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ABSTRACT

A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer

rates, and map out the energy pathways from simulated global ocean data. Traditional tools to measure the

energy cascade from turbulence theory, such as spectral flux or spectral transfer, rely on the assumption of

statistical homogeneity or at least a large separation between the scales of motion and the scales of statistical

inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simulta-

neously in scale and in space and is not restricted by those assumptions. This paper describes how the

framework can be applied to ocean flows. Energy transfer between scales is not unique because of a gauge

freedom.Here, it is argued that aGalilean-invariant subfilter-scale (SFS) flux is a suitable quantity to properly

measure energy scale transfer in the ocean. It is shown that the SFS definition can yield answers that are

qualitatively different from traditional measures that conflate spatial transport with the scale transfer of

energy. The paper presents geographic maps of the energy scale transfer that are both local in space and allow

quasi-spectral, or scale-by-scale, dynamics to be diagnosed. Utilizing a strongly eddying simulation of flow in

theNorthAtlanticOcean, it is found that an upscale energy transfer does not hold everywhere. Indeed certain

regions near the Gulf Stream and in the Equatorial Countercurrent have a marked downscale transfer.

Nevertheless, on average an upscale transfer is a reasonable mean description of the extratropical energy

scale transfer over regions of O(103) km in size.

1. Introduction

Flow in the ocean is complex and very inhomogeneous,

characterized by large-scale currents and a vast number

of eddies. While much of the time-mean kinetic energy

(KE) is concentrated in narrow intense currents such as

the Gulf Stream and Kuroshio, a substantial fraction of

the total KE is found at smaller scales in the time-varying

flow, largely at the mesoscale, where the size of eddies is

established by Earth’s rotation and the ocean’s stratifi-

cation, with an important scale being theRossby radius of

deformation. The nature of the coupling between fea-

tures spanning these scales, from the Rossby radius of

deformation up to that of the large-scale mean flow, has

long been of oceanographic interest. Our incomplete

knowledge of the mechanisms that act to couple the

mesoscale to the large-scale circulation, and of the

pathways through scales below the mesoscale by which

energy is dissipated, has hindered our ability to fully

account for the ocean’s KE budget. There are addi-

tional reasons to engage in such study. From the per-

spective of modeling, one must understand what

processes are of fundamental importance if those pro-

cesses are liable to be compromised within the model,Corresponding author: Hussein Aluie, hussein@rochester.edu
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as is often the case for processes involving mesoscale

eddies (e.g., Ringler et al. 2013; Zanna et al. 2017;

Pearson et al. 2017).

An enduring paradigm for oceanic energy pathways

between large-scale and mesoscale flow (Gill et al. 1974;

Rhines 1975; Salmon 1978, 1980; Smith and Vallis 2002;

Vallis 2006; Ferrari and Wunsch 2009) is based on bar-

oclinic instability and homogeneous quasigeostrophic

(QG) turbulence theory. At large horizontal scales, there

is a source of potential energy (PE), caused by the wind

and surface heat fluxes, that drives mesoscale eddies via

baroclinic instability. The instability converts large-scale

PE into KE at about the Rossby deformation scale of

Rd ’ 50–100km. From this scale Rd, much of the KE, at

least in this idealized model, undergoes some form of

inverse cascade to larger scales. This paradigm is of

course highly idealized, whereas the World Ocean is

irregular, highly inhomogeneous and constrained by

topography and complex boundaries and, importantly,

is not fully described by the QG equations. Even within

the realm of QG dynamics, barotropic instabilities can

arise to transfer energy downscale. One of the main

objectives of this paper is to understand if and how this

classical paradigm might apply in a more realistic sit-

uation, and as a first step we probe directly the KE

transfer between scales in a comprehensive, strongly

eddying ocean model. Specifically, we analyze the en-

ergy transfer across scales at various geographic loca-

tions, such as in strong currents, near continental

boundaries, and near the equator.

Some intriguing and important work has already

been done to examine the flow of energy between dif-

ferent spatial scales in the oceans. For example, the

work of Scott andWang (2005), Arbic et al. (2013), and

Tulloch et al. (2011) represents largely successful at-

tempts to characterize turbulent scale transfer as ob-

served from altimetry and generated within models and

the extent to which those energy transfers conform to

two-dimensional geostrophic turbulence. This and all

previous oceanographic analyses, however, have been

generated using tools from turbulence theory that rely

upon an assumption of statistical homogeneity or, at

least, a large-scale separation between the eddying

scales of motion and the scales over which the

statistics vary.

In this work, we try to relax this assumption by imple-

menting a filtering approach that is mostly novel to large-

scale physical oceanography but is well-established in

other fluid dynamics disciplines (e.g., Germano 1992;

Meneveau 1994; Eyink 1995c; Chen et al. 2003;Aluie 2011;

Rivera et al. 2014). The approach is very general, mathe-

matically exact, and based on a coarse-graining framework

that can probe the dynamics of length scales at any

geographic location and any instant of time, without re-

lying on assumptions of homogeneity or isotropy. It can be

used to analyze nonlinear processes, detect and measure

energy transfer rates between oceanic structures, and map

out energy pathways fromocean altimetry andmodel data.

This paper presents an implementation of coarse-graining

analysis for the quantification of oceanic energy flowacross

spatial scales. Our results indicate that the consequences of

the assumption of statistical homogeneity embedded in

the traditional tools used for the analysis of turbulence

can be substantial when applied in the context of oceanic

flows. Whereas our results are in many places in rea-

sonable agreement with those from the traditional

method, they are different from the results of traditional

analyses in a number of energetic regions, indicating

that the assumption of homogeneity is, in those places,

not justifiable.

Based on the evidence shown below, coarse-graining

is found to be a viable method for exploring the degree

to which the generally accepted geostrophic model for

such pathways is valid in the ocean and for studying the

contribution of various nonlinear mechanisms to the

transfer of energy (or potential enstrophy) across scales,

such as baroclinic and barotropic instabilities, baro-

tropization, Rossby wave generation, and internal wave

generation and breaking. The method can also be ap-

plied to smaller scales where the geostrophic assump-

tions are not generally valid.

From the technical standpoint, this paper aims to

introduce and prove the feasibility of the coarse-

graining method in physical oceanography. The hope

is that it would enable the community to start mapping

the energy pathways in the ocean, to identify the

sources and sinks acting at different scales, and to

quantify the power rates at which they generate or

dissipate energy. The application of the method in this

paper is restricted to data from an eddy-resolving

OGCM, thus allowing us to probe the interaction of

mesoscale eddies with the large scales. However, we

can also apply the method to simulations that resolve

submesoscale processes to probe the interaction of

mesoscale and submesoscale eddies with unbalanced

motion, such as gravity waves, and dissipative pro-

cesses. Indeed, the rather general applicability of the

method can help lead to a determination of the power

requirements to sustain turbulence and mixing, and the

overall pathway of energy from source to sink, in

the ocean.

This paper is organized as follows: Section 2 in-

troduces the coarse-grainingmethod in some detail and

how we apply it to our data. Section 3 discusses the

main results of this paper, and section 4 offers a com-

parison of this work with previous studies that have
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tackled these problems. The paper concludes with

section 5, which summarizes the main results and offers

ideas on potential future work and new research

questions that we believe the coarse-graining tech-

nique makes feasible.

