pole. The
tropopause temperature is more uniform, varying from about
230K to 210K.

(iii) The surface winds are easterly in low latitudes (from about 30°S to
30°N), westerly in mid- and high latitudes, with weak polar easter-
lies in some seasons.

(iv) The winds increase in height, especially in midlatitudes, with pro-
nounced westerly jets in both hemispheres centred at about 40° lat-
itude in both hemispheres.
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Fig. 11.1: (a) Annual mean,
zonally-averaged zonal

wind (heavy contours and
shading) and the zonally-

averaged temperature (red,
thinner contours). (b) An-

nual mean, zonally averaged
zonal winds at the surface.

(c) and (d) Same as (a) and
(b), except for northern hemi-

sphere winter (December–
January–February, or DJF).
The wind contours are at
intervals of 5m s−1 with

dark shading for eastward
winds above 20m s−1 and
light shading for all west-

ward winds, and the temper-
ature contours are labelled.

(v) In the meridional (𝑦–𝑧) plane the circulation in each hemisphere
(Fig. 11.3) is characterized by:
(i) A ‘direct’ Hadley Cell, with warm air rising near the equator

and sinking in the tropics. The winter Hadley Cell is much
stronger and has greater latitudinal extent than the summer
one, with the warm air rising at low latitudes in the summer
hemisphere, sinking in the tropics in the winter hemisphere.

(ii) An ‘indirect’ Ferrel Cell, with cool air apparently rising around
60° and sinking in the tropics.

A direct cell is one that is thermally driven, with warm, buoyant fluid
rising and cold fluid descending. An indirect cell may be mechanically
driven, as we discuss later.
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Fig. 11.2: (a) The tempera-
ture profile of the so-called
US standard atmosphere.
(b) Observed, annually aver-
aged profiles of temperature
in the atmosphere, where
the ordinate is log-pressure.
Tropics here is the average
from 30°S to 30°N, and ex-
tratropics is the average over
the rest of the globe. (The
‘tropopause-based average’
uses the tropopause itself as
the origin of the height scale,
set to be 11 km, but we shall
not discuss it further.)

The Hadley Cell is named for
George Hadley (1685–1768),
a British meteorologist who
put forward perhaps the first
scientific model of Earth’s
overturning circulation, in
which the air rose near the
equator and sank near the
pole.

11.2 An Ideal Hadley Circulation

Tomakesmatters as simple as possiblewe imagine theEarth to be a sphere
with a uniform surface (so no mountains and no oceans), and that there
are no seasons (unlike the case in Fig. 11.3. Because of the differential so-
lar heating the air is warmer at low latitudes than at high, so we may rea-
sonably imagine that thewarm air rises andmoves polewards before cool-
ing and sinking at some high latitude, perhaps near the pole, and return-
ing near the ground. Indeed such a concept was envisioned by George
Hadley over 300 hundred years ago. However, observations tell us that
the air does not go all the way to the pole; rather, it sinks in the subtropics
at about 25–30°. There are two reasons why it must sink, one related to
thermodynamic constraints and the other to hydrodynamic instabilities.
Both are related to the properties of the air as it moves, conserving its
angular momentum.

11.2.1 Zonally-Symmetric Equations of Motion

In Chapter 2 we wrote down the equations of motion on a sphere. If the
flow is zonally symmetric (no longitudinal variation) then, with a little
manipulation, the zonal momentum equation may be written in the form

∂𝑢
∂𝑡
− (𝑓 + 𝜁)𝑣 + 𝑤∂𝑢

∂𝑧
= 0. (11.1)

The variables in this equation are functions of latitude and height (𝜗 and 𝑧)
only, and not longitude, 𝜆, and 𝜁 = −(𝑎 cos 𝜗)−1∂𝜗(𝑢 cos 𝜗). If the vertical
advection is small then a steady solution obeys

(𝑓 + 𝜁)𝑣 = 0. (11.2)

Presuming that the meridional flow 𝑣 is non-zero then𝑓+𝜁 = 0, or equiv-
alently, on the sphere,

2𝛺 sin 𝜗 = 1
𝑎
∂𝑢
∂𝜗
− 𝑢 tan 𝜗
𝑎
. (11.3)
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At the equator we may assume that 𝑢 = 0, because here parcels have risen
from the surface where the flow is weak. Equation (11.3) then has a solu-
tion of

𝑢 = 𝛺𝑎 sin
2𝜗

cos 𝜗
. (11.4)

This gives the zonal velocity of the poleward moving air in the upper
branch of the (model) Hadley Cell, above the frictional boundary layer.
Evidently the zonal velocity increases rapidly with latitude: at 20° and
40° the values of 𝑢 are about 59 and 256m s−1respectively (look ahead
to Fig. 11.6 or Fig. 11.7), becoming far larger than the observed values at
midlatitudes.

Angular momentum conservation

An instructive interpretation of (11.4) comes by way of the conservation
of angularmomentum,𝑚, of a ring of air at a latitude𝜗, as in Fig. 11.4. The
angular momentum per unit pass of a parcel of air with zonal velocity 𝑢
is

𝑚 = (𝑢 + 𝛺𝑎 cos 𝜗)𝑎 cos 𝜗, (11.5)

and if 𝑢 = 0 at 𝜗 = 0 and if 𝑚 is conserved on a poleward moving parcel,
then (11.5) leads directly to (11.4).

The air returning to the equator close to the surface has a small zonal
velocity, meaning that there is a large thermal wind, which we may calcu-
late using the thermal wind expression

2𝛺 sin 𝜗∂𝑢
∂𝑧
= −1
𝑎
∂𝑏
∂𝜗
, (11.6)

where 𝑏 = 𝑔 𝛿𝜃/𝜃0 and 𝛿𝜃 is the deviation of potential temperature from a
constant reference value 𝜃0. (Be reminded that 𝜃 is potential temperature,
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Moisture affects nearly every
facet of tropical dynamics,
and without it the tropics
would be a very different

place — no towering cumu-
lonimbus clouds for exam-
ple. However, convection

would still take place since
the basic state set up by the
radiative forcing would still

be convectively unstable.

This value of the divergence is used in (11.27b) and (11.27c) which, retain-
ing all terms since none are obviously small, become

∂𝜁
∂𝑡
+ 𝒖 ⋅ ∇(𝜁 + 𝑓0) + (𝜁 + 𝑓)

𝑄
𝐻
= −𝑟𝜁, (11.33b)

𝑔∇2ℎ = 𝐤̂ ⋅ ∇ × [𝒖(𝜁 + 𝑓0)] −
1
𝐻
∂𝑄
∂𝑡
− 𝑟𝛿 − ∇2 𝒖

2

2
. (11.33c)

The equation set (11.33) has but one prognostic equation, namely (11.33b),
and so is truly balanced and may be thought of as a generalization of
(11.25) to the case with non-zero heating. The divergence equation is a
nonlinear balance equation except now with a diabatic term on the right-
hand side. The divergent flow itself is computed using the height equa-
tion, by an assumed balance between adiabatic cooling and diabatic heat-
ing. The relationship between velocity and geopotential (or pressure) is
the same as in the adiabatic case, because this arises through the momen-
tum equation. Thus, even in the presence of a heating, gradients of geopo-
tential and temperature remain relatively weak, a result that ultimately
arises from the smallness of the Coriolis parameter. The importance of
the result lies in what it implies about the response of the atmosphere to
a localized heating: the equations provide a scaling for the response of
the velocity, and suggest that the response may become spread out over a
sufficient area to keep the temperature gradients small. This, taken with
the scaling arguments of Section 5.3.1, is called the ‘weak temperature
gradient approximation’.

11.5 Effects of Moisture

In the rest of this chapter we talk about the two things that one immedi-
ately notices about the deep tropics — moisture and convection.

11.5.1 Measures of Moisture

There are various measures of the amount of moisture in the atmosphere,
so let us summarize them. The absolute humidity is the amount of water
vapour per unit volume, with units of kgm-3, or informally gm-3. The
mixing ratio, 𝑤, is the ratio of the mass of water vapour,𝑚𝑣, to that of dry
air,𝑚𝑑, in some volume of air and is thus

𝑤 ≡ 𝑚
𝑣

𝑚𝑑
= 𝜌
𝑣

𝜌𝑑
. (11.34)

It is a nondimensional measure but it is often expressed in terms of grams
per kilogram. In the atmosphere values range from close to zero to about
2 × 10−2 (20 g kg−1) in the tropics on a humid day.

The specific humidity, 𝑞, is the ratio of the mass of water vapour to the
total mass of air — dry air plus water vapour — and so is

𝑞 ≡ 𝑚
𝑣

𝑚𝑑 + 𝑚𝑣
= 𝑤
1 + 𝑤

and 𝑤 = 𝑞
1 − 𝑞
. (11.35a,b)
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12
Midlatitudes and the
Stratosphere

W hy do the dynamics of the midlatitudes differ from their
tropical counterparts? Is the difference common to most plan-
ets or special to Earth? One difference, at least on Earth, is that

themidlatitudes are baroclinically unstable, producing theweather. Even
if the Hadley Cell were to terminate of its own accord before becoming
baroclinically unstable, the radiative equilibrium temperature in midlati-
tudes has a meridional gradient that would be unstable. On other, more
slowly rotating planets, the Hadley Cell might extend nearly all the way
to the pole, in which case the planet may be thought of as entirely tropi-
cal! Venus and Titan (a moon of Saturn) are examples of such all-tropical
planets, and others likely abound outside our Solar System.

Given this rather general point, in this chapter we will discuss two
more specific properties of the Earth’s midlatitudes: (i) The predomi-
nantly eastward surface winds and the strong eastward winds extend-
ing up to the tropopause. (ii) The meridional overturning circulation,
or Ferrel Cell. Both features can be seen in Fig. 11.1 and Fig. 11.3, and
both are consequences of the general phenomena of baroclinic instabil-
ity and geostrophic turbulence, moulded by Earth’s atmosphere, and they
become intertwined in our discussion. None of the dynamics that we dis-
cuss in this chapter involves density variation in a truly essential way and
readers may simplify the discussion by regarding density as constant.

12.1 Jet Formation and Surface Winds

The atmosphere above the surface has a generally eastward flow, with a
broad maximum about 10 km above the surface at around 40° in either
hemisphere. But if we look a little more at the zonally average wind in
Fig. 11.1(a), especially in the Southern Hemisphere, we see hints of there
being two jets—one (the subtropical jet) at around 30°, and another some-
what poleward of this. The subtropical jet is associated with a strong
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meridional temperature gradient at the edge of the Hadley Cell and it is
quite baroclinic — that is, there is a noticeable shear in the zonal wind.
On the other hand, the midlatitude jet is more barotropic (it has little ver-
tical structure, with less shear than the subtropical jet) and lies above an
eastward surface flow. This flow feels the effect of surface friction and
so there must be a momentum convergence into this region, as is seen in
Fig. 12.4. This jet is known as the eddy-driven jet.

