
Journal of Marine Research, 5.5, 223-275, 1997 

Large-scale circulation with small diapycnal diffusion: 
The two-thermocline limit 

by R. M. Samelsonl and Geoffrey K. Vallis2 

ABSTRACT 
The structure and dynamics of the large-scale circulation of a single-hemisphere, closed-basin 

ocean with small diapycnal diffusion are studied by numerical and analytical methods. The 
investigation is motivated in part by recent differing theoretical descriptions of the dynamics that 
control the stratification of the upper ocean, and in part by recent observational evidence that 
diapycnal diffusivities due to small-scale turbulence in the ocean thermocline are small (-0.1 cm2 s-i). 
Numerical solutions of a computationally efficient, three-dimensional, planetary geostrophic ocean 
circulation model are obtained in a square basin on a mid-latitude B-plane. The forcing consists of a 
zonal wind stress (imposed meridional Ekman flow) and a surface heat llux proportional to the 
difference between surface temperature and an imposed air temperature. For small diapycnal 
diffusivities (vertical: K, - 0.1 - 0.5 cm2 s-i, horizontal: K,, - lo5 - 5 X lo6 cm 2 s-t), two distinct 
thermocline regimes occur. On isopycnals that outcrop in the subtropical gyre, in the region of 
Ekman downwelling, a ventilated thermocline forms. In this regime, advection dominates diapycnal 
diffusion, and the heat balance is closed by surface cooling and convection in the northwest part of 
the subtropical gyre. An vertical scale describes the depth to which the wind-driven 
motion penetrates, that is, the thickness of the ventilated thermocline. At the base of the wind-driven 
fluid layer, a second thennocline forms beneath a layer of vertically homogeneous fluid (‘mode 

This thermocline is intrinsically diffusive. An ‘internal boundary vertical 
scale (proportional to K~“~) describes the thickness of this internal thermocline. Two varieties of 
subtropical mode waters are distinguished. The temperature difference across the ventilated thermo- 
cline is determined to first order by the meridional air temperature difference across the subtropical 
gyre. The temperature difference across the internal thermocline is determined to first order by the 
temperature difference across the subpolar gyre. The diffusively-driven meridional overturning cell is 
effectively confined below the ventilated thermocline, and driven to first order by the temperature 
difference across the internal thermocline, not the basin-wide meridional air temperature difference. 
Consequently, for small diapycnal diffusion, the abyssal circulation depends to first order only on the 
wind-forcing and the subpolar gyre air temperatures. The numerical solutions have a qualitative 
resemblance to the observed structure of the North Atlantic in and above the main thermocline (that 
is, to a depth of roughly 1500 m). Below the main thermocline, the predicted stratification is much 
weaker than observed. 
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1. Introduction 

A fundamental goal of physical oceanography is to describe and understand the 
large-scale circulation and stratification of the ocean, that is, the features with horizontal 
scale comparable to that of the oceans themselves. In its simplest general form, the 
associated theoretical problem is to determine the steady, planetary-scale response of a 
thin, rapidly-rotating layer of fluid to wind and buoyancy forcing at its upper surface, and 
to relate the components of the response to large-scale oceanographic observations. An 
important step toward the solution of this ‘thennocline was the derivation by 
scale asymptotics of a simplified set of equations for the planetary-scale motion, the 
planetary-geostrophic or equations (Robinson and Stommel, 1959; We- 
lander, 1959; Phillips, 1963). Most theoretical progress on the thermocline problem has 
followed from the analysis of various forms of these equations. 

Two distinct classes of theories for the subtropical thermocline have emerged from this 
approach. These may be termed the ‘ventilated and ‘internal boundary 
theories. The ventilated thermocline theory is founded on the ideal fluid thermocline 
equations, proposed by Welander (1959) as an advective (adiabatic) model of the interior 
dynamics. This model was given renewed impetus by the demonstration by Luyten et al. 
(1983) that solutions of the ideal equations can be found that satisfy independent surface 
boundary conditions on density and vertical velocity and have vanishing motion at depth, a 
combination that had previously proved elusive (Welander, 1971a). In this picture, the 
surface density is given as an upper boundary condition in the subtropical gyre, and the 
surface fluid is advected downward into the ocean interior by Ekman downwelling. The 
Sverdrup transport balance and conservation of potential vorticity by the adiabatic interior 
flow then determines, with some additional assumptions, the three-dimensional structure of 
the upper ocean (Luyten et aZ., 1983; Huang, 1988; 1991). The internal boundary layer (or 
‘frontal theory is founded on the diffusive thermocline equations proposed 
by Robinson and Stommel (1959). These differ from the ideal fluid thermocline equations 
by the addition of a vertical thermal diffusion that is presumed to represent the first-order 
effect of small-scale motions on the large-scale flow. In this picture, the subtropical 
thermocline is an internal boundary layer or front that forms at the vertical convergence of 
two different homogeneous water types, warm surface fluid above and cold abyssal fluid 
below. Stommel and Webster (1962) used these ideas to develop a quantitative theoretical 
model for the diffusively-driven thermohaline circulation. This theory has recently been 
revived and extended by Salmon (1990) and Young and Ierley (1986). 

These two theories appear to give conflicting descriptions of the structure and dynamics 
of the subtropical ocean thermocline. The ventilated thermocline theory, which (in its 
essential form) has zero diapycnal diffusion, produces a complex three-dimensional 
density field. The internal boundary layer theory, which is intrinsically diffusive, predicts 
instead the development of an arbitrarily thin, frontal thermocline in the limit of small 
diapycnal diffusion. The dichotomy between the two theories has been noted by Salmon 
(1990) and Salmon and Hollerbach (1991), and further explored by Hood and Williams 
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(1996), while the fundamental difference between the underlying dynamics of Welander 
(1959) and Robinson and Stommel(l959) has long been evident (Veronis, 1969). A third, 
related theory, for large-scale motion in the deep thermocline, predicts that 
the stratification of recirculating fluid will be modified by eddy fluxes that tend to 
homogenize the potential vorticity (Rhines and Young, 1982). The modified stratification 
predicted by this theory depends on the imposed stratification beneath the 
wind-driven fluid, which is presumed to be controlled by other processes. Since these 
processes are not explicitly represented in the Rhines-Young theory, the small eddy-flux 
limit of the Rhines-Young theory is in essence a singular perturbation not of the ventilated 
or internal boundary layer thermocline theories, but of an arbitrary background state that 
possesses closed geostrophic contours; the fixed background stratification allows exposi- 
tion of the theory with quasi-geostrophic equations. In contrast, the adiabatic planetary 
geostrophic equations of the ventilated thermocline theory may be viewed as a singular 
perturbation of the fundamental equations of the internal boundary layer theory, in which 
the former are obtained from the latter by setting the vertical diffusivity to zero. For this 
reason, the Rhines-Young description does not lead to an analogous direct dichotomy with 
either of the two aforementioned thermocline theories, although it points to a more general 
conflict between theories that do and do not include certain representations of eddy fluxes. 
In the present study, we purposely attempt to obtain results in which the effects of 
time-dependent mesoscale motions are essentially absent, in order to focus on the 
interaction of the large-scale flow and small-scale turbulent diapycnal diffusion. 

If diapycnal diffusion in the ocean were sufficiently large, neither the adiabatic 
ventilated theory nor the small-diffusion limit of the internal boundary layer theory would 
be directly relevant to the ocean thermocline, and the resolution of the conflict between 
them would be of little practical interest. However, recent microstructure and tracer 
dispersion measurements (Gregg, 1987; Ledwell et al., 1993; Toole et al., 1994) suggest 
that vertical (diapycnal) diffusivities in the ocean interior are sufficiently small 
(-0.1 cm2 s-l) that the two theories predict substantially different vertical scales for the 
thermocline (see Section 4). Moreover, these diffusivity estimates are an order of 
magnitude smaller than values typically used in numerical models of the large-scale ocean 
circulation. Since neither thermocline theory describes closed circulations that satisfy a 
complete set of boundary conditions in an entire basin, and because of the large 
diffusivities typically used in the numerical models, the relation between the theories and 
the closed-basin circulation has generally remained uncertain, despite some important 
specific comparisons (e.g., Cox and Bryan, 1984; Cox, 1985). Consequently, there are 
good reasons to examine the large-scale closed-basin circulation that arises for small 
diapycnal diffusion. 

A primary goal of the present study is therefore to explore and reconcile the two differing 
thermocline theories, using a simple model of large-scale circulation in a closed basin. The 
model is based on the planetary geostrophic formulation proposed by Samelson and Vallis 
(1997). The model equations support a frictional western boundary layer that is adiabatic to 
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first order, and allow efficient and well-posed numerical integration in a closed domain 

with a physically appropriate set of boundary conditions. We are interested here in the 
thermocline structure that arises in the model when friction and horizontal diffusion are 
sufficiently small that the interior flow may be described locally by solutions of the 
thermocline equations. The present contribution is a continuation of the studies of wind and 
buoyancy-forced closed-basin planetary geostrophic ocean circulation models begun by 
Cohn de Verdiere (1988, 1989) and Salmon (1990). Zhang et al. (1992) and Winton and 
Sarachik (1993) have recently studied related planetary geostrophic closed-basin models, 
with a greater emphasis on saline effects. 

We find that for small diapycnal diffusivities (vertical: K, - 0.1 - 0.5 cm2 s-l, horizon- 

tal: Kh - lo5 - 5 X lo6 cm2 s-l), two distinct thermocline regimes occur in the subtropical 
gyre, as an internal boundary layer thermocline forms at the base of the ventilated 
thermocline (Fig. 1). This result is consistent with the idea, proposed on the basis of scale 
analysis by Welander (1971b), that diffusion becomes dynamically important at some 
depth beneath an approximately adiabatic near-surface flow. It has been partly anticipated 
by the heuristic arguments of Pedlosky (1979, p. 422), the analysis of flow regimes in a 
planetary geostrophic model by Colin de Verdiere (1989), and the discussion of similarity 

solutions by Salmon and Hollerbach (1991). We find also that the internal thermocline is a 
recirculation regime (so the explicit western boundary layer plays an important role), and 
that potential vorticity on isopycnals in the internal thermocline is approximately uniform. 
However, the potential vorticity in the recirculation regime is primarily controlled by 
vertical diffusion, not horizontal diffusion (which has been purposely minimized in the 
present calculations) as in the homogenization theory. A shallow thermostad (‘mode 

forms at the base of the ventilated thermocline. 

The model formulation is presented in Section 2. The general structure of the small- 
diffusion solutions is described in Section 3 and interpreted using scaling arguments in 
Section 4. The dependence of the circulation on meridional air temperature is discussed in 
Section 5. Sections 6 and 7 contain explicit comparisons with the internal boundary layer 
and ventilated thermocline theories, respectively. A brief discussion of the western 
boundary current is included in Section 8. The solutions are compared with observations in 

Section 9, and the results are summarized in Section 10. 

2. Model formulation 

The model consists of an interior domain with nearly-geostrophic flow capped by a 
surface boundary layer of fixed depth containing the frictionally-driven Ekman flow. The 
model equations are supplemented by a convective adjustment scheme. The interior and 

surface boundary layer models are described below. The numerical implementation is 
summarized in an appendix. 