2. The coarse-graining method

To understand how energy travels through a system,

both geographically and with respect to scales (which

we shall refer to as spatially and spectrally, re-

spectively), we use a ‘‘coarse-graining’’ or ‘‘filtering’’

framework that is unusual in large-scale physical

oceanography but has become well-established in other

fields. It is rooted in a common technique in the math-

ematical analysis of partial differential equations (e.g.,

Strichartz 2003; Evans 2010). It was first introduced to

the field of turbulence by Leonard (1974) in the context

of large-eddy simulation (LES) modeling. The method

was further developedmathematically byEyink (1995a,b,

2005) to analyze the physics of scale coupling in tur-

bulence. It has been utilized in several fluid dynamics

applications, ranging from direct numerical simulations

(DNS) of turbulence (e.g., Piomelli et al. 1991; Vreman

et al. 1994; Aluie andEyink 2009) to 2D laboratory flows

in a shallow tank (e.g., Chen et al. 2006; Kelley and

Ouellette 2011; Liao and Ouellette 2015; Fang and

Ouellette 2016) and in soap films (e.g., Rivera et al. 2003;

Chen et al. 2003; Rivera et al. 2014) to experiments of

turbulent jets (Liu et al. 1994) and flows through a grid

(Meneveau 1994), through a duct (Tao et al. 2002), in a

water channel (Bai et al. 2013), and in turbomachinery

(e.g., Chow et al. 2005; Akbari and Montazerin 2013).

Moreover, the framework has been extended to rotating

stratified flows (Aluie and Kurien 2011), magnetohydro-

dynamics (Aluie 2017b), and compressible turbulence

(e.g., Aluie et al. 2012) and as a framework for pa-

rameterizing convection (Thuburn et al. 2018). The

schematic in Fig. 1 summarizes the main idea behind

the method.

The technique allows for a direct quantification of the

strong (or weak) nonlinear coupling between different

scales. For example, it allows one to measure the

amount and sense (upscale or downscale) of energy

being exchanged between different scales at every point

x in the domain, at every instant in time t. It is a very

general approach to analyzing complex flows, the rig-

orous foundation of which was developed by Germano

(1992) and Eyink (1995c, 2005) to analyze the funda-

mental physics of scale interactions in turbulence. The

method allows for probing the dynamics simultaneously

in scale and in space and is not restricted by usual as-

sumptions of homogeneity or isotropy. This makes it

ideally suited for studying, on the entire globe, oceanic

flows with complex continental boundaries. We have

recently developed and generalized the approach to

account for the spherical geometry of the flow (Aluie

2017a, manuscript submitted to Nonlinearity), with this

work being its first implementation in a realistic

geophysical system.

a. Coarse-grained fields

The essence of the method is relatively straightfor-

ward. For any scalar field f(x), a coarse-grained or (low

pass) filtered field, which contains modes at length

scales .‘, is defined as

f
‘
(x)5G

‘
*f , (1)

where * is a convolution, and G‘(r) is a normalized

kernel (or window function) so that
Ð
d2rG‘(r)5 1. Op-

eration (1) may be interpreted as a local space average

over a region of diameter ‘ centered at point x. Notice

that f ‘(x) has scale information ‘ as well as space in-

formation x. An example of a kernel G‘ is the top-hat

kernel:

H
‘
(r)5

�
A21 , if jrj, ‘/2 .

0, otherwise.
(2)

In a flat (Euclidean) 2D domain, the normalization area

isA5 (p‘2)/4, whereas onEarth’s spherical surface,A5
2pR2[12 cos(‘/2R)], where R is Earth’s radius. It might

be possible to use more general anisotropic kernels to

distinguish between zonal and meridional scales, for

example. For simplicity, we restrict ourselves to iso-

tropic kernels in this paper and defer such refined

analysis to future work.Moreover, while the filtering can

be done in all three dimensions, here we focus on the

analysis of horizontal scales and filter using 2D kernels

to study the scale transfer.

We can also define a complementary high-pass filter

that retains only modes at scales ,‘ by

f 0‘(x)5 f (x)2 f
‘
(x) , (3)

which also retains spatial information as a function of x

and scale information as a function of ‘. In the rest of our

paper, we shall omit subscript ‘whenever there is no risk

of ambiguity.

The scale decomposition in (1) and (3) is essentially a

partitioning of scales in the system into large (*‘) and

small (&‘). Such a decomposition of the instantaneous

flow in the North Atlantic into two sets of scales is

shown in Fig. 2, which makes plain two key advantages
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of the method: (i) an ability to vary the partitioning

scale ‘ to gain insight into the geographic location of

different oceanic flow structures and (ii) an applica-

bility to single snapshots, thereby allowing, for exam-

ple, the generation of movies of the flow at any set of

length scales.

While the simultaneous resolution of both spatial and

scale information of a field u(x) afforded by filtering is

useful, other decompositions, such as with wavelet

transforms, can serve a similar purpose. [In fact, wave-

lets can be used within our approach with the proper

choice of filtering kernelG‘(r).] Other studies have used

filtering for scale decomposition of oceanic data (e.g.,

O’Neill et al. 2012; Gaube et al. 2015). However, the true

potential of the coarse-graining approach as an analysis

framework derives mostly from utilizing the dynamical

equations, which describe the evolution of various

scales. To do so, it is crucial to ensure that the filtering

operation [(1)] commutes with spatial derivatives. For

example, it must satisfy = � u‘ 5= � u‘, which guarantees

that the filtered flow is incompressible if the original flow

satisfies this property, as is the case for the flow in Fig. 2.

A simple low-pass filtering, for example, by averaging

values at adjacent grid cells or block averaging on the

sphere, does not satisfy these conditions and cannot be

used for analyzing the dynamics at different scales, as we

do here.

The decomposition we use here preserves the funda-

mental physical properties of the flow, such as its

incompressibility, its geostrophic character, and the

vorticity present at various scales. This allows for the

systematic and rigorous derivation of equations gov-

erning any set of scales. For example, since our filtering

commutes with spatial derivatives it mathematically

guarantees that if one (i) filters the sea surface height

(SSH) field first, then computes the velocity, or (ii)

computes the velocity first, then filters it, the resultant

coarse-grained velocity would be identical.

b. Coarse-grained dynamics and scale coupling

Coarse-grained dynamical equations can be derived

to describe the evolution of u‘(x) at every point x in

space and at any instant of time. For example, if u(x) is

governed by the rotating Boussinesq equations, then

u‘(x) is governed by

›

›t
u
‘
1 u

‘
� =u

‘
52

1

r
0

=P
‘
2 f 3u

‘
2= � t

‘
(u, u)

1 n=2u
‘
1

r
‘

r
0

g1F forcing
‘ . (4)

Here, P is pressure, f is the Coriolis frequency, n is vis-

cosity, r0 is the reference density, and Fforcing is forcing

such as from winds or tides. Equation (4) is identical to

the original unfiltered equation but with an additional

contribution from the subfilter stress (oftentimes called

subgrid stress in the LES literature):

t
‘
(u, u)5 uu

‘
2 u

‘
u
‘
, (5)

a tensor representing the forces exerted by scales smaller

than ‘ on the larger-scale flow1 at every location x. In a

Navier–Stokes flow, the subfilter term t‘(u, u) contains

all the information needed to quantify the momentum

coupling between the two sets of scales,.‘ and,‘. If we

have complete knowledge of the dynamics in a simulated

or real-life flow, that is, knowing the velocity at every grid

point, the subfilter stress can be calculated exactly at ev-

ery point x in the domain and at any instant in time t.