We encountered eddy-driven jets in our discussion of barotropic tur-
bulence in Section 10.6. However, that case was homogeneous, with no
preferred latitude for a particular jet, whereas in the atmosphere there ap-
pears to be but one midlatitude jet with a preferred average location, and
in the sections that follow we discuss how this jet is maintained.

12.1.1 The Mechanism of Jet Production

For reference later on we establish a useful form of the zonal momentum
equation. For two-dimensional, horizontally non-divergent flowwehave

∂𝑢
∂𝑡
+ ∂𝑢
2

∂𝑥
+ ∂𝑢𝑣
∂𝑦
− 𝑓𝑣 = −∂𝜙

∂𝑥
− 𝐷𝑢, (12.1)

where 𝐷𝑢 represents the effects of dissipation. We write the variables as
the sum of a zonal mean plus a deviation so that 𝑢 = 𝑢 + 𝑢′ and 𝑣 = 𝑣 + 𝑣′,
and for incompressible two dimensional flow 𝑣 = 0. The zonal average of
(12.1) is then

∂𝑢
∂𝑡
+ ∂𝑢 𝑣
∂𝑦
+ ∂𝑢
′𝑣′
∂𝑦
− 𝑓𝑣 = −𝐷𝑢, (12.2)

but since 𝑣 = 0 we have

∂𝑢
∂𝑡
+ ∂𝑢
′𝑣′
∂𝑦
= −𝑟𝑢, (12.3)

where we also represent dissipation as a linear drag, with 𝑟 being a con-
stant.

We can write the momentum flux in terms of the vorticity flux since,
for non-divergent two-dimensional flow,

𝑣𝜁 = 1
2
∂
∂𝑥
(𝑣2 − 𝑢2) − ∂

∂𝑦
(𝑢𝑣), (12.4)

where 𝜁 = ∂𝑣/∂𝑥 − ∂𝑢/∂𝑦 is the vorticity. After zonal averaging (12.4)
gives

𝑣′𝜁′ = −∂𝑢
′𝑣′
∂𝑦
, (12.5)

and (12.3) becomes
∂𝑢
∂𝑡
= 𝑣′𝜁′ − 𝑟𝑢. (12.6)

If we integrate the vorticity flux between two quiescent latitudes then,
from (12.5), the integral vanishes. Thus, from (12.6), the mean wind, 𝑢,
must also vanish after integration over latitude and time.
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Fig. 12.1: Sketch of the ef-
fects of a midlatitude dis-
turbance on the circulation
around the latitude line C. If
initially the absolute vortic-
ity increases monotonically
poleward, then the distur-
bance will bring fluid with
lower absolute vorticity into
the cap region. Then, using
Stokes theorem, the velocity
around the latitude line C will
become more westward.

I. The vorticity budget

The argument we first present does not use the momentum equation di-
rectly; rather, it uses Kelvin’s circulation theorem, and we use spherical
coordinates. Suppose that the absolute vorticity normal to the surface ,
𝜁 + 𝑓, where 𝑓 = 2𝛺 sin 𝜗, increases monotonically poleward. (A suffi-
cient condition for this is that the fluid is at rest.) By Stokes’ theorem, the
initial circulation, 𝐼𝑖, around a line of latitude circumscribing the polar
cap is equal to the integral of the absolute vorticity over the cap. That is,

𝐼𝑖 = ∫
cap
𝝎𝑖𝑎 ⋅ d𝑨 = ∮

𝐶
𝑢𝑖𝑎 d𝑙 = ∮

𝐶
(𝑢𝑖 + 𝛺𝑎 cos 𝜗) d𝑙, (12.7)

where 𝝎𝑖𝑎 and 𝑢𝑖𝑎 are the initial absolute vorticity and absolute velocity,
respectively, 𝑢𝑖 is the initial zonal velocity in the Earth’s frame of refer-
ence, and the line integrals are around the line of latitude. Let us take
𝑢𝑖 = 0 and suppose there is a disturbance equatorward of the polar cap,
and that this results in a distortion of thematerial line around the latitude
circle 𝐶 (Fig. 12.1).

Since the source of the disturbance is distant from the latitude of in-
terest, if we neglect viscosity the circulation along thematerial line is con-
served, byKelvin’s circulation theorem. Thus, vorticitywith a lower value
is brought into the region of the polar cap — that is, the region poleward
of the latitude line𝐶. Using Stokes’ theorem again the circulation around
the latitude circle𝐶must therefore fall; that is, denoting later values with
a subscript 𝑓,

𝐼𝑓 = ∫
cap
𝝎 fa ⋅ d𝑨 < 𝐼𝑖 , (12.8)

so that
∮
𝐶
(𝑢𝑓 + 𝛺𝑎 cos 𝜗) d𝑙 < ∮

𝐶
(𝑢𝑖 + 𝛺𝑎 cos 𝜗) d𝑙, (12.9)

and thus
𝑢𝑓 < 𝑢𝑖, (12.10)

with the overbar indicating a zonal average. Thus, there is a tendency to
produce westward flow poleward of the disturbance. By a similar argu-
ment westward flow is also produced equatorward of the disturbance —
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Fig. 12.2: Generation of
zonal flow on a rotating

sphere. Stirring in midlati-
tudes (by baroclinic eddies)
generates Rossby waves that

propagate away. Momen-
tum converges in the region

of stirring, producing east-
ward flow there and weaker
westward flow on its flanks.

to see this onemay (with care) apply Kelvin’s theorem over all of the globe
south of the source of the disturbance. Finally, note that the overall situ-
ation is the same in the Southern Hemisphere. Thus, on the surface of a
rotating sphere, external stirring will produce westward flow away from
the region of the stirring.

If the disturbance imparts no net angularmomentum to the fluid then
the integral of 𝑢 cos 𝜗 over the entire hemisphere must be unaltered. But
the fluid is accelerating westward away from the disturbance. Therefore,
the fluid in the region of the disturbance must accelerate eastward, and
this is the essence of the production of midlatitude westerlies on Earth,
where the stirring is maintained by baroclinic instability.

II. Rossby waves and momentum flux

We have seen that a mean gradient of vorticity is an essential ingredient
in the mechanism whereby a mean flow is generated by stirring. Given
that, we expect Rossby waves to be excited, and we now show how those
waves are intimately related to themomentum fluxmaintaining themean
flow.

If a stirring is present in midlatitudes then Rossby waves will be gen-
erated there before propagating away where they dissipate. To the extent
that thewaves are quasi-linear, then just away from the source region each
wave has the form

𝜓 = Re𝐶ei(𝑘𝑥+𝑙𝑦−𝜔𝑡) = Re𝐶ei(𝑘(𝑥−𝑐𝑡)+𝑙𝑦), (12.11)

where 𝐶 is a constant, with dispersion relation (now back to the 𝛽-plane)

𝜔 = 𝑐𝑘 = 𝑢𝑘 − 𝛽𝑘
𝑘2 + 𝑙2
, (12.12)

provided that there is no meridional shear in the zonal flow. The merid-
ional component of the group velocity is given by

𝑐𝑦𝑔 =
∂𝜔
∂𝑙
= 2𝛽𝑘𝑙
(𝑘2 + 𝑙2)2

. (12.13)
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Fig. 12.3: The momentum
transport in physical space,
caused by the propagation
of Rossby waves away from a
source in midlatitudes. The
ensuing bow-shaped eddies
are responsible for a conver-
gence of momentum in the
centre of the bow, which in
turn accelerates the mean
flow eastward. If the arrows
were reversed the momen-
tum transport would still
have the same sign.

Now, the direction of the group velocitymust be away from the source re-
gion, because Rossby waves transport energy away from the disturbance.
Thus, northward of the source 𝑘𝑙 is positive and southward of the source
𝑘𝑙 is negative. That the product 𝑘𝑙 can be positive or negative arises be-
cause for each 𝑘 there are two possible values of 𝑙 that satisfy the disper-
sion relation (12.12), namely

𝑙 = ±( 𝛽
𝑢 − 𝑐
− 𝑘2)
1/2
, (12.14)

assuming that the quantity in parentheses is positive.
The velocity variations associated with the Rossby waves are

𝑢′ = −Re𝐶 i𝑙ei(𝑘𝑥+𝑙𝑦−𝜔𝑡), 𝑣′ = Re𝐶 i𝑘ei(𝑘𝑥+𝑙𝑦−𝜔𝑡), (12.15a,b)

and the associated momentum flux is

𝑢′𝑣′ = −1
2
𝐶2𝑘𝑙. (12.16)

Thus, given that the sign of 𝑘𝑙 is determined by the group velocity, north-
ward of the source the momentum flux associated with the Rossby waves
is southward (i.e., 𝑢′𝑣′ is negative), and southward of the source the mo-
mentum flux is northward (i.e., 𝑢′𝑣′ is positive). That is, the momentum
flux associated with the Rossby waves is toward the source region. Mo-
mentum thus converges in the region of the stirring, producing net east-
ward flow there and westward flow to either side (see Fig. 12.2).

If we think of this effect in physical space, then if 𝑘𝑙 is positive lines of
constant phase (𝑘𝑥 + 𝑙𝑦 = constant) are tilted north-west/south-east, and
the momentum flux associated with such a disturbance is negative (that
is, 𝑢′𝑣′ < 0). Similarly, if 𝑘𝑙 is negative then the constant-phase lines are
tilted north-east/south-west and the associated momentum flux is posi-
tive (𝑢′𝑣′ > 0). The net result is a convergence of momentum flux into
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say. Here the eddy balance is between the Coriolis term and the frictional
term, and integrating over this layer and taking the density there to be
constant gives

− 𝑓𝑉 ≈ −𝑟𝑢𝑠, (12.30)

where 𝑉 = ∫𝑑0 𝑣 d𝑧 is the meridional transport in the boundary layer of
height 𝑑, above which the stress vanishes. The surface return flow is pole-
ward (i.e., 𝑉 > 0 in the Northern Hemisphere) producing an eastward
Coriolis force and an eastward surface flow. In this picture, then, the
midlatitude eastward zonal flow at the surface is a consequence of the
poleward flowing surface branch of the Ferrel Cell, this poleward flow
being required by mass continuity given the equatorward flow in the up-
per branch of the cell. Seen this way, the Ferrel Cell is responsible for
bringing the midlatitude eddy momentum flux convergence to the sur-
face where it may be balanced by friction, as in Fig. 12.7.

A direct way to see that the surface flow must be eastward, given the
eddy momentum flux convergence, is to vertically integrate (12.29) from
the surface to the top of the atmosphere. By mass conservation, the Cori-
olis term vanishes (i.e., ∫∞0 𝑓𝜌𝑣 d𝑧 = 0) and we obtain

∫
∞

0

∂
∂𝑦
(𝑢′𝑣′)𝜌 d𝑧 = [𝜏]∞0 = −𝑟𝜌𝑠𝑢𝑠. (12.31)

That is, the surface wind is proportional to the vertically integrated eddy
momentum flux convergence. Because there is a momentum flux conver-
gence, the left-hand side is negative and the surface winds are positive, or
eastward.