19971 Samelson & Vallis: Large-scale circulation 227 

Figure 1. A schematic picture of the large-scale circulation and the thermocline regimes in a 
simply-connected, single-hemisphere ocean driven by wind-stress and differential heating, with 
small diapycnal diffusion. The upper part of the figure indicates the zonal wind-forcing r (broad 
arrows) and the atmospheric temperature profile T,($), where C$ is latitude. The idealized 
meridional section below is at a mid-basin longitude. The latitude +s is the latitude of zero Ekman 
pumping at the subtropical-subpolar gyre boundary. The curve T(+t, z) (thick line) is a temperature 
profile at the latitude +, (where it crosses the internal thermocline) in the central subtropical gyre. 
The arrows indicate the mid-basin circulation in the plane of the section. The thickness of the 
surface Ekman layer is exaggerated. The ventilated thermocline (VT) is an advective regime. Its 
thickness is the advective scale D,, and the temperature difference across it is equal to ATsr = 
T,($,) - T,(&J. The internal thermocline (IT) is a diffusive regime at the base of the ventilated 
thermocline. Its thickness is the internal boundary layer scale &, and the temperature difference 
across it is equal to ATsp = T,(&) - T,(Pole). Ho is the depth of the mixed layer at the latitude &. 
(Cf. Fig. 1 of Welander, 1971b.) 

a. Interior equations. The interior equations are the hydrostatic-biharmonic diffusive 
planetary geostrophic equations proposed by Samelson and Vallis (1997), which are 

-fv+px= --EU (2.1) 

-fk+p,= -w (2.2) 

pz-T=O (2.3) 

u, + vy + w, = 0 (2.4) 
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T, + UT, + vTy + wT, = + K,,&,T - hA;T (2.5) 

where 

(2.6) 

Here (u, v, w) are the (a y, z)-components of velocity, t is time, p is pressure divided by. a 
constant reference density po, T is temperature (with density p = --I: so that isothermal 
surfaces are also isopycnal surfaces, and thermal diffusion is always diapycnal; we often 
use the density terminology in dynamical contexts below), and subscripts X, y, z, and t 
denote partial derivatives. These equations satisfy boundary conditions on normal flow and 
normal heat flux at each rigid boundary (Samelson and Vallis, 1997). They form a 
computationally efficient alternative to the planetary geostrophic equations of Colin de 
Verdiere (1988, 1989) and Salmon (1990), both of which admit more general body forces 
and do not require biharmonic diffusion in the thermodynamic equation. The Coriolis 
parameterfis a linear function of y, 

f=fo+ MY -Yo> (2.7) 

where p,fo, and y. are constants. For the calculations described below, the diffusivities K”, 

Kh, 1 are positive constants, while the frictional parameter E may be a function of x and y. 
Cartesian coordinates are used for simplicity, and the effects of salinity are neglected. The 
basin is square, with vertical lateral boundaries at x = (0, 1) and y = (0, 11, and a flat bottom 
at z = 0. The upper boundary of the interior domain at z = 1 is the base of the surface 
boundary layer. For numerical solution, these equations are supplemented by a convective 
adjustment scheme which removes static instabilities at each time step by vertically mixing 
grid-point fluid volumes to restore neutral stability. 

The ideal fluid thermocline equations (Welander, 1959) may be obtained from (2.1)- 
(2.5) by setting E = K, = K~ = X = 0. The vertical diffusion term K”T= in (2.5) is a 
traditional representation of the effect of turbulent mixing on the large-scale flow 
(Robinson and Stommel, 1959). The additional diabatic and frictional terms in (2.1)-(2.5) 
support the lateral boundary layers that allow solution of the equations in a closed basin, 
and damp unphysical interior instabilities (Samelson and Vallis, 1997). These terms are 
kept small in the solutions presented here in order to minimize their effect on the interior 
flow. Thus, the horizontal diffusivity Kh is generally one or two orders of magnitude smaller 
than often-used values for lateral tracer diffusivities. Numerical parameter values are 
reported below. 

The frictional-geostrophic relations (2.1) and (2.2) may be inverted for the horizontal 
velocities, giving 

lf = --Y(vx +iq9 v = Ych - vy) (2.8) 
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where y = (f* + E*)-I. Thus, the linear horizontal drag drives ageostrophic flow down the 
pressure gradient. The angle that the flow makes with the lines of constant pressure on 
horizontal surfaces is fixed by the local values of E andf, while the speed of the flow is 
locally proportional to the magnitude of the pressure gradient. A useful relation may be 
obtained by substituting these expressions into the continuity equation (2.4), which gives 

H(P) = w, (2.9) 

where 

.%(P) = W&P + (f* - ~*h*Ppx - ~E~Y*PP, (2.10) 

in the case of constant E. The equation (2.9) is a form of the vorticity equation 

pw -fw, + (EV), - (EU)), = 0. 

The evolution equation for the potential vorticity Q = f T, is 

(2.11) 

Q, + uQ, + vQy + wQ, = I@, + K,,f&Wf) - Xf&Qlf) 

+ q f(T,2 + T,2) - [(Ev), - (N,lQ~f, 
(2.12) 

so potential vorticity is a Lagrangian invariant in the absence of friction and diffusion. 
The no-flux condition on heat diffusion at lateral boundaries is a boundary condition on 

temperature, 

-K,,T,, + hA,,T,, = 0. (2.13) 

The vertical derivative of (2.8) yields the frictional-geostrophic analog of the thermal wind 
relation, 

u, = -y(Cx +f T,), v, = r(f Tx - ETJ (2.14) 

and, consequently, the no-normal-flow boundary condition implies a second boundary 
condition on temperature, 

l T,,+fT,=O. (2.15) 

As argued elsewhere (Samelson and Vallis, 1997), it is the need to satisfy this second 
boundary condition on T (which is solved as a differential equation around the boundary) 
that motivates the introduction of the biharmonic diffusion term in (2.5). Requiring that 
horizontal diapycnal fluxes across the sloping isotherms of the western boundary current be 
minimized suggests the choice 

A = 1, = (C./p)*Kh, 

and the solutions discussed below use this value of X unless otherwise noted. 

(2.16) 
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The generalization to E > 0 of (1971b) argument shows that the system 
(2.1)-(2.5) may be written as a single equation in the dependent variable M, 

where 

M,=p, (2.18) 

and the additional boundary conditions M(z = 0) = 0 and w(z = 0) = 0 have been imposed 
(Samelson and Vallis, 1997). 

b. Surface boundary layer and air-seajuxes. The upper boundary condition on tempera- 
ture for the interior equations is obtained from a simple model of a frictional surface 
boundary layer. The boundary layer is taken to have fixed depth 8s, so the sea surface is at 
z = 1 + 8s. The surface boundary layer temperature Te is obtained from a vertically 
integrated thermodynamic equation, 

TEE f (UATEL + (vATE)~ = (FT - FiYaE (2.19) 

where FT is the air-sea flux and Fi is the flux through the base of the boundary layer. In 
order to allow the northward advection of warm surface boundary layer water by the 
western boundary current, the interior velocities at the base of the boundary layer are added 
to an Ekman flow to obtain the advective velocities (uA, v,,,) in (2.19), 

(u,4, v‘4) = (u,, VE) + (4 V)(,=,). 

The Ekman flow (uE, vs) is specified to be meridional (uE = 0) and of the form 

(2.20) 

vE = (w,/21~8s) sin 21~y, 

(where 0 5 y 5 l), so the Ekman pumping is 

(2.21) 

WE = s,v, = WE0 cos 27ry. (2.22) 

Thus, the subtropical downwelling and subpolar upwelling regions cover the central half 
(0.25 < y < 0.75) and the northern quarter (0.75 < y < 1) of the domain, respectively. 
The southern, upwelling region (0 < y < 0.25) is required in order to bring the 
meridional Ekman flux to zero at the southern boundary. A more conventional (and 
probably more realistic) representation of the meridional distribution of interior Ekman 
upwelling might confine the tropical upwelling to a smaller region adjacent to the equator. 
We have chosen the present distribution in order to avoid imposing any horizontal 
boundary layer structure on the interior, and because the southern boundary of the domain 
lies north of the equator, so that the equatorial dynamics would not be appropriately 
represented in any case. 
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Including the advection by the interior flow in (2.20) is essentially equivalent to 

extending the interior horizontal momentum balance (2.1~(2.2) for the pressure-driven 
flow through the surface boundary layer, while neglecting the vertical variation of the 
pressure in the boundary layer. This decomposition of the surface boundary layer velocity 
into a wind-driven Ekman component and a pressure-driven frictional-geostrophic compo- 
nent is consistent with the assumed linearity of the horizontal momentum equations, and 
the neglect of the vertical shear of the latter component is consistent with the condition 
BE << 1. A vertical integral of (2.9) over the entire domain, including the surface boundary 
layer where (2.8) are supplemented by the Ekman flow component, then yields a diagnostic 
equation 

B(P) = WE - w, 

for the vertically integrated (barotropic) pressure, r: where 

(2.23) 

P = &J dz + S,p(z = 1). 

In (2.23), wE is the Ekman pumping velocity from (2.22), and W0 = w(z = 0) = 0 at the flat 
bottom boundary. Thus, P depends only on the imposed mechanical forcing, We 

The air-sea heat flux FT is obtained from TE and an imposed atmospheric surface 

temperature T, using the simplified flux law (Haney, 197 1) 

FT = -YTS(TE - Ts>. (2.25) 

For the solutions discussed below, T, is taken to be a piecewise-continuous linear function 
of y. The heat flux Fi through the base of the boundary layer is composed of an advective 
component and a parameterized diffusive component, 

Fi = -w(z = l)T, + yO(~,/&)[TE - T(z = l)], (2.26) 

and this serves as the upper boundary condition for the interior thermodynamic equation 
(2.5), which is solved in flux form. A temperature discontinuity is allowed at the base of the 
surface boundary layer, so that in (2.26), T, = T(z = 1) if w(z = 1) > 0 and T1 = TE from 
the frictional-geostrophic convergence in the surface layer. With K, and SE given, the 
nondimensional constant y. determines the rate of diffusive heat transport from the surface 
layer into the interior. 

The Ekman flow, rather than the wind stress, is specified in order to simplify the problem 
and because the equations (2.1)-(2.5) do not admit arbitrary forcing terms (Salmon, 1986; 
Samelson and Vallis, 1997). However, if the vertically integrated Ekman balance 

(2.27) 

is assumed to hold, where 7 = (Y, ry) is the wind stress at the sea surface, then this balance 
may be inverted for the wind stress 7. For the solutions discussed below, the wind stress 
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obtained in this manner is zonal (ry = 0), and has the form 

= ~~(f(y)l.fd sin 27~5 To = -fow&27F. (2.28) 

Alternatively, a linear frictional drag as in (2.1)-(2.2) may also be taken to modify the 
Ekman balance, in which case the inferred wind stress pattern would include a small 
meridional component. 

