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The "big book" [AOFD] by Vallis is a treasure,
but I suspect that this new Essentials is destined to be
used much more widely in classrooms. Vallis does
a superb job of communicating the peculiar tensions
between deductive reasoning and physical intuition
that underlie this science. The new book is more ap-
proachable but no less rigorous. I especially appreci-
ate how the various equation sets are derived in suc-
cinct but meaningful ways in the first few chapters,
and then used as tools to explore the dynamics in the
chapters that follow. It’s almost the perfect introduc-
tory textbook on this subject, and I plan to use it in my
OWN courses.

Brian E. J. Rose,
University at Albany

He’s done it again. In Essentials, Geoff Vallis
has produced a text that is useful to the student and
the experienced scientist alike. While the content is
simplified and shortened compared to its parent text,
Vallis now provides even more descriptive explana-
tions to support readers in their quest to navigate the
physics of fluid flows. These explanations pair well
with the theory, serving as an accessible introduction
to students while also supporting the more experi-
enced scientist as they put all of the pieces together.
This will certainly be a future favourite for reading
groups. Even readers with dog-eared versions of the
parent book will want a copy of Essentials, for in it
Vallis has added an entirely new chapter on planetary
atmospheres, allowing the interested reader to venture
into outer space to apply their newly honed GFD ex-
pertise.

Elizabeth A. Barnes,
Colorado State University

For the past decade, Geoff Vallis’ book Afmo-
spheric and Oceanic Fluid Dynamics has been the
"g0 to" encyclopaedic resource, but it is too lengthy
and comprehensive to use as a course textbook. With
this superb new shorter volume, Geoff Vallis pro-
vides us with the definitive graduate-level textbook,
with just the right balance of essential topics along-
side glimpses of more advanced topics at the cutting
edge of research. The extensive use of margin notes,
diamonds to indicate advanced topics, and a compre-
hensive set of problems will ensure that Essentials of
Atmospheric and Oceanic Dynamics has much to of-
fer students and researchers at all levels. The book
opens with the quote: "Seek simplicity, accept com-
plexity. Exploit simplification, avoid complication.”
On all counts, this book succeeds magnificently!

David Marshall,
University of Oxford

Vallis’ insights into the fundamentals and ap-
plications go a long way towards making otherwise
complex topics readily grasped by those willing to
study. He does not shy away from mathematics where
needed, nor does he smother the reader with mathe-
matics where pedagogically unnecessary. Those mak-
ing it through this book will be ready to tackle a huge
suite of research questions related to atmosphere and
ocean fluid mechanics. Hence, this book serves an
incredibly important role to the academic community.
In a nutshell, we need more smart researchers who are
adept at atmosphere and ocean dynamics to help un-
derstand how those dynamics are increasingly being
affected by humanity’s choices.

Essentials of Atmospheric and Oceanic Dynamics
(EAOD) fills an important niche by offering an artic-
ulate and authoritative textbook to be worked through
by advanced undergraduates and/or entering graduate
students taking courses. The inclusion of exercises
in EAOD is incredibly valuable for both students and
teachers clamouring for more problem sets to test un-
derstanding. Whereas Vallis’ previous book, Afmo-
spheric and Oceanic Fluid Dynamics (AOFD) is the
mother reference, EAOD offers a pedagogical entrée
for those wishing to test the waters, including some
deep waters. I will happily keep both books on my
shelf and make use of them for personal study and to
support the teaching of geophysical fluid dynamics.

Vallis has a clear writing style that brings the
reader into the subject in an authoritative and friendly
manner. He is a wise guru and gentle tutor. The subject
of ocean and atmosphere fluid mechanics has matured
greatly through his efforts at writing AOFD. EAOD
furthers that maturation by allowing for a broader
readership to tap into his brain. Well done Geoff!

Stephen M. Griffies,
GFDL, Princeton University.

As its parent book became the bible of the field,
but also grew in size and the number of topics it cov-
ered in its latest edition, this new book provides a per-
fect balance and introduction to the essential topics,
giving a quick reference without going into all the de-
tails. In the Vallis tradition, it is presented clearly, per-
fectly packaged, and is well organized for both atmo-
spheric and oceanic fluid dynamics. Its simplicity will
make it majestically appealing both for people out-
side the discipline looking for an accessible, yet com-
plete, introduction, and for students within the field
at all levels. The inclusion of planetary atmospheres
broadens the scope and makes it appealing to a wider
and growing audience. Anyone with a background in
physics can get the essentials using this book.

Yohai Kaspi,
Weizmann Institute of Science
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Preface

Seek simplicity, accept complexity.
Exploit simplification, avoid complication.

This is an introductory book on the dynamics of atmospheres and oceans,
with a healthy dose of geophysical fluid dynamics. It is written roughly
at the level of advanced or upper-division undergraduates and beginning
graduate students, but parts of it will be accessible to first- or second-year
undergraduates and I hope that practising scientists will also find it useful.
The book is designed for students and scientists who want an introduc-
tion to the subject but who may not want all the detail, at least not yet, and
its prerequisites are just familiarity with some vector calculus and basic
classical physics. Thus, it is meant to be accessible to non-specialists and
students who will not necessarily go on to become professional dynami-
cists. However, as well as very basic material the book does include some
elementary introductions to a few ‘advanced’ topics, such as the residual
circulation and turbulence theory, as well as material on the general circu-
lation of the atmosphere and ocean. The more advanced parts could easily
be omitted for a first course and, like difficult ski slopes, are marked with
a diamond, 4. Readers may explore these topics more in the references
provided, or in this book’s parent, Atmospheric and Oceanic Fluid Dynamics.
Nearly all the topics in this book, except those in the chapter on planetary
atmospheres, are dealt with in greater detail there.

What is in the book

The book is divided into three Parts. The first, and longest, provides the
foundation for the study of the dynamics of the atmosphere and ocean.
It does not assume any prior knowledge of fluid dynamics or thermo-
dynamics, although readers who have such knowledge may be able to
skim Chapter 1. The rest of Part I provides an introduction to ‘geophys-
ical fluid dynamics), the subject that remains at the heart of atmospheric
and oceanic dynamics and without which the subject would be largely
qualitative and/or computational. Here we discuss the effects of rota-

ix



PREFACE

Margin notes that are set in a
roman (i.e., upright) font em-

phasize or expand on some-
thing that is in the main text.

Margin notes set in italics are
asides or historical anecdotes.

tion and stratification, leading into shallow water theory and the quasi-
geostrophic and planetary-geostrophic equations. Rossby waves, gravity
waves, baroclinic instability and elementary treatments of wave—-mean-
flow interaction and turbulence round out Part I.

Parts II and III focus on the large scale dynamics and circulation of
the atmosphere and ocean, respectively. Our main focus in both Parts
is what is sometimes called ‘the general circulation, meaning the large-
scale quasi-steady and/or time-averaged circulation, but this circulation
depends on the effects of time-dependent eddies — the atmosphere’s Fer-
rel Cell may be considered to be ‘driven’ by the effects of baroclinic insta-
bility and Rossby waves. And the El Nifio phenomenon, described in the
final chapter, is explicitly time dependent. One feature of this book that
is not in the parent book is a chapter discussing some of the general prin-
ciples of planetary atmospheres, a topic of increasing interest because of
the new, sometimes quite spectacular, observations of the planets in our
Solar System and beyond.

How to use the book

The contents of the book are about enough for a two-term course in
atmosphere—ocean dynamics. A term-long, first course in geophysical
fluid dynamics could, for example, be based on Part I, omitting some of
the earlier or later chapters depending on the students’ backgrounds and
interests. A term-long course in atmospheric and/or oceanic circulation
could be based on Part IT and/or Part III, supplementing the material with
review articles or research papers as needed, perhaps using data sets to
look at the real world (and other planets, if Chapter 13 is to be studied).
Alternatively, one could combine aspects of Parts [ and I, or Parts I and 11,
to construct an ‘Atmospheric Dynamics’ or ‘Oceanic Dynamics’ course.

If the book is to be used for self-study it could simply be read from
beginning to end, although many other pathways are possible and may
be preferable. Parts II and III depend on the material in Part [, but the
material is reasonably self-contained, and readers who already have some
knowledge of geophysical fluid dynamics should feel free to start at a later
chapter, or with Part II or Part I1I. A few problems are collected at the end
of some chapters; these are designed to test understanding as well as to fill
in gaps and extend the material in the book itself. Many other problems
at varying levels of difficulty can be found on the web site of this book,
which can easily be found with a search engine. The reader will also see a
number of margin notes throughout the book, rather like the ones to the
left. The book itself was typeset using BIEX with Crimson fonts for text,
Cronos Pro for sans serif and Minion Math for equations.

I would like to thank Matt Lloyd, Zoé Pruce and Richard Smith at
Cambridge University Press for their expert guidance through the writ-
ing and production process, as well as many colleagues and students —
too many to list, but they know who they are — for their many comments,
corrections and criticisms. If you, the reader, have other comments, ma-
jor or minor, do please contact me.
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CHAPTER

1

Fluid Fundamentals

are heated. But, unlike solids, they flow and deform. In this chapter

we establish the governing equations of motion for a fluid, with par-
ticular attention to air and seawater — the fluids of the atmosphere and
ocean, respectively. Readers who already have knowledge of fluid dynam-
ics may skim this chapter and begin reading more seriously at Chapter 2,
where we begin to look at the effects of rotation and stratification.

F LUIDS, LIKE sOLIDS, move if they are pushed and they warm if they

1.1  Time DERIVATIVES FOR FLUIDS

1.1.1  Field and Material Viewpoints

In solid-body mechanics one is normally concerned with the position and
momentum of an identifiable object, such as a football or a planet, as it
moves through space. In principle we could treat fluids the same way
and try to follow the properties of individual fluid parcels as they flow
along, perhaps getting hotter or colder as they move. This perspective
is known as the material or Lagrangian viewpoint. However, in fluid dy-
namical problems we generally would like to know what the values of
velocity, density and so on are at fixed points in space as time passes. A
weather forecast we care about tells us how warm it will be where we live
and, if we are given that, we may not care where a particular fluid parcel
comes from or where it subsequently goes. Since the fluid is a continuum,
this knowledge is equivalent to knowing how the fields of the dynamical
variables evolve in space and time. This viewpoint is known as the field
or Eulerian viewpoint.

Although the field viewpoint will often turn out to be the most prac-
tically useful, the material description is invaluable both in deriving the
equations and in the subsequent insight it frequently provides. This is
because the important quantities from a fundamental point of view are

3

The fluid dynamical equa-
tions of motion determine
the evolution of a fluid. The
equations are based on New-
ton’s laws of motion and the
laws of thermodynamics, and
embody the principles of
conservation of momentum,
energy and mass. Initial con-
ditions and boundary condi-
tions are needed to solve the
equations.
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The Lagrangian viewpoint is
named for the Franco-Italian
J. L. Lagrange (1736-1813), one
of the most renowned mathe-
maticians of his time. The Eu-
lerian point of view is named
for Leonhard Euler (1707-
1783), the great Swiss mathe-
matician. In fact, Euler is also
largely responsible for the La-
grangian view, but the attribu-
tion became tangled over time.

often those which are associated with a given fluid element: it is these
which directly enter Newton’s laws of motion and the thermodynamic
equations. It is thus important to have a relationship between the rate
of change of quantities associated with a given fluid element and the local
rate of change of a field. The material derivative (also called the advective
derivative or Lagrangian derivative) provides this relationship.