12.2.1 The Eulerian Meridional Overturning Circulation

Wecan obtain an explicit equation for the overturning circulation by com-
bining the momentum equation and the thermodynamic equation using
thermal wind balance. Neglecting all but the largest terms, the zonally-
averaged zonal momentum equation may be written

∂𝑢
∂𝑡
− 𝑓𝑣 = 𝑀, (12.32a)

where𝑀 = −∂𝑦(𝑢′𝑣′) + 𝜌−1∂𝜏/∂𝑧 contains the main eddy flux and fric-
tional terms. At a similar level of approximation let us write the thermo-
dynamic equation as

∂𝑏
∂𝑡
+ 𝑁2𝑤 = 𝐽, (12.32b)

where 𝐽 = 𝑄𝑏 − ∂𝑦(𝑣′𝑏′) is the sum of the heating, 𝑄𝑏, and eddy forcing.
We are assuming, as in quasi-geostrophic theory, that the mean stratifica-
tion, 𝑁2, is fixed and 𝑏 represents only the (zonally averaged) deviations
from this. Finally, we use the mass continuity equation to define a merid-
ional streamfunction 𝛹; that is
∂𝑣
∂𝑦
+ ∂𝑤
∂𝑧
= 0 allows 𝑤 = ∂𝛹

∂𝑦
, 𝑣 = −∂𝛹

∂𝑧
. (12.33a,b)
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Fig. 12.8: Left: The observed
zonally-averaged, Eulerian-
mean, streamfunction in
Northern Hemisphere winter
(DJF, 1994–1997). Negative
contours are dashed, and
values greater or less than
1010 kg s−1 (10 Sv) are shaded,
darker for negative values.
The circulation is clockwise
around the lighter shading.
The three thick solid lines
indicate various measures of
the tropopause. Right: The
residual meridional mass
streamfunction. (Adapted
from Juckes (2001).)

In a steady state we have, from (12.32b),

𝑤 = 1
𝑁2
[𝑄𝑏 −
∂(𝑣′𝑏′)
∂𝑦
] . (12.36a)

Similarly, from themomentum equation the horizontal velocity and eddy
momentum fluxes are related by, in a steady state,

− 𝑓𝑣 = −∂(𝑢
′𝑣′)
∂𝑦
+ 1
𝜌
∂𝜏
∂𝑧
. (12.36b)

Figure 12.7 (and Fig. 12.4) shows that both eddy heat and momentum
fluxes produce an overturning circulation in the same sense as the ob-
served Ferrel Cell. However, these fluxes are not independent of each
other: it is a combination of them, and in particular the potential vortic-
ity flux, that is really responsible for the overturning circulation, as we
now see.

12.3♦ The Residual Ferrel Cell

A revealing way to describe the meridional overturning is by way of the
residual circulation, as discussed in Section 9.3. Written in residual form
on the𝑓-plane, as in (9.50), the zonalmomentumand buoyancy equations
are

∂𝑢
∂𝑡
− 𝑓0𝑣∗ = 𝑣′𝑞′ + 𝐹𝑢, (12.37a)

∂𝑏
∂𝑡
+ 𝑁2𝑤∗ = 𝑄𝑏. (12.37b)

In these equations 𝐹𝑢 is a frictional term, 𝑄𝑏 is the heating term and 𝑣′𝑞′
is the eddy potential vorticity flux. The residual velocities, 𝑣∗ and𝑤∗, are
related to their Eulerian counterparts by

𝑣∗ = 𝑣 − ∂
∂𝑧
( 1
𝑁2
𝑣′𝑏′) , 𝑤∗ = 𝑤 + ∂

∂𝑦
( 1
𝑁2
𝑣′𝑏′) . (12.38)



Chapter

13
Planetary Atmospheres

E arth is but one planet. It is, at least for us humans, the most im-
portant and most interesting one, but there are very many others.
There are at least seven other planets in the Solar System, all of

themwith atmospheres, and someof those planets havemoonswith atmo-
spheres — Titan (orbiting Saturn) and Io (orbiting Jupiter) are two. At the
time of writing we have observed about 4000 planets, and over 500 multi-
planet solar systems, outside the Solar Systembutwithin our galaxy. With
a little extrapolation we can estimate there are billions (yes, billions) of
planets in our galaxy alone, and there are billions of other galaxies in the
Universe. Many of these planets will have atmospheres, and some un-
doubtedly have oceans. And some, almost certainly, have life.

In this chapter our task is to apply geophysical fluid dynamical princi-
ples to these planetary atmospheres and thereby try to understand their
circulation. The task is a hard one because the variety of planets is enor-
mous — they differ from each other in their mass and composition, their
emitting temperature, their size and rotation, whether they are terrestrial
or gas giants (terms we define later) or something else entirely, and in a
host of other parameters. There is much greater variety in planetary at-
mospheres than in the stars they orbit, and there can be no single theory of
their circulation, no planetary equivalent of astronomy’s main sequence
of stars that shows the relation between stellar luminosity and effective
temperature. On the other hand, the basic principles we have learned in
earlier chapters apply to all planetary atmospheres, so we should not be
engaged in describing planets one by one (although Earth is a special case).
Indeed, because there are so many planets, wemust look for general prin-
ciples where we can, else we are hardly doing science at all.

In the sections that follow we aim to give a coherent but introductory
treatment of these atmospheres, to put them into context and see how
and where Earth’s atmosphere might fit into the set of all planetary atmo-
spheres. We begin with a descriptive taxonomy.

257
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Capitalization by example
The Solar System is the sys-
tem of bodies — Earth, the
other planets, minor plan-

ets and so on — orbiting the
Sun, as well as the Sun itself.

Many planets have earth
at their surface, but there is

only one Earth and the Moon
orbits around it. Earth has

only one moon whereas Mars
has two, Phobos and Deimos.

Other solar systems exist in
our galaxy, the Milky Way,

and planets in these solar sys-
tems orbit around their own
suns. There are many galax-
ies in the Universe and there
may even be many universes.

13.1 A Taxonomy of Planets

The formation and evolution of planetary atmospheres is a subject unto
itself which we won’t delve into, and here we give just a brief descriptive
overview of some of the more common types. These types are not all
orthogonal and a given planet may belong in two or more categories, and
the definitions themselves are of disputed authority and subject to debate,
and may well evolve over the years ahead. Readers of this book 20 years
hence may well read this section with a knowing smile.

Planets. A planet is defined to be a body that orbits its host star directly
and ismassive enough to be in hydrostatic equilibrium (effectivelymean-
ing it has formed under its own gravitational force and has a spheroidal
shape) and to dominate its own orbit, clearing it of other bodies. In so
far as this definition is official (i.e., as stated by the International Astro-
nomical Union (IAU) in a statement in 2006) it does not apply to bodies
in other solar systems, but the definition may usefully be taken to apply
more generally. (Many scientists believe the requirement of clearing the
orbit is also too restrictive, in which case dwarf planets, defined below,
are also planets.) The planets in the Solar System are Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

Dwarf planets are bodies that are large enough to form under their own
gravity but are not able to clear their orbit of other bodies. Pluto is the
most famous example, and Eris (in an orbit beyond Neptune) and Ceres
(in the asteroid belt) are two others. More generally, minor planets are
objects that orbit around a star that need not have formed under their
own gravity, including dwarf planets and asteroids but excluding true
planets and comets. There are hundreds of thousands of minor planets
in the Solar System. The IAU also defines small Solar System bodies to be
objects, including asteroids and comets, that directly orbit the Sun that
are too small to be planets or dwarf planets.

Planetary bodies. This is a general term for objects that have formed un-
der their own gravity, including objects that are not big enough to be
true planets (under the definition above) and objects that are not in di-
rect orbit around their host star, but excluding stars themselves. The cat-
egory thus includes all the Solar System planets, the dwarf planets such
as Pluto, large natural satellites such as Titan (in orbit around Saturn and
with a thick methane atmosphere), Triton (in orbit around Neptune and
with a thin, nitrogen atmosphere), and exoplanets.

Exoplanets are planets in other solar systems. They must be big enough
to form under gravity but not so big as to form stars, and so are gen-
erally under the gravitational influence of a host star. The definition of
exoplanets is generally taken to be looser than that for planets in our own
solar system, and might include dwarf planets (if any were to be discov-
ered) but would normally exclude comets and asteroids. A rogue planet is
a planetary body that orbits the galactic centre and not a particular star.



13.1 A Taxonomy of Planets 259

When discussing other planets
a ‘day’, without a qualifying
adjective, still refers to 86,400
seconds, and a ‘year’ refers to
365 days. One may of course
refer to such things as ‘Venu-
sian day’ or a ’Jovian year’, in
which case the terms apply to
the planet in question.

Terrestrial planets. These are planetary bodies that, like Earth, have an at-
mosphere with a distinct lower boundary, often a rocky surface but also
possibly an ocean or other distinct change of character. Other examples
includeMars, Venus andMercury, althoughMercury’s atmosphere is ex-
tremely thin. Some sources restrict the definition to planets of similar
size to Earth, in which case much larger or smaller planets that are oth-
erwise similar might be called quasi-terrestrial. On the other hand, the
term terrestrial planet is often applied to objects that are not, by the IAU
definition, planets, such as Pluto and Titan.

Giant planets. A giant planet may be defined as any planet at least ten
times more massive than Earth (although other definitions may differ
slightly), including ice giants, gas giants (both defined below) and mas-
sive terrestrial planets.

Gas giants. These are giant planets, like Jupiter and Saturn, that are com-
posed mainly of hydrogen and helium and that do not have a sharp in-
terface between atmosphere and solid planet. Jupiter, for example, most
likely has an outer layer ofmolecular hydrogen, an inner layer ofmetallic
hydrogen and a molten rocky core, and is 300 times more massive than
Earth. The outer layer contains water and other heavier compounds but,
in general, gas giants are more than 90% hydrogen and helium, although
not all of it is gaseous: much of the hydrogen may be in liquid form.

Ice giants. Giant planets that are composed of elements heavier than hy-
drogen and helium are called ice giants, although the name is something
of a misnomer. Uranus and Neptune (which are about 15 times more
massive than Earth) are both ice giants and have less than 20% hydro-
gen and helium, the rest being such elements as oxygen, nitrogen and
carbonic compounds such as ammonia and methane.

Super-Earths. A super-Earth is a planet with a mass between that of the
Earth and that of a giant planet. A super-Earth might in principle be
a terrestrial or a gaseous planet, and occasionally they are called ‘mini-
Neptunes’. There are no super-Earths in the Solar System — the outer
planets, Jupiter, Saturn, Uranus and Neptune, are all ‘giants’.