Some of the calculations reported below were initially carried out with a different 
surface boundary layer scheme, in which the vertical velocity at the base of the surface 
boundary layer was taken to be wE, and the barotropic pressure in (2.24) was computed as 
the integral from z = 0 to z = 1, without the contribution from the surface boundary layer. 
Since the interior advection was retained in (2.20), this led to errors in the heat balance. 
Although the qualitative results were essentially unaffected, the effect on the temperature 
of the abyssal fluid was sufficiently large to warrant repeating most of the calculations with 
the present treatment. When results reported below are based on the previous boundary 
layer treatment, this is indicated. 

c. Nondimensionalization. Appropriate dimensional values for the variables and param- 
eters described above may be obtained using the following scales for depth, length, 
Coriolis parameter, density, gravity, and vertical velocity, respectively: D = 5 X IO5 cm, 
L = 5 X lo* cm,f* = f(35N) = 8.4 X 10m5 s-‘, p. = 1 g cme3, g = 980 cm sw2, W = 
10m4 cm 

From these, the following dimensional scales may be derived for horizontal velocity, 
time, density variations, temperature variations, buoyancy frequency, heat flux and heat 
transport, respectively: U = WL/D = 0.1 cm s-l, t* = D/W = L/U = 5 X IO9 s = 160 yr, 
p* = (pof*UL)l(gD) = 8.6 X 10m6 g cmm3 - 0.01 oe, T* = p*/(poaT) = 0.086 K, No = 
(gpd(p@))"* = 1.3 x lO-4 = 0.075 cph, Z+ = pocPWT* = 0.34 W rnm2, HF = HfL2 = 
0.9 X lOI U: where the values or = 10m4 K-l and cP = 4000 J have been used 
for the thermal expansibility and specific heat of sea water. 

Dimensional scales for the vertical, horizontal, and biharmonic horizontal thermal 
diffusivities are then K, = WD = 50 cm* s-‘, Kh = UL = 5 X cm2 s-‘, A = UL3 = 
1.25 X 10z5 cm4 s-l. The friction parameter E and the air-sea flux coefficient yfi are 
nondimensionalized byfand w respectively. The nondimensional parameter y. = 2 in all 
cases. 

In the discussion below, nondimensional values of the parameters will generally be 
quoted, with corresponding dimensional values given parenthetically. Thus, K, = 0.01 
(0.5 cm* corresponds to nondimensional and dimensional vertical temperature diffu- 
sivities of 0.01 and 0.01 X 50 cm* = 0.5 cm* s-l, respectively. The figures use 
nondimensional variables. 

d. Method of solution. The equations may be solved as follows. The elliptic equation 
(2.23) may be solved for P by standard methods (e.g. relaxation techniques), subject to the 
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vertically-integrated no-normal-flow condition 

EP, +fP, = 0 (2.29) 

(where the subscripts n and s denote the outward normal and right-handed tangential 
derivatives, respectively) at the lateral boundaries. For all the numerical solutions dis- 
cussed below, the imposed Ekman pumping wE is independent of time, so the elliptic 
equation (2.23) need be solved only once, at the beginning of the time-stepping integration. 
If the temperature T is known at a given time, the baroclinic pressure = p - P may be 
obtained by integrating the hydrostatic relation (2.3), and the velocities may be calculated 
from the pressure p = + P using (2.8) and (2.4). With the boundary conditions (2.13) 
and (2.15), and with the velocities known, the thermodynamic equations (2.5) and (2.19) 
may be time-stepped to obtain the new temperature field. Static instabilities are removed 
after each time-step by the convective adjustment scheme. This process is then repeated 
indefinitely. The steady solutions discussed below were obtained by time-stepping the 
equations in this manner to effective equilibrium. Winton and Sarachik (1993) present 
numerical solutions of a similar hydrostatic planetary geostrophic thermohaline circulation 
model with linear horizontal drag and with kh = X = 0 identically. The latter condition led 
to difficulties with the present solutions (Samelson and Vallis, 1997). Their numerical 
implementation required also that the tangential velocity at the boundary be obtained from 
an additional integral condition. 

We takef, = 1, p = p* L/f* = 1.1, corresponding to a northern hemisphere basin with a 
central latitude of 35N at y = y. = 0.5. Solutions are typically obtained at horizontal 
resolution of 64 X 64 grid points, giving a resolution of about 80 km for the square basin of 
side 5,000 km. In the vertical, we normally use 32 and sometimes 64 grid points, stretched 
in the vertical to give enhanced resolution in the thermocline. Note that the western 
boundary layer is marginally resolved by this grid, especially for the smaller friction values 
(E = 0.02 at the boundary); this issue is discussed further below. 

3. Qualitative features of thermocline structure 

For the fixed parameter values given above, and for other similar values, the numerical 
solutions obtained with E, K~ I 0.1 and K, 5 0.01 have a similar qualitative three- 
dimensional thermal structure. In this section, we summarize this structure for a solution 
with E = 0.02, K,, = 0.005 (0.25 cm2 s-i), Kh = 0.04 (2 X lo6 cm* s-i), SE = 0.005 (25 m), 

WE0 = 1 (10m4 cm s-i), yTs = 5 (0.4 m day-‘), and imposed air temperature T, = 200 
(1 - y) (dimensional gradient 17 K/5000 km). 

The barotropic circulation (as indicated by the depth-integrated pressure P) is anticy- 
clonic in the subtropical gyre between the latitudes y = 0.25 and y = 0.75, where the 
Ekman pumping vanishes, and cyclonic in the tropical upwelling region south of y = 0.25 
and in the subpolar gyre north of y = 0.75 (Fig. 2). The Ekman layer temperature TE is 
nearly equal to the imposed air temperature T, except along the western boundary, where 
warm water is advected northward by the western boundary current and then eastward into 
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Figure 2. Surface layer variables for the solution described in the text. Clockwise from upper left: (a) 
Ekman pumping velocity wE, (b) surface layer temperature TE (solid contours) and imposed air 
temperature T, (dashed contours, contour interval 20), (c) surface boundary layer horizontal 
velocities (u,.,, va), (d) barotropic pressure P. 

the interior, and along the southern boundary, where it is cooled by upwelling. The 
near-surface circulation is dominated by a broad anticyclonic baroclinic gyre, which is an 
order of magnitude stronger than the barotropic gyre, and overflows the latitudes of zero 
Ekman pumping to the north and south (Fig. 3a). The abyssal circulation forms a weak 
basin-wide cyclonic gyre closed by westward flow near the northern boundary and 
southward flow in a western boundary current (Fig. 3b). 

Vertical profiles of temperature 7: vertical temperature gradient T,, and vertical velocity 
w in the center of the subtropical gyre, at (x, y) = (0.5,0.5), show several distinct regimes 
(Fig. 4). An isothermal abyss extends from the bottom to roughly z = 0.75 (1250 m depth). 
A sharp maximum in T, is centered near z = 0.85 (750 m). Above the maximum is a 
secondary isothermal layer and an associated local minimum in T,. Above this minimum is 
a second strongly stratified region, with a second maximum in T, at the surface. Thus, 
above the nearly homogeneous abyss there are two clearly distinct separated 
by a thin shallow thermostad. We argue below that these two thermoclines are structurally 
different, in that they arise in two different dynamic regimes. The appearance of these two 
dynamical thermocline regimes in the limit of small diapycnal diffusion is fundamental, 
regardless of the number of maxima that arise in the vertical profile of vertical temperature 
gradient T,. 



19971 Samelson & Vallis: Large-scale circulation 

4 - 50. b) - 2.5 

235 

0.6 
h 

0.4 

0.0 0.2 0.4 0.6 0.6 1.0 
x 

0.0 0.2 0.4 0.6 0.0 1.0 
x 

0.6 
h 

0.4 

0.2 

Figure 3. Contours of pressure p and vectors of horizontal velocity (u, v) at (a) the uppermost interior 
grid level z = 1 (at 25 m, the base of the surface boundary layer) and (b) at the grid level z = 0.69 
(1590 m) for the solution in Figure 2. 

The structure extends across most of the subtropical gyre (Fig. 5). The 
stratification in the upper thermocline weakens toward the northwest. North and south of 
the subtropical gyre, where the Ekman vertical velocity is upward, a different vertical 
structure arises. In the north, the abyssal thermostad extends upward to the surface. In the 
south, the two thermoclines merge into a single surface thermocline, which weakens 
rapidly with depth. The temperature in the abyssal thermostad is horizontally uniform, 
whereas the temperature in the shallow subtropical thermostad has significant horizontal 
gradients (Fig. 5a). 

0.6 
N 

0.4 

0 400 
TZ 

Figure 4. Vertical profiles of T (left panel), T, (center), and w (right) at the center of the domain, 
(x, y) = (0.5,0.5), for the solution in Figure 2. 
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Figure 5. (a) Zonal and (b) meridional cross-sections of temperature T for the solution in Figure 2. 
Only the upper half of the domain is shown; the deeper fluid is nearly homogeneous. The depth at 
which w = 0 in the subtropical gyre is shown (dashed line), and in (b) the advective scale estimate 
of thermocline depth, D,, is also shown (thick line). 

Most isopycnal surfaces in the internal thermocline, that is, those close to the internal 
maximum in T,, outcrop into the surface mixed layer north of the latitude where the Ekman 
vertical velocity vanishes (Fig. 6b). The surface maximum in T, and the shallow ther- 
mostad are found on isopycnal surfaces that outcrop in the subtropical gyre 
(Fig. 6a). On the surfaces that outcrop in the northern part of the subtropical gyre, the fluid 
parcel trajectory that is tangent to the outcrop forms a boundary on the isopycnal surface 
between a ventilated regime to the east, and a recirculation regime to the west. The 
isopycnal surface descends from east to west through the thermostad across this trajectory, 
and the recirculation forms part of the internal thermocline. The boundary between these 
regimes is marked by a tightly packed set of depth contours in Figure 6a. On ventilated 
trajectories, the fluid parcel density and potential vorticity are effectively set in the mixed 
layer, nearly conserved in the interior, and then reset by surface cooling as the parcel passes 
through the western boundary layer and back into the interior. With kh = 0.04 as here, 
parcel density is partially modified by horizontal diffusion in the boundary layer. In 
solutions with smaller horizontal diffusivity (kh = 0.002, Section 6, Fig. la), the western 
boundary current is nearly adiabatic, and density is reset as the parcel crosses the.isopycnal 
outcrop into the convectively-adjusting mixed layer. Potential vorticity is altered both by 
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Figure 6. Depth h = 1 + SE - Zr and vectors of horizontal velocity (u, v) on the isopycnal surfaces 
z = Zr, (a) T = 80, (b) T = 40 for the solution in Figure 2. (Dimensional units of 5000 m and 
0.1 cm s-l.) 

friction in the boundary layer and by the diabatic processes. On recirculating trajectories, 
the fluid parcels pass through the western boundary layer and return to the interior without 
entering the mixed layer, and so remain isolated from effective contact with the surface 
forcing. 

The two subtropical gyre thermoclines are the signatures of the two fundamentally 
different dynamical regimes. The surface maximum in T, occurs on the ventilated portions 
of the isopycnal surfaces that outcrop in the subtropical gyre, where the downward vertical 
velocity is large (Fig. 4). In this regime, the heat balance is advective (adiabatic): the 
horizontal and vertical advection terms are comparable in size, and larger than the diffusive 
terms (Fig. 7). The internal maximum in T, occurs near the zero crossing of the vertical 
velocity (Fig. 4). In this regime, the heat balance is advective-diffusive (diabatic): the 
advective and diffusive terms are comparable in size. On the recirculating (unventilated) 
portions of the ventilated isopycnal surfaces, the heat balance is advective-diffusive, as in 
the rest of the internal thermocline. The heat balance in the internal thermocline is 
examined in more detail below (Section 6). 