Furthermore, since (4) describes scales.‘, for arbitrary ‘

(see Fig. 1), we can analyze the spatially resolved non-

linear coupling as a function of scale ‘.

From the large-scale momentum equation (4), one

can derive a KE budget for scales .‘:

›

›t
r
0

ju
‘
j2
2

1= � J transport
‘ 52P

‘
2 r

0
nj=u

‘
j2 1 r

‘
g � u

‘

1 r
0
F forcing
‘ � u

‘
. (6)

See, for example, Germano (1992) for details. Note that

what we dub large-scale KE is the KE in the large-

scale flow, based on u‘, rather than the filtered KE itself

FIG. 1. The coarse-graining approach. The system’s size is L, the

largest scale. Below the viscous dissipation scale ‘d, the dynamics is

linear and modes are uncoupled. The dynamics over the entire

scale range L $ ‘ $ ‘d is given from a numerical simulation or an

experiment. Scales are then partitioned (postprocessing) into large

and small. Length ‘ represents the smallest scale that is resolved

after coarse graining. Scales ,‘ (blue) are averaged out.

1 The (traceless part of the) term t‘(u, u) is often thought of as a

linear diffusive process and modeled as 22nturbS‘, where S is the

symmetric flow strain tensor. It is important, however, to re-

member that this is only a model that is often deficient and may

sometimes fail altogether.
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FIG. 2. Our scale decomposition applied to model output (see section 3) at a single instant of time. (left)

KE ju‘j2/2 (divided by density; m2 s22) at scales larger than filtering scale ‘ [(1)]. (right) KE, ju0
‘j2/2, in the

complementary small scales [(3)]. Rows show different filtering scales: (top) unfiltered with ‘ 5 0 km,

(middle) filtered at scales ‘5 100 km, and (bottom) ‘5 500 km. Note the order of magnitude change in color

scale to show energy below ‘ 5 100 km in the middle-right panel. When visualizing in this manner, it is

important to ensure the grid has sufficient resolution before taking the square of velocity to avoid aliasing

effects.
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r0juj2/2, which does not cascade across scales (Germano

1992; Eyink 2005). Here,

J transport
‘ (x)5 r

0

ju
‘
j2
2

u
‘
1P

‘
u
‘
2 r

0
n=

ju
‘
j2
2

1 r
0
u
‘
� t

‘
(u, u)

represents the spatial transport of large-scale KE; the

first term is advection by u‘, the second is transport

caused by pressure, the third is diffusion caused by

molecular viscosity, and the last term accounts for the

role of motion at scales ,‘ in transporting KE. The

second term on the right-hand side (RHS) of (6) is direct

destruction of large-scale KE by molecular viscosity and

can be shown mathematically to be negligible at scales

‘ � ‘d (e.g., Eyink 2008; Aluie 2013). The third term is

conversion from gravitation potential into kinetic en-

ergy, the analysis of which yields insight into baroclinic

conversion that is believed to drive mesoscale eddies as

we shall show in a follow-up work (Sadek et al. 2017).

The last term accounts for the direct kinetic energy in-

jection caused by forces such as wind or tides. The first

term P‘ is the energy scale transfer or ‘‘cascade’’ term2

and measures energy transferred from scales .‘ to

smaller scale because of nonlinear interactions. This is

defined as

P
‘
(x)52r

0
S
‘
: t

‘
(u, u), (7)

which is the large-scale strain tensor S‘ 5 (=u‘ 1=uT
‘ )/2,

acting against subfilter-scale stress t‘(u, u). Here, the

colon : is a tensor inner product that yields a scalar. In a

Navier–Stokes flow, P‘(x) contains all the information

needed to quantify the exchange of energy between the

two sets of scales, .‘ and ,‘. Since we have complete

knowledge of the dynamics at all scales resolved in a

simulation, P‘(x) can be calculated exactly at every

point x in the domain and at any instant in time t. This is

demonstrated in Fig. 3. It is not possible from simula-

tion, satellite, or field data to capture all scales present in

the real ocean. Therefore, computing P‘ is only mea-

suring the dynamical coupling between scales present in

the data. It is possible to refine the analysis above by

deriving an energy budget within a band of scales as was

shown in Eyink and Aluie (2009); however, the current

analysis will suffice for the purpose of this paper.

While spatial maps of P‘(x) unravel a wealth of in-

formation about the scale dynamics, it is sometimes

more insightful to reduce such information by averaging

over regions and plotting hP‘i as a function of the re-

maining variable ‘. Figure 4 shows an example of hP‘i
(plotted as a function of 1/‘ to make comparison to

previous studies easier) that indicates the amount and

sense of energy being transferred across different scales.

c. Proper measure of the cascade

Inmany instances, standard tools that were developed

and used in the study of turbulence are only strictly valid

to analyze homogeneous isotropic incompressible flows.

Consequently, calculations of the energy transfer rates

in the ocean that use these tools may give ambiguous

results for inhomogeneous flows, as we show in Fig. 3.

The problem arises because there are several possible

definitions for the cascade term P‘(x) in (6), as we now

elaborate.

Definition (7) for the scale transfer of energy in bud-

get (6), which we shall call the subfilter-scale flux or SFS

flux,3 is widely used in the LES literature [whereP‘(x) is

often called the subgrid-scale flux or SGS flux], but it is

not unique. Another widely used definition is that ap-

plied to the ocean by the aforementioned studies and

was largely developed in the context of homogeneous

turbulence (HT; Frisch 1995):

PHT
‘ (x)5 r

0
u � (=u0

‘) � u‘
, (8)

where � is a dot product between a tensor and a vector,

which yields a vector. Yet a third possible definition

Puns
‘ (x)5 r0[= � (uu‘)] � u‘, which we shall refer to as the

unsubtractedflux,wasusedbyLindborg (2006),Brethouwer

et al. (2007), and Molemaker and McWilliams (2010) in

idealized geophysically relevant flows. The difference be-

tween any two of these definitions is a divergence term

= � ( . . . ), which amounts to a reinterpretation of which

terms in budget (6) represent transfer of energy across scales

and which terms redistribute (or transport) energy in space

= � J transport
‘ . There is an infinite number of ways to re-

organize terms in budget (6) and, thus, an infinite number of

possible definitions for the transfer of kinetic energy be-

tween scales. This freedom in definingP‘(x) can be thought

of as a gauge freedom.2 The term cascade generally implies a spectrally local transfer

and therefore is a stronger statement than just transfer, although it

is common in physical oceanography to use the two terms synon-

ymously. However, in this manuscript, we henceforth avoid using

the term cascade when unwarranted since we are not making any

statement about the scale locality of the transfer, which can be

diagnosed through amore refined analysis similar to what was done

in Eyink and Aluie (2009) and Aluie and Eyink (2009).