Hot Jupiters. These are gas-giant exoplanets that are in close proximity
to their host stars and that may be tidally locked (with one side perma-
nently facing their sun), and so can be expected to have very high surface
temperatures on one side, low on the other. Their orbital period may
be of order tens of Earth days (which is very short compared to Earth),
but this may also be their rotation period around their own axis (which
would be very long compared to Earth). Hot Neptunes is the analogous
name for somewhat less massive planets, of Neptune size, that may also
be in close orbit around their star.

Brown dwarfs. These are hybrids between small stars and gas-giant plan-
ets, and may at some stage have undergone nuclear fusion and have el-
ements much heavier than hydrogen and helium. We won’t consider
them further in this chapter.
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Others. Various other planet types exist or are hypothesized to exist. For
example, the unpronounceable chthonian planets are gas giants that are
losing or have lost their outer layers and, stillmore exotically, lava planets
are planetary bodies with a surface covered by molten lava. And so on.

We cannot hope to provide theories for all of these types of planets or
the atmospheres they may contain; rather we will first focus on planets
with a shallow, ideal-gas atmosphere and consider the effects of a few key
parameters. In this context ‘shallow’ means that the depth of the atmo-
sphere is a small fraction of the planetary radius in which there may be a
‘weather layer’ similar to the atmosphere of a terrestrial planet. Later in
the chapter we will consider the dynamics of the deeper atmosphere im-
mediately beneath the weather layers that might give rise to such things
as the jets on Jupiter and Saturn.

13.2 Dimensional and Nondimensional Parameters

Consider a terrestrial planet with an atmosphere that obeys the primitive
equations. It is forced by incoming solar (‘shortwave’) radiation which
is balanced by outgoing infra-red (‘longwave’) radiation. There is (if the
obliquity is low) more incoming radiation near the equator, and in many
atmospheres much of the shortwave radiation is absorbed at the surface,
and we represent this thermal forcing by a relaxation to a specified tem-
perature that decreases with latitude and height. There is no external
forcing in the momentum equation, aside from the effects of gravity in
the vertical, but momentum is dissipated by the effects of friction near
the surface, and we may represent this by the effects of a linear drag. If
we use pressure coordinates then the equations ofmotionmay bewritten,

∂𝒖
∂𝑡
+ 𝒖 ⋅ ∇𝒖 + 𝜔∂𝒖

∂𝑝
+ 𝒇 × 𝒖 = ∇𝜙 − 𝑟𝒖, (13.1a)

∂𝜙
∂𝑝
= −𝑅𝑇
𝑝
= −𝑅𝜃
𝑝𝑅
(𝑝𝑅
𝑝
)
𝑐𝑣/𝑐𝑝
, (13.1b)

∇ ⋅ 𝒖 + ∂𝜔
∂𝑝
= 0, (13.1c)

∂𝜃
∂𝑡
+ 𝒖 ⋅ ∇𝜃 + 𝜔 ∂𝜃

∂𝑝
= 𝑄[𝜃], (13.1d)

where 𝒖 is the horizontal velocity and the ∇ operator is taken to be hori-
zontal, meaning at constant pressure and we omit viscous and diffusion
terms. The term −𝑟𝒖 parameterizes surface drag and 𝑟 is large only very
close to the surface, and is negligible in the free atmosphere. The term
𝑄[𝜃] represents heating due to radiative forcing, and 𝜃 is the potential tem-
perature, 𝜃 = 𝑇(𝑝𝑅/𝑝)𝜅 where 𝑝𝑅 is the reference pressure, which we take
to be the mean surface pressure, 𝑝𝑠, and 𝜅 = 𝑅/𝑐𝑝.

For the purposes of nondimensionalization the radiative forcing is
taken to be given by a relaxation to a radiative-equilibrium temperature
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The external Rossby number
is one of the most important
nondimensional numbers
affecting the behaviour of a
planet’s atmosphere. Similar
to the conventional Rossby
number, 𝑈/𝑓𝐿, it is a measure
of the importance of rotation,
but now we take the velocity
to be determined by a ther-
mal wind determined by the
radiative forcing of the planet,
and the length scale to be the
radius of the planet itself. The
conventional Rossby number
may be called the ‘internal
Rossby number’ in this con-
text.

field, 𝜃∗, such that
𝑄[𝜃] =
𝜃∗(𝜗, 𝑝) − 𝜃(𝜗, 𝑝)

𝜏
, (13.2)

where 𝜃∗ is a function of both latitude and height and 𝜏 is a relaxation
timescale. On Earth, 𝜏 is about 10 days, and 𝜃∗ might vary by about 60 K
from equator to pole and about 50 K from surface to the tropopause, and
we denote these values 𝜃𝐻 and 𝜃𝑉 respectively. It is these variations that
produce the circulation. For example (although the exact form is not of
particular concern here) a possible recipe for 𝜃∗ is

𝜃∗ = 𝜃 [1 + 𝛥𝐻
3
(1 − 3 sin2 𝜗) + 𝛥𝑉𝑍] . (13.3)

Here, 𝜃 is the average surface temperature, 𝛥𝐻 is a nondimensional pa-
rameter that determines the equator to pole temperature difference, 𝛥𝑉
is a similar parameter for the vertical, and 𝑍 = − log(𝑝/𝑝𝑠). We then have
𝜃𝐻 = 𝜃𝛥𝐻 and 𝜃𝑉 = 𝜃𝛥𝑉.

We nondimensionalize (13.1) by writing

(𝑢, 𝑣) = (𝑢, 𝑣)
𝑈
, (𝑥, 𝑦) = (𝑥, 𝑦)

𝑎
, 𝜔̂ = 𝜔𝑎

𝑈𝑝𝑠
, 𝑝 = 𝑝

𝑝𝑠
𝜃 = 𝜃
𝜃
, ̂𝑡 = 𝑡

𝑇
𝜙 = 𝜙
𝛷
.

(13.4)

Here, as usual, the hats denote nondimensional quantities and 𝑇,𝑈 and𝛷
denote scaling values for time, horizontal velocity, and pressure, and we
scale temperature and potential temperature with 𝜃. To scale time we use
the planetary rotation rate, 𝑇 = 1/𝛺, and to scale velocity we use thermal
wind balance, based on the radiative equilibrium temperature difference
between equator and pole, as follows. The thermal wind relation for the
zonal wind is

𝑓∂𝑢
∂𝑝
= − 𝑅
𝑝𝑎
∂𝑇
∂𝜗
, (13.5)

where 𝑅 is the gas constant. This suggests the scaling

𝑈 = 𝑅𝜃𝐻
𝛺𝑎
. (13.6)

The usual Rossby number is defined asRo = 𝑈/𝑓𝐿. If we use (13.6) we can
by analogy define the external Rossby number, RoE, also called the thermal
Rossby number, by

RoE =
𝑈
𝛺𝑎
= 𝑅𝜃𝐻
𝛺2𝑎2
. (13.7)

Unlike the Rossby number itself, this is an external parameter of the sys-
tem and not an emergent property of the flow itself. Finally, for the nondi-
mensionalization of the geopotential we use

𝛷 = (𝛺𝑎) × 𝑈 = 𝑅𝜃𝐻, (13.8)

which is analogous to the geostrophic scaling estimate 𝜙 ∼ 𝑓𝑈𝐿 encoun-
tered in Section 5.3.1.
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Fig. 13.12: Left: Sketch of
the potential structure of

Jupiter’s atmosphere (not to
scale) with the jets in a con-

vective layer between a layer
of ohmic dissipation and the

very thin weather layer. Right:
The zonal velocity on Jupiter
obtained from a numerical
simulation (from Heimpel
et al. 2016) of a spherical

shell with inner radius equal
to 0.9 of the planetary ra-
dius, giving 𝜃 = 23°. Red

colours denote eastward flow
and blue colours westward.

If the jets on Jupiter do de-
scend just a few thousand
kilometres into the interior

then they may be regarded as
deep from the point of view of

a meteorologist interested in
the weather layer, but shallow

from the point of a scientist
studying planetary interiors!

there might be about 10 jets between equator and pole. This is a little
larger than the number observed (about 6) but the agreement is as good
as can be expected given the nature of the scaling argument.

It is, however, quite possible that the jets extend a few thousand kilo-
metres, and perhaps considerably more, into Jupiter’s interior, as shown
in Fig. 13.12. In this picture, a significant source of energy is the heat em-
anating from the planetary interior, and the ensuing convection creates a
neutrally stratified region extending up to the weather layer, where solar
absorption — and possibly water vapour and baroclinic instability — sta-
bilize the fluid to dry convection. How deep the jets go is not known with
any certainty. It was once thought that they should go down as far as the
metallic core, but other ideas posit that ‘ohmic dissipation’, which arises
because of the finite electrical conductivity of the molecular hydrogen,
acts much closer to the surface than the metallic layer and may prevent
the jets extending much deeper than a few thousand kilometres, but the
exact depth at which this dissipation becomes significant remains uncer-
tain. Assuming this deeper layer (the ‘convective layer’) in Fig. 13.9 does
exist then jets will form within it, as we now discuss.

Jets in a deep atmosphere

Consider the schematic in the left panel in Fig. 13.12. We will suppose
that the planetary radius is 𝑎 and that there is a convective layer between
some inner shell at a depth 𝑑 and the outer radius (where the very thin
weather layer resides). This convective layermaybenaturally divided into
three regions, one equatorward of the intersection of the tangent cylinder
with the outer radius (and so with latitude less than 𝜃) and denoted the
‘tropical’ region in Fig. 13.12, and two regions poleward of that, one in
either hemisphere. Simple geometry indicates that the angle 𝜃 is given by
𝜃 = cos−1(𝑎 − 𝑑)/𝑎, with 𝜃 = 15° corresponding to 𝑑 = 2, 400 km. If on
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Perhaps to a greater extent
than elsewhere in the book,
here we are making a some-
what speculative model of the
phenomenon, not a quantita-
tive or exact theory.

The planetary rotation orga-
nizes the convection below
the weather layer into alter-
nating zonal jets because of
the topographic beta effect
that arises due to the varia-
tions in thickness of the con-
vecting layer. The convecting
layer effectively forms a lower
boundary condition for the
weather layer, but the inter-
action of the two layers is far
from understood and the jets
in the weather layer might
not even have a one-to-one
correspondence with those in
the convective layer.

the other hand we were to take the inner radius to that of the transition
to metallic hydrogen, and so with 𝑑 ≈ 15, 000 km, then 𝜃 ≈ 40°. Let us
make a simple model of these convective regions to illustrate how jets
form within them, with a super-rotating jet in the tropical region.