In the tropical region, fluid on ventilated isopycnals upwells into the surface boundary 
layer, where it gains heat and is driven northward and eventually downward along 
shallower ventilated isopycnals by Ekman drift and downwelling (Fig. 2, Fig. 6a, Fig. 8). 
This gain of heat in the ventilated thermocline is compensated in the steady state by heat 
loss in the northwest comer of the subtropical gyre (Fig. 8). In this region, a deep surface 
mixed layer forms by convective adjustment. The surface mixed layer deepens eastward 
along the subtropical-subpolar gyre boundary. At each longitude, the deepest mixed layers 
are found near y = 0.95 in the subpolar gyre, and abyssal convection occurs at a single grid 
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Figure 7. Vertical profiles of terms in the thermodynamic equation for 0.85 < z < 1 at the center of 
the domain, (x, y) = (0.5, OS), for the solutions in Figure 2. The profiles for horizontal advection 
(-UT, - vTJ, vertical advection (-wT,), vertical diffusion (K,T& and horizontal (Laplacian plus 
biharmonic) diffusion (HD) are labeled. The units are Tdte = 5.4 X 10m4 K yr-‘. 

point near the northwest corner of the basin (Fig. 8). Along the eastern part of the gyre 
boundary, convection is mechanically driven, as cool surface boundary layer fluid is 
advected southward over warmer interior fluid by the Ekman flow. The dimensional 
northward heat flux reaches only lOi W, an order of magnitude smaller than estimates of 
meridional heat transport in the ocean (Hall and Bryden, 1982). 

In the advective regime, potential vorticity Q = jTZ and Bernoulli function B = p + zp = 
p - zT are approximately conserved along particle trajectories, and contours of Q and B are 
nearly parallel to the flow (Fig. 9). In the recirculation regime, the horizontal gradients of Q 
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Figure 8. Air-sea heat flux (left panel), zonally-integrated northward ocean heat flux versus latitude y  
(center), and mixed-layer depth (right) for the solution in Figure 2. The mixed-layer depth for 0 < 
y  < 0.5 (not shown) is equal to the imposed slab Ekman layer depth SE. The lower right panel is an 
expanded view of the upper right panel for 0.9 < y  < 1. The contour intervals are 50 (17 W mP2) 
for the left panel, and 0.02 (100 m) and 0.1 (500 m) for the upper and lower right panels, 
respectively. The dimensional units of zonally integrated heat flux (center panel) are HF = 0.9 X 

w. 
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Figure 9. (a) Potential vorticity Q and (b) Bernoulli function B and vectors of horizontal velocity on 
the T = 64 isopycnal surface for the solution in Figure 2. 

and B are much weaker than in the advective regime. However, Q and B in this regime are 
evidently controlled primarily by weak vertical diffusion, rather than horizontal diffusion 
as in the quasi-geostrophic homogenization theory of Rhines and Young (1982). The 
concentration of the deep stratification in the internal thermocline, and the attendant 
absence of a stratified, unventilated regime in which weak horizontal diffusion may 
dominate weaker vertical diffusion, effectively prevents homogenization by the Rhines- 
Young mechanism. Note that lateral diffusive effects have been intentionally minimized in 
the present calculations, by the use of small horizontal diffusivities and the absence of any 
explicit eddy dynamics; if these effects were restored, a Rhines-Young regime might 
emerge. The three-dimensional structure of Z and the distribution of Q and B on isopycnals 
outcropping in the subtropical gyre are qualitatively similar to the corresponding fields 
from primitive equation solutions in similar idealized geometries with similar numerical 
grids (e.g., Cox and Bryan, 1984, including coarse-grid results shown only in Cox, 1985, 
Figures 4-6). This structure is more clearly defined in the present solutions, because of the 
weaker lateral diffusion. 

In the advective-diffusive regime, the solution may be usefully compared with the 
internal boundary layer equation of Stommel and Webster (1962), and this is done in 
Section 6. In the advective regime, the solution may be usefully compared with the 
ventilated thermocline layer-model solutions of Luyten et al. (1983), and this is done in 
Section 7. The flow in the abyssal thermostad is driven by relatively uniform interior 
upwelling (Fig. lo), and so (by Sverdrup balance) is northward in the interior, toward the 
northern source of deep water, essentially as in the theory of Stommel and Arons (1960). A 
similar division of the interior flow into ventilated, advective-diffusive, and abyssal 
regimes was found in a planetary geostrophic model by Cohn de Verdiere (1989), while 
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Figure 10. Vertical velocity w at the level Z. = 0.65 (1750 m) for the solution in Figure 2. The contour 
intervalsforware1(10~4cms~~)forw<0,0.02forO<w<0.1,and0.1forw>0.1. 

Salmon (1990) focused on the internal thermocline; the smaller diffusion coefficients used 
in the present calculations result in a more complete separation of these regimes, and allow 
a more direct comparison with thermocline theories. 

4. Scaling: the two-thermocline limit 

a. Thermocline scaling. The vertical temperature gradient T, in the solution described 
above has two well-defined maxima in the subtropical gyre, one at the surface, and one 
near the zero-crossing of the vertical velocity. In order to understand how these maxima are 
maintained, it is useful to recall the scaling argument that Welander (1971b) used to infer 
the presence of an adiabatic thermocline regime, and then to extend part of this argument in 
a simple way. These scaling arguments compactly describe the essential physics of the 
quantitative theories that we consider in the succeeding sections. 

Consider the case in which the vertical velocity is internally determined, with advection 
and vertical diffusion both entering the thermodynamic balance, so that in the thermocline 
the terms in the thermal wind, continuity, and thermodynamic equations, respectively, may 
be estimated as 

f U/6 - gaATdlL (4.1) 

UIL - f w,/s (4.2) 

UAT,L, W,AT,IG - udTd/ti2 (4.3) 

Here ATd is a scale for horizontal variations in temperature over the gyre scale L. We take 
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L - flp, so that no independent scaling may be derived from the vorticity balance, and 
horizontal and vertical advection are of the same order. (A reviewer has pointed out that if 
separate estimates of gyre scale L and planetary scale flp are retained in the case of the 
advective scale described below, the resulting scaling gives information on the amount of 
recirculation within the gyre (Rhines and Young, 1982). We persist with the simpler L - 
flp scaling here, as it is adequate to our purposes, but its limitations should be recognized.) 
This scaling has been termed the balance (Welander, 1971b). With the 
parametersi g, (Y given, these relations may be solved for 6, W,, and U in terms of K to 
yield 

6 - (KfL2/gaATd)‘m m  (4.4) 

w, - K/8 K K213 (4.5) 

u - (4.6) 

Forf = 10e4 s-l, p = 2 X lo-r3 s-l,flp - L = 5 X IO8 cm, g = 980 cm sm2, OL = 
1O-4 K-l, AT, = 10 K, and K = 0.1 cm2 s-l, this gives 8 - 130 m, U - 0.3 cm s-i, and 

wd- 10e5 cm s-l. 
In the central subtropical gyre, the downward Ekman pumping velocity WE is much 

greater than this advective-diffusive estimate of the vertical velocity (WE - 10e4 cm s-I >> 
wd). Consequently, vertical advection overwhelms vertical diffusion near the surface, and 
an advective balance must result in the thermodynamic equation (Welander, 1971b). In this 
case (which then should apply on ventilated isopycnal surfaces in the upper subtropical 
gyre in the solution discussed above), the scaling relations become 

f VID, - gaAT,lL (4.7) 

VIL - WE/D, (4.8) 

VATJL - W,AT,ID,, (4.9) 

where now the thermodynamic scale balance is also redundant and may be dropped. This 
scaling has been termed the balance (Welander, 1971b). With We given, these 
relations yield 

D, - ( WEfL21( goAT,))‘” (4.10) 

V - WeLID, (4.11) 

For the above values, and with AT, = ATd = 10 K, D, - 400 m and V - 1 cm s-r. 
The advective scaling for the vertical derivative of the vertical velocity is consistent with 

the vanishing of the vertical velocity at depth D,, so the advective scale D, has a natural 
interpretation as the thickness of the fluid layer that is set in motion by the wind. If the 
wind-driven vertical velocity vanishes at the advective depth D,, then near that depth it will 
be negligible relative to the small, but finite, internally-determined velocity wd derived 
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from the advective-diffusive scaling, no matter how large WE is at the surface. Thus, it is 
natural to anticipate that an advective-diffusive regime may exist beneath the advective 
regime (Welander, 1971b). The vertical scale 6 might then apparently describe the 
thickness of an advective-diffusive thermocline near depth D,. 

Salmon (1990) suggested that the ocean thermocline could be identified as an advective- 
diffusive regime that arises as an ‘internal boundary in this manner. However, he 
argued that the vertical scale describing this regime was not the advective-diffusive depth 
6 - K,“~ but instead should be proportional to K,~‘*, as in a similarity solution discussed by 
Stommel and Webster (1962) and Young and Ierley (1986). The modified advective- 
diffusive ‘internal boundary vertical scale may be obtained by a simple extension of 
the scaling arguments above, following the idea that ‘the isotherms near the thermocline all 
had a constant but undetermined (Stommel and Webster, 1962, p. 55). For 
sufficiently small K”, 6 -=K 0,. In this case, the advective-diffusive estimate of the horizontal 
temperature gradient in the thermal wind balance (4.1) must be modified: rather than the 
gyre scale, the appropriate horizontal scale for the estimate of the horizontal temperature 
gradient in the thermal wind relation is the horizontal distance across the thermocline itself. 
This is given by the diffusive thermocline thickness 6i divided by the (advective) aspect 
ratio D,/L, so that 

f V/6, - pATil(GiLID,) (4.12) 

VIL - WilSi (4.13) 

WiATiBi - KL~T~/~; (4.14) 

where ATi is the temperature difference across the thermocline. This is equivalent, for a 
given wind forcing, to fixing the slope of the isotherms, since the unknown thickness Si 
cancels out of the scaled thermal wind balance. From a physical point of view, the isotherm 
slopes are effectively fixed because the weak vertical diffusion can move isotherms 
vertically by only a small fraction of their large-scale deviation from horizontal, which is 
controlled by the wind-forcing and measured by 0,. Since the thermal wind balance is 
independent of 6;, the velocity scale V is the advective velocity WEL/D, (taking AT, - ATi 
here for simplicity), while Wi and 6i are given by 

6, - (KfL*l( gcyATiD,))“2 - (K(fL*l( gaATiWE))‘“)‘” m K”2 (4.15) 

w; - K/& ‘X (4.16) 

This third depth scale 6i, which is an advective-diffusive scale, may be termed the ‘internal 
boundary scale, to distinguish it from the conventional advective-diffusive scale 6. 
An internal boundary layer that obeys this scaling has been found previously by Stommel 
and Webster (1962) and Young and Ierley (1986) in a similarity solution of the thermocline 
equations. 

Welander (197 1 b) showed that the advective and advective-diffusive scales may be 
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derived either in terms of the fundamental physical balances as here, or by direct 
consideration of the scalar form of the thermocline equations corresponding to (2.17) with 
E = Kh = A = 0. In the latter case, the internal boundary layer scale arises if the horizontal 
derivative in the term M,M, is estimated as a vertical derivative times a fixed slope, 
consistent with the similarity form considered by Stommel and Webster (1962). 