3 The term flux in this context denotes a flux of energy across

scales, which has units of power per unit volume. It should not be

confused with a spatial flux, such as J transport
‘ in (6), which has units

of power per unit area. Our terminology is borrowed from the

turbulence and LES literature.
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In a homogeneous flow, spatial averages of all these

definitions are equal because their difference is a di-

vergence that is zero: h= � ( . . . )i5 0. On the other hand,

if one considers inhomogeneous flows, such as in the

ocean or atmosphere, or if one wishes to analyze the

cascade geographically without spatial averaging, then

such definitions can differ qualitatively as well as quan-

titatively. We will now argue that the SFS flux definition

(7) is the propermeasure of the cascading energy because

it satisfies an important physical criterion: Galilean in-

variance. Using such a criterion to choose the definition

of the SFS flux may be thought of as gauge fixing.

GALILEAN INVARIANCE

Galilean invariance is the requirement that a de-

termination of the amount of energy cascading at any

given point x should not depend on the velocity of the

observer. In other words, a measurement from a ship

sailing in the Gulf Stream and another from a station on

land should register the same amount of energy being

exchanged between scales. Kraichnan (1964), Speziale

(1985), Germano (1992), and Eyink (2005) all empha-

sized the importance ofGalilean invariance in the context

of turbulence, and, more recently, Eyink and Aluie

(2009) and Aluie and Eyink (2009) showed that Galilean

invariancewas necessary for the so-called scale locality of

the cascade. There are non-Galilean-invariant terms in

our budgets [(6)], but, as is physically natural, they are all

associated with spatial transport J transport
‘ of energy.

Definition PHT
‘ (x)5 r0u � (=u0

‘) � u‘ does not satisfy

Galilean invariance. An observer moving at a constant

velocity2U0 relative to the systemwill measure a flux at

point x,

PHT
‘ (x)5 r

0
[u � (=u0

‘) � u‘
1 u � (=u0

‘) �U0

1U
0
� (=u0

‘) � u‘
1U

0
� (=u0

‘) �U0
] ,

FIG. 3. The energy transfer across scale ‘5 L/30 (L is the domain size), at a single time instant, at every x. Data

are from a 3D triply periodic simulation of homogeneous isotropic turbulence forced at large scales. Red (blue) is

energy transferred from scales larger (smaller) than ‘ to scales smaller (larger) than ‘. Top-left panel uses the SFS

cascade measure, which is Galilean invariant, whereas the top-right panel uses the HT definition (Frisch 1995),

which is not, yielding an unphysical imprint of the large scales. Bottom two panelsmeasure the energy transfer using

the respective definitions after embedding the fluctuations in a uniformmean flow, underscoring the dependence of

PHT
‘ on the observer’s inertial frame of reference.

FEBRUARY 2018 ALU IE ET AL . 231



such that the amount of energy cascading at an arbitrary

location in the flow will be dependent on the frame of

reference. For large sweeping speeds jU0j, the measured

cascade becomes proportional to jU0j2, as demonstrated

in Fig. 3.

On the other hand, both the subfilter stress in (5) and

the SFS flux in (7) satisfy Galilean invariance. This prop-

erty can be directly verified by the reader with elementary

algebra and is demonstrated in Fig. 3.

The two cascade measures, visualized in Fig. 3, show

very different qualitative and quantitative behavior. The

termPHT
‘ has a strong dependence on themost energetic

structures in the flow, with a conspicuous imprint of the

strongest eddies forming the peak of the energy spec-

trum. To underscore Galilean invariance, we boost the

velocity by a constant U0x̂5 1000 x̂ m s21 and recalcu-

lated the fluxes using both definitions. As expected, the

SFS flux P‘ does not change. On the other hand, PHT
‘

exhibits an unphysical dependence on the reference

frame and is proportional to O(U2
0 ).

The idea we are emphasizing is that any definition of a

flux, which measures the amount of energy cascading

across a scale ‘, should beGalilean invariant. Otherwise,

the amount of energy cascading at a point x in the flow

would depend on the inertial frame of reference of the

system, which is unphysical. Disentangling the cascade

across scales from spatial transport is especially perti-

nent when trying to determine the sense of a cascade

visually by looking at the evolution of structures.

Consider a simple 3D pure Navier–Stokes turbulent

FIG. 4. Spatially averagedSFS flux (solid blue line;Wkm22m21) hP‘i at the ocean surface as a function of scaleK5
104/‘ km21. Here, K is not a wavenumber, just a number proportional to ‘21. The uppermost left panel shows the

various regions over whichP‘ (x) is averaged. In the remaining panels the transparent blue shade depicts the temporal

standard deviation in the SFS flux over a 3-yr period (110 snapshots), while the solid blue line is the temporal average.

This is compared to the homogeneous turbulence flux hPHT
‘ i (dashed red) without artificial tapering or boosting.

Significant qualitative (and not just quantitative) differences in Florida, the equator, and the Grand Banks where

strong mean currents exist (Gulf Stream and North Equatorial Current), sweeping through the box.
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flow in a laboratory tank. If one injects a localized blob

of tracer somewhere in the flow, the blob will diffuse and

expand. At face value, an observer might be tempted to

conclude that the flow (and the tracer) is undergoing an

inverse cascade because the size of the blob is growing.

However, it is well-known that both energy and tracer

variance in a 3D Navier–Stokes flow undergo a cascade

to smaller scales (e.g., Pope 2000). The observed ex-

pansion is in fact due to spatial transport by turbulence,

which is sometimes referred to as turbulent diffusion. If

such spatial transport is subtracted by using a reference

frame comoving with the local large-scale flow, then the

observer would notice that the tracer, which started as a

continuous blob, develops fine filaments and becomes

fractal (down to the viscous scales), indicating a down-

scale cascade. This is precisely what the SFS flux defi-

nition (7) measures. While Fig. 3 relies on a boosting

velocity for the purpose of illustration, we will see below

that Galilean invariance proves to be of significance in a

number of regions within the North Atlantic Ocean.

3. Results

Since we can probe the dynamics simultaneously in

scale ‘ and in space x, we show two types of results be-

low. The first type explores the energy transfer across

various scales ‘, spatially averaging hP‘i over a region of

interest. The region may be very small in geographic

extent or very large, encompassing the entire domain.

The second type of results we present keeps scale ‘,

across which energy is being transferred, fixed while

fully resolving the scale transfer in space. This yields

spatial maps of P‘(x).

As we mentioned above, it is important to bear in

mind that the scale coupling unveiled by our analysis is

an exact description of the fully nonlinear dynamics in

the simulation, which may be different from that of the

real ocean. This is a limitation shared by any qualitative

or quantitative analysis done on data, be it from simu-

lations or observations.

Wewill now present an analysis of the scale transfer in

the North Atlantic using OGCM data. Our method can

also be applied to observational data, including satellite

altimetry andArgo floats. But here we take advantage of

the uniform and complete coverage afforded through

the use of simulation output in order to establish the

effectiveness of the method. We hope that it will then

subsequently be applied to observational data.

a. Description of simulation

The simulation we analyze is the 14b case of Bryan et al.