We will model the convective region as a layer of shallow water, obey-
ing the potential vorticity equation

D𝑄
D𝑡
= 0, 𝑄 = (𝜁 + 2𝛺

ℎ
) . (13.33)

Here 𝑄 is the potential vorticity, 𝛺 is the rotation rate of the planet
(a constant) and 𝜁 is the vorticity aligned with the planetary rotation (and
not with the radial direction which would be conventional in a shallow
atmosphere). The quantity ℎ is the thickness of the convecting layer and
we write this as ℎ = 𝐻 + ℎ′, where 𝐻 is the mean shell thickness and
ℎ′ are small, time-dependent, deviations of that due to fluid motion, and
𝐻 ≫ ℎ′. From Fig. 13.13 (and Fig. 13.12) we see that 𝐻 varies in the 𝑦
direction, decreasing toward the pole in the region poleward of the inter-
section with the tangent cylinder, but decreasing toward the equator in
the region equatorward of the intersection with the tangent cylinder. It
is this variation with mean thickness, and hence the variation of the back-
ground potential vorticity, that gives rise to a ‘topographic beta effect’ and
hence to zonal jets. To see this explicitly, we make two more assumptions:

(i) The small Rossby number assumption, that |2𝛺| ≫ |𝜁|.
(ii) The variations in mean height occur on a larger scale than the vari-

ations in vorticity.
The potential vorticity is then given by

𝑄 = (𝜁 + 2𝛺
ℎ
) ≈ (𝜁 + 2𝛺

𝐻
) , (13.34)

and, using the assumptions above, its evolution is given by
D𝑄
D𝑡
≈ 1
𝐻

D𝜁
D𝑡
+ 2𝛺 D

D𝑡
( 1
𝐻
) = 1
𝐻

D𝜁
D𝑡
− 2𝛺
𝐻2
𝒗 ⋅ ∇𝐻, (13.35)

and (13.33) becomes
D𝜁
D𝑡
+ 𝛽∗𝑣 = 0 where 𝛽∗ = −2𝛺

𝐻
∂𝐻
∂𝑦
, (13.36a,b)

where 𝑣 is the velocity in the𝑦-direction. We see fromFig. 13.13 that𝛽∗ is
positive in the region insider the tangent cylinder (the extra-tropics) and
negative outside the tangent cylinder, in the tropics.

Equation (13.36) is very similar to the familiar barotropic vorticity
equation on the 𝛽-plane — compare it with (6.23) or (10.63). Thus, if the
flow is turbulent, we may expect alternating zonal jets to form because
of the interaction of Rossby waves with the eddying flow. The intensity
of these jets, and the spacing between them, depends on the size of the
turbulent flow produced by the convection, and that in turn depends on
the heat flux coming up from the planetary interior and the viscosity. The
value of 𝛽∗ is actually similar to the value of 𝛽 itself, because both are a
consequence of the sphericity of the planet.
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Chapter

14
Wind-Driven Gyres

W e now start our voyage into that other great fluid covering
the Earth, the ocean, and we divide the voyage into three legs.
In this first one we look at the essentially horizontal circula-

tion that gives rise to the great gyres in the mid- and high latitudes. In the
next chapter we look at the processes giving rise to the vertical structure
of the ocean and the meridional overturning circulation, and in the third
chapter we look at equatorial circulation and El Niño. Let us first take a
brief look at the observations to see what we have to understand.

14.1 An Observational Overview

The aspect of the ocean that most affects the climate is the sea-surface
temperature (SST), illustrated in Fig. 14.1. Aside from the to-be-expected
latitudinal variation there is significant zonal variation — the western
tropical Pacific is particularly warm, and the western Atlantic is warmer
than the corresponding latitude in the east. These variations owe their
existence to ocean currents, and the vertically averaged currents of the
North Atlantic are illustrated in Fig. 14.2. The most striking features are
the two main gyres — the clockwise, and anticyclonic, subtropical gyre
between about 25°N and 50°N, and the anti-clockwise, and cyclonic, sub-
polar gyre north of that. We can see that these gyres are intensified in the
west; the intensification is most obvious in the subtropical gyre, where
the intense northward flowing current is known as the Gulf Stream, but
is also present in the subpolar gyre.

The same features are present in all of the main basins of the world’s
ocean, as we see in Fig. 14.3, in both Northern and Southern Hemi-
spheres. The western boundary current of the great subtropical gyre in
the North Pacific, flowing northward off the coast of Japan, is known as
the Kuroshio, and similar currents flow southward along the west coast
of Australia and the west coast of Brazil and Argentina in the Southern

289



290 Chapter 14. Wind-Driven Gyres

60°E 120°E 180° 120°W 60°W 0°

60°S

30°S

0°

30°N

60°N

0

4

8

12

16

20

24

28

Fig. 14.1: The sea-surface
temperature (SST, °C) of

the world’s ocean, as deter-
mined from a great many

observations, combined in
the World Ocean Circula-
tion Experiment (WOCE).

Harald Sverdrup (1888–1957)
was a Norwegian meteorol-
ogist/oceanographer who is

most famous for the balance
that now bears his name,
but he also played a lead-
ership role in scientific pol-
icy and was the director of

Scripps Institution of Oceanog-
raphy from 1936–1948.

Hemisphere. The existence of the great gyres, and that they are strongest
in the west, has been known for centuries, and our main task in this chap-
ter is to explain that. It turns out to be a much easier task to explain the
vertically-integrated flow than the vertical structure of the flow and that
is our focus.

14.2 Sverdrup Balance

Let us begin by considering an ocean, forced by a wind stress, 𝝉0 = 𝜏𝑥0 ̂𝐢 +
𝜏𝑦0 ̂𝐣, at the top, that satisfies the equations

− 𝑓𝑣 = −∂𝜙
∂𝑥
+ 1
𝜌0
∂𝜏𝑥
∂𝑧
, 𝑓𝑢 = −∂𝜙

∂𝑦
+ 1
𝜌0
∂𝜏𝑦
∂𝑧
, (14.1a,b)

and 𝜏𝑥 ̂𝐢 + 𝜏𝑦 ̂𝐣 = 𝝉 is the stress acting on the fluid. Since the ocean’s den-
sity is very nearly constant we absorb the quantity 1/𝜌0 into the defini-
tion of stress (the quantities (𝜏𝑥, 𝜏𝑦)/𝜌0 are the ‘kinematic stress’ but are
commonly, if a little loosely, just referred to as the stress). With this new
definition of stress we rewrite (14.1) as

𝑓(𝑣𝑔 − 𝑣) =
∂𝜏𝑥
∂𝑧
, 𝑓(𝑢 − 𝑢𝑔) =

∂𝜏𝑦
∂𝑧
, (14.2)

where (𝑢𝑔, 𝑣𝑔) are the geostrophic velocities given by 𝑓(𝑢𝑔, 𝑣𝑔) =
(−∂𝜙/∂𝑦, ∂𝜙/∂𝑥). The left-hand side is just the ageostrophic velocity, and
if we integrate vertically from the top of the ocean to the base of the Ek-
man layer, where the stress is by definition zero, we obtain

𝑓𝑉𝑎 = −𝜏𝑥0 , 𝑓𝑈𝑎 = 𝜏
𝑦
0 , or 𝑓𝑼𝑎 = 𝐤̂ × 𝝉0, (14.3)

where𝑈𝑎 = ∫Ek(𝑢−𝑢𝑔) d𝑧 is the integral of the ageostrophic velocity over
the Ekman layer, and similarly for 𝑉𝑎, and 𝑼𝑎 = 𝑈𝑎 ̂𝐢 + 𝑉𝑎 ̂𝐣. Evidently the
ageostrophic Ekman transport is at right angles to the surface stress, and
in the ocean the Ekman layer is of order tens of metres thick.
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Fig. 14.2: The streamfunc-
tion of the vertically averaged
flow in the North Atlantic,
obtained by constraining a
numerical model to obser-
vations so giving a ‘state esti-
mate’. Red shading indicates
clockwise flow, and blue shad-
ing anticlockwise. (Courtesy
of Rong Zhang using a gfdl
model and climatologcal
data.)

There is one particularly useful result we can obtain from (14.1). If
we cross differentiate and use the mass conservation equation, ∂𝑢/∂𝑥 +
∂𝑣/∂𝑦 + ∂𝑤/∂𝑧 = 0, we obtain

𝑓∂𝑤
∂𝑧
+ 𝛽𝑣 = ∂𝜏

𝑦

∂𝑥
− ∂𝜏
𝑥

∂𝑦
. (14.4)

Now integrate from the top of the ocean (where 𝑤 = 0) down to some
level, 𝑧, below the base of the Ekman layer where the stress is zero, to
obtain

𝑤(𝑧) + ∫
0

𝑧

𝛽
𝑓
𝑣 d𝑧′ = 1

𝑓
[∂𝜏
𝑦
0
∂𝑥
− ∂𝜏
𝑥
0
∂𝑦
] . (14.5)

If we let the integral go over the entire depth of the ocean, and assume
that the vertical velocity and the stress are zero at the ocean bottom, we
obtain

∫𝛽𝑣 d𝑧 = ∂𝜏
𝑦
0
∂𝑥
− ∂𝜏
𝑥
0
∂𝑦
. (14.6)

This expression is known as the Sverdrup relation. It is remarkable because
it tells us that, at any location in the ocean, the vertically integrated merid-
ional velocity is given by the curl of the wind stress at the surface. Although
there are a number of caveats to this statement (as our assumptions are
not exactly satisfied), the Sverdrup relation is one of the enduring foun-
dations of physical oceanography.

14.3 Ocean Gyres

The equations of motion that govern the three-dimensional, large-scale
flow in the oceans are the planetary-geostrophic equations, discussed in
Chapter 5, namely

D𝑏
D𝑡
= 𝑏̇, ∇3 ⋅ 𝒗 = 0, (14.7a,b)
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The model of ocean gyres de-
scribed here is due to Henry
Stommel (1920–1992), one

of the most creative physical
oceanographers of the twen-
tieth century. He spent most

of his career at the Woods
Hole Oceanographic Institu-
tion (WHOI) and played a

major role in making physical
oceanography a quantita-

tive scientific endeavour. His
forté was the construction

and use of models that were
both simple and relevant, and
the observational and experi-

mental testing of such models.

𝒇 × 𝒖 = −∇𝜙 + ∂𝝉
∂𝑧
, ∂𝜙
∂𝑧
= 𝑏. (14.8a,b)

These equations are, respectively, the thermodynamic equation (14.7a),
themass continuity equation (14.7b), the horizontalmomentum equation
(14.8a), (i.e., geostrophic balance, plus a stress term), and the vertical mo-
mentum equation (14.8b)— that is, hydrostatic balance. The gradient and
divergence operators are two dimensional, in the 𝑥–𝑦 plane, unless noted
with a subscript 3. Simple as they may be compared to the full Navier–
Stokes equations, the equations are still quite daunting: a prognostic equa-
tion for buoyancy is coupled to the advecting velocity via hydrostatic and
geostrophic balance, and the resulting problem is quite nonlinear. How-
ever, it turns out that thermodynamic effects can effectively be eliminated
by the simple device of vertical integration; the resulting equations are
linear, and the only external forcing is that due to the wind stress. This
device enables us to construct a rather simple but very revealing model of
the ocean circulation, as follows.