1.1.2 The Material Derivative of a Fluid Property

A fluid element is an infinitesimal, indivisible, piece of fluid — effectively
a very small fluid parcel of fixed mass. The material derivative, or the La-
grangian derivative, is the rate of change of a property (such as temperature
or momentum) of a particular fluid element or finite mass of fluid; that is,
it is the total time derivative of a property of a piece of fluid.

Let us suppose that a fluid is characterized by a given velocity field
v(x, t), which determines its velocity throughout. Let us also suppose that
the fluid has another property ¢, and let us seek an expression for the rate
of change of ¢ of a fluid element. Since ¢ is changing in time and in space
we use the chain rule,

9

5p= o+ 5. 995, 995, _ %—‘fath-v(p. (1.1)
z

ot ox dy )

This is true in general for any 8, 8x, etc. The total time derivative is then

dp d¢ dx
dp _d¢ dx o 12
a or ar '? (1.2)

If this equation is to provide a material derivative we must identify the
time derivative in the second term on the right-hand side with the rate
of change of position of a fluid element, namely its velocity. Hence, the
material derivative of the property ¢ is

do _ 99

Vo 13
a o UY® (1.3)

The right-hand side expresses the material derivative in terms of the local
rate of change of ¢ plus a contribution arising from the spatial variation
of ¢, experienced only as the fluid parcel moves. Because the material
derivative is so common, and to distinguish it from other derivatives, we
denote it by the operator D/D¢. Thus, the material derivative of the field

@is

Dy _ 99
— =—+ (@ -V)o. 1.4
DT TI 09
The brackets in the last term of this equation are helpful in reminding us
that (v - V) is an operator acting on ¢. The operator /3t + (v - V) is the
Eulerian representation of the Lagrangian derivative as applied to a field.



1.1 TIME DERIVATIVES FOR FLUIDS

Material derivative of vector field

The material derivative may act on a vector field b, in which case

Db _0b

5=, @ Vb (1.5)

In Cartesian coordinates this is

Db ob ob 0b ob

= = U tv— tw—, 1.6
Dr ot ox oy Voz (1.6)

and for a particular component of b, b* say,
Db*  0b ob ob ob (17)

=—+u +v +w—,
Dt ot ox ay 0z

and similarly for b” and b®. In coordinate systems other than Cartesian
the advective derivative of a vector is not simply the sum of the advective
derivatives of its components, because the coordinate vectors themselves
change direction with position; this will be important when we deal with
spherical coordinates.

1.1.3 Material Derivative of a Volume

The volume that a given, unchanging, mass of fluid occupies is deformed
and advected by the fluid motion, and there is no reason why it should
remain constant. Rather, the volume will change as a result of the move-
ment of each element of its bounding material surface, and in particular
it will change if there is a non-zero normal component of the velocity at
the fluid surface. That is, if the volume of some fluid is J' dV, then

EI dV=Jv~dS, (1.8)
Dt Jv s

where the subscript V indicates that the integral is a definite integral over
some finite volume V, and the limits of the integral are functions of time
since the volume is changing. The integral on the right-hand side is over
the closed surface, S, bounding the volume. Although intuitively apparent
(to some), this expression may be derived more formally using Leibniz’s
formula for the rate of change of an integral whose limits are changing.
Using the divergence theorem on the right-hand side, (1.8) becomes

BJ dV:J V- vdv. (1.9)
Dt Jy %

The rate of change of the volume of an infinitesimal fluid element of vol-
ume AV is obtained by taking the limit of this expression as the volume
tends to zero, giving

im L% =V-v. (1.10)
AVS0 AV Dt

The Eulerian derivative is the
rate of change of a property
at a fixed location in space.
The material derivative is

the rate of change of a prop-
erty of a given piece of fluid,
which may be moving and so
changing its position.
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We will often write such expressions informally as

bav = AVV .o, (1.11)
Dt

with the limit implied.

Consider now the material derivative of some fluid property, & say,
multiplied by the volume of a fluid element, AV. Such a derivative arises
when £ is the amount per unit volume of &-substance — the mass density
or the amount of a dye per unit volume, for example. Then we have

DAV DE

D
—(EAV) =& — + AV —. 1.12
D $AV) =& - +AV LS (1.12)
Using (1.11) this becomes
D D&
—(EAV) = AV | &V — |, 1.13
o (eav) = av (§9-0+ 2 (1.13)
and the analogous result for a finite fluid volume is just
D D&
= [ gav-| < v. —) dv. 114
Dt ng v 5 v Dt ( )

This expression is to be contrasted with the Eulerian derivative for which
the volume, and so the limits of integration, are fixed and we have

d o¢
< ngdv - JV v, (1.15)

Now consider the material derivative of a fluid property ¢ multiplied
by the mass of a fluid element, pAV, where p is the fluid density. Such
a derivative arises when ¢ is the amount of ¢-substance per unit mass
(note, for example, that the momentum of a fluid element is pvAV). The
material derivative of ppAV is given by

D D¢ D
—(ppAV) = pAV — + 9—(pAV). 1.16
Dy PPV =PAV L+ o (pAY) (116
But pAV is just the mass of the fluid element, and that is constant — that
is how a fluid element is defined. Thus the second term on the right-hand
side vanishes and
D D¢

D D¢ J J
— AV) = pAV — d — dv = —dv,
Dt(qop )=p D an D ), #P P D

(1.17a,b)
where (1.17b) applies to a finite volume. That expression may also be de-
rived more formally using Leibniz’s formula for the material derivative
of an integral, and the result also holds when ¢ is a vector. The result is
quite different from the corresponding Eulerian derivative, in which the
volume is kept fixed; in that case we have:

dt

Various material and Eulerian derivatives are summarized in the shaded
box on the facing page.

d 0
— JvcppdV: J'Va((pp) dv. (1.18)



1.2 THE MASS CONTINUITY EQUATION

Material and Eulerian Derivatives

The material derivatives of a scalar (¢) and a vector (b) field are
given by:

Dy d¢ Db db
Do _9¢ 4. v, 22 L w-vp. (DI
Dr ot ¥ Dt o TV (.1

Various material derivatives of integrals are:

D Do 10
— dV=J (— W )dV=J- <— V- )dV,
Dt ,|.V(P v \ Dt Tevev v \ Ot " (q)v)

(D.2)
D
—J dV:J V.vdv, (D.3)
Dt Jv v
D D¢
DI pdv= j D¢ 4v. D.4
Dt JV Py v p Dt D4

These formulae also hold if ¢ is a vector. The Eulerian derivative
of an integral is:

d f610)
— dv=| —=£adv, D.5
dt JV & Jv ot (D-5)
so that
d d opp
2 av=0 and —j dV=J—dV. D.6
dt J-V an dt Jy pe v Ot ( )

1.2 THE MAss CONTINUITY EQUATION

In classical mechanics mass is absolutely conserved and in solid-body me-
chanics we normally do not need an explicit equation of mass conserva-
tion. However, in fluid mechanics a fluid may flow into and away from a
particular location, and fluid density may change, and we need an equa-
tion to describe that change.

1.2.1 An Eulerian Derivation

We first derive the mass conservation equation from an Eulerian point
of view; that is, our reference frame is fixed in space and the fluid flows
through it. Consider an infinitesimal, rectangular cuboid, control volume,
AV = AxAyAz that is fixed in space, as in Fig. 1.1. Fluid moves into or out
of the volume through its surface, including through its faces in the y-z
plane of area AA = AyAz at coordinates x and x + Ax. The accumulation
of fluid within the control volume due to motion in the x-direction is



CHAPTER

2

Equations for a Rotating
Planet

how the equations of motion are affected by these facts, first by
looking at how rotation affects the dynamics and then by express-
ing the equations in spherical coordinates.

P LANETS ARE ALMOST SPHERES. They also rotate. Here we consider

2.1 EQUATIONS IN A ROTATING FRAME OF REFERENCE

Newton’s second law of motion, that the rate of change of momentum
of a body is proportional to the imposed force, applies in so-called iner-
tial frames of reference that are either stationary or moving only with a
constant rectilinear velocity relative to the distant galaxies. Now Earth
spins around its axis once a day, so the surface of the Earth is not an iner-
tial frame. Nevertheless, it is very convenient to describe the motion of
the atmosphere or ocean relative to Earth’s surface rather than in some
inertial frame. How we do that is the subject of this section.

2.1.1 Rate of Change of a Vector

Consider first a vector C of constant length rotating relative to an inertial
frame at a constant angular velocity Q. Then, in a frame rotating with that
same angular velocity it appears stationary and constant. If in a small
interval of time &t the vector C rotates through a small angle §A then the
change in C, as perceived in the inertial frame, is given by (see Fig. 2.1)

6C = |C| cos 96A m, (2.1)

where the vector m is the unit vector in the direction of change of C, which
is perpendicular to both C and Q. But the rate of change of the angle A is
just, by definition, the angular velocity so that §A = ||t and

8C = |C||Q| sin9m &t = Q x C &, (2.2)
24
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25

2)
™

<

using the definition of the vector cross-product, where 9=(n/2-9)is
the angle between Q and C. Thus

dcC

(Ei =0xC, (2.3)

where the left-hand side is the rate of change of C as perceived in the
inertial frame.
Now consider a vector B that changes in the inertial frame. In a small

time &t the change in B as seen in the rotating frame is related to the
change seen in the inertial frame by

(6B); = (0B)g + (0B),o1> (2.4)

where the terms are, respectively, the change seen in the inertial frame, the
change due to the vector itself changing as measured in the rotating frame,
and the change due to the rotation. Using (2.2) (0B),.; = 2 x B¢, and so
the rates of change of the vector B in the inertial and rotating frames are

related by
dB dB
— | == Q x B. 2.5
(dt), (dt>R+ * 25

This relation applies to a vector B that, as measured at any one time, is the
same in both inertial and rotating frames.