(2007). As explained in that paper, this simulation was

generated with the POP free-surface, hydrostatic primitive

equation code (Dukowicz and Smith 1994) using z co-

ordinates and a full-cell representation of topography. A

mercator grid with zonal grid spacing of 0.18 and meridi-

onal spacing of 0.18[sin(latitude)] covered the Atlantic

basin from 208S to 738N, including the Gulf of Mexico and

the western Mediterranean. Toward the northern bound-

ary of the domain, the first internal Rossby radius of de-

formation becomes poorly resolved, with only one grid cell

spanning the Rossby radius at the highest latitudes of the

North Atlantic basin (see Fig. 1 of Smith et al. 2000). This

important dynamical length scale tends to be adequately

resolved, however, at the latitudes of our analysis regions

(see our Fig. 4 below for the analysis regions). A 40-level

grid was used in the vertical with cell thickness increasing

from 10m at the surface to 250m in the deep ocean. Bi-

harmonic eddy viscosity n anddiffusivitykwas used, scaled

with the cube of the local grid spacing, as

n5 n
0

�
dx

dx
0

�3

(9)

(and similarly for k), such that the grid-scale Reynolds

number

Re
grid

5
U dx3

n
0

(10)

is constant for a fixed velocity scale, regardless of loca-

tion on the grid. Here, n0521.353 1010m4 s21, and the

corresponding diffusive coefficient was k0 5 n0/3. The

Pacanowski and Philander (1981) parameterization of

vertical mixing was used with background values of vis-

cosity and diffusivity of 1024 and 1025m2 s21, respectively.

A quadratic bottom stress with a drag coefficient of

1.225 3 1023 was applied.

The experiment was forced with a daily averagedwind

stress, computed fromECMWFTOGAsurface analyses

(derived from operational forecasts and provided on a

1.1258 Gaussian grid) for mid-1985 to early 2001. A re-

peating annual cycle of surface heat flux is prescribed

using the Newtonian cooling boundary condition of

Barnier et al. (1995) with a penetrative solar radiation

flux. A restoring boundary condition is used for surface

salinity, damping the model solution toward the Levitus

(1982) monthly climatology on a time scale of 1 month.

The north and south boundaries of the domain are closed

to flow, with temperature and salinity restored to the

annual-mean Levitus climatology within 38 wide buffer

zones. Details of this and other points of model configu-

ration appear in the earlier paper of Smith et al. (2000).

Themodel output that we analyze was saved at 10-day

intervals over a 3-year period of the simulation, from

March 1998 through February of 2001.

FEBRUARY 2018 ALU IE ET AL . 233



b. Mapping energy scale transfer

Figures 4–7 show the scale transfer at various loca-

tions and depths in the ocean as a function of scale ‘.

(The plot is a function of 1/‘ to make comparison to

previous studies easier.) The depths we have chosen are

(i) at the surface to compare to previous results using

altimetry data; (ii) at 100-m depth, slightly below the

average depth of the mixed layer; (iii) at 500-m depth,

within the thermocline; and (iv) at 2000m within the

more weakly stratified depths of the ocean. The regions

we have chosen are (i) the entire North Atlantic domain

of our data to characterize the scale transfer at the basin

scale; (ii) a large region near the Grand Banks, in the

Gulf Stream Extension, which overlaps with the region

studied in Arbic et al. (2013) to compare with that study;

(iii) a smaller region of the Grand Banks, to test the role

of region size on the dis/agreement between the SFS and

the HT cascade measures; (iv) a small region east of

Florida, within the Gulf Stream, where sweeping effects

are very large; (v) a region encompassingmost of theGulf

Streamand its extension tomeasure the scale transfer in a

western boundary current system, something that was

absent from previous studies and that can be carried out

with our coarse-graining approach; (vi) a small region in

the Sargasso Sea, at approximately the center of the

North Atlantic’s subtropical gyre, to measure the scale

transfer in a relatively quiescent region within which

sweeping effects are negligible; and (vii) an equatorial

region, between 58S and 58N and 108 and 358W, that

covers the North Equatorial Current and Countercurrent

in our simulation and where the geostrophic approxi-

mation fails.

Figures 4 and 5 show that HT and SFS are qualita-

tively different in regions where sweeping effects by

FIG. 5. As in Fig. 4, but at 100-m depth. We again see significant differences between the two measures of energy

transfer, especially in Florida, the equator, and the Grand Banks where strongmean currents sweep through the box.
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mean oceanic current are important, especially in the

Florida region, but also in the equator and the small

Grand Banks boxes. In the larger Grand Banks region,

where the mean Gulf Stream is relatively less dominant,

SFS and HT are in qualitative agreement. When aver-

aging over the entire domain, over which mean sweep-

ing effects are exactly zero (zero flow in or out of the

domain), the two definitions yield very similar results.

From Figs. 4 and 5, we also see that the interior region in

the Sargasso Sea is not as homogeneous as one may

think, where we find that the HT and SFS definitions

agree over scales smaller than 50 km but diverge over

larger scales.

Figures 8–10 show geographic maps of interscale en-

ergy transfer in the ocean. They are time-averaged

over a 3-yr period, which we have checked to be al-

most identical to 2-yr averaged maps, indicating that the

features shown are persistent in time. The maps reveal

intense KE scale transfer taking place in the Gulf

Stream and in the North Brazil Current. There is also a

weaker but significant scale transfer inmost of the North

Atlantic, not as visible because of the color map. As one

would expect, the scale transfer is significantly stronger

in the uppermost layers compared to the deeper ocean.

The qualitative nature of scale transfer differs signif-

icantly at various geographic locations and depths. For

example, we observe an upscale transfer of energy in the

surface equatorial region, where the equatorial flow is

from east to west. On the other hand, Figs. 9 and 4 show

that in the Equatorial Countercurrent at 100-m depth,

the transfer is almost entirely downscale. We note that

QG theory is not expected to hold at the equator.

Another prominent feature we observe in Figs. 8 and 9,

especially across ‘5 200 km at which the transfer peaks,

is a strong (dark blue) upscale transfer in the Gulf Stream

core east of Florida and the Carolinas. This persists well

FIG. 6. As in Fig. 4, but 500-m depth. This depth is within the thermocline, where stratification effects are, on

average, strongest in the ocean. We notice that the energy transfer across scales is an order of magnitude smaller

here than in the mixed layer, near the surface.
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beyond the separation point (Cape Hatteras), indicating

that energy is transferred from mesoscale eddies into the

Gulf Stream, accelerating and focusing the current.

Flanking both sides of this (dark blue) core, we see

downscale transfer (red) most probably associated with

barotropic instabilities resulting from strong shear. This

supports recent eddy–mean flow interaction models that

rely on decomposing the flow into mean and fluctuating

parts (e.g., Waterman and Jayne 2011). Overall, an up-

scale transfer dominates in the Gulf Stream, in general

accord with the traditional QG paradigm. A similar pat-

tern, though not as pronounced, exists in the North Brazil

Current.