14.3.1 The Stommel Model

Take the curl of (14.8a) (that is, cross-differentiate its𝑥 and𝑦 components)
and integrate over the depth of the ocean to give

∫𝒇∇ ⋅ 𝒖 d𝑧 + ∂𝑓
∂𝑦
∫ 𝑣 d𝑧 = curl𝑧(𝝉𝑇 − 𝝉𝐵), (14.9)

where the operator curl𝑧 is defined by curl𝑧𝑨 ≡ ∂𝐴𝑦/∂𝑥 − ∂𝐴𝑥/∂𝑦 =
𝐤̂ ⋅ ∇ × 𝑨, and the subscripts 𝑇 and 𝐵 are for top and bottom; the stress at
the bottom, although small, must be retained to find a solution, as we will
discover. Equation (14.9) then becomes

𝛽𝑉 = curl𝑧(𝝉𝑇 − 𝝉𝐵), (14.10)
where 𝑉 is the vertical integral of 𝑣 over the entire depth of the ocean
(and similarly for𝑈 later on). Evidently, the thermodynamic fields do not
affect the vertically integrated flow.
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Streamfunction Wind stress Fig. 14.5: Two solutions of the
Stommel model. Upper panel
shows the streamfunction of
a single-gyre solution, with a
wind stress proportional to
− cos(π𝑦/𝑎) (in a domain of
side 𝑎), and the lower panel
shows a two-gyre solution,
with wind stress proportional
to cos(2π𝑦/𝑎). In both cases
𝜖𝑆 = 0.04.

Walter Munk (1917–) is a
Viennese-born American phys-
ical oceanographer who spent
most of his career at Scrippts
Institution of Oceanography.
He has made important con-
tributions to a host of prob-
lems in oceanography, espe-
cially in the areas of waves
and tides.

14.3.3 The Munk Problem: Using Viscosity Instead of Drag

Anatural variation on the Stommel problem is to use a harmonic viscosity,
𝜈∇2𝜁, in place of the drag term−𝑟𝜁 in the vorticity equation, the argument
being that the wind-driven circulation does not reach all the way to the
ocean bottom so that an Ekman drag is not appropriate. This variation is
called the ‘Munk problem’ or ‘Munk model’. The problem is to find and
understand the solution to the (dimensional) equation

𝛽∂𝜓
∂𝑥
= curl𝑧𝝉𝑇 + 𝜈∇2𝜁 = curl𝑧𝝉𝑇 + 𝜈∇4𝜓 (14.36)

in a given domain, for example a square of side 𝑎. The nondimensional
version of this is

− 𝜖𝑀∇4𝜓̂ +
∂𝜓̂
∂𝑥
= curl𝑧𝝉𝑇, (14.37)

where 𝜖𝑀 = (𝜈/𝛽𝑎3).
Because the equation is of higher order we need two boundary condi-

tions at each wall to solve the problem uniquely, and as before for one of
them we choose 𝜓 = 0 to satisfy the no-normal-flow condition. For the
other condition it is common to use a no-slip condition; that is 𝜓𝑛 = 0
where the subscript denotes the normal derivative of the streamfunction,
so that, for example, at 𝑥 = 0 and 𝑥 = 𝑎 we have 𝑣 = 0. As with the Stom-
mel problem the solution may be found by boundary-layer methods, and



Chapter

15
The Overturning Circulation
and Thermocline

I n the previous chapter we studied the horizontal, vertically inte-
grated, flow of the world’s oceans. In this chapter we look at the ver-
tical structure of the oceans and the meridional overturning circulation

(MOC), which is the circulation in the vertical–meridional plane.

15.1 The Observations

Our main goals in this chapter are to explain two important phenomena:
(i) The structure of the temperature and density of the ocean in the

vertical–meridional plane;
(ii) The circulation of the ocean in that same plane.

As one might expect it is much harder to observe the interior of the
ocean than the surface ocean, or the atmosphere. Because water is almost
opaque to electromagnetic radiationwe actually have to drop instruments
into the ocean to measure its deep properties. These days measurements
come from a combination of moored instruments, hydrographic surveys,
floats, gliders and satellites (which mostly measure surface properties).
The various measurements are combined in some fashion (often in com-
bination with a numerical model) to give a ‘state estimate’ of the ocean,
and we now have a decent coarse-grained view of the density structure
and circulation of the sub-surface ocean, althoughwith far less detail than
our view of the atmosphere.

15.1.1 The Thermocline

The density structure of the Atlantic Ocean (and the Pacific is similar) is
illustrated in Fig. 15.1. Here we see that the main gradients of density are
concentrated in the upper one kilometre or so of the ocean, in the main
thermocline, which serves to connect the relatively warm surface waters
with the much colder abyssal waters. (The main thermocline exists year

305



306 Chapter 15. The Overturning Circulation and Thermocline

10 N 20 N 30 N 40 N

Latitude

1000

2000

3000

4000

5000

0

D
e
p
th

(m
)

60 S            40 S            20 S            0               20 N           40 N          60 N

Latitude

250

1000

2000

3000

5000

     0

D
e

p
th

 (
m

)

500

750

4000

Fig. 15.1: The potential den-
sity in the Atlantic ocean.

On the left is the climatolog-
ical zonally-averaged field,

plotted with a break in the
vertical scale at 1000 m. On

the right is a section at 53°W.
Both plots show a region

of rapid change of density
(and temperature) concen-

trated in the upper kilo-
metre, in the main thermo-
cline, below which the den-
sity is much more uniform.

round; the seasonal thermocline, which is not visible in these plots, is a
much shallower regionnear the surface overwhich the temperature gradi-
ent varies seasonally.) The thermocline is much weaker at high latitudes,
since the near-surface waters are already cold, and it is shallower at low
latitudes, as we see in Fig. 15.2. The abyssal temperature at all latitudes is
about 2°C, which is similar to the surface temperature at high latitudes,
and this is consistent withwater at high latitudes sinking, spreading equa-
torward and filling the abyss.

15.1.2 The Meridional Overturning Circulation

Closely associated with the density structure of the ocean is the merid-
ional overturning circulation, or MOC, and this is illustrated in Fig. 15.3.
Focusing on the red, northern cell we see water sinking at high latitudes,
spreading south at depth, and upwelling largely in the Southern Ocean;
the water in this cell is called North Atlantic Deep Water, or nadw. The
blue cell shows water sinking at high southern latitudes and spreading
north underneath the nadw before rising to mid-depth and returning;
this cell contains Antarctic Bottom Water, or aabw. The Pacific Ocean has
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in the North Pacific and
North Atlantic at the lon-
gitudes and latitudes indi-

cated. Note the shallowness
of the equatorial thermo-

clines (especially in the At-
lantic), and the weakness of
the subpolar thermoclines.



15.2 A Mixing-Driven Overturning Circulation 307

Atlantic
      0 

    1 

    2 

    3 

    4 

    5 

   6

    -80        -60         -40        -20           0           20         40           60          80

20 

                   

10    

   

      

       

 0     

   

             

–10  

                 

– 20   

Sv

Latitude                                            

D
e

p
th

 (
 k

m
) 

 

−
8

−
6

−
6

−
4

−
4

−4

−2

−2

−2

−
2

−
2

0

0

0

0

0 0

0

0

2

2

2

2

24

4

4

4

4
6

6

6

6

6

88

8

8

1
0

10

10 1
0

12

12

12

14

1
4

14

16

16

Fig. 15.3: The overturning
circulation in the Atlantic
Ocean as determined from
observations in combina-
tion with a simple (‘inverse’)
model. Red shading indicates
a clockwise circulation, with
water sinking in the North
Atlantic and rising in the
South, and this cell is predom-
inantly North Atlantic Deep
Water, or nadw. The blue, an-
ticlockwise deep cell contains
Antarctic Bottom Water that
originates in the Southern
Ocean and spreads north-
wards underneath the nadw.
(Figure kindly provided by
Loic Juillion using data and a
methodology similar to that
of Lumpkin & Speer 2007.)

amuchweaker overturning circulation to such an extent that the globally-
averaged overturning circulation largely reflects that of the Atlantic. The
overturning circulation and the thermocline are, as one might expect, in-
timately linked and to explain onewemust explain the other. Let us begin
with a phenomenological discussion of the overturning circulation.

15.2 A Mixing-Driven Overturning Circulation

To begin with the simplest case let us consider the circulation in a closed,
single hemispheric basin, and suppose that there is a net surface heating
at low latitudes and a net cooling at high latitudes that maintains a merid-
ional temperature gradient at the surface. It seems reasonable to imag-
ine that there is a single overturning cell, with water sinking at high lati-
tudes rising at low latitudes before returning to polar regions in the upper
ocean, as illustrated schematically in Fig. 15.4 and Fig. 15.5. Is this a rea-
sonable expectation? Can we explain why the water circulates at all?

15.2.1 Why the Water Circulates

Let us suppose that initially all the interior water is at some intermediate
temperature, and we will also suppose that the flow in the interior is adi-
abatic, meaning that to a good approximation the subsurface water con-
serves its potential temperature as it moves around. Now, given a warm
interior, cold surface water at high latitudes will be convectively unstable
and will therefore sink, so that very quickly the dense water extends all
theway to the ocean floor. By hydrostasy the pressure in the deep ocean is
then higher at high latitudes than at low, where the water is warmer, and
a pressure gradient then causes water to move equatorward, filling the
abyss. Eventually, the entire ocean becomes filled with cold dense water
of polar origin, except for a very thin layer at the surface, since the ocean
surface at lower latitudes is kept at a higher temperature. Once the abyss



308 Chapter 15. The Overturning Circulation and Thermocline

Heat difuses in from

warm surface,

warming deep water

Latitude
Equator Pole

Warm surface

Dense water displaces light water

and moves equatorward

Cold surface

water is warmed and rises

Sinking dense

water

Polewards

return flow

Fig. 15.4: Schematic of a
single-celled meridional over-

turning circulation. Sinking
is concentrated at high lati-
tudes and upwelling spread

out over lower latitudes.

is filled with dense water the surface polar waters will no longer be convec-
tively unstable. The convectionwill thus cease and the circulationwill halt!
However, we know from observations that the deep ocean continues to
circulate, albeit slowly, with the deep ocean completely overturning and
the water being replaced on timescales of a few hundred years. There are
two causes of the continued circulation, one being that the ocean mixes
and the other being that the wind forcing at the top drives a deep circula-
tion; we consider the effects of mixing first and come back to the wind-
driving later in the chapter.