2.1.2 Velocity and Acceleration in a Rotating Frame

The velocity of a body is not measured to be the same in the inertial and
rotating frames, so care must be taken when applying (2.5) to velocity.
First apply (2.5) to r, the position of a particle, to obtain

<%>I=(%>R+.er (2.6)

Fig. 2.1: A vector C rotat-
ing at an angular velocity

Q. It appears to be a con-
stant vector in the rotating
frame, whereas in the inertial
frame it evolves according to
(dC/dt), =2 xC.
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or
vV =vp+Q2xr. (2.7)

We refer to vz and v; as the relative and inertial velocity, respectively, and
(2.7) relates the two. Apply (2.5) again, this time to the velocity vy to give

dog > ( dog )
Dr) _ (L) L 0xo,, 2.8
< a ), "\ J, TR 28)
or, using (2.7)
d dv
(a(vl—ﬂxr)>1=<d—f>R+.Q><vR, (2.9)
or
dv,; ) < dog > do < dr )
— | = — 0 — 0 — . 2.10
(dt ) " R+ va+dt Xr+0x i), (2.10)
Then, noting that
<%>I=<%>R+er=(vR+er), (2.11)
and assuming that the rate of rotation is constant, (2.10) becomes
dv dv
(d_f)R:<d_tI>I_zaqu—ox(er). (2.12)

This equation may be interpreted as follows. The term on the left-
hand side is the rate of change of the relative velocity as measured in the
rotating frame. The first term on the right-hand side is the rate of change
of the inertial velocity as measured in the inertial frame (the inertial ac-
celeration, which is, by Newton’s second law, equal to the force on a fluid
parcel divided by its mass). The second and third terms on the right-hand
side (including the minus signs) are the Coriolis force and the centrifugal
force per unit mass. Neither of these are usually regarded as true forces —
they may be thought of as quasi-forces (i.e., ‘as if’ forces); that is, when a
body is observed from a rotating frame it behaves as if unseen forces are
present that affect its motion.

Centrifugal force

If r, is the perpendicular distance from the axis of rotation (see Fig. 2.1
and substitute r for C), then, because Q is perpendicular tor , Q x r =
QO xr, . Then, using the vector identity Qx (2xr,) = (Q-r ) Q- (Q-Q)r,
and noting that the first term is zero, we see that the centrifugal force per
unit mass is just given by

F..=-Qx(Qxr)=0Q%,. (2.13)
This may usefully be written as the gradient of a scalar potential,
F., =-VO.. (2.14)

where @, = —(Q*r})/2 = —(Q2 xr,)?/2.



2.1 EQUATIONS IN A ROTATING FRAME OF REFERENCE

27

Coriolis force
The Coriolis force per unit mass is given by

F, = —2Q X v, (2.15)

We consider the effects of the Coriolis force extensively, but for now we
just note three basic properties:
(i) There is no Coriolis force on bodies that are stationary in the rotat-
ing frame.
(ii) The Coriolis force acts to deflect moving bodies at right angles to
their direction of travel.
(iii) The Coriolis force does no work on a body because it is perpendic-
ular to the velocity, and so vy - (2 x vg) = 0.

2.1.3 Equations of Motion in a Rotating Frame
Momentum equation

Since (2.12) simply relates the accelerations of a particle in the inertial
and rotating frames, then in the rotating frame of reference the three-
dimensional momentum equation may be written

Dv

1
— +20Xv=--Vp-VD_ +g,
p

D (2.16)

where all velocities and accelerations are measured with respect to the
inertial frame. Since the centrifugal term does not vary with the fluid
motion we can incorporate it into gravitational force, g, so giving an ‘ef-
fective gravity’ that varies slightly with position over Earth’s surface.

Mass continuity and the thermodynamic equation

The mass conservation equation and the thermodynamic equation are un-
changed in a rotating frame. To see this consider the material derivative
of some variable, ¢, such as temperature or density. The material deriva-
tive is just the rate of change of ¢ of an identifiable fluid parcel and that
clearly does not depend on the reference frame. Thus, without further

adO, we can VVI‘ite
< t )R < t )l
D D >

where the material derivatives are (Dg/Dt), = (0¢/0t)g + vy - Vo and
(Dp/Dt); = (0¢/0t); + v; - V. The individual terms differ in the two
frames; thatis (0¢/0t)g # (0¢/0t);, but the material derivatives are equal.

Further, the divergence operator is the same in the inertial and rotat-
ing frame. Using (2.7), we have that

(2.17)

Vv, =V-(og + Qxr)=V- vy (2.18)

since V- (2 x r) = 0. Thus, using (2.17) and (2.18), the mass conservation
equation (1.27b) may be written

Dp  ovvg =0, (2.19)

Dt

The Coriolis force is named for
Gaspard-Gustave de Coriolis
(1792-1843) who discussed
the effect in an engineering
context in 1835, although the
basic effect may have been
first recognized (as were so
many things) by Leonhard
Euler (1707-1783). The (now-
called) Coriolis term is also
contained in Laplace’s tidal
equations, formulated in 1776,
published in English in Laplace
(1832). William Ferrel (1817-
1891) was perhaps the first

to appreciate the effect of the
force on Earth’s circulation,
identifying and discussing the
relevant term (2Qusin 9) in
Laplace’s equations.
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@ Q Q7 (b)
Q= 0%k

The thermodynamic equation, in potential temperature form, is just
an advection equation so that using (2.20), its (adiabatic) spherical coordi-
nate form is

DO 30 w30 vd0 20

e Ty =0, (2.35)
Dt ot rcosYor radd ar
and similarly for tracers such as water vapour or salt.
Momentum equation
Recall that the inviscid momentum equation is:
D 1
2 420xv=--Vp- VO, (2.36)
Dt P

where @ is the geopotential. In spherical coordinates the directions of the
coordinate axes change with position and so the component expansion of
(2.36) is

&=%i+ &j+ %R+uz+vﬂ+w% (2.37a)
Dt Dt Dt Dt Dt Dt Dt
= %i + &j + %i{ + Qo X U, (2.37b)
Dt Dt Dt

using (2.32). Using either (2.37a) and the expressions for the rates of
change of the unit vectors given in (2.32), or (2.37b) and the expression
for Q,,, given in (2.31), (2.37) becomes

Dv ./Du wvtan9 wuw) ./Dv u’tan9d wvw
pr '\Dr~ )TN et T
r2 2 r r r (2.38)
A(Dw u +v>
+k(— -
Dt r

Using the definition of a vector cross-product, the Coriolis term is:

i j k
20xv=| 0 2Qcosd 20Qsind
u v w

=i(2Qwcos 9 - 2Qusin9) +j2Qusin 9 - k2Qucos9. (2.39)

Fig. 2.3: (a) On the sphere
the rotation vector Q can

be decomposed into two
components, one in the local
vertical and one in the local
horizontal, pointing toward
the pole. Thatis, 2 = Qj +
Qkwhere Q, = Qcos9and
Q, = Qsin?. In geophysical
fluid dynamics, the rotation
vector in the local vertical is
often the more important
component in the horizontal
momentum equations. On a
rotating disk, (b), the rotation
vector Q is parallel to the
local vertical k.
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Dynamics on a Rotating
Planet

E NOW PUT THE EQUATIONS OF MOTION TO USE, and in so doing
W start our journey into the dynamics of fluid motion on a rotat-
ing planet. We begin rather gently by way of an introduction
to scaling, which is the basis of the art of making sensible approximations.

3.1 A GENTLE INTRODUCTION TO SCALING

The units we use to measure length, velocity and so on are irrelevant to
the dynamics, and SI units may not be the most appropriate ones for a
given problem. Rather, it is useful to express the equations of motion in
terms of ‘nondimensional’ variables, by which we mean expressing every
variable as the ratio of its value to some reference value. We try to choose
the reference value as a natural one for a given flow, in order that, where
possible, the nondimensional variables are order-unity quantities, and do-
ing this is called scaling the equations. Much of the art of fluid dynamics
lies in choosing sensible scaling factors for the problem at hand for then
the sizes of the various terms become clear, and we here we give a simple,
non-rotating, example.

3.1.1 The Reynolds Number

Consider the constant-density momentum equation in Cartesian coordi-
nates. If a typical velocity is U, a typical length is L, a typical time scale is
T, and a typical value of the pressure deviation is @, then the approximate
sizes of the various terms in the momentum equation are given by

dv +(v-V)v = -V¢ + v, (3.1a)

~ 2z 3.1b
L L D (-10)
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ot
v e
T

Osborne Reynolds (1842—
1912) was an Irish born
(Belfast) physicist who was
professor of engineering at
Manchester University from
1868-1905. He was also one
of the first scientists to think
about the concept of group
velocity.
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The ratio of the inertial (i.e., the advective) terms to the viscous terms is
(U?/L)/(vU/I*) = UL/v, and this is the Reynolds number. More formally,
we can nondimensionalize the momentum equation by writing

v x .t ~ ¢
A:—) A:—’ t:—’ = -, 32
v *T1 ¢ (3.2

where the terms with hats on are nondimensional values of the variables
and the capitalized quantities are known as scaling values, and these are the
approximate magnitudes of the variables. We now choose the scaling val-
ues so that the nondimensional variables are of order unity, or &7 = O(1).
Thus, for example, we choose U so that u = O(U), where the notation
should be taken to mean that the magnitude of the variable u is approxi-
mately U, or that u ~ U, and we say that ‘u scales like U".

In this problem, we have no way to scale pressure and time except with
the velocity and length scales we have chosen, and the only dimensionally
correct choices are then

T= 5, @ =U% (3.3)
U
Substituting (3.2) and (3.3) into the momentum equation gives
U? [dD U?_~ wU
— | =+ @ V)| = -—V¢+ —V?p, 3.4
L [ ot ( ) ] L ¢ I? (3.4)

where we use the convention that when V operates on a nondimensional
variable it is a nondimensional operator. Equation (3.4) simplifies to

2—;’ +(@-V)o=-V+ év%, (3.5)
where
Re= 2L (3.6)
v

is, again, the Reynolds number. If we have chosen our length and velocity
scales sensibly — that is, if we have scaled them properly — each variable
in (3.5) is order unity, with the viscous term being multiplied by the pa-
rameter 1/Re. There are two important conclusions:

(i) The ratio of the importance of the inertial terms to the viscous
terms is given by the Reynolds number, defined by (3.6). In the ab-
sence of other forces, such as those due to gravity and rotation, the
Reynolds number is the only nondimensional parameter explicitly
appearing in the momentum equation. Hence its value, along with
the boundary conditions and geometry, controls the behaviour of
the system.

(ii) More generally, by scaling the equations of motion appropriately
the parameters determining the behaviour of the system become
explicit. Scaling the equations is intelligent nondimensionalization.

Nondimensionalizing the equations does not, however, absolve the inves-
tigator from the responsibility of producing dimensionally correct equa-
tions. One should regard nondimensional equations as dimensional equa-
tions in units appropriate for the problem at hand.
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3.2 HYDROSTATIC BALANCE

Life is too short to solve every complex problem in detail, and the atmo-
spheric and oceanic sciences abound with complex problems. In their
usual form the fluid dynamical equations alone are a set of six nonlinear
partial differential equations (three momentum equations, a thermody-
namic equation, a mass continuity equation and an equation of state) de-
scribing velocity, pressure, temperature and density. To solve real-world
problems we need to add water vapour or salinity, as well as the equa-
tions of radiative transfer. All this makes for a complex system, and to
make progress we need to simplify where possible and eliminate unim-
portant effects. We have already seen how we might do that for fluids
of nearly constant density in making the Boussinesq approximation, and
we now look at the effects of gravity and rotation and see how these give
rise hydrostatic balance and geostrophic balance, the dominant balances
in the vertical and horizontal directions, respectively. The correspond-
ing states, hydrostasy and geostrophy, are not exactly realized, but their
approximate satisfaction has profound consequences on the behaviour of
atmospheres and oceans.