Thus, in the limit of small diapycnal diffusion, the advective scale D, characterizes the 
depth to which the wind-driven motion extends, and the internal boundary layer scale & 
characterizes the thickness of the thermocline that forms at the base of the wind-driven 
fluid layer. In order to evaluate the expressions for D, and 6i, it is necessary to choose 
values for the temperature scales AT, and ATi. Beneath the internal boundary layer, the 
abyssal ocean fills with the densest fluid, with temperature characterized by the coldest air 
temperature, which is found at the northern edge of the subpolar gyre. The surface 
temperature in the subtropical gyre depends on the balance between surface thermal 
forcing and horizontal advection. If AT, and AT, characterize the air temperature forcing 
and the Ekman layer temperature variations in the subtropical gyre, respectively, then the 
terms in the Ekman layer heat balance may be estimated as 

(V + V,)AT,IL - (AT, - AT&I& 

which may be solved for ATE to yield 

AT, - AT,/( 1 + (V + V&/L) (4.18) 

where V, - LWEEE is the horizontal Ekman velocity scale for an Ekman layer of depth SE, 
and tE = 8.&r.. is a relaxation time scale from the thermal forcing for the Ekman layer 
temperature. If the relaxation time scale is shorter than the advective time scales, the 
temperature in the Ekman layer will be approximately equal to the local air temperature. 
For the dimensional values given above, with aE = 25 m, the advective time scales are -9 
months for the Ekman advection and -24 years for the geostrophic advection, significantly 
larger than a typical relaxation time scale tE - 25 m/O.4 m - 2 months. Thus, the 
surface temperature in the interior of the subtropical gyre may be estimated directly from 
the local air temperature. (This is not true in the northwest part of the gyre, where advection 
by the western boundary current has a timescale comparable to or shorter than the 
relaxation time scale.) Then the temperature of the deepest wind-driven fluid can be 
estimated from the air temperature at the subtropical-subpolar gyre boundary, where the 
downward Ekman pumping vanishes (again neglecting the warming due to northward 
advection by the western boundary current). Consequently, to first order the internal 
thermocline temperature scale AT; can be taken equal to the air temperature difference 
across the subpolar gyre, ATsP, and the advective temperature scale AT, can be taken equal 
to ATi plus the difference between local air temperature and the air temperature at the 
subtropical-subpolar gyre boundary, ATST: 

ATi - AT,, (4.19) 
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Figure 11. Vertical profiles of T, at the center of the domain, (x, y) = (0.5, OS), for a set of solutions 
with K, = (0.003, 0.004, 0.008, 0.016, 0.032) (0.15, 0.2, 0.4, 0.8, 1.6cm2 s-i), Kh = 0.002 
(lo5 cm2 and E = 0.04. The internal maximum in T, increases with decreasing K,. 

ATa - AT,, + ATST (4.20) 

This closes the scaling theory in terms of the forcing and the given parameters. The 
qualitative picture that emerges from the scaling, the numerical solutions, and the 
comparisons with the quantitative theories presented below is illustrated in Figure 1. 

b. Numerical results. The parameter dependences derived above from scaling arguments 
are generally consistent with numerical solutions of the model equations for K~ 5 K, 5 

0.01. The depth and thickness of the internal maximum in T, may be estimated from 
vertical profiles of T, in the center of the subtropical gyre (Fig. 11). The depth of the 
internal maximum in T, is independent of K, (to first order) as K, - 0 and proportional to 
the square-root of the amplitude wEo of the Ekman pumping (Fig. 12), consistent with the 
scaling for D, (4.10). The thickness of the internal boundary layer, estimated as the lower 
half-width at half-maximum of the T, peak, is proportional to the square-root of K, 

(Fig. 13a), consistent with the scaling for Si (4.15). The solution with K, = 0.032 
(1.6 cm2 s-l) has a time-dependent abyssal circulation, but the thermocline depth and 
thickness are effectively constant. 

In order to isolate the effect of the vertical diffusivity, and prevent horizontal diffusion in 
the western boundary current from overwhelming the interior vertical diffusion (Veronis, 
1975), the solutions in Figure 13 have been obtained with Kh = 0.002 (lo5 cm2 With 
this value of horizontal diffusivity, the diapycnal diffusive fluxes through the internal 
thermocline ( 10 < T < 70) are dominated by vertical diffusion (Fig. 14a). In contrast, for 
the Case 1 solution above, which has Kh >> K, (Kh = 0.04, K, = 0.005), the horizontal 
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Figure 12. (a) Depth of the internal maximum of (0) versus K”, from the profiles in Figure 11. The 
advective scale depth D,, which is independent of K,, is also shown (dashed line). (b) Depth of the 
internal maximum of T, at (x, y) = (0.5, 0.5) (0) and maximum mixed layer depth at the 
subtropical-subpolar gyre boundary ( y = 0.75) (A) versus Ekman pumping velocity wm 
(10m4 cm* s-l) for a set of solutions with K, = 0.008 (0.4 cm2 s-r), K,, = 0.08 (4 X lo6 cm2 s-l), 
E = 0.04. The advective scale depth D,, which is proportional to the square-root of wm, is also 
shown (dashed line), along with the corresponding depths from solutions of the similarity 
equations (6.1) (X) and (6.2) (+), and the estimate of Ho from (7.1). 

diffusive fluxes through the internal thermocline are comparable to the vertical fluxes 
(Fig. 14b). Note that there is a small amount of counter-gradient zonal diffusive flux in both 
cases due to the biharrnonic diffusion. Although this flux is unphysical, it is evidently not 
pathological as long as it is small relative to the down-gradient flux. The magnitude of the 
counter-gradient flux can be controlled by adjusting the value of A. Solutions with X 
adjusted to give purely downgradient net flux do not differ substantially from the solutions 
presented here. 

For the solutions in Figure 11 (except the unsteady K, = 0.032 case), the corresponding 
profiles of vertical velocity in the center of the subtropical gyre have a simple structure, 
similar to that in Figure 4. The magnitude of the downward vertical velocity decreases 
linearly from the surface to zero near the maximum in T,. Beneath this point, it increases to 
a maximum upward velocity below the internal boundary layer, and then decreases linearly 
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Figure 13. (a) Thickness of the internal peak of r, (0) versus K,, from the profiles in Figure 11. The 
internal boundary layer scale Si and the advective-diffusive scale 6 are also shown (dashed lines), 
along with the corresponding thicknesses from solutions of the similarity equations (6.1) (X) and 
(6.2) (+). (b) Maximum upward vertical velocity at (x, y) = (0.5,0.5) versus K,, from the solutions 
in Figure 11. The internal boundary layer scale Wi, the asymptotic estimate Winf = W, from Young 
and Ierley (1986) for solutions of (6.1), and the advective-diffusive scale W, are also shown 
(dashed lines). 

through the isothermal abyss to zero at the bottom. The maximum upward velocity is 
proportional to the square-root of K, (Fig. 13b), consistent with the scaling for Wi [see 
(4.16)]. For the smallest values of K”, the upward abyssal w does not always penetrate to the 
bottom, as the horizontal diffusion is sometimes sufficient to damp the deep flow, despite 
the small value of K,,. 

In the central subtropical gyre, the dependence on K, of the amplitude of the zonally- 
integrated meridional overturning stream function ~JJ is roughly consistent with the internal 
boundary layer scaling for W;, where the scaling estimate of the stream function is M - 
WiL2 (Fig. 15). This is effectively an integrated test of the scaling for Wi, and is consistent 
with the hypothesis that the overturning in the central subtropical latitudes is controlled by 
vertical diffusive fluxes in the interior, not horizontal diffusive fluxes across the western 
boundary current. To the north and south, the dependence of JI on K, is sharper, so that 

9 max - K,~‘~ for both the subtropical gyre and the full basin, in agreement with the form (but 
not the numerical value) of the dependence that would be predicted by the advective- 
diffusive scaling (4.5). Note that the zone of tropical upwelling may be unrealistically large 
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Figure 14. Diffusive fluxes through isopycnal surfaces (diapycnal fluxes) from vertical (solid line), 
zonal (long dashes), and meridional (short dashes) diffusion versus temperature for (a) the solution 
with K, = 0.003 in Figure 11 and (b) the solution in Figure 2. The sign convention is negative 
downgradient, and the T-axis is reversed so that density increases to the right. The units of heat flux 
are HF = 0.9 X lOI W 

in the present calculation because of the form (2.22) of the imposed Ekman pumping, 
possibly exaggerating the influence on the meridional overturning stream function of 
diffusion in the shallow tropical thermocline. We do not attempt a complete analysis of the 
meridional overturning circulation here. 

These scaling results may be compared with those obtained by Bryan (1987) from 
primitive equation calculations on a 17 X 21 X 12 spherical grid in a basin of similar size, 
forced by fixed wind-stress and Newtonian heat and salt fluxes. Note that the horizontal 
temperature diffusivity for most of those calculations was (with the present nondimension- 
alization) Kh = 0.2 (lo7 cm2 s-l), 100 times larger than for the solutions in Figure 11. 
Bryan (1987) found that both thermocline thickness and meridional overturning stream 
function scaled approximately as K, In the present case, we find a stronger (K,~‘~, K,~~) 

dependence on vertical diffusivity. Bryan also found that thermocline depth increased with 
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Figure 15. Amplitude of meridional overturning stream function $ (stream function of zonally 
averaged circulation) versus K, for the solutions in Figure 11. The change in amplitude (0) over 
the central subtropical gyre (between y = 0.375 and y = 0.625), where the maximum over depth z 
is taken excluding the shallow tropical wind-driven cell, and the the subtropical gyre (+) and 
full-basin (X) maxima are shown. The dashed lines show estimates based on the internal boundary 
layer (Wi) and advective-diffusive (W,) vertical velocity scales. 

wind forcing, in accordance with our results, but did not evaluate this dependence 
quantitatively. Winton (1995, 1996) has found K,“~ and K,“~ scalings for meridional 
overturning in planetary geostrophic models with two and three spatial dimensions forced 
only by surface buoyancy fluxes. 

5. Dependence on structure of meridional air temperature 

According to the internal boundary layer scaling, the diapycnal upwelling velocity at the 
base of the internal thermocline depends on the temperature difference across the internal 
thermocline, which to first order may be taken equal to the air temperature difference 
across the subpolar gyre. Consequently, the meridional overturning cell associated with 
upwelling in the internal thermocline depends to first order on the air temperature gradient 
across the subpolar gyre, not the gradient across the entire domain. This dependence may 
be explicitly demonstrated by examining the thermocline structure and overturning 
circulation in a solution (Case 1A) identical to that discussed above (Case l), but with 
uniform air temperature from the southern boundary to the subtropical-subpolar gyre 
boundary. 