Mixing — either molecular mixing or in reality turbulent mixing, as
discussed in Chapter 10 — will cause the higher surface temperatures in
lower latitudes to diffuse down into the ocean interior. That is, the inte-
rior is slowly warmed by heat diffusion from above. This diffusion keeps
the deep ocean slightly warmer than the cold polar surface waters, en-
abling the high-latitude convection and so the circulation itself to persist.
The diffusion also extends the vertical temperature gradient down into
the interior and we see in Fig. 15.2 how the vertical temperature profile
varies with latitude. Except at the highest latitudes where the water is
sinking and so almost uniform all the way to the bottom, we see that the
temperature gradient is concentrated in the upper kilometre of the ocean,
and this region is called themain thermocline. Why should the vertical tem-
perature gradient be concentrated in the upper ocean? The upper ocean
is the region of the gyres, which certainly creates a temperature gradi-
ent, but the underlying reason that the vertical temperature gradient is
strongest there is more basic, as we now explore.

15.2.2 A Simple Kinematic Model of the Thermocline

In mid- and low latitudes cold water with polar origins upwells into a
region ofwarmerwaterwhere high temperatures are diffusing down, and
a simplemodel of this is the one-dimensional advective–diffusive balance,



15.2 A Mixing-Driven Overturning Circulation 309

z
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Fig. 15.5: Cartoon of a single-
celled meridional overturning
circulation, with a wall at the
equator. Sinking is concen-
trated at high latitudes and
upwelling spread out over
lower latitudes. The ther-
mocline is the boundary be-
tween the cold abyssal waters,
with polar origins, and the
warmer near-surface subtropi-
cal water. Wind forcing in the
subtropics pushes the warm
surface water into the fluid
interior, deepening the ther-
mocline as well as circulating
as a gyre.

namely

𝑤∂𝑇
∂𝑧
= 𝜅∂
2𝑇
∂𝑧2
, (15.1)

where 𝑤 is the vertical velocity (which is positive), 𝜅 is a diffusivity and 𝑇
is temperature. The equation represents a balance between the upwelling
of cold water and the downward diffusion of heat. If 𝑤 and 𝜅 are given
and are constant, and if 𝑇 is specified at the top (𝑇 = 𝑇𝑇 at 𝑧 = 0) and if
𝑇 = 𝑇𝐵 at great depth (𝑧 = −∞) then the temperature falls exponentially
away from the surface according to

𝑇 = (𝑇𝑇 − 𝑇𝐵)e𝑤𝑧/𝜅 + 𝑇𝐵. (15.2)

The scale atwhich temperature decays away from its surface value is given
by

𝛿 = 𝜅
𝑤
, (15.3)

and this is an estimate of the thermocline thickness. It is not a useful a-
priori estimate, because the magnitude of 𝑤 depends on 𝜅. However, it
is reasonable to see if the observed ocean is broadly consistent with this
expression. The diffusivity 𝜅 (which is an eddy diffusivity, maintained by
small-scale turbulence) can be measured and is found to have values that
range between 10−5m2 s−1 and 10−4m2 s−1 over much of the ocean, with
higher values locally in some abyssal and shelf regions.

The vertical velocity is too small to be measured directly, but vari-
ous estimates based on deep water production suggest a value of about
10−7ms−1. Using this and the smaller value of 𝜅 in (15.2) gives an e-
folding vertical scale, 𝜅/𝑤, of order a hundred metres, beneath which the
stratification is predicted to be very small (i.e., a nearly uniform density).
Using the larger value of 𝜅 increases the vertical scale to 1000m, similar to
the observed value. Quantitative uncertainties aside, themodel has a very
robust result, that the temperature gradient is concentrated in the upper ocean.
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as seen in Fig. 15.7. Here, 𝐶0 is the strength of the convective source,
which we take as given, 𝑇𝐼(𝑦) is the polewards flow in the interior, in the
lower layer, across the latitude line at 𝑦, 𝑇𝑊(𝑦) is the equatorial flow in
the deep western boundary current at 𝑦, and 𝑈(𝑦) is the total upwelling
polewards of 𝑦. The terms on the left-hand side are mass sources to this
region and the terms on the right-hand side are losses, and all are in units
of m3 s−1 (since density is constant, mass balance and volume balance are
synonymous). Over the entirety of the domain the source term must bal-
ance the upwelling, so that 𝐶0 = 𝑈(0), and we assume the upwelling is
uniform.

The poleward transport in the interior is given using (15.13),

𝑇𝐼(𝑦) = ∫ 𝑣ℎ d𝑥 = ∫
𝑓𝑆
𝛽

d𝑥. (15.15)

Now, since the upwelling 𝑆 is uniform, and ∫ 𝑆 d𝑥 d𝑦 = 𝑆𝐿𝑥𝐿𝑦 = 𝑈(0) =
𝐶0, we have

𝑇𝐼(𝑦) =
𝑓𝐶0
𝛽𝐿𝑦
= 𝐶0𝑦
𝐿𝑦
, (15.16)

using 𝑓 = 𝛽𝑦. It is important to realise that this result is obtained using
the potential vorticity equation and not the mass continuity equation.

The upwelling north of latitude 𝑦 is given by

𝑈(𝑦) = 𝑆𝐿𝑥(𝐿𝑦 − 𝑦) = 𝐶0(1 −
𝑦
𝐿𝑦
). (15.17)

Using (15.16) and (15.17) in (15.14) gives

𝑇𝑊(𝑦) =
2𝐶0𝑦
𝐿𝑦
. (15.18)

This is a remarkable result, for it tells us that the strength of the western
boundary current near the source region is twice the strength of the source
itself! The result arises because some of the flow in the deep layer is recir-
culating, going round and round without upwelling or coming from the
source itself. The calculation itself is very approximate, but the fact that
there is a deep western boundary current, and that the flow recirculates,
transcend its limitations and these are robust predictions.

A final point to note is that we have taken the convective source to
have a given magnitude. In reality, the strength of the source must match
the strength of the upwelling, this being the strength of the overturning
circulation itself. This is a function of the diapycnal diffusivity and the
meridional temperature gradient, as described in Sections 15.2 and 15.3.

15.4 An Interhemispheric Overturning Circulation

As attractive as it may be, the theory of the overturning circulation and
thermocline described in the preceding sections is only part of the picture.
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Fig. 15.8: An idealized in-
terhemispheric overturning
circulation. Water from the

north sinks, because it is the
densest water in the system.

It displaces any lighter wa-
ter, filling up the entire basin

(i.e., both hemispheres) ex-
cept for a thermocline near
the surface. A circulation is
maintained if heat diffuses

in from the surface, warming
the deep water and enabling
it to rise. The strength of the
circulation depends on the

diffusivity, and if it is zero the
circulation eventually halts.

In fact, much of the deep circulation is interhemispheric: we can see in
Fig. 15.3 that much of the water that sinks in the North Atlantic upwells
around 40°S or even further south in the Southern Ocean (although this
only became truly apparent at the beginning of twenty-first century). In
the rest of the chapter we try to understand why that should be.

15.4.1 A Basic Mechanism

An interhemispheric circulation of itself is of no particular surprise. For
simplicity consider a ‘shoebox’ ocean consisting of a single basin stretch-
ing fromhigh northern latitudes to high southern latitudes, and let us sup-
pose that the surface at high latitudes in one hemisphere, say the North,
is particularly cold and dense, as in Fig. 15.8. The physical situation then
actually differs little from the situation described in Section 15.2. The
densest water in the system sinks, and spreads equatorward. However,
there is no reason that it should all upwell before it reaches the equa-
tor, although if the equatorial regions are warm the upwelling may be
strong there because the downward diffusion of heat warms the deep wa-
ter. Nonetheless, if the diffusion is small the densest water in the system
displaces any lighter water and fills up both hemispheres of the basin, ex-
cept for a thermocline near the surface. The flow away from the convec-
tive region occurs, as in the single-hemisphere model, in deep western
boundary currents, with upwelling and return flow in the basin interior.

A non-zero circulation depends, as with the mixing-driven circula-
tion, on there being a non-zero diffusivity to warm the deep water and
allow it to rise. If the diffusivity were zero, then the entire basin would
simply fill with the densest available water (with the exception of an in-
finitesimally thin layer at the surface) and the circulation would then halt.

15.4.2 A Wind-Driven Interhemispheric Circulation

The mixing-driven circulation described above is not the only mecha-
nism, and is not in fact the main mechanism, whereby deep water ac-
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E quatorial dynamics differs from its midlatitude counterpart be-
cause theCoriolis parameter is relatively small and theRossbynum-
ber large, and balanced and unbalanced dynamics then become in-

tertwined. Yet if wemovemore than a few degrees away from the equator
the Rossby number again becomes quite small, suggesting that familiar
ways of investigating the dynamics — Sverdrup balance for example —
might yet play a role. Not surprisingly, the equatorial ocean is the home
to a multitude of interesting phenomena and in this chapter we discuss
just two of the most striking, namely the equatorial undercurrent and El
Niño. Let us first see what the observations tell us.

16.1 Observations of the Equatorial Ocean

The most distinctive features of equatorial oceans are illustrated in
Fig. 16.1 and the top panel of Fig. 16.2, namely:

(i) A shallow westward flowing surface current, typically confined to
the upper 50m or less, strongest within a few degrees of the equa-
tor, although not always symmetric about the equator. Its speed is
typically a few tens of centimetres per second.

(ii) A strong coherent eastward undercurrent extending to about
200m depth, confined to within a few degrees of the equator. Its
speed is up to a metre per second, and it is this current that domi-
nates the vertically integrated transport at the equator. Beneath the
undercurrent the flow is relatively weak.

(iii) Westward flow on either side of the undercurrent, with eastward
countercurrents poleward of this. The Pacific countercurrent is
strongest in the Northern Hemisphere, where it reaches the sur-
face.

324
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Fig. 16.1: Sections of the
mean zonal current (shading
and associated contours) at
two longitudes in the Pacific
(upper panels), in the Atlantic
(lower left) and in the Indian
Ocean (lower right). The con-
tours are every 20 cm s-1 in
the upper two panels and
every 10 cm s-1 in the lower
panels. Note the well-defined
eastward undercurrent at
the equator in all panels, and
a weaker eastward counter-
current at about 6°N and/or
6°S. The red, more horizontal,
lines are isolines of potential
density.

These features are largely common to both the Atlantic and Pacific
Oceans and to a somewhat lesser extent in the Indian Ocean. We start
our dynamical explorations with the vertically integrated flow.

16.2 Vertically Integrated Flow and Sverdrup Balance

In midlatitudes the large scale currents system may be understood us-
ing the planetary geostrophic equations of motion, with Sverdrup bal-
ance (Section 14.2) providing a solid foundation on which to build. As
we approach lower latitudes the Coriolis parameter, 𝑓, decreases and the
Rossby number increases and one might expect that dynamics based on
geostrophic balance will ultimately fail. However, it is only very close to
the equator that the Rossby number exceeds unity: if we take a velocity
of 0.5m s−1and a length scale of 500 km then the Rossby number at 5°
latitude is 0.08, at 2° it is 0.2 and at 1° it is 0.4. These numbers suggest
that until we are virtually at the equator we can use some of the familiar
tools from the midlatitude dynamics. Let us first see the extent to which
the familiar Sverdrup balance can explain the vertically integrated flow.
The horizontal momentum may be written

∂𝒖
∂𝑡
+ 𝒖 ⋅ ∇𝒖 + 𝒇 × 𝒖 = −∇𝜙 + 1

𝜌0
∂𝝉
∂𝑧
, (16.1)
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Fig. 16.2: Vertically integrated
zonal transport in the Pacific.