We begin with hydrostatic balance. We first encountered it in Section
1.3.3 but now we take a closer look. We start by scaling the equations, just
as we did in the previous section.

3.2.1 Scaling Estimates

Consider the relative sizes of terms in the vertical momentum equation,
(2.42¢): ,

w + uw + w2 +QU ~ |——

T L H p 0z
For mostlarge-scale motion in the atmosphere and ocean the terms on the
right-hand side are orders of magnitude larger than those on the left, and
therefore must be approximately equal. Explicitly, suppose W ~ 1cms™!,
L~10°m, H ~ 10°m, U ~ 10ms™!, T = L/U. Then by substituting into
(3.7) it seems that the pressure term is the only one which could balance
the gravitational term, and we are led to approximate (2.42¢) by,

op _
0z
This equation, which is a vertical momentum equation, is known as hy-
drostatic balance.
However, (3.8) is not always a useful equation! Let us suppose that the
density is a constant, p, . We can then write the pressure as

9 pg
0z

ap

+g. (3.7)

—pg. (3.8)

p(x, y,2,t) = po(z) + p'(x, y, 2, 1), where —— =-pyg. (3.9

That is, p, and p, are in hydrostatic balance. On the f-plane, the inviscid
vertical momentum equation becomes, without approximation,

D 1 9p’

Dw__19p° (3.10)
Dt Po 0z
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Thus, for constant density fluids the gravitational term has no dynamical ef-
fect: there is no buoyancy force, and the pressure term in the horizontal
momentum equations can be replaced by p’. Hydrostatic balance, and in
particular (3.9), is not a useful vertical momentum equation in this case. If
the fluid is stratified, we should therefore subtract off the hydrostatic pres-
sure associated with the mean density before we can determine whether
hydrostasy is a useful dynamical approximation, accurate enough to deter-
mine the horizontal pressure gradients. This is automatic in the Boussi-
nesq equations, where the vertical momentum equation is

Dw ¢
2099, 3.11
Dt 0z b ( )

and the hydrostatic balance of the basic state is already subtracted out. In
the more general equation,

Dw 10p
—— - _F_g 3.12
Dt p 0z g (3.12)

we need to compare the advective term on the left-hand side with the
pressure variations arising from horizontal flow in order to determine
whether hydrostasy is an appropriate vertical momentum equation.

3.2.2 Hydrostatic Balance and the Aspect Ratio

In a Boussinesq fluid we write the horizontal and vertical momentum
equations as

Du Dw )
E +f)(u:—vz¢, E = —a_Zj +b. (3.13a,b)

With f =0, (3.13a) implies the scaling
¢~ U2 (3.14)

If we then use mass conservation, V, - u + 0w/dz = 0, to scale vertical
velocity we find

H
w~W=IU=¢xU, (3.15)
where o« = H/L is the aspect ratio. The advective terms in the vertical
momentum equation all scale as
D ’H
Dw UW_UH (3.16)
Dt L I?

Using (3.14) and (3.16) the ratio of the advective term to the pressure gra-
dient term in the vertical momentum equations then scales as

Dw/Dt| U?H/I? (H)Z

og/azl ~ U \L G317

L
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Thus, the condition for hydrostasy, that [Dw/D¢|/|0¢/0z| < 1, is

H 2
a’ = (—) < 1.
IL,

The advective term in the vertical momentum may then be neglected.
Thus, hydrostatic balance arises from a small aspect ratio approximation.

We can obtain the same result more formally by nondimensionalizing
the momentum equations. Using uppercase symbols to denote scaling
values we write

(3.18)

(x,y) = L(X, ¥), z = Hz, u =Uu, w=Ww=—1w,

t=Tf=

i, ¢=0¢=U,

Gl

(3.19)
where the hatted variables are nondimensional and the scaling for w is
suggested by the mass conservation equation, V, - # + 0w/dz = 0. Sub-
stituting (3.19) into (3.13) (with f = 0) gives us the nondimensional equa-

tions ~

Dui - .
_A:_v) (x_Az__+b,

Dt ¢ Dt 0z
where D/Dt = 9/0t +110/0X +00/dy + Wd/dZ and we use the convention
that when V operates on nondimensional quantities the operator itself is
nondimensional. From (3.20b) it is clear that hydrostatic balance obtains
when o < 1, that is when the aspect ratio is small.

(3.20a,b)

3.3 GEOSTROPHIC AND THERMAL WIND BALANCE

We now consider the dominant dynamical balance in the horizontal com-
ponents of the momentum equation. In the horizontal plane (meaning
along geopotential surfaces) we find that the Coriolis term is much larger
than the advective terms and the dominant balance is between it and the
horizontal pressure force. This balance is called geostrophic balance, and it
occurs when the Rossby number is small, as we now investigate.

3.3.1 The Rossby Number

The Rossby number characterizes the importance of rotation in a fluid. It
is, essentially, the ratio of the magnitude of the relative acceleration to the
Coriolis acceleration, and it is of fundamental importance in geophysical
fluid dynamics. It arises from a simple scaling of two of the terms hori-
zontal momentum equation, namely

a—u+(v~V)u+f><u = —lVZp,
ot p
U2
L

(3.21a)

fu (3.21b)

The Rossby number, U/fL, is
named for C.-G. Rossby (1898-
1957), a Swedish scientist who
worked for many years in the
United States and who was
one of the great pioneers of
dynamical meteorology in the
mid-twentieth century. The
Russian meteorologist I. Kibel
introduced a similar number
in 1940 and the number is
sometimes called the Kibel or
Rossby—Kibel number.
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axis of rotation, and the flow is effectively two dimensional. This result
is known as the Taylor-Proudman effect, namely that for constant density
flow in geostrophic and hydrostatic balance the vertical derivatives of the
horizontal and the vertical velocities are zero. At zero Rossby number, if
the vertical velocity is zero somewhere in the flow, it is zero everywhere
in that vertical column; furthermore, the horizontal flow has no vertical
shear, and the fluid moves like a slab. The effects of rotation have pro-
vided a stiffening of the fluid in the vertical.

In neither the atmosphere nor the ocean do we observe precisely such
vertically coherent flow, mainly because of the effects of stratification.
However, it is typical of geophysical fluid dynamics that the assumptions
underlying a derivation are not fully satisfied, yet there are manifestations
of it in real flow. For example, one might have naively expected, because
0w/dz = -V, - u, that the scales of the various variables would be related
by W/H ~ U/L. However, if the flow is rapidly rotating we expect that the
horizontal flow will be in near geostrophic balance and therefore nearly
divergence free; thus V, - u <« U/L,and W « HU/L.

3.3.4 Thermal Wind Balance

Thermal wind balance arises by combining the geostrophic and hydro-
static approximations, and this is most easily done in the context of the
Boussinesq equations, or in pressure coordinates. Beginning with the
Boussinesq equations, geostrophic balance may be written

- fu, = _g_i’, fu,=-22. (3.37a,b)

Combining these relations with hydrostatic balance, d¢/dz = b, gives

dv, db ou db
% _ 90 ke L 3.38a,b
f dz  Ox 0z ay ( ab)

These equations represent thermal wind balance, and the vertical derivative
of the geostrophic wind is the ‘thermal wind’

If the density or buoyancy is constant then the right-hand sides of
(3.38) are zero and there is no shear, recovering the Taylor-Proudman
result. But suppose that the temperature falls in the poleward direction.
Then thermal wind balance implies that the (eastward) wind will increase
with height — just as is observed in the atmosphere! In general, a vertical
shear of the horizontal wind is associated with a horizontal temperature
gradient, and this is one of the most simple and far-reaching effects in
geophysical fluid dynamics. The underlying physical mechanism is illus-
trated in Fig. 3.2.

Geostrophic and thermal wind balance in pressure coordinates

In pressure coordinates geostrophic balance is just

f x u, =-V,0, (3.39)

The Taylor-Proudman effect
is named for G.I. Taylor and

I. Proudman who wrote pa-
pers developing the result in
1921 and 1916, respectively.
The effect is sometimes called
the Taylor-Proudman ‘the-
orem, but it is more usefully
thought of as a physical ef-
fect, with manifestations even
when the conditions for its sat-
isfaction are not precisely met
— which they never are.
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Shallow Water Equations

not surprisingly, a shallow layer of fluid, and in particular one that
is in hydrostatic balance and has constant density. The equations
are useful for two reasons:

—I— HE SHALLOW WATER EQUATIONS are a set of equations that describe,

(i) They are a simpler set of equations than the full three-dimensional
ones, and so allow for a much more straightforward analysis of
sometimes complex problems.

(ii) In spite of their simplicity, the equations provide a reasonably real-
istic representation of a variety of phenomena in atmospheric and
oceanic dynamics.

Put simply, the shallow water equations are a very useful model for geo-
physical fluid dynamics. Let’s dive head first into the equations and see
what they can do for us.

4.1 SHALLOW WATER EQUATIONS OF MOTION

The shallow water equations apply, by definition, to a fluid layer of con-
stant density in which the horizontal scale of the flow is much greater than
the layer depth, and which have a free surface at the top (or sometimes at
the bottom). Because the fluid is of constant density the fluid motion is
fully determined by the momentum and mass continuity equations, and
because of the assumed small aspect ratio the hydrostatic approximation
is well satisfied, as we discussed in Section 3.2.2. Thus, consider a fluid
above which is another fluid of negligible density, as illustrated in Fig. 4.1.
Our notation is that v = ui + vj + wk is the three-dimensional velocity
and u = ui + vj is the horizontal velocity, h(x, y) is the thickness of the
liquid column, H is its mean height, and # is the height of the free surface.
In a flat-bottomed container # = h, whereas in general h = ) — 1, where
np is the height of the floor of the container.

63
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Fig. 4.1: A shallow water
system where h is the thick-
ness of a water column, H its
mean thickness, 1 the height
of the free surface and 7 is
the height of the lower, rigid,
surface above some arbitrary
origin, typically chosen such
that the average of 7 is zero.
The quantity 7, is the devia-
tion free surface height so we
haven = ny + h = H + 1.

The key assumption underly-
ing the shallow water equa-
tions is that of a small as-
pect ratio, so that H/L < 1,
where H is the fluid depth
and L the horizontal scale
of motion. This gives rise to
the hydrostatic approxima-
tion, and this in turn leads
to the z-independence of
the velocity field and the
‘sloshing’ nature of the flow.