The internal thermocline structure for Case 1A (Fig. 16a) closely resembles that for Case 
1 (Fig. 5b). The temperature difference across the internal thermocline in Case 1A is 
somewhat less than that in Case 1, since northward advection in the western boundary 
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Figure 16. Meridional cross-sections of temperature T at x = 0.5 for (a) a solution with air 
temperature rS constant for y  5 0.75, (b) a solution with air temperature T, constant for y  2 0.75. 
Only the upper half of the domain is shown; the deeper fluid is nearly homogeneous. The depth at 
which w = 0 in the subtropical gyre is shown (dashed line), along with the corresponding 
advective scale estimate D, of thermocline depth (thick line). 

current and direct contact between the atmosphere and the internal thermocline in the deep 
mixed layer of the western boundary current outflow supply warmer fluid to the top of the 
internal thermocline in Case 1. The meridional overturning stream functions for Case 1 and 
Case 1A are nearly identical in structure and amplitude (Fig. 17a,b). This illustrates directly 
that for small diapycnal diffusion, the meridional overturning circulation (which is driven 
by vertical diapycnal diffusion through the internal thermocline) is effectively insulated 
from the surface thermal forcing in the subtropical gyre by the circulation associated with 

the ventilated thermocline. 
The thermocline structure and meridional overturning stream function for the comple- 

mentary Case lB, for which the air temperature is identical to that of Case 1 south of the 
subpolar gyre boundary but uniform across the subpolar gyre, differs substantially from 
that for Case 1 and Case 1A (Figs. 16b, 17~). Case 1B has a ventilated thermocline regime, 
near the surface in the subtropical gyre, but only a weak remnant of the internal 
thermocline. The meridional overturning cell is weak and broad, filling the entire abyss. 

These cases illustrate directly that for small diapycnal diffusion, the internal thermocline 
depends strongly on the thermal forcing across the subpolar gyre, but only weakly on that 
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Figure 17. Meridional cross-sections of meridional overturning stream function + for the solutions 
in (a) Fig. 2, (b) Fig. 16a, (c) Fig. 16b. The sense of the circulation is clockwise around maxima 
in *. 

across the subtropical gyre, while the structure of the ventilated thermocline is only weakly 
dependent on the forcing in the subpolar gyre. The advective scale (4.11), with the 
temperature scale AT, chosen according to (4.20), gives a useful estimate of the mid-basin 
depth of the internal thermocline in all three cases (Fig. 5b, Fig. 16). 

6. Comparison with the internal boundary layer theory 

a. Numerical results. The numerical results above indicate that the dependence of internal 
thermocline thickness on vertical diffusivity is consistent with the internal boundary layer 
scaling that arises in the similarity solutions of the thermocline equations studied by 
Stommel and Webster (1962) and Young and Ierley (1986). This motivates the quantitative 
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comparison of the current results with the similarity solutions. We focus on the vertical- 
diffusive control of the structure of the thermocline in the central subtropical gyre. 

A nonlinear ordinary differential equation whose solutions exhibit the internal boundary 
layer scaling for thermocline thickness was proposed by Stommel and Webster (1962) as 
an ad hoc simplification of a similarity form obtained by Robinson and Stommel(1959) for 
the thermocline equations. This equation, which has been derived more rigorously from a 
more general similarity form by Young and Ierley (1986), may be written 

(6.1) 

where 5 = (z - l)/(l - x)l13 is a similarity variable, the vertical velocity is w = 
(1 - x)-“~(~W - cd kld[), and the temperature is T = -3(f 2/f3)d2~/d~2. The depen- 
dence of T on 5 fixes the slope of the isotherms, and in solutions of this equation with 
downward vertical velocity (Ekman pumping) imposed at the surface (w < 0 at 5 = 0), the 
thickness of the thermocline that forms near the zero-crossing of the vertical velocity obeys 
the internal boundary layer scaling ?ii - K, 11* (Fig. 13). It is instructive to consider also the 
simpler equation proposed by Salmon (1990) as a model for the internal boundary layer, 

(6.2) 

where the vertical velocity is w = I@ and the temperature is T = (f 2/p)( 1 - .x)d21@/dz2. In 
this case, the isotherm slopes are not known until the differential equation for @is solved. 
Consequently, the thickness of the thermocline layer that forms in (6.2) in fact obeys the 
advective-diffusive scaling (6 - K, I”), not the internal boundary layer scaling (6 - K,~‘~). 

(The Taylor series argument used by Salmon (1990) to infer the internal boundary layer 
scaling for (6.2) fails because the vertical convergence w, in the boundary layer depends at 
lowest order on the boundary layer thickness.) 

In the similarity solutions, the horizontal advection of heat vanishes identically, and 
there is no horizontal heat diffusion, so the balance is between vertical advection and 
vertical diffusion. In the solutions of the present model with K,, = 0.002, the heat balance in 
the lower half of the internal thermocline is also dominated by a balance between vertical 
advection and vertical diffusion even for K, = 0.003, the smallest vertical diffusivity 
considered here (Fig. 18). In the upper half of the internal thermocline, horizontal 
advection is comparable to vertical advection for K, = 0.003 (Fig. 18a). The relative 
magnitude of horizontal advection in the internal thermocline decreases as K, increases 
above this value. In the western boundary layer, the local balance is advective in the upper 
part of the internal thermocline, while horizontal diffusion across the tilted isopycnals of 
the internal thermocline is large in the lower part (Fig. 18b). This horizontal diffusion is 
locally several times larger than the dominant terms in the interior, but is not large enough 
to control the total diffusive flux across the internal thermocline (Fig. 14). (The residual 
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Figure 18. Vertical profiles of terms in the thermodynamic equation for 0.7 < z < 1 for the solution 
in Figure 11 (K~ = 0.002) with K, = 0.003 at (a) the center of the domain, (x, y) = (0.5,0.5), and 
(b) near the western boundary, (x, y) = (0.024, 0.5). The profiles for horizontal advection 
(-UT, - VT,), vertical advection (-wT,), vertical diffusion (K,T&, and horizontal (Laplacian plus 
biharmonic) diffusion (HD) are labeled accordingly. The corresponding profiles of T are also 
shown (right panels). The units are T*lt* = 5.4 X low4 K yr-*. 

evident in the lower panel of Figure 18 is a measure of truncation error, as the 
thermodynamic equation is discretized in flux form. However, improving the horizontal 
resolution in the western boundary layer does not substantially change these solutions, as 
discussed below.) The approximate balance of vertical advection and vertical diffusion 
obtains only in the central subtropical gyre. As the meridional isopycnal slopes increase 
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toward the northern and southern boundaries of the gyre, horizontal advection becomes 
comparable to vertical advection. 

Quantitative comparisons between vertical profiles of I: T, and w at the center of the 
subtropical gyre, (x, y) = (0.5, 0.5) from the numerical solutions in Figure 11 with K, 5 

0.01, Kh = 0.002 and from corresponding solutions of the similarity equation (6.1) are 
shown in Figure 19. It should be emphasized that the only free parameters in this 
comparison are the upper boundary conditions on vertical velocity and the upper and lower 
boundary conditions on temperature (and the (x, y) location; see below). Since vertical 
diffusion becomes significant only near the zero-crossing in the vertical velocity, and since 
the similarity solution has uniform temperature above the internal boundary layer, it is 
natural to imagine matching the diffusive solutions asymptotically to the thermostad at the 
base of the ventilated thermocline, rather than extending them to the surface. Accordingly, 
for these comparisons, the boundary conditions at z = 1 on temperature and vertical 
velocity for (6.1) were adjusted so that the solutions matched the temperature and vertical 
velocity at the local minimum in T, that lies above the internal thermocline in the numerical 
solutions (approximately z = 0.95), rather than fixed to the surface temperature and the 
vertical velocity at the base of the Ekman layer. The temperature of the thermostad is 
roughly 25 units colder than the local surface temperature T, - T,, and 15 units 
warmer than the scaling estimate ATi = AT sP. The bottom boundary conditions were 
no-normal-flow (w = 0) and fixed temperature at z = 0. In the isothermal abyss, the 
solution for w is essentially proportional to Z, so that both sides of (6.1) vanish identically. 
The solutions of (6.1) are not sensitive to the depth at which the bottom boundary 
conditions are applied, as long as it is deep enough (Stommel and Webster, 1962; Young 
and Ierley, 1986). 

The solutions of (6.1) apparently describe well the internal thermocline in the center of 
the subtropical gyre (Fig. 19). However, the interior abyssal upwelling is nearly indepen- 
dent of longitude x in the present numerical solutions (Fig. lo), while the maximum 
upwelling in the Stommel-Webster solution is proportional to (1 - x)-*/~. In this regard, 
the numerical solutions resemble more the solutions of the Salmon similarity equation 
(6.2) which have w independent of longitude. The subtropical abyssal upwelling in the 
numerical solutions is also only weakly dependent on latitude (Fig. 10). To the extent that 
the diffusively-driven upwelling in the internal boundary layer depends on the upper 
boundary condition on temperature, the uniformity of the subtropical abyssal upwelling is 
due in part to the existence of the shallow thermostad above the internal thermocline, 
which effectively provides a horizontally homogeneous boundary condition on tempera- 
ture at the top of the internal boundary layer. The structure of this thermostad is controlled 
primarily by the wind-driven circulation above the internal thermocline. Thus, the 
ventilated circulation exerts a weak control on the diffusively-driven deep circulation in 
this relatively direct manner. 

A generalization of the above heuristic matching might in principle allow 
an internal boundary layer thermocline to be consistently patched on to the base of an 
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Figure 19. Vertical profiles of z T,, and w at (x, y) = (0.5,0.5) from the solutions in Figure 11 (thick 
lines) with K, = 0.003 (upper panels) and K, = 0.008 (lower panels). Corresponding solutions of 
the Stommel-Webster similarity equation (6.1) are also shown (thin lines). 

adiabatic ventilated thermocline, in order to obtain a small-diffusion perturbation theory 
for the diffusively-driven meridional overturning circulation and the diffusive correction 
to, or constraints on, an adiabatic model of the wind-driven subtropical gyre. For example, 
if y-derivatives may be neglected near the center of the subtropical gyre, a local internal 
boundary layer approximation might be developed in which slow spatial variations in 
isotherm slope allow the term M,M, in (2.17) to be approximated locally by a constant 
times M,M,,. This should yield a local version of the equation ultimately solved by Young 
and Ierley (1986) in their asymptotic analysis of (6. l), without the similarity restriction on 
the zonal structure. 

Even in the absence of a fully self-consistent matched asymptotic theory, the heuristic 
matching of the similarity solutions illustrates the manner in which the internal thermocline 
in the model numerical solutions is governed by the advective-diffusive dynamics of an 
internal boundary layer. A related perturbation theory for the interaction of the wind-driven 
circulation with thermal processes, which depends on the specification of global net air-sea 
buoyancy fluxes as a function of density class, has been developed by Tziperman (1986). 
The present calculations suggest that in the small-diffusion, closed-basin limit, the 
subtropical abyssal stratification collapses to a thin internal boundary layer, through which 



19971 Samelson & Vallis: Large-scale circulation 255 

the net buoyancy fluxes in density classes might instead be deduced as a result of the 
asymptotic theory. 

b. Diapycnaljues and the deep meridional cell. The original object of the Stommel and 
Webster (1962) calculation was to obtain a theoretical estimate of the magnitude of the 
abyssal upwelling velocity of the thermohaline meridional overturning calculation. The 
preceding comparison illustrates that at the center of our domain (at (x, y) = (0.5, 0.5)), 
such a calculation does provide a useful estimate of T, and w in the internal thermocline in 
the numerical solutions, and of the dependence of these quantities on the vertical 
diffusivity K,. Evidently, the central subtropical gyre contribution to the diffusively-driven 
meridional overturning cell in the numerical solutions is controlled to first order by the 
vertical diffusivity according to the physical balances represented in the similarity 
solutions. 