We also observe from Figs. 8 and 9 a persistent red

patch in the Gulf Stream as it passes through the Florida

Strait just south of the peninsula. This indicates an ex-

penditure of kinetic energy by the Gulf Stream as it

traverses the Florida Straight and undergoes a sharp

turn northward. This is not necessarily associated with a

slowdown in the mean current speed since any loss may

be offset by other forcing mechanisms, such as buoyancy

or wind forcing. Another northward turn occurs at the

Grand Banks, where the North Atlantic current carries

subpolar gyre waters farther poleward than anywhere

else on Earth. Here, a strongly coherent red core

of downscale energy transfer is flanked on both sides by

upscale transfer or inverse cascade. An in-depth in-

vestigation of these issues is worth pursuing in future

work but would take us beyond the scope of this paper.

Figures 8–10 show that the SFS flux, which is a scalar

field, seems to be mostly depth-independent at high lati-

tudes. In other words, the pattern of red versus blue in the

Gulf Stream, indicating the sense of the energy scale

transfer, appears to be nearly the same at the surface, at

100-m depth, and also at 500-m depth, which has practical

utility in inferring transfer from surface altimetry data.

We also notice from Figs. 4–7 that the temporal fluc-

tuations in the scale transfer differ as a function of the

FIG. 7. As in Fig. 4, but at 2000-m depth. This is within the deep ocean, where stratification effects are, on average,

weakest in the ocean.We notice that the energy transfer across scales is two orders of magnitude smaller than in the

mixed layer, near the surface.
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averaging box and the nature of the flow within the box.

For example, we find that in regions where a relatively

strong coherent mean flow exists, such as in the Equa-

torial Countercurrent at 100-m depth or near Florida,

the temporal variation is smaller than in regions that

lack a strong coherent mean flow, such as at the equa-

torial surface, Sargasso Sea, and the small Grand

Banks region where the instantaneous sweeping by

the Gulf Stream Extension is strong but is not tempo-

rally coherent.

A general conclusion we can deduce from Figs. 8–10 is

that an upscale energy transfer does not take place ev-

erywhere in the ocean, even at the higher latitudes. On

the other hand, if we average over large enough regions

(of order 103 km in size or larger) in the ocean, away

from the equator, we find from Figs. 4–7 that the

FIG. 8. Geographic maps of the interscale energy transfer P‘(x)

(Wkm22m21) at the surface, time averaged over 3 years (110 snap-

shots), where (top) ‘ 5 400km and (bottom) ‘ 5 200km. The color

mapused, is not linear;most of the color shownhas small values close to

zero (white), and someblue/red regions exceed themaximumvalues on

the color bar. We observe a downscale transfer in the current south of

Florida, as theGulf Stream turns northward, possibly indicative of eddy

shedding or even just the small scale associated with the sharp turn in

the trajectory. We also observe a strong (dark blue) upscale transfer in

the Gulf Stream core east of Florida and the Carolinas. This persists

well beyond the separation point (Cape Hatteras), indicating that en-

ergy is transferred from mesoscale eddies into the Gulf Stream, accel-

erating and focusing the current. Flanking both sides of this (dark blue)

core, we see downscale transfer (red) most probably associated with

barotropic instabilities resulting from strong shear. Overall, an upscale

transfer dominates in the Gulf Stream, in accordance with QG. A

similar pattern, though not as pronounced, exists in the North Brazil

Current. The (shallow) North Equatorial Current, which in our simu-

lation is around 58N, exhibits an upscale energy transfer.

FIG. 9. As in Fig. 8, but at 100-m depth. We notice in the Gulf

Stream a pattern similar to that at the surface. In fact, almost the exact

red/blue patch patterns that appear at the Gulf Stream surface appear

at 100- and 500-m depth (see next Fig. 10), suggesting that P‘(x), as

a scalar field, is depth independent at high latitudes.On theother hand,

we notice that there is a downscale transfer of energy in theEquatorial

Countercurrent, which in our simulation, is approximately at 08 and
100-m depth, indicating an obvious departure from the QG model.
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quasigeostrophic paradigm of an upscale transfer is

a qualitatively correct mean description of the energy

scale transfer in a basin-averaged sense.

It is well-documented in the homogeneous isotropic

turbulence literature (e.g., Chen et al. 2003; Boffetta 2007;

Rivera et al. 2014) that the spatial distribution of the SFS

flux P‘(x) is very different from that of a Gaussian dis-

tribution. It is spatially intermittent and characterized by

heavy tails, such that P‘(x) is small in magnitude almost

everywhere in space with only a few spatial regions having

very largemagnitude (either positive or negative). The net

(or spatially averaged) amount of energy cascading across

scales hP‘i is further reduced as a consequence of major

cancellations between upscale and downscale transfer

[positive and negative values of P‘(x)], accentuating the

disparity between average and extreme values. In Figs. 8–10

we observe a similar tendency for P‘(x) in oceanic flow.

Note that the color map we use in the figures, which has

units of watts per square kilometer per meter, is not lin-

ear. Most of the color shown on the map has small values

close to zero (white), while some blue/red regions exceed

the maximum values on the color bar. If we were to use a

linear color map, we would register white almost every-

where with only a few patches of blue/red in the Gulf

Stream. It is therefore important to bear in mind, when

visually inspecting the maps in Figs. 8–10, that similar

shades of red/blue may have considerably different values.

In Fig. 8, we see that the North Equatorial Current,

which is a shallow surface current moving westward and,

in our simulation, is at approximately 58N, exhibits an

upscale energy transfer. On the other hand, in Fig. 9, we

notice that the Equatorial Countercurrent, which is a

deeper eastward-moving current and, in our simulation,

is at approximately 100-m depth and along the equator

undergoes a downscale transfer of energy, perhaps not

unexpectedly since quasigeostrophic dynamics is not

valid at the equator. At 500-m depth, we notice from

Figs. 6 and 10 that scale transfer is relatively weak with

the exception of the Gulf Stream, which is known for its

deep penetration. This depth is well below the mixed

layer within the thermocline, where stratification effects

are strongest in the ocean.

While flow in the upper ocean, above approximately

1500m, is mostly due to wind forcing, the circulation in the

deep ocean is mostly due to buoyancy forcing and the

meridional overturning circulation (e.g., Talley et al. 2011).

The major western boundary currents, such as the Gulf

Stream, are among the more strongly barotropic features

and canpenetrate all theway to theoceanbottom.Figures 7

and 10 show that the relatively unstratified deep ocean

is quiescent, with energy transfer approximately O(102)

smaller than in the mixed layer. The main activity is along

the western boundary where the flow is strongest.

4. Comparison to other techniques

As mentioned in the introduction, there have been

several studies published in the literature exploring the

transfer of energy between scales (e.g., Scott andWang

2005; Tulloch et al. 2011; Arbic et al. 2013). These have

used somewhat different tools from the turbulence

literature than have we (such as the HT definition

of flux) and used Fourier transforms to decompose

scales in wavenumber space. In this section, we explore

some of the differences between these approaches and

our own.