Fluid surface

Tz
Topography

<* =0

4.1.1 Momentum Equations

The vertical momentum equation is just the hydrostatic equation,

ap
—_— = = 5 41
0z Pod “.1)

and, because density is assumed constant, we may integrate this to

p(x, y,2,t) = —pogz + Do (4.2)

At the top of the fluid, z = #, the pressure is determined by the weight of
the overlying fluid and this is negligible. Thus, p = 0 at z = #, giving

plx, v, 2,t) = pog(y(x, y,t) — z). (4.3)

The consequence of this is that the horizontal gradient of pressure is indepen-
dent of height. That is

where v, = iaa_x + j% (4.4

VP = pogVetts
(In the rest of this chapter we drop the subscript z unless that causes ambi-
guity; the three-dimensional gradient operator is denoted by V5. We also
mostly use Cartesian coordinates, but the shallow water equations may
certainly be applied over a spherical planet.) The horizontal momentum
equations therefore become

Du 1
— =——Vp=-—gVn. 45
Dt = g P=9VH (4.5)

The right-hand side of this equation is independent of the vertical coordi-
nate z. Thus, if the flow is initially independent of z, it must stay so. (This
z-independence is unrelated to that arising from the rapid rotation neces-
sary for the Taylor-Proudman effect.) The velocities u and v are functions
of x, y and t only, and the horizontal momentum equation is therefore

Du Ou ou du
e T g L ] 4.6
Dt ot +”ax “’ay g (4.6)



4.1 SHALLOW WATER EQUATIONS OF MOTION

65

=
A
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In the presence of rotation, (4.6) easily generalizes to

Du
== = —gVn, 47
Dt+f><u gVn (4.7)

where f = fk. Just as with the fully three-dimensional equations, f may
be constant or may vary with latitude, so that on a spherical planet f =
2Qsin 9 and on the B-plane f = f, + By.

4.1.2 Mass Continuity Equation

The mass contained in a fluid column of height 4 and cross-sectional area
A is given by jA poh dA (see Fig. 4.2). If there is a net flux of fluid across
the column boundary (by advection) then this must be balanced by a net
increase in the mass in A, and therefore a net increase in the height of the
water column. The mass convergence into the column is given by

F,, = mass flux in = — J pott - dS, (4.8)
s

where S is the area of the vertical boundary of the column. The surface
area of the column is composed of elements of area hn 81, where 6l is aline
element circumscribing the column and # is a unit vector perpendicular
to the boundary, pointing outwards. Thus (4.8) becomes

F,=- é pohu - ndl. (4.9)
Using the divergence theorem in two dimensions, (4.9) simplifies to

F, - —J V.- (pouh) dA,
A

(4.10)
where the integral is over the cross-sectional area of the fluid column
(looking down from above). This is balanced by the local increase in
height of the water column, given by

d oh

d
F=2pav=2| pnda=| p,2da 411
m dt,[PO dt LPO JAP"at (“11)

Fig. 4.2: The mass budget
for a column of area A in a
flat-bottomed shallow water
system. The fluid leaving the
column is (ﬁphu -ndl where
n is the unit vector normal
to the boundary of the fluid
column. There is a non-zero
vertical velocity at the top
of the column if the mass
convergence into the column
is non-zero.
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The Shallow Water Equations

For a single-layer fluid, and including the Coriolis term, the
inviscid shallow water equations are:

momentum: % +fxu=-gVn, (SW.1)
. Dh

mass continuity: Dt +hV-u=0, (SW.2)

or % + V- (hu) =0, (SW.3)

where u is the horizontal velocity, h is the total fluid thickness, #
is the height of the upper free surface, and h and # are related by

h(x, y,t) = n(x, y,t) — ng(x, y), (SW.4)

where 7 is the height of the lower surface (the bottom topogra-
phy). The material derivative is

D d 3 3 0
2% uv=2 w02, SW.5
Di o " T ax Yoy (SW.5)

with the rightmost expression holding in Cartesian coordinates.

Because p, is constant, the balance between (4.10) and (4.11) leads to

J [%w.(uh)] dA=o, (4.12)
AL Ot

and because the area is arbitrary the integrand itself must vanish, whence,

%+V-(uh)=0 or g—}tl+hv-u=0. (4.13a,b)

This derivation holds whether or not the lower surface is flat. If it is, then
h = n, and if not h = 5 — nz. Equations (4.7) and (4.13) form a complete
set, summarized in the shaded box above.

4.1.3 Reduced Gravity Equations

Consider now a single shallow moving layer of fluid on top of a deep, qui-
escent fluid layer (Fig. 4.3), and beneath a fluid of negligible inertia. This
configuration is often used as a model of the upper ocean: the upper layer
represents flow in perhaps the upper few hundred metres of the ocean, the
lower layer being the near-stagnant abyss. If we turn the model upside-
down we have a perhaps slightly less realistic model of the atmosphere:
the lower layer represents motion in the troposphere above which lies an
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p =0
Z
L1 h T
m
P2 u—=2~0

inactive stratosphere. The equations of motion are virtually the same in
both cases, but for definiteness we’ll think about the oceanic case.

The pressure in the upper layer is given by integrating the hydrostatic
equation down from the upper surface. Thus, at a height z in the upper
layer

pi(2) = gpi (o = 2), (4.14)
where 7 is the height of the upper surface. Hence, everywhere in the
upper layer,

1
—Vp1=9Vno, (4.15)
P1

and the momentum equation is

Du
e = —gVn,. 4.16
Dt+fxu 9o (4.16)

In the lower layer the pressure is also given by the weight of the fluid
above it. Thus, at some level z in the lower layer,

P2(2) = prg(ng —m) + prg(n, = 2). (4.17)

But if this layer is motionless the horizontal pressure gradient in it is zero
and therefore

P19M0 = —P19' 11 + constant, (4.18)

where g’ = g(p, — p;)/p; is the reduced gravity, and in the ocean p, —
p1)/p < 1land g’ < g. The momentum equation becomes

Du

—+fxu=g'Vn,. 4.19
Dt fxu=g'Vn (4.19)
The equations are completed by the usual mass conservation equation,
D
Dh +hV-u=0, (4.20)
Dt

where h = 5, — 1;. Because g > g, (4.18) shows that surface displace-
ments are much smaller than the displacements at the interior interface.
We see this in the real ocean where the mean interior isopycnal displace-
ments may be several tens of metres but variations in the mean height of
the ocean surface are of the order of centimetres.

Fig. 4.3: The reduced gravity
shallow water system. An
active layer lies over a deep,
denser, quiescent layer. In a
common variation the upper
surface is held flat by a rigid
lid, and 7, = 0.
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The mass conservation equation, (4.13b) may be written as

(+ fDh

- Vou=2"1" 4.34
€+ 1) v Dr (4.34)

and using this equation and (4.32) we obtain

(+fDh
4.35
(( th="""5p (4.35)
which is equivalent to

—%(3 =0 where Q= <—( ;f> (4.36)

The important quantity Q is known as the potential vorticity, and (4.36) is
the potential vorticity equation.

4.3 SHALLOW WATER WAVES

Let us now look at the gravity waves that occur in shallow water. To iso-
late the essence we consider waves in a single fluid layer, with a flat bot-
tom and a free upper surface, in which gravity provides the sole restoring
force.

4.3.1 Non-Rotating Shallow Water Waves

Given a flat bottom the fluid thickness is equal to the free surface displace-
ment (Fig. 4.1), and taking the basic state of the fluid to be at rest we let

h(x, y,t) = H+Hh (x, y,t) = H+1n'(x, ,t), (4.37a)
u(x, y,t) = u'(x, y,t). (4.37b)
The mass conservation equation, (4.13b), then becomes
a_’/ll ING . 4! I, ’_
5 +(H+n"V-u' +u' - Vy' =0, (4.38)
and neglecting squares of small quantities this yields the linear equation
o'
+HV-u' =0. (4.39)
ot

Similarly, linearizing the momentum equation, (4.7) with f = 0, yields

!
S (4.40)

Eliminating velocity by differentiating (4.39) with respect to time and
taking the divergence of (4.40) leads to

62’1!

i gHV*y' =0, (4.41)
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Geostrophic Theory

balances in meteorology and oceanography and in this chapter
we exploit these balances to derive various simplified sets of equa-
tion. The ‘problem’ with the full equations is that they are too complete,
and they contain motions that we don’t always care about — sound waves
and gravity waves for example. If we can eliminate these modes from the
outset then our path toward understanding is not littered with obstacles.
Our specific goal is to derive various sets of ‘geostrophic equations’, in
particular the planetary-geostrophic and quasi-geostrophic equations, by
making use of the fact that geostrophic and hydrostatic balance are closely
satisfied. We do this first for the shallow water equations and then for the
stratified, three-dimensional equations. We will use the Boussinesq equa-
tions, but a treatment in pressure coordinates would be very similar. The
bottom topography, #5, can be an unneeded complication in the deriva-
tions below and readers may wish to simplify by setting 5 = 0.

G EOSTROPHIC AND HYDROSTATIC BALANCE are the two dominant

5.1 SCALING THE SHALLOW WATER EQUATIONS

In order to simplify the equations of motion we first scale them — we
choose the scales we wish to describe, and then determine the approx-
imate sizes of the terms in the equations. We then eliminate the small
terms and derive a set of equations that is simpler than the original set
but that consistently describes motion of the chosen scale. With the odd
exception, we will denote the scales of variables by capital letters; thus, if
L is a typical length scale of the motion we wish to describe, and U is a
typical velocity scale, then

(x,y)~L or (x,¥) = O(L),

(u,v) ~U or (u,v) = O(U),
and similarly for the other variables in the equations.

83

(5.1)
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The geostrophic theory of
this chapter applies when
the Rossby number is small.
On Earth the theory is gen-
erally appropriate for large-
scale flow in the mid- and
high latitude atmosphere
and ocean. On other plan-
ets the applicability of
geostrophic theory depends
on how rapidly the planet
rotates and how big it is.
Venus has a rotation rate
some 200 times slower than
Earth and the Rossby num-
ber of the large-scale circu-
lation is quite large. Jupiter
rotates much faster than
Earth (a Jupiter day is about
10 hours), and the planet is
also much bigger, and the
Rossby number remains small
even close to the equator.

We then write the equations of motion in a nondimensional form by
writing the variables as

(x, ) = L(X, ¥), (u,v) = U(1,0), (5.2)
where the hatted variables are nondimensional and, by supposition, are

O(1). The various terms in the momentum equation then scale as:

a— +u-Vu+ fxu=-gVn, (5.3a)
U U? H

— — U~ g—, 5.3b
T 1 JUV~T9g (5.3b)

where the V operator acts in the x—y plane and # is the amplitude of the
variations in the surface displacement. We choose an ‘advective scale’ for
time, meaning that T = L/U and t = fL/U, and the time derivative then
scales the same way as the advection. The ratio of the advective term to
the rotational term in the momentum equation (5.3) is (U?/L)/(fU) =
U/ fL; this is the Rossby number that we previously encountered.