This picture of the diffusively-driven deep meridional cell appears to be independent of 
both the momentum balance and the heat balance in the western boundary current (at least 
to the extent that the temperature difference across the internal thermocline may be 
approximated by ATsP, rather than being determined empirically from the numerical 
solutions as in Fig. 19). However, the southward meridional flow that closes the overtum- 
ing cell occurs in a western boundary current (Fig. 3). In addition, most of the internal 
thermocline is a recirculation regime (Fig. 6). That is, fluid parcels in the internal 
thermocline pass through the western boundary current and return to the interior without 
experiencing the direct influence of air-sea interaction and the associated strong diapycnal 
mixing. Thus, it might be expected that the western boundary current dynamics and 
thermodynamics play a controlling role in this circulation. 

We have argued above that the net diffusive fluxes across isopycnals are controlled by 
vertical diffusion in the basin interior, and not by horizontal diffusion across the tilted 
isopycnals of the western boundary current, at least for K,, = 0.002 ( lo5 cm2 sP l). Thus, to 
first order, the western boundary current transports mass adiabatically. This does not mean 
that the western boundary current is dynamically but only that extensive water 
mass conversion in the western boundary current does not occur in these solutions. The 
quasi-adiabatic recirculation of interior fluid through the western boundary layer is an 
essential part of the circulation associated with the internal boundary layer, whose vertical 
structure is controlled by the weak vertical advective-diffusive balance examined in the 
preceding section. In contrast, horizontal diffusion may be important in these solutions in 
the subpolar gyre. 

The boundary currents are only marginally resolved by the numerical grid. We have 
carried out a limited number of additional integrations in order to assess the influence of 
friction and of boundary layer resolution on the present solutions. Although the former is a 
physical parameter and the latter primarily a numerical issue, we discuss them together 
because they are related by the dependence of the boundary layer width on E, and because 
we have investigated both only briefly. A solution was obtained for the same parameters as 



256 Journal of Marine Research [55,2 

4 b) 

0.8 0.8 

0.6 
N 

0.4 

0.2 

0.0 

0.6 
N 

0.4 

0.2 

0.0 

Figure 20. (a) Vertical profile of T, at (x, y) = (0.5,0.5) with K, = 0.004 from the solution in Figure 
11 (solid line) and a solution with E = 0.08 (dashed line). (b) Vertical profile of T, at (x, y) = (0.5, 
0.5) with K, = 0.008 from the 65 X 65 X 64 solution in Figure 11 (solid line) and a 33 X 33 X 32 
solution with a stretched zonal coordinate (dashed line). 

the K, = 0.004 case in Figure 11 but with E = 0.08. The doubling of the frictional 
coefficient alters the interior vorticity balance. At basin center, this causes a decrease of 
roughly 0.02 (100 m) in the depth of the T, maximum, but the internal thermocline 
(Fig. 20a) and the upwelling velocity at its base (not shown) are virtually unchanged except 
for this vertical translation. The central subtropical gyre contribution to the meridional 
overturning stream function is nearly unchanged with doubled friction, indicating that the 
meridional pressure gradients necessary to maintain the associated return flow adjust to 
carry a volume flux that is determined by the interior vertical diffusion. In contrast, the 
contributions from the tropical and subpolar regions do change significantly. 

This comparison tests only whether the local structure of the subtropical internal 
thermocline is parametrically dependent on the ad hoc linear friction for these relatively 
large values of the friction coefficient E. If  friction were instead reduced (as would be 
desirable) to much smaller values, the result could be different. Jarvis and Veronis (1994) 
have shown that an adiabatic two-layer planetary geostrophic model exhibits a baroclinic 
separation of the western boundary current when the linear drag is reduced to values 
corresponding to E - 10-3, an order of magnitude smaller than values considered here. We 
do not rule out the possibility that solutions of the present model with much smaller friction 
might differ significantly from those obtained here with E - lo-*. 

A second solution was obtained for the same parameters as the K, = 0.008 case in 
Figure 11 (E = 0.04) but using a stretched 33 X 33 X 32 grid with enhanced zonal 
resolution near the western boundary. The smaller total number of grid points was used to 
reduce computational demand, which was increased substantially by the small time-steps 
required for the finer grid, and the intermediate K, case was chosen so that the interior 
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Figure 21. Zonal profiles of meridional velocity v at (x, z.) = (0.5,0.95) from (a) the two solutions in 
Fig. 20b and (b) for the 65 X 65 X 32 solution in Figure 2 (solid line) and a 33 X 33 X 32 solution 
with the same parameters (dashed line). The zonal grids are indicated (+). 

stratification would be relatively well resolved by the coarser vertical grid. The eastern 
boundary layer was not well resolved by the stretched grid. The solution with the stretched 
grid does not differ dramatically from the nominal solution. The most notable changes to 
the central subtropical gyre stratification are associated with the reduced vertical resolution 
in the shallow thermostad (Fig. 20b). The boundary layer jet is better resolved, but the 
improved resolution does not lead to first order changes in the velocity structure (Fig. 21a). 
Solutions with E = 0.02 on regular 33 X 33 X 32 and 65 X 65 X 32 grids also do not show 
strong dependence of the interior flow or the western boundary layer jet on resolution (Fig. 
21b). Most solutions were obtained initially on 33 X 33 horizontal grids, interpolated to 
65 X 65, and integrated to a final state. This proved efficient, as the 33 X 33 and 65 X 65 



258 Journal of Marine Research w, 2 

4 x 
0.0 0.2 0.4 0.6 0.6 1.0 

' '1.0 
-fwz Bv 

0.6 

0.G 

x 

0.4 

0.2 

1.0 0.0 

0.0 0.2 0.4 0.6 0.6 1.0 
x 

Figure 22. Vorticity balance on the isopycnal surface T = 110 for (a) Case 1, the solution in Figure 2, 
and (b) Case 2, with E = 0.002 in the interior. The contour interval is 1 between -20 and 20, and 
the - 100 and 100 contours are also shown. The lower right panels show the sums of the absolute 
values of the three terms shown individually. 

solutions did not generally differ substantially. These limited tests suggest that the present 
numerical solutions are probably not strongly resolution dependent. 

7. Comparison with ventilated thermocline theory 

a. Three-layer model. Although the circulation described above is essentially adiabatic on 
near-surface isopycnals, the vorticity balance is relatively viscous, with the ratio of the 
friction and beta terms in (2.11) reaching values as large as 0.3 in the interior (Fig. 22a). If E 
were reduced in the interior, a better comparison could be made with the ideal fluid 
ventilated thermocline theory of Luyten et al. (1983). Holding the diffusion fixed and 
decreasing the friction destabilizes the solution to long baroclinic waves (Colin de 
Verdiere, 1986). In order to compare isopycnal slopes with the steady ventilated thermo- 
cline theory, it is thus necessary to increase the diffusion sufficiently so that the solutions 
remain steady for small friction. A spatially-variable friction coefficient may be introduced 
to replace the constant E, so that the interior friction may be substantially reduced while the 
friction near lateral boundaries is maintained at a value that allows resolution of the lateral 
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boundary layers. This changes Eq. (2.10), by introducing terms proportional to the 
horizontal derivatives of E as in (2.13), but otherwise leaves the form of the equations 
unchanged. For the present comparison, a solution (Case 2) was obtained for E decreasing 
from 0.02 on the boundary and matching quadratically to a uniform interior value of 0.002 
along a contour 0.1 units inside the boundary. The diffusion coefficients were K, = 0.008 
(0.4 cm2 s-l) and K,, = 0.08 (4 X IO6 cm2 s-l), roughly twice the values used in Case 1 
above. The Case 2 solution was obtained using the alternate surface layer scheme discussed 
above at the end of Section 2. This is sufficient for the following comparison, to which the 
quantitative details of the global heat budget are not central. 

Even for these larger diffusivities, the heat balance on shallow isopycnal surfaces that 
outcrop in the subtropical gyre is dominated by advection, although diffusion becomes 
important near the surface in the southwest part of the subtropical gyre. Since the interior 
vorticity balance is nearly inviscid (Fig. 22b), and since the rapid timescale of air-sea 
interaction results in an effective boundary condition of fixed temperature at the surface, 
the ventilated thermocline dynamics control the stratification of the upper thermocline. For 
simplicity, a corresponding ventilated thermocline solution was obtained for the original 
three-moving-layer model of Luyten et al. (1983). The western boundary was removed, so 
that no separate treatment would be required on characteristics entering the interior from 
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Figure 23. (a) Zonal and (b) meridional cross-sections of temperature T from Case 2, the numerical 
solution in Figure 22b. The layer interfaces from a three-layer ventilated thermocline solution are 
also shown (thick lines). The densities of the ventilated thermocline layers are indicated in (b). 
Only the fluid above z = 0.6 is shown; the deeper fluid is nearly homogeneous. 

the west. All parameters were computed directly from the boundary values except the depth 
Ha of the deepest moving layer (layer 3) at the eastern boundary, which was estimated from 
the numerical solution. In accordance with the discussion above, the density difference 
across the base of the deepest moving layer was taken equal to the air temperature 
difference across the subpolar gyre (so y3 = 50, in the notation of Luyten et al., (1983)) 
while the differential densities (y2 = 40, y1 = 60) and (longitude-independent) outcrop 
latitudes (yz = 0.65, y1 = 0.45) of the two upper layers were chosen from the air 
temperature distribution in the subtropical gyre. In the present case, H,, may be defined as 
the mixed:layer depth at the subpolar-subtropical gyre boundary, rather than as the depth of 
the deepest moving layer at the eastern boundary, as in Luyten et al. (1983). Thus, layer 3 is 
to be interpreted physically as a vertically-mixed layer of ‘mode while layers 1 and 
2 are to be interpreted as a crude representation of continuously stratified near-surface 
fluid. 

The layer interfaces from the three-layer ventilated thermocline solution closely follow 
the isotherm depths from the Case 2 solution in the subtropical gyre (Fig. 23). Since the 
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position of the deep interface (internal thermocline) depends only weakly on the upper 
stratification, the degree of correspondence between the position of the deep interface and 
the location of the internal thermocline is primarily a measure of the dominance of the 
inviscid terms in the vertically-integrated vorticity balance (the Sverdrup balance) is the 
numerical solution. The ventilated thermocline theory describes the structure of the 
shallow isopycnals that outcrop in the subtropical gyre, that is, the position of the upper 
two interfaces in the three-layer model. These layer interfaces lie nearly parallel to the 
isotherm contours in the numerical solution. The deep mixed-layer (layer 3) and the 
motionless abyssal layer in the ventilated thermocline solution are generally 10-20 units 
(l-2 K) cooler than the corresponding thermostads in the numerical solution. This 
difference is due to the warming of the subpolar gyre by the diffusively-driven meridional 
overturning circulation, and to the warming of the northern subtropical gyre by advection 
in the western boundary current. 