FIG. 10. As in Fig. 8, but at depths of (top) 500m and (bottom)

2000m, where ‘ 5 400 km. We notice that within the thermocline in

the (top), the scale transfer is weak with the exception of the Gulf

Stream, which is known for its deep penetration. The red/blue patch

patterns are similar to those appearing at the Gulf Stream surface and

at 100m. It is also clear from the color bar magnitudes of the bottom

panel that there is relatively weak scale transfer in the deep ocean.
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a. Tapering and detrending

Using data from either satellites or simulations, the

aforementioned studies considered box regions in the

ocean that are away from continental boundaries. Since

these box domains do not satisfy periodic boundary

conditions, the data have to be adjusted before apply-

ing FFTs. One standard method in signal processing is

periodizing the domain, such that the box is reflected

eight times around the original, resulting in a super box

that is periodic (Tulloch et al. 2011). Another standard

method is to smoothly taper the data to zero near the

edges of the box, such that the data become de facto

periodic (Scott and Wang 2005; Arbic et al. 2013).

Both of these methods can introduce artificial gradi-

ents, length scales, spurious acceleration, and flow

features not present in the original data, although in

some circumstances these effects may be small. Here,

we consider only the more widely used method of

tapering.

Previous studies relied on the geostrophic velocity

obtained from SSH anomalies, whichmay be considered

as streamfunction, c. These are related by

(u
x
,u

y
)5 (2›

y
c, ›

x
c)g/f , (11)

where g is gravity, and f is the local Coriolis frequency.

To illustrate the effect of tapering in the simplest pos-

sible situation, consider a constant streamfunction

c 5 (const.) corresponding to a velocity that is identi-

cally zero. Tapering cwould introduce artificial vorticity

and spurious length scales that are absent in the original

(zero) flow. It should be noted that Scott andWang (2005)

andArbic et al. (2013) detrended c by removing themean

and linear components of c before tapering, such that this

illustrative example does not apply to those studies.

However, detrending cannot remove all spurious ta-

pering artifacts. This is illustrated in Fig. 11, which

shows a 2D flow in a periodic box and computes the true

spectral energy flux (top panel of Fig. 11) in the simu-

lation. In a periodic flow, theHT and SFS flux definitions

agree since the flow is homogeneous. The middle panel

of Fig. 11 shows the flow after detrending and tapering

with a window that mimics a Tukey window4 (e.g.,

Emery and Thomson 2001). It is clear that despite de-

trending, spurious flow features and length scales are

introduced solely because of tapering. These artifacts

are also reflected in the computed spectral energy flux,

which nearly doubles in magnitude and is shifted to

larger scales because of the artificial introduction of

large-scale flow structures. Even if the flow is homoge-

neous to begin with, as is the case of this periodic flow,

tapering can have a substantial effect. We observe these

artifacts (shifts in scale and alteration of the flux mag-

nitude) caused by tapering using several windows

(Hann, Tukey, and Tanh) and with different sharpness

of the tapering function. While it is common in signal

processing, including in physical oceanography (e.g.,

Emery and Thomson 2001, chapter 5.6.6), to compen-

sate for any reduction in energy caused by windowing by

multiplying the Fourier amplitudes by an empirically

determined factor, the practice only works (to some

extent) for spectra but not for spectral fluxes. This is

because the flux is a nonlinear quantity, which corresponds

to a convolution in Fourier space. Its value at a certain

wavenumber k is determined by modes k–p and p for all

wavenumbers p. Therefore, a loss in amplitude at a certain

mode can affect the flux at all modes k in a nontrivial way.

The flux’s response to window functions, unlike the spec-

trum’s response, cannot be determined a priori because it

requires knowledge of the phase relations between dif-

ferent modes and not just their amplitudes.

Moreover, if a flow is not detrended, tapering artifacts

may become even more pronounced. This is illustrated

in the bottom panel of Fig. 11. It shows the tapering

effect if the fluctuations are embedded in amean current

(which is not detrended). In this case, the spectral energy

flux increases by an order of magnitude and shifts to yet

larger scales.

b. Reynolds-averaging approaches

Our coarse-graining approach is also very different

from ensemble-averaging or Reynolds-averaging (RANS)

frameworks (e.g., Gnanadesikan et al. 2005; Waterman

and Jayne 2011) or density-weighted averaging (Young

2012;Maddison andMarshall 2013), whose essential aim

is to decompose the flow into a mean and fluctuating

components. Several studies have relied on these types

of eddy–mean flow decompositions to analyze the en-

ergy transfer between the large-scale mean flow and the

eddy component of the flow (e.g., von Storch et al. 2012;

Chen et al. 2014; Kang and Curchitser 2015; Youngs

et al. 2017).

A difference between coarse-graining over RANS is

the freedom of the former to choose the specific spatial

scales to probe (Fig. 2), which allows us to generate

energy transfer maps across any scale (Figs. 8–10), and

to quantify the energy scale transfer as a function of

scale (Figs. 4–7). RANS frameworks, on the other hand,

4Our window W(x, y)5W(x)3W(y), W(x)5 (1/2)2 (1/2)

ftanh[(jxj2 0:8p)/0:2]g, (x, y) 2 [2p, p) corresponds to a Tukey

windowwitha5 0.4 and yields a value of 1 over about two-thirds of

the domain in each direction and tapers smoothly to zero over the

remaining one-third of the domain. This is similar to what was used

in previous studies (e.g., Arbic et al. 2013).
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usually decompose the flow into mean and fluctuating

components without control over spatial scales. More-

over, the RANS description of the flow is inherently

statistical in nature, whereas the coarse-grainingmethod

of probing the dynamics is deterministic, allowing us to

describe the evolution of scales at every location and at

every instant in time. As a result, we are able to generate

movies of the evolution of different scales.

FIG. 11. (left) hPKi as a function of scaleK5 2p/‘. (right) Vorticity contours. (top) Original corig from a 2D flow

with periodic boundaries. (middle) Tapered streamfunction, similar to what was done in Arbic et al. (2013).

(bottom) Uniform velocity u0̂i is added to the original flow before tapering the streamfunction corig 1U0y, which

illustrates the effect of tapering a jet. Even in the absence of a jet in the (middle), we see that tapering introduces

artificial vorticity and shear to the flow, along with spurious length scales. This is reflected as a shift in hPKi to larger
scales (smaller K), along with significant changes in the magnitude of energy transfer.
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However, the two approaches are not mutually ex-

clusive. The RANS framework could in principle be

incorporated into the coarse-graining approach since

time averaging (or, more generally, ensemble averag-

ing) and spatial filtering are operations that commute

with each other. One may choose to ensemble or time

average the coarse-grained dynamics, as we have done

in Figs. 8–10. Alternatively, one may spatially filter the

mean and/or fluctuating components of the flow after

having performed a RANS decomposition.

c. Difficulties with our approach

Although our filtering approach does allow us to

produce meaningful maps of energy scale transfer in

physical space like those in Figs. 8–10, it is not immune

from complications. One of these (and that is also a

problem with spectral approaches) is that regions close

to continental boundaries, and therefore boundary

currents, require a choice to be made of boundary

treatment. If we were to filter the flow at a location ad-

jacent to land in a standard way the filtering kernel

would overlap land points because in order to obtain the

coarse-grained velocity u‘(x), which is the flow at loca-

tion x solely composed of scales larger than ‘, we need to

perform a weighted average of the velocity within a re-

gion of radius ‘/2 around x, which might include land. A

practical choice made in this work is to treat land as

water with zero velocity. The diagnostics are then in-

sensitive to whether we treat land points as a solid or as

water with an imposed zero velocity, which is consistent

with the formulation of OGCMs where land is often

treated as a region of zero velocity.