We are interested in flows for which the Rossby number is small, in
which case the Coriolis term is largely balanced by the pressure gradient.
From (5.3b), variations in # scale according to

272 2
M = Rof—L = RoHL—Z, (5.4)
g g Ly
where L; = /gH/ f is the deformation radius and H is the mean depth
of the fluid. The ratio of variations in fluid height to the total fluid height
thus scales as

_’}-[:

2
H oL (5.5)
H I

Now, the thickness of the fluid, h, may be written as the sum of its

mean and a deviation, hp,

h=H+hD=H+(77T—T’IB), (56)

where, referring to Fig. 4.1, 7 is the height of the bottom topography and
nr is the height of the fluid above its mean value. Given the scalings above,
the deviation height of the fluid may be written as

nT—Ro H11T and ;7:H+11T:H(1+R0 ?]) (5.7)
where 7 is the O(1) nondimensional value of the surface height deviation.
We apply the same scalings to h itself and, if h, = h — H = 5 — g is the
deviation of the thickness from its mean value, then

where h, is the nondimensional deviation thickness of the fluid layer.
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Nondimensional momentum equation

If we use (5.7) and (5.8) to scale height variations, (5.2) to scale lengths and
velocities, and an advective scaling for time, then, and since V#j = V#j, the
momentum equation (5.3) becomes

Ro [3—’3 + (- V)ﬁ] + fxii=-V7, (5.9)

where f = kf = kf/f,, where f, is a representative value of the Coriolis
parameter. (If f is a constant, then f = 1, but it is informative to explic-
itly write f in the equations. Also, where the operator V operates on a
nondimensional variable, the differentials are taken with respect to the
nondimensional variables X, y.) All the variables in (5.9) will now be as-
sumed to be of order unity, and the Rossby number multiplying the local
time derivative and the advective terms indicates the smallness of those
terms. By construction, the dominant balance in (5.9) is the geostrophic
balance between the last two terms.

Nondimensional mass continuity (height) equation

The (dimensional) mass continuity equation can be written as

%+hv~u=0 or i%+<l+h—D>V~u=0, (5.10)
Dt H Dt H
since Dh/Dt = Dhp/Dt. Using (5.2) and (5.8) the above equation may be
written
RN 2
Ro(i) Dhp 1+Ro<£> hp |V-@=o0. (5.11)
L,) Di L,

Equations (5.9) and (5.11) are the nondimensional versions of the full shal-
low water equations of motion. Since the Rossby number is small we
might expect that some terms in this equation can be eliminated with lit-
tle loss of accuracy, depending on the size of the second nondimensional
parameter, (L/L;)?% as we now explore.

5.2 GEOSTROPHIC SHALLOW WATER EQUATIONS

5.2.1 Planetary-Geostrophic Equations

We now derive simplified equation sets that are appropriate in particular
parameter regimes, beginning with an equation set appropriate for the
very largest scales. Specifically, we take

2
Ro« 1, L > 1 suchthat Ro <£> =0(1). (5.12)
Ly Ly

The first inequality implies we are considering flows in geostrophic bal-
ance. The second inequality means we are considering flows much larger
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The planetary-geostrophic
equations are appropriate
for geostrophically balanced
flow at very large scales. In
the shallow water version,
they consist of the full mass
conservation equation along
with geostrophic balance.

than the deformation radius. The ratio of the deformation radius to scale
of motion of the fluid is called the Burger number; that is, Bu = L;/L, so
here we are considering small Burger-number flows.

The smallness of the Rossby number means that we can neglect the
material derivative in the momentum equation, (5.9), leaving geostrophic
balance. Thus, in dimensional form, the momentum equation may be
written, in vectorial or component forms, as

fxu=-Vy,
. or . (5.13)
_ 91 = 2
fv_gax’ fu gay'

Looking now at the mass continuity equation, (5.11), we see that there
are no small terms that can be eliminated. Thus, we have simply the full
mass conservation equation,

dh
— + V- (hu) =0, 5.14
o T Vol (5.14)

where h and 7 are related by # = # + h, where 7 is the height of the bot-
tom topography. Equations (5.13) and (5.14) form the planetary geostrophic
shallow water equations. There is only one time derivative in the equations, so
there can be no gravity waves. The system is evolved purely through the
mass continuity equation, and the flow field is diagnosed from the height
field.

Planetary-geostrophic potential vorticity

In the (full) shallow water equations potential vorticity is conserved,

meaning that
B<ﬂ>:0_ (5.15)
Dt\ h

In the planetary-geostrophic equations we can use (5.13) and (5.14) to
show that this conservation law becomes

D (1) 510

as might be expected since { is smaller than f by a factor of the Rossby
number. An alternate derivation of the planetary-geostrophic equations
is to go directly from (5.15) to (5.16), by virtue of the smallness of the
Rossby number, and then simply use (5.16) instead of (5.14) as the evolu-
tion equation.
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5.2.2 Quasi-Geostrophic Equations

The quasi-geostrophic equations are appropriate for scales of the same order
as the deformation radius, and so for

L
L_d =0(1)

2
Ro <« 1, so that R0<L£> < 1. (5.17)

d

Since the Rossby number is small the momentum equations again reduce
to geostrophic balance, namely (5.13). In the mass continuity equation,
we now eliminate all terms involving Rossby number to give
V-u=0. (5.18)
Neither geostrophic balance nor (5.18) are prognostic equations, and it
appears we have derived an uninteresting, static, set of equations. In
fact we haven’t gone far enough, since nothing in our derivation says
that these quantities do not evolve. To see this, let us suppose that the
Coriolis parameter is nearly constant, which is physically consistent with
the idea that scales of motion are comparable to the deformation scale.
Geostrophic balance with a constant Coriolis parameter gives

) 0
fo”z‘gﬁ’ ‘fo“=‘9a_’z1’ (5.19)

giving V-u=0.
That it to say, the geostrophic flow is divergence-free and we therefore
should not suppose that V- u = 0 is the dominant term in the height
equation.

However, with alittle more care we can in fact derive a set of equations
that evolves under these conditions, and that furthermore is extraordinar-
ily useful, for it describes the flow on the scales of motion corresponding
to weather. We make three explicit assumptions:

(i) The Rossby number is small and the flow is in near geostrophic
balance.

(ii) The scales of motion are similar to the deformation scales, so that
L~L;and Ro(L/L,;)* < 1.

(iii) Variations of the Coriolis parameter are small, so that f = f; + Sy
where 8y < f,.

The velocity is then equal to a geostrophic component, u, plus an
ageostrophic component, u, where [u,| > |u,| and the geostrophic ve-
locity satisfies

foxug=-gVn, (5.20)

which, because of the use of a constant Coriolis parameter (assumption
(iii)), implies V - u, =0.
We proceed from the shallow water vorticity equation which, as in
(4.32), is
of

v (5.21)

@ VC+H=-C+ )HV-n

The quasi-geostrophic equa-
tions are appropriate for
geostrophically balanced flow
at so-called synoptic scales,
or weather scales. This scale
is mainly determined by the
Rossby radius of deformation
which is about 1000 km in the
atmosphere and 100 km (and
less in high latitudes) in the
ocean.
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The thermodynamic equation then becomes

— +N°w =0, (5.33)
Dt
where N2 = 0b/ ag and the advecti\le derivative is still three—dimengional.
We then let ¢ = @(z) + ¢/, where ¢ is hydrostatically balanced by b, and
the hydrostatic equation becomes

!
ai =b. (5.34)
0z
Equations (5.33) and (5.34) replace (5.31¢) and (5.31b), and ¢' is used in
(5.31a).

5.3.1 Scaling the Equations

We scale the basic variables by supposing that
(x,y)~L, (Wwv)~U, t~ 5 z~H, f~f,, N~N,, (5635

where the scaling variables (capitalized, except for f;) are chosen to be
such that the nondimensional variables have magnitudes of the order of
unity, and the constant N, is a representative value of the stratification.
We presume that the scales chosen are such that the Rossby number is
small; that is Ro = U/(f,L) < 1. In the momentum equation the pressure
term then balances the Coriolis force,

|f xu| ~ V'], (5.36)
and so the pressure scales as
¢ ~®=fUL (5.37)

Using the hydrostatic relation, (5.37) implies that the buoyancy scales as

p ~ = SV (5.38)
H

and from this we obtain

! 2
@) 2 639
N 2

where NH
Ly=—% 5.40
" 40
is the deformation radius in the continuously-stratified fluid, analogous
to the quantity \/gH/ f, in the shallow water system, and we use the same
symbol for both. In the continuously-stratified system, if the scale of mo-
tion is the same as or smaller than the deformation radius, and the Rossby

number is small, then the variations in stratification are small. The choice of
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scale is the key difference between the planetary-geostrophic and quasi-
geostrophic equations.

Finally, at least for now, we nondimensionalize the vertical velocity
by using the mass conservation equation,

ow ou Jv
w_ _(9u, ov) 5.41
0z <ax ! ay> G40
with the scaling
wew =22, (5.42)

This scaling will not necessarily be correct if the flow is geostrophically
balanced. In this case we can then estimate w by cross-differentiating
geostrophic balance (with p constant for simplicity) to obtain the linear
geostrophic vorticity equation and corresponding scaling:

pv=f—, w~W= [J)U—H (5.43a,b)
z

o
If variations in the Coriolis parameter are large and 3 ~ f,,/L, then (5.43b)
is the same as (5.42), but if f is nearly constant then W « UH/L.

Given the scalings above (using (5.42) for w) we nondimensionalize by
setting

@)=Ly, 2=H'z @0=Uwyv), i=ot
L (5.44
~ L -~ 1 —~ (/5’ R H .
= —w, = s = ) b — bl)
D= W f=fr ¢ UL UL

where the hatted variables are nondimensional. The horizontal momen-
tum and hydrostatic equations then become

Dii -~

Ro— + f x i1 = -V¢, 5.45
"D + fxiu ¢ (5.45)
and R
o0
-~ =, 5.46
0z (5.46)
The nondimensional mass conservation equation is simply
0ii 00 oW
Vo=|—=+—=+—=]=0, 5.47
? <ax HFT az) 547

and the nondimensional thermodynamic equation is

MQD—ZT + ﬁZNg@@ =0, (5.48)
H L Dt L
or, re-arranging,
7 2
Ro2L 4 (L—d> N2@ = 0. (5.49)
Dt L

The nondimensional equations are summarized in the box on the follow-
ing page.
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Rossby Waves

AVES ARE FAMILIAR TO ALMOST EVERYONE. Gravity waves cover
W the ocean surface, sound waves allow us to talk and light waves

enable us to see. This chapter provides an introduction to their
properties, paying particular attention to a wave that is especially impor-
tant to the large scale flow in both ocean and atmosphere — the Rossby
wave. We start with an elementary introduction to wave kinematics, dis-
cussing such concepts as phase speed and group velocity. Then, beginning
with Section 6.3, we discuss the dynamics of Rossby waves, and this part
may be considered to be the natural follow-on from the geostrophic the-
ory of the previous chapter. Rossby waves then reappear frequently in
later chapters.

6.1 FUNDAMENTALS AND FORMALITIES

6.1.1 Definitions and Kinematics

A wave is more easily recognized than defined. Loosely speaking, a wave
is a propagating disturbance that has a characteristic relationship between
its frequency and size, called a dispersion relation. To see what all this
means, and what a dispersion relation is, suppose that a disturbance,
y(x,t) (where v might be velocity, streamfunction, pressure, etc.), satis-
fies the equation

Ly) =0, 6.1)

where L is a linear operator, typically a polynomial in time and space
derivatives; one example is L(y) = dV*y/0t + foy/dx. If (6.1) has con-
stant coefficients (if 8 is constant in this example) then harmonic solu-
tions may often be found that are a superposition of plane waves, each of
which satisfy

i0(x,t) _ Re 1pei(k-x—wt)’ (62)

104
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where ¥ is a complex constant, 0 is the phase, w is the wave frequency and
k is the vector wavenumber (k, [, m) (also written as (k*, k”, k) or, in sub-
script notation, k;). The prefix Re denotes the real part of the expression,
but we will drop it if there is no ambiguity.