Red colours indicate eastward
flow, blue colours westward.

The top panel shows the
observed flow, the middle

panel shows the flow calcu-
lated using Sverdrup balance
with the observed wind, and
the bottom panel shows the
flow calculated with a ‘gen-
eralized’ Sverdrup balance

that includes the nonlinear
terms in a diagnostic way.

where 𝝉 is the stress on the fluid. As in earlier chapters, we will absorb
the constant density, 𝜌0, into the stress, so that 𝝉/𝜌 → 𝝉. The mass con-
servation equation is

∂𝑢
∂𝑥
+ ∂𝑣
∂𝑦
+ ∂𝑤
∂𝑧
= 0, (16.2)

which, on vertical integration over the depth of the ocean, gives

∂𝑈
∂𝑥
+ ∂𝑉
∂𝑦
= 0, (16.3)

where 𝑈 and 𝑉 are the vertically integrated zonal and meridional veloc-
ities (e.g., 𝑈 = ∫𝑢 d𝑧) and we assume the ocean has a flat bottom and a
rigid lid at the top. If we assume the flow is steady and integrate (16.1)
vertically, then take the curl and use (16.3), we obtain

𝛽𝑉 = curl𝑧(𝝉𝑇 − 𝝉𝐵) + curl𝑧𝑵, (16.4)

where the subscripts 𝑇 and 𝐵 denote top and bottom, 𝑵 represents all
the nonlinear terms and curl𝑧 is defined by curl𝑧𝑨 ≡ ∂𝐴𝑦/∂𝑥 −∂𝐴𝑥/∂𝑦 =
𝐤̂⋅∇3×𝑨. Equations (16.4) and (16.3) are closed equations for the vertically
averaged flow.

If we neglect the nonlinear terms and the stress at the bottom (we’ll
come back to these terms later) then (16.4) becomes

𝛽𝑉 = curl𝑧𝝉𝑇. (16.5)
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Fig. 16.3: Schema of Sverdrup
flow at the equator between
two meridional boundaries.
The mean winds are all west-
ward, but with a minimum
in magnitude at the equator.
By Sverdrup balance, (16.5),
the wind stress produces the
divergent meridional flow
shown, which in turn induces
an eastward equatorial zonal
flow, strongest in the western
part of the basin.

This is just Sverdrup balance, familiar from Chapter 14. The zonal trans-
port is obtained by differentiating (16.5) with respect to 𝑦, using (16.3) to
replace ∂𝑦𝑉 with ∂𝑥𝑈, and then integrating from the eastern boundary
(𝑥𝐸). This procedure gives

𝑈 = − 1
𝛽
∫
𝑥

𝑥𝐸

∂
∂𝑦

curl𝑧𝝉𝑇 d𝑥′ + 𝑈(𝑥𝐸, 𝑦). (16.6)

We don’t integrate from the western boundary because a boundary layer
can be expected there, whereas the value of 𝑈 at the eastern boundary,
namely 𝑈𝐸, will be small.

The wind stress is known from observations and we can then use
(16.6) to calculate 𝑈, which is found to be generally positive (eastward)
at the equator. The solution is plotted in the middle panel of Fig. 16.2.
There is a good but not perfect agreement with the observations, shown
in the top panel. In the western equatorial Pacific the observed eastward
flow is quite broadwhereas the eastward Sverdrup flow is narrow, flanked
on either side by westward flow, and much of this discrepancy can be at-
tributed to the role of the nonlinear and frictional terms, as illustrated in
the bottom panel of Fig. 16.2. To obtain the results shown, the the nonlin-
ear terms (which have the form curl𝑧(∫ 𝒖⋅∇𝒖 d𝑧) are included in a diagnos-
tic fashion. That is to say, the term curl𝑧𝑵 is evaluated from observations
and included on the right-hand side of (16.4) in order to calculate a ‘gener-
alized Sverdrup’ flow, which (as one might expect) is in better agreement
with the observations. Perhaps the most interesting point is that, even
quite close to the equator and evenwithout the nonlinear terms, Sverdrup
balance provides a qualitatively correct picture of the vertically averaged
flow, with the longitudinal structure of the flow sketched in Fig. 16.3.

16.2.1 Sensitivity of the Sverdrup Flow

Although the calculations of Sverdrup flowdo showgood agreementwith
observations, the calculation — and, most likely, the observed flow — is
rather sensitive to the precise form of the winds. To illustrate this, sup-
pose that 𝑈(𝑥𝐸, 𝑦) = 0 and the stress is zonal and uniform, then (16.6)
becomes

𝑈(𝑥, 𝑦) = 1
𝛽
(𝑥 − 𝑥𝐸)

∂2𝜏𝑥𝑇
∂𝑦2
. (16.7)
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Fig. 16.4: The left panel
shows three putative surface

zonal (atmospheric) winds,
𝑢, all with westward winds
in the tropics and with the

solid line being the most
realistic. The right panel

shows the corresponding
negative of the second deriva-

tive, −∂2𝑢/∂𝑦2, proportional
to the (oceanic) Sverdrup

transport, in arbitrary units.
The wind represented by

solid (blue) line gives an east-
ward transport at the equa-
tor, as is observed, with the

others differing markedly.

That is, the depth integrated flow is proportional to the second derivative
of the zonal wind stress, and because 𝑥 < 𝑥𝐸 we have 𝑈 ∝ −∂2𝜏𝑥𝑇/∂𝑦2.
Now, although the zonalwind is generallywestward in the tropics there is
aminimum in themagnitude of thatwindnear the equator (that is, there is
a localmaximumas sketched in the left panel Fig. 16.3) so that ∂2𝜏𝑥𝑇/∂𝑦2 is
negative. Without this local maximum the Sverdrup flow would be west-
ward at the equator.

This sensitivity of the Sverdrup flow to the wind pattern is illustrated
in Fig. 16.4. The figure shows three surface zonalwinddistributions, with
the ‘w’ shaped solid line having a minimum in the westward flow (i.e., a
minimum in the trade winds) at the equator and so being the most realis-
tic. The right-hand panel shows the negative of the second derivative of
the winds which is proportional to the zonal Sverdrup flow. Only in the
one case (the blue line) does the wind produce an eastward Sverdrup flow.
In fact, in the case illustrated with the dashed lines, the small changes in
the meridional gradient of the wind between 15° and 20° produce large
variations in the Sverdrup transport. Given this sensitivity, the small dif-
ference in the latitudinal variation of the Sverdrup flow and the observed
flow, illustrated in the top and middle panels of Fig. 16.2, is not surpris-
ing and cannot be considered a major failure of the theory. However, the
difference in the longitudinal structure of the two fields is indicative of
the importance of other terms in the vorticity balance.

Although the Sverdrup flow is rather sensitive to the horizontal
derivatives of wind pattern, the undercurrent itself is not, and let us turn
our attention to that.

16.3 Dynamics of the Equatorial Undercurrent

The equatorial undercurrent is perhaps the single most conspicuous fea-
ture of the ocean current system at low latitudes and we now describe a
model for it. Our model will be a local one, meaning that it is the direct
effect of the winds in the equatorial region that drive the current, and
although it does provide a simple, compelling explanation for the under-
current it is an incomplete picture: it does not account for the remote
effects of winds in building up a head of pressure that can produce an un-
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Fig. 16.6: Horizontal profiles
of the undercurrent with
friction represented by a
linear drag (left, as given by
(16.20)) and by a harmonic
viscosity (right, see text),
in dimensional units (m/s
for velocity and degrees for
latitude).

Without capitalization, el niño
is Spanish for male infant,
whereas el Niño refers to the
Christ Child and El Niño to the
oceanic phenomenon.

(i) The undercurrent is concentrated at the equator, decaying quite
rapidly with latitude.

(ii) The deep meridional flow is zero at the equator, where 𝑓 = 0, but
is toward the equator in both hemispheres and therefore induces
equatorial upwelling.

The latitudinal width of the undercurrent is determined by the ratio of 𝛽
to 𝑟. Thus, with 𝜏𝑦 = 0 (16.20a) becomes

𝑢2 =
−𝜏𝑥𝑟

𝐻1(𝑟2 + 𝛽2𝑦2)
, (16.21)

and the width of the undercurrent scales as 𝑟/𝛽 — more friction gives a
broader undercurrent.

Viscosity instead of drag

The frictional parameter 𝑟 is a little arbitrary and unrealistic — friction
does not act as a simple drag in the real ocean. To remedy this we can
carry through a similar calculation with a viscosity instead of a drag, and
we can also allow a continuous variation in the vertical instead of restrict-
ing ourselves to two layers. The equations of motion are similar except
that terms like 𝑟𝑢 are replaced by 𝜈∇2𝑢. The algebra to obtain a solution is
now considerably more complicated, but the underlying mechanism pro-
ducing the undercurrent is exactly the same and the solution itself is quite
similar, as illustrated in the right-hand panel of Fig. 16.6. But we will not
purse this topic further in this book; rather, let us turn our attention to
that other great equatorial phenomenon, El Niño.

16.4 El Niño and the Southern Oscillation

El Niño! One of the most famous phenomena in the climate sciences,
and certainly one with an enormous impact on humankind. El Niño is
an anomalous warming of the surface waters in the eastern equatorial
Pacific, peaking around Christmas-time, and its appealing name belies
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Fig. 16.7: The sea-surface
temperature in December of
a non-El Niño year (Decem-

ber 1996, top panel), a strong
El Niño year (December 1997,

middle panel) and their dif-
ference (bottom panel). An
El Niño year is typically char-
acterized by an anomalously
warm tongue of water in the
eastern tropical Pacific. The
El Niño 3 region is the rect-
angular region demarcated
by thin dotted lines in the
eastern equatorial region.

(Figure courtesy of A. Witten-
berg, using data from noaa.

its enormous power and global effects, bringing heavy rains to Califor-
nia and Northern Argentina and anomalously dry weather to South East
Asia and Northern and Eastern Australia; it also raises the global average
surface temperature by about half a degree Celsius. Taken with the asso-
ciated changes in the atmosphere, in which case the whole phenomenon
is known as the El Niño–Southern Oscillation (ENSO), it is the largest
and most important source of global climate variability on interannual
timescales.

16.4.1 A Descriptive Overview

Every few years the temperature of the surface waters in the eastern trop-
ical Pacific rises quite significantly. The strongest warming takes place
between about 5°S to 5°N, and from the west coast of Peru (a longitude
of about 80°W) almost to the dateline, at 180°W, as illustrated in Fig. 16.7.
The warming is large, with a difference in temperature up to 6°C from an
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