Another trade-off made by using our approach is due

to the uncertainty principle, which prevents the simul-

taneous localization of a kernel in x space and in k space.

If we were to use a kernel that is a delta function in x

space, then we are not decomposing scales; its Fourier

transform is unity, and by multiplying the Fourier

transform of the velocity field with the Fourier trans-

form of the kernel, we do not eliminate any modes (a

convolution becomes a multiplication in Fourier space).

The duality of such a statement is using a kernel that

picks out a single Fourier mode, that is, a kernel that is a

delta function in k space centered at mode k0. Then we

lose localization in x space since the inverse Fourier

transform of such a delta function gives a kernel that is a

cosine wave of infinite extent in x space. Therefore, by

using a kernel that allows a certain degree of localization

in x space, we forfeit the exact localization in k space

afforded by Fourier eigenmodes. These trade-offs

caused by the uncertainty principle are fundamental to

harmonic (or spectral) analysis and therefore the trade-

off between spatial and spectral localization cannot be

eliminated. However, in our opinion, losing localization

in k space is not necessarily detrimental in situations

where performing Fourier transforms is not possible,

such as in the oceanic setting. Further discussion of these

and related matters can be found in standard mathe-

matics references on harmonic analysis (e.g., Stein and

Weiss 1971; Krantz 1999; Strichartz 2003; Sogge 2008).

A practical consequence of forfeiting exact spatial

localization is that oceanic boundaries become ‘‘fuzzy’’

because of coarse graining. This implies, for example,

that coarse-grained velocity u‘ can be nonzero within a

distance ‘/2 beyond the continental boundary over land.

Therefore, terms in the large-scale energy budget (6),

such as P‘ and J transport
‘ , are only guaranteed to be zero

over land a distance ‘/2 beyond the boundary.While this

aspect of the method may seem undesirable, it is worth

bearing in mind that such an effect also occurs in simu-

lations of flow over a coarse grid of cell size Dx 5 ‘. The

alternative choice is tomake the filter kernel change shape

as it approaches the boundary, either by making it smaller

or making it conform to the boundary, but such a filtering

operation will no longer commute with spatial derivatives.

As a consequence of this alternative choice of boundary

treatment, the coarse-graining operation would no longer

preserve the fundamental physical properties of the flow,

such as its incompressibility and the vorticity present at

various scales. This would prevent us from deriving the

large-scale energy budget [(6)], as discussed in section 4a

above. To preserve these fundamental properties of the

flow after coarse graining, we leave the filter independent

of its proximity to the boundary.

We also want to make the reader aware of another

issue pertaining to the choice of a kernel. In this work,

we have made a practical choice to use a top-hat kernel,

(2) above, which has a normalized value of 1 over a

circular region of radius ‘/2 and zero beyond. In our

opinion, this kernel makes the notion of scale more

straightforward since it has a well-defined extent in x

space. Because of the uncertainty principle, however, it

decays slowly in k space and therefore may not be the

best kernel to use when Fourier transforms are possible

(see Fig. 13 of Rivera et al. 2014). There are many other

kernels one could use, such as a Gaussian kernel, which

affords more localization in k space (Fig. 13 of Rivera

et al. 2014) but less localization in x space, or the Sinc

function, which affords the same localization in k space

as truncating the Fourier series but has very poor lo-

calization in x space and is more costly to implement and

use. Such freedom in the kernel choice may be consid-

ered as providing flexibility, but it may also be viewed as

an arbitrariness in the scale decomposition, which can

influence the quantitative nature of the results. Many

works have investigated the utility and drawbacks of
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different kernels (e.g., Vreman et al. 1994; Domaradzki

and Carati 2007; Eyink and Aluie 2009; Rivera et al.

2014). For example, (18) and Fig. 12 of Rivera et al.

(2014) discuss the energy and enstrophy fluxes across

scales using different kernels. It is therefore important

to keep these nuances in mind when interpreting results

using coarse-graining, especially when comparing them

to results from a purely spectral analysis when Fourier

transforms are possible.

5. Conclusions

Understanding the transfer of energy across scales is

of fundamental importance in oceanography. Standard

methods based on Fourier analysis have provided im-

portant results but are limited in their applicability to

quasi-homogeneous regions with simple boundary con-

ditions, and the techniques typically require some kind

of special treatment at the boundaries. Information

about the scales of motion is not inherently tied to a

Fourier mode decomposition, as is clear from using

wavelet analysis or simply by high- or low-pass filtering

in physical space. However, a straightforward applica-

tion of such filters is insufficient to extract dynamical

information, such as the energy transfer across scales

that can be revealed only by nontrivial use of the

equations of motion in conjunction with the scale

decomposition.

In this paper, we have shown that a filtering technique,

which we have generalized to use on spherical mani-

folds, can be used to infer information about the scales

of motion and the energy transfer between scales,

without being limited by assumptions of homogeneity or

by the need to perform the analysis in a domain with

simple boundaries. The technique involves a filter in

physical space (a convolution with a kernel or window

function), such as might be applied to smooth a field,

but, moreover, used in such a way that coarse-grained

equations ofmotion in physical space can be derived and

cross-scale energy transfer deduced. We have applied

the technique, using full spherical geometry, to the re-

sults from a high-resolution eddying primitive equation

model of the North Atlantic Ocean.

Our method allows us to create geographic maps of

the energy transfer. We find that an inverse energy

transfer does not take place everywhere in the ocean

(Figs. 5–8) or even everywhere in the extratropical

ocean. In fact, certain regions are characterized by sus-

tained downscale energy transfer, such as at the sharp

northward turn of the Gulf Stream at the Grand Banks,

in the flanks of the core of the Gulf Stream, and in the

Equatorial Countercurrent. These effects may be due

to a local instability of the flow creating smaller scales or

to nongeostrophic effects, and more analysis and results

from observed flows will follow in subsequent papers. In

any case, with our method, we can clearly identify and

locate regions where forward cascade from larger scales

energizes the smaller scales, and we can measure the

magnitude of that energy transfer.

Despite the presence of regions of significant downscale

transfer, we find that if we average over large enough re-

gions, of order 103km in size or larger, away from the

equator, an upscale transfer is, in a basin-averaged sense,

the dominant description of the energy scale transfer pro-

cess, confirming the importance of geostrophic processes

on the meso- and large scales. Finally, we remark that the

tool can also be applied to smaller-scale flows, such as the

interaction between mesoscale eddies and gravity waves

(Nikurashin et al. 2013) or in principle to microstructure

measurements. The tool, however, has its limitations. As

discussed in section 4, in order to spatially resolve the scale

dynamics, a certain degree of scale localization must be

forfeited because of the uncertainty principle.

Our formalism can be applied to flow data from nu-

merical simulations and also from satellite altimetry, as

we hope will be demonstrated in future work. Another

potential benefit of this method is in the promising area

of scale-aware modeling, where the grid resolution can

vary in space, thus requiring subfilter models that are

attuned to both geographic location and to the local grid

scale. The coarse-graining approach provides a natural

gateway to developing such scale-aware and space-

aware parameterizations.
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