Waves are characterized by having a particular relationship between
the frequency and wavevector known as the dispersion relation. This is an
equation of the form

w = Q(k), (6.3)

where Q(k), or Q(k;), and meaning Q(k,I,m), is some function deter-
mined by the form of L in (6.1) and which thus depends on the particu-
lar type of wave — the function is different for sound waves, light waves
and the Rossby waves and gravity waves we will encounter in this book.
Unless it is necessary to explicitly distinguish the function Q from the
frequency w, we often write w = w(k).

6.1.2 Wave Propagation and Phase Speed

A common property of waves is that they propagate through space with
some velocity, which in special cases might be zero. Waves in fluids
may carry energy and momentum but do not necessarily transport fluid
parcels themselves. Further, it turns out that the speed at which proper-
ties like energy are transported (the group speed) may be different from
the speed at which the wave crests themselves move (the phase speed).
Let’s try to understand this statement, beginning with the phase speed. A
summary of key results is given on page 107.

Phase speed

Consider the propagation of monochromatic plane waves, for that is all
that is needed to introduce the phase speed. Given (6.2) a wave will propa-
gate in the direction of k (Fig. 6.1). At a given instant and location we can
align our coordinate axis along this direction, and we write k - x = Kx¥,
where x* increases in the direction of k and K2 = |k|? is the magnitude of
the wavenumber. With this, we can write (6.2) as

v = Re fﬁei(Kx*_wt) = Re lpeiK(x*—ct)) (6.4)

Fig. 6.1: The propagation of

a two-dimensional wave. (a)
Two lines of constant phase
(e.g., two wavecrests) at a
time ¢,. The wave is propa-
gating in the direction k with
wavelength A. (b) A line of
constant phase at two succes-
sive times. The phase speed is
the speed of advancement of
the wavecrest in the direction
of travel, and so c, =1/t~ ).
The phase speed in the x-
direction is the speed of
propagation of the wave-
crest along the x-axis, and

¢, = i, —-t) = cp/ cos ¢.
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where ¢ = w/K. From this equation it is evident that the phase of the
wave propagates at the speed ¢ in the direction of k, and we define the
phase speed by

(6.5)

~Ie

‘
The wavelength of the wave, A, is the distance between two wavecrests

— that s, the distance between two locations along the line of travel whose
phase differs by 2n — and evidently this is given by

_2n
=T

In (for simplicity) a two-dimensional wave, and referring to Fig. 6.1, the
wavelength and wave vectors in the x- and y-directions are given by,

A* = L, N = _L, k* =Kcos¢, k7 =Ksing. (6.7)
cos¢ sin ¢

A (6.6)

In general, lines of constant phase intersect both the coordinate axes and
propagate along them. The speed of propagation along these axes is given

by

x I p K _ w y 14 S K w
p=%7 = T %x T gx’ Ch=Cp7 = =C =7
I cos¢ k* k I sing k¥ kY
(6.8)

using (6.5) and (6.7), and again referring to Fig. 6.1 for notation. The speed

of phase propagation along any one of the axes is in general larger than the

phase speed in the primary direction of the wave. The phase speeds are

clearly not components of a vector: for example, ¢; # c,cos¢. Analo-

gously, the wavevector k is a true vector, whereas the wavelength A is not.
To summarize, the phase speed and its components are given by

= — cf,’ = —, (6.9)

6.1.3 The Dispersion Relation

The above description is kinematic, in that it applies to almost any distur-
bance that has a wavevector and a frequency. The particular dynamics of
a wave are determined by the relationship between the wavevector and
the frequency; that is, by the dispersion relation. Once the dispersion re-
lation is known a great many of the properties of the wave follow in a
more-or-less straightforward manner. Picking up from (6.3), the disper-
sion relation is a functional relationship between the frequency and the
wavevector of the general form

w = Q(k). (6.10)

Perhaps the simplest example of a linear operator that gives rise to
waves is the one-dimensional equation

— +c— =0. (6.11)
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Wave Fundamentals
e A wave is a propagating disturbance that has a characteristic relationship between its fre-
quency and size, known as the dispersion relation. Waves typically arise as solutions to a
linear problem of the form L(y) = 0, where L is, commonly, a linear operator in space and
time. Two examples are

2

%y

9 oy
— _ V=0 d —V? —+ =0, WE.1
aw VY an 3t ¥ Poy (WED

where the second example gives rise to Rossby waves.

e Solutions to the governing equation are often sought in the form of plane waves that have
the form '
¥ = Re Aei(k*-ot), (WE.2)

where A is the wave amplitude, k = (k, [, m) is the wavevector, and w is the frequency.

e The dispersion relation connects the frequency and wavevector through an equation of the
form w = Q(k) where Q is some function. The relation is normally derived by substituting a
trial solution like (WF.2) into the governing equation. For the examples of (WF.1) we obtain
w = ¢*K? and w = —Bk/K? where K* = k* + I> + m? or, in two dimensions, K* = k* + I.

e The phase speed is the speed at which the wave crests move. In the direction of propagation
and in the x, y and z directions the phase speeds are given by, respectively,
w w

7, C; = —, (WFS)

Yy
CHh = —» C, = cpz
m

P K LN %
where K = 2n/A and A is the wavelength. The wave crests have both a speed (cp) and a
direction of propagation (the direction of k), like a vector, but the components defined in
(WE.3) are not the components of that vector.

e The group velocity is the velocity at which a wave packet or wave group moves. It is a vector

and is given by

dw dw

c,=— withcomponents ¢X=—, ¢j=

9 0k 9 9k’

ow . Ow

do s e WF.4
A’ 97 om (WE.4)

Most physical quantities of interest are transported at the group velocity.

Substituting a trial solution of the form v = Re Ael®*=9t) into (6.11) we
obtain (—iw + cik)A = 0, giving the dispersion relation

The

w = ck. (6.12)

phase speed of this wave is ¢, = w/k = c. A couple of other examples

of governing equations, dispersion relations and phase speeds are:

2

Y, 2 _ 212 cK y ¢

— —c*Vy =0, w' =c*K*, ¢,=%c, ¢f=+—, ¢ =+t—,
(6.13a)

9 X y Bk/1

ot

V2w+ﬁg—w=0, w=_—/32k, ¢, =
x

w g
K TR T 9T g
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Fig. 6.2: Superposition of
two sinusoidal waves with
wavenumbers k and k + Sk,
producing a wave (solid
line) that is modulated by
a slowly varying wave en-
velope or packet (dashed).
The envelope moves at the
group velocity, ¢, = dw/0k,
and the phase moves at
the group speed, ¢, = w/k.

Group velocity seems to have
been first articulated in about
1841 by the Irish mathemati-
cian and physicist William
Rowan Hamilton (1806-1865),
who is also remembered for
his formulation of ‘Hamilto-
nian mechanics. Hamilton
was largely motivated by
optics, and it was George
Stokes, Osborne Reynolds
and John Strutt (also known
as Lord Rayleigh) who fur-
ther developed and gener-
alized the idea in fluid dy-
namics in the nineteenth

and early twentieth centuries.

21/ 0k

where K? = k? + 12 and the examples are two-dimensional, with variation
in x and y only.

A wave is said to be nondispersive if the phase speed is independent of
the wavelength. This condition is satisfied for the simple example (6.11)
but is manifestly not satisfied for (6.13b), and these waves (Rossby waves,
in fact) are dispersive. Waves of different wavelengths then travel at differ-
ent speeds so that a group of waves will spread out — disperse — even if
the medium is homogeneous. When a wave is dispersive there is another
characteristic speed at which the waves propagate, the group velocity, and
we come to this shortly.

Most media are inhomogeneous, but if the medium varies sufficiently
slowly in space and time — and in particular if the variations are slow
compared to the wavelength and period — we may still have a local dis-
persion relation between frequency and wavevector,

w = Q(k; x,t), (6.14)
where x and t are slowly varying parameters. We resume our discussion of
this topic in Section 6.5, but before that we introduce the group velocity.

6.2 GRrouPr VELOCITY

Information and energy do not, in general, propagate at the phase speed.
Rather, most quantities of interest propagate at the group velocity, a quan-
tity of enormous importance in wave theory. Roughly speaking, group
velocity is the velocity at which a packet or a group of waves will travel,
whereas the individual wave crests travel at the phase speed. To introduce
the idea we will consider the superposition of plane waves, noting that a
truly monochromatic plane wave already fills all space uniformly so that
there can be no propagation of energy from place to place.

6.2.1 Superposition of Two Waves

Consider the linear superposition of two waves. Limiting attention to
the one-dimensional case, consider a disturbance that is the sum of two
waves,

y = Rei(eltrixart) 4 gitor-e:D) (6.15)
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We linearize about a constant zonal flow, U, by writing

+B—— =0. (6.24)

This equation is just a single-layer version of (6.22), with dg/dy = 8,4’ =
V2y' and v’ = oy’ /0x.

The coefficients in (6.24) are not functions of y or z; this is not a re-
quirement for wave motion to exist but it does enable solutions to be
found more easily. Let us seek solutions in the form of a plane wave,
namely

le = Re lpei(karlyfwt), (625)

where ¥ is a complex constant. Solutions of this form are valid in a do-
main with doubly-periodic boundary conditions; solutions in a channel
can be obtained using a meridional variation of sinly, with no essential
changes to the dynamics. The amplitude of the oscillation is given by ¥
and the phase by kx +1y—wt, where k and [ are the x- and y-wavenumbers
and w is the frequency of the oscillation.

Substituting (6.25) into (6.24) yields

[(~w + Uk)(-K?) + Bk]{ = 0, (6.26)

where K? = k* + I2. For non-trivial solutions the above equation implies
k
w=Uk - % , (6.27)

and this is the dispersion relation for barotropic Rossby waves. Evidently
the velocity U Doppler shifts the frequency by the amount Uk. The com-
ponents of the phase speed and group velocity are given by, respectively,

@ _ B y_w _k_ Bk
Cc, = E = - F, CP = T = U7 - E, (6283.,b)
and
dw U — ) ,_dw 2Bk
x_ 0w _ , _ v 6.29b
“ % T T weiry 923 T @y (623D

The phase speed in the absence of a mean flow is westward, with waves
of longer wavelengths travelling more quickly, and the eastward current
speed required to hold the waves of a particular wavenumber stationary
(ie,cy =0)isU = B/K?. The background flow U evidently just provides
a uniform shift to the phase speed, and (in this case) can be transformed
away by a change of coordinate. The x-component of the group velocity
may also be written as the sum of the phase speed plus a positive quantity,
namely
X X 2ﬁk2

ot 2 ( K2+ 12)2
This means that the zonal group velocity for Rossby wave packets moves
eastward relative to its zonal phase speed. A stationary wave (c;,‘ = 0) has

(6.30)
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Gravity Waves

AVES ARISE WHEN A SYSTEM IS PERTURBED and a restoring force
W tries to bring the system back to equilibrium; the system then

overshoots and oscillations ensue. Gravity waves are waves in
a fluid in which gravity provides the restoring force. For gravity to have
an effect the fluid density must vary, and thus the waves must either exist
at a fluid interface or in a stratified fluid — and a fluid interface is just
an abrupt form of stratification. It is thus common to think of gravity
waves as being either internal waves or surface waves: the former being
in the interior of a fluid where the density changes may be continuous
and the latter at a fluid interface, and naturally enough the two waves
have many similarities. We considered surface waves in the hydrostatic,
shallow water case in Chapter 4; now we consider internal waves in the
continuously-stratified equations.

7.1 INTERNAL WAVES IN A CONTINUOUSLY-STRATIFIED FLUID

Internal gravity waves are waves that are internal to a stratified fluid and
that owe their existence to the restoring force of gravity. In this section
we will consider the simplest and most fundamental case, that of inter-
nal waves in a Boussinesq fluid with constant stratification and no back-
ground rotation. To this end, consider a fluid, initially at rest, in which
the background buoyancy varies only with height and so the buoyancy
frequency, N, is a function only of z. The system satisfies the Boussinesq
equations (Section 2.5) and linearizing those equations of motion about
this basic state gives the linear momentum equations,

ou’ w' ¢
- = _V ,) - = = b,)
ot ¢ "

7.1a,b
o oz (7.13,0)
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Gravity waves are those waves
that exist in a fluid for which
gravity provides the restoring
force. Gravitational waves

are a disturbance in the fab-
ric of spacetime caused by
accelerating massive bodies,
as predicted by the general
theory of relativity.
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and the mass continuity and thermodynamic equations,

! ! ! !
ai+al+ai=0, a_b+w’N2=O_ (71C,d)
ox 0dy 0Oz ot
Our notation is such that # = ui + vj, v = ui + vj + wk, where (i, j,k) are
the unit vectors in the x, y and z directions, and the gradient operator is
horizontal unless noted. Thus, V=10, +jay and V; =10, +j 9, +ko,.
A little algebra gives a single equation for w’,

02 02
[@ (v2+ ﬁ>+sz2]w' =0. (7.2)
4

This equation is evidently not isotropic. If N? is a constant — that is, if
the background buoyancy varies linearly with z — then the coefficients
of each term are constant, and we may then seek solutions of the form

wl = Re wei(kx+ly+mz—wt), (73)

where Re denotes the real part, a denotation that will frequently be
dropped unless ambiguity arises, and other variables oscillate in a simi-
lar fashion. Using (7.3) in (7.2) yields the dispersion relation:

,  (K*+)N* K*N?

- - , 7.4
k2 + 12 + m? K3 7.4

where K? = k*+I? and K3 = k?+[>+m?. The frequency (see Fig. 7.1) is thus
always less than N, approaching N for small horizontal scales, K* > m?.
If we neglect pressure perturbations, as in the parcel argument of Section
3.4, then the two equations,

ow’ ab’

ooy, o iwN=o, (7.5)

ot ot

form a closed set, and give w® = N2.

If the basic state density increases with height then N? < 0 and the
basic state is unstable. The disturbance grows exponentially according to
exp(ot) where

KN
o=iw=+——7, (7.6)
3
where N? = -N? and K5 = 1/K3. Most convective activity in the ocean
and atmosphere is, ultimately, related to an instability of this form, al-
though of course there are many complicating issues — water vapour in
the atmosphere, salt in the ocean, the effects of rotation and so forth.

7.1.1  Hydrostatic Internal Waves

Let us now suppose that the fluid satisfies the hydrostatic Boussinesq
equations. The linearized two-dimensional equations of motion become

!
— = -V¢/, 0= _9¢ +b, (7.7a)
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ou'  dv  ouw' ob’

— F— ¢ =0, — +w'N?=0, (7.7b)

ox 0dy 0z ot

where these are the horizontal and vertical momentum equations, the
mass continuity equation and the thermodynamic equation respectively.
A little algebra gives the dispersion relation,

2 2 2
W = % . (7.8)

The frequency and, if N? is negative, the growth rate, are unbounded as
K?/m* — o0, and the hydrostatic approximation thus has quite unphysi-
cal behaviour for small horizontal scales. Many numerical models of the
large-scale circulation in the atmosphere and ocean do make the hydro-
static approximation. In these models convection must be parameterized;
otherwise, it would simply occur at the smallest scale available, namely the
size of the numerical grid, and this type of unphysical behaviour should
be avoided. In nonhydrostatic models convection must also be parame-
terized if the horizontal resolution of the model is too coarse to properly
resolve the convective scales.

7.2 PROPERTIES OF INTERNAL WAVES

Internal waves have a number of interesting and counter-intuitive prop-
erties — let’s discuss them.

7.2.1 The Dispersion Relation

We can write the dispersion relation, (7.4), as

w = +N cos 9, (7.9)

Fig. 7.1: Scaled frequency,
w/N, plotted as a function of
scaled horizontal wavenum-
ber, k/m, using the full dis-
persion relation of (7.4) with
I = 0 (solid line, asymptoting
to unit value for large k/m),
and with the hydrostatic dis-
persion relation (7.8) (dashed
line, tending to co for large
k/m).
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where cos>9 = K?/(K? + m?) so that 9 is the angle between the three-
dimensional wave-vector, k = ki + lj + mk, and the horizontal. The fre-
quency is evidently a function only of N and 9, and, if this is given, the
frequency is not a function of wavelength. This has some interesting con-
sequences for wave reflection, as we see below.

We can also write the dispersion relation, (7.4), as

w? K?

N 2 (7.10)

Thus, and consistently with our first point, given the wave frequency the
ratio of the vertical to the horizontal wavenumber is fixed.

7.2.2 Polarization Relations

The oscillations of pressure, velocity and buoyancy are, naturally, con-
nected, and we can obtain the relations between them with some simple
manipulations. If the pressure field is oscillating like ¢’ = ¢ exp[i(k - x —
wt)] = ¢ expli(kx+ly+mz—wt)] then, using (7.1a), the horizontal velocity
components satisfy

(@,0) = (k) 0! ¢. (7.11)

Evidently, since the frequency is real, the velocities are in phase with the
pressure. We can obtain similar relations for the other variables and, since
all the fields are real, it is convenient to express the relations in terms of
sines and cosines. If we choose pressure to vary as a cosine then after
some algebra we obtain

¢ = Oy cos(kx + 1y + mz — wt), (7.12a)
(u,v) = (k, Z)% cos(kx + 1y + mz — wt), (7.12b)
w
_K?
w = ——@; cos(kx + ly + mz — wt), (7.12¢)
mw
272
b= N°K @, sin(kx + 1y + mz — wt), (7.12d)
mw?

where @, is a constant. The vertical velocity is thus in phase with the
pressure perturbation, and for regions of positive m (and so with upward
phase propagation) regions of high relative pressure are associated with
downward fluid motion. The above relations between pressure, buoyancy
and velocity are known as polarization relations.

7.2.3 Relation between Wave Vector and Velocity

On multiplying (7.12b) and (7.12¢) by (k, I) and m, respectively, we see that
k-o=0, (7.13)

where k and ¥ are three-dimensional vectors. This means that, at any
instant, the wave vector is perpendicular to the velocity vector, and the
velocity is therefore aligned along the direction of the troughs and crests,
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along which there is no pressure gradient. If the wave vector is purely
horizontal (i.e., m = 0), then the motion is purely vertical and w = N.

The vertical and horizontal velocities are related to the wavenumbers.
If (for simplicity, and with no loss of generality) the motion is in the x-y
plane with v = I = 0, then it is a corollary of (7.13) that

== (7.14)

=
S

Furthermore, from (7.3) with [ = 0, at any given instant all of the perturba-
tion quantities in the wave are constant along the lines kx+#mz = constant.
Thus, all fluid parcel motions are parallel to the wave fronts. Now, since
the wave frequency is related to the background buoyancy frequency by
w = tN cos?, it follows that the fluid parcels oscillate along lines that
are at an angle 9 = cos ™! (w/N) to the vertical. The polarization relations
and the group and phase velocities are illustrated in Fig. 7.2. Let us now
discuss the wave properties in a little more detail.

7.2.4 A Parcel Argument and Physical Interpretation

Let us consider first the dispersion relation itself and try to derive it more
physically, or at least heuristically. Let us suppose there is a wave prop-
agating in the (x, z) plane at some angle 9 to the horizontal, with fluid
parcels moving parallel to the troughs and crests, as in Fig. 7.2. In general
the restoring force on a parcel is due to both the pressure gradient and
gravity, but along the crests there is no pressure gradient. Referring to
Fig. 7.3, for a total displacement As the restoring force, F,,, in the direc-

Fig. 7.2: An internal wave
propagating in the direction
k. Both k and m are positive
for the wave shown. The solid
lines show crests and troughs
of constant pressure, and

the dashed lines the corre-
sponding crests and troughs
of buoyancy (or density). The
motion of the fluid parcels

is along the lines of constant
phase, as shown, and is paral-
lel to the group velocity and
perpendicular to the phase
speed.
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Fig. 7.3: Parcel displacements
and associated forces in an
internal gravity wave in which
the parcel displacements

are occurring at an angle 9

to the vertical, as in Fig. 7.2.

gcos g

_ line of parcel
.7 displacements

tion of the particle displacement is

Fs =gcos9Ap =gcos?d a—‘DAz = gcosd %As cosd = po% cos?9 As,
0z 0z 0z

(7.15)
noting that Az = cos9 As. The equation of motion of a parcel moving
along a trough or crest is therefore

2
podd—tAzs = —poN? cos?9 As, (7.16)
which implies a frequency w = N cos 9, as in (7.9). One of the cos 9 fac-
tors in (7.16) comes from the fact that the parcel displacement is at an
angle to the direction of gravity, and the other comes from the fact that
the restoring force that a parcel experiences is proportional to N cos 9.
(The reader may also wish to refer ahead to Fig. 7.6 and Section 7.3.1 for
a similar argument.)

Now consider the wave illustrated in Fig.7.2. For this wave both k
and m are positive, and the frequency is assumed positive by convention
to avoid duplicative solutions. The slanting solid and dashed lines are
lines of constant phase, and from (7.12) the buoyancy and pressure are
1/4 of a wavelength out of phase. When k and m are both positive the
extrema in the buoyancy field lag the extrema in the vertical velocity by
711/2, as illustrated. The perturbation velocities are zero along the lines of
extreme buoyancy. This follows because the velocities are in phase with
the pressure, which as we noted is out of phase with the buoyancy.

Given the direction of the fluid parcel displacement in Fig.7.2, the
direction of the phase propagation c, up and to the right may be deduced
from the following argument. Buoyancy perturbations arise because of
vertical advection of the background stratification, w'db,/dz = w'N 2 A
local maximum in rising motion, and therefore a tendency to increase the
fluid density, is present along the ‘Low’ line 1/4 wavelength upward and
to the right of the ‘Dense’ phase line. Thus, the density of fluid along the
‘Low’ phase line increases and the ‘Dense’ phase line moves up