In the western subtropical gyre, the base of the shallow thermostad in the numerical 
solution is less than half as deep as the layer 3 interface (Fig. 23a). A substantial part of the 
Sverdrup transport in this region is carried in the temperature range 40-70, beneath the 
thermostad and in the recirculating part of the internal thermocline but above the maximum 
in T,. The stratification and circulation in this region are influenced by horizontal diffusion 
in the western boundary current, due to the large horizontal diffusivity K~ = 0.08 
(4 X lo6 cm* used to obtain a steady state solution. As horizontal and vertical 
diffusion are reduced, and the internal thermocline collapses vertically to a discontinuity 
(Section 6), the Sverdrup transport in this region will apparently be carried entirely in a 
deep mixed layer whose outcrop extends northeastward from the southern limit of the 
western boundary current outflow (Section 7b). 

The shadow zone of stagnant flow in layer 3 in the southeast part of the subtropical gyre 
that is predicted by the ideal fluid theory is relatively small, because of the relatively small 
layer-3 eastern boundary depth Ha = 0.1 (500 m), and does not have a well-defined 
counterpart in the present numerical solution. In this solution, motion in the shadow zone 
region may also be driven by diffusion and friction, which allow flow on isopycnal surfaces 
across contours of potential vorticity (Fig. 9). Diffusively-driven flow in the shadow zone 
has been studied by Pedlosky (1987a) and de Szoeke (1995). As the wind forcing is 
increased, and the internal thermocline deepens, a more recognizable shadow zone appears 
in the numerical solutions. 

Consideration of the subtropical gyre heat balance of the ventilated thermocline in the 
limit of small diffusion appears to lead to a paradox (Salmon, 1990). In that limit, the heat 
flux through the thermocline at the base of the wind-driven motion vanishes, since the 
vertical velocity and the diffusive heat flux FH - KAT;J6i - K”* both vanish. Thus, a closed 
heat balance must exist within the wind-driven fluid layer. Persistent Ekman downwelling 
of warm subtropical surface water might then be anticipated to result in vertical and 
horizontal homogenization of temperature in the wind-driven layer. The circulation avoids 
this fate in the present model primarily by releasing heat (which has been gained at the 
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surface in the tropics) to the atmosphere in the northwest part of the gyre, where cooling of 
the surface layer and convective adjustment allow air-sea fluxes to penetrate to depths of 
several hundred meters and remove heat directly from subsurface fluid. Note also that the 
form of the thermal forcing used by Salmon (1990; Eq. (6.18)) favors homogenization, 
since the heat flux vanishes when the average gyre surface temperature reaches a specific 
value, after which the recirculating subtropical gyre fluid can homogenize without 
inducing any local heating. 

b. Subtropical ‘mode A striking feature of the present numerical solutions is the 
shallow thermostad in the subtropical gyre between the upper ventilated thermocline and 
the internal thermocline. Two distinct mechanisms contribute to the formation of this 
‘subtropical mode 

One of these mechanisms operates at the subtropical-subpolar gyre boundary. For small 
diffusion, the internal boundary layer resembles a material surface that separates warm 
subtropical fluid from cold abyssal fluid, and a natural correspondence with two-layer 

planetary geostrophic ocean models (Parsons, 1969; Veronis, 1973) emerges (Salmon, 
1990). In order that the volume of warm fluid remain constant in the two-layer model, the 
southward Ekman transport across the subtropical-subpolar gyre boundary must be bal- 
anced by an equal northward geostrophic transport, and this in turn requires that the inter- 
face be depressed at the eastern boundary (Parsons, 1969; Veronis, 1973). In the present 
model, this balance leads immediately to the formation of a thermostad along the gyre 
boundary. At the gyre boundary, the air temperature ATsp (see Fig. 1) determines the 
temperature of the surface fluid away from boundary currents (Section 4). Since this is the 
coldest fluid entering the subtropical gyre, the warmest (uppermost) fluid in the internal 
thermocline must have this same temperature AT&. Consequently, the fluid between the 
surface and the top of the depressed internal thermocline must have uniform temperature 
ATsp, and an mode water layer must form at the gyre boundary. 

The thickness of this mode water at the gyre boundary may be identified with the fixed 
eastern boundary depth Ho of the deepest ventilated layer in the three-layer calculation of 
the preceding section. Since the transport balance determines only the difference in 
interface depth from east to west (Parsons, 1969; Veronis, 1973), it does not determine Ho. 
In the numerical solutions, however, the isopycnals of the internal thermocline are 
typically close to and beneath the surface along the western boundary at the latitude of the 
gyre boundary. In this case, the depth Ho may be estimated directly from the transport 
balance to show the explicit dependence on the wind stress, 

H,, = (2rM/ATsp)“* - (wEo/(~ATsp))“*. (7.1) 

Here TV is the zonal component of the wind stress (assumed independent of x) at the gyre 
boundary, where the curl of the wind stress vanishes (slightly north of the point where 
wE = 0). If an estimate of HO is obtained from the present calculations by computing the 
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maximum mixed-layer depth along the subtropical-subpolar gyre boundary, this depth 
correlates roughly with the expression (7.1) for a wide range of values of wm (Fig. 12). 

The situation that arises at the gyre boundary is thus similar to that envisioned by 
Pedlosky (1987b), who argued that (7.1) should be a lower bound on the thickness of the 
active layer. In the present case, this lower bound appears also to be an approximate upper 
bound, as excess warm fluid tends to be expelled from the subtropical gyre as the steady 
state is approached, perhaps because warm fluid flowing down the mean pressure gradient 
and into the subpolar gyre can cool by contact with the atmosphere. The surface warming 
required to balance the southward Ekman transport of cold fluid across isopycnal outcrops 
in the boundary current outflow (Nurser and Williams, 1990) is supported by northward 
baroclinic geostrophic heat transport in the boundary current, which cannot be represented 
in the two-layer model, and not by air-sea exchange. Although the present model does 
include thermodynamic processes that are neglected in the two-layer model, it also has a 
strongly frictional downstream momentum balance, which may inhibit any tendency 
toward separation of the boundary current (Jarvis and Veronis, 1994). If such separation 
were to occur with smaller friction in the present model, the estimate (7.1) would be 
inaccurate. In our solutions, separation does not occur, and Ha may be estimated from (7. l), 
which effectively completes a first-order closure of the three-layer ventilated thermocline 
calculation presented above. 

With Ha given, the ventilated thermocline dynamics determine the solution along 
characteristics (trajectories) that leave the surface layer in the subtropical gyre or the deep 
mixed layer adjacent to the gyre boundary. A third class of trajectories enters the 
subtropical gyre interior from a deep surface mixed layer that forms adjacent to the western 
boundary current. The mechanism that generates the western deep mixed layer is different 
from that operating at the gyre boundary, and is most easily understood in terms of the flow 
on isopycnal surfaces, such as those shown in Figure 6a and Figure 9. Along the eastern 
part of the outcrop line, these surfaces are ventilated from the subtropical surface layer by 
Ekman pumping, essentially as envisioned by Luyten et al. (1983). To the west, flow exits 
the isopycnal surface as it cools by vertical diffusion and convective adjustment in the 
western boundary current outflow. The western mode water layer, which is marked by the 
tightly packed depth contours in Figure 6a and the potential vorticity minimum in 
Figure 9a, forms on each isopycnal surface at the point along the outcrop where the flow 
across the outcrop vanishes. Southwest of this point, the flow on the isopycnal surface 
recirculates through the western boundary current without being exposed to air-sea 
exchange processes. 

The fluid in the recirculation region is set in motion only by diffusion, and forms part of 
the internal thermocline. In the limit of small diffusion, there is no source of fluid or motion 
in this region, and the recirculation collapses vertically into a discontinuity along with the 
rest of the internal thermocline. In the terminology of the ventilated thermocline (e.g., 
Huang, (1991), Fig. 2), this collapsed recirculation may be said to inhabit the western 

region defined by upper layer characteristics that leave the western boundary. 



264 Journal of Marine Research [55,2 

Consequent to this collapse, the surface mixed layer that forms at the boundary of this 
region must itself extend downward to the internal thermocline, since it lies immediately 
above a recirculation region on the next denser isopycnal surface, which in turn must 
collapse with the internal thermocline. On each isopycnal surface, the western ‘mode 

layer forms as this mixed layer subducts. In other words, the thermostad forms 
because of an absence of sources of fluid on recirculating trajectories on the denser 
isopycnal surface at its base. The set of mixed layer subduction points, which correspond to 
the southernmost points of the deep surface mixed layers and to the points at which the 
velocity on each isopycnal outcrop is tangent to the outcrop line, form a line that tends 
northeastward from the southernmost point of western boundary current outflow, toward 
the subpolar gyre boundary (Fig. 6, Fig. S), whose orientation will be influenced by the 
local timescale of air-sea exchange. The mixed-layer density along this contour is 
determined by the local air temperature, since each point is located precisely where the sign 
of the air-sea heat exchange changes as the isopycnal outcrop is traversed. The depth of the 
mixed layer at each of these subduction points, and thus the thickness of the western mode 
water, is determined recursively westward by the Sverdrup balance at the contour, with the 
depth of the isopycnals to the east set by the ventilated thermocline dynamics, the eastern 
boundary condition HO for the depth of the moving fluid, and the subduction of the mixed 
layer at the previous point to the northeast along this contour. 

These arguments suggest that the structure of the shallow thermostad in the model is 
controlled by large-scale dynamic and thermodynamic processes. The proximate, local 
cause of the model thermostads is convective adjustment, primarily in association with 
surface cooling. The accuracy of this parameterization is unknown. In addition, it should be 
noted that the use of such a scheme interrupts the correspondence between the differential 
equations and the numerical result, as the solution in the convecting regions is comprised 
of a time-step using (2.1)-(2.5) followed by a discrete adjustment of the density field that is 
constrained only by the requirements to prevent static instability and conserve heat in 
columns. This temporally discrete adjustment is likely to have different convergence 
properties than the discretization of the evolution equations, and disturbs the smoothness of 
the solution at the edges of the convective regions. Although we suspect that this difficulty 
is not severe, it deserves future attention. 

8. Western boundary current 

In the present model, the western boundary current is supported by a simple ad hoc 
representation of frictional and diffusive processes (Samelson and Vallis, 1997). This 
distinguishes it from the interior flow regimes, which are supported to a greater degree by 
dynamic balances that result from deductive scale-asymptotic simplifications of the fluid 
and thermodynamic equations. Thus, the details of the flow in the western boundary regime 
are of physical interest only to the degree to which they influence the interior flow, and 
accordingly have been discussed where appropriate in the preceding analysis of the interior 
flow regimes. For reference, we briefly summarize the boundary current heat and vorticity 
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balances here. To first order, the vorticity balance (2.11) is @v - --EV, (Fig. 22), resulting in 
an approximately exponential meridional jet with e-folding thickness E/p and maximum 
velocity at the boundary (Fig. 21). The condition that normal heat flux vanish at the 
boundary is met by the balance (2.13) of opposing Fickian and higher-order diffusive 
fluxes, and the choice (2.16) for the biharmonic diffusivity extends this balance, to first 
order, through the E/P boundary layer. In combination with a small horizontal diffusivity, 
this results in a western boundary current that is sufficiently adiabatic that the net diffusive 
fluxes across isopycnal surfaces are not dominated by horizontal diffusion across the 
sloping isotherms of the western boundary current (Fig. 14a, Fig. 18). The no normal flow 
condition requires a balance between the alongshore pressure gradient and the frictional 
drag on the alongshore flow, so an alongshore pressure gradient must develop to support 
the nearly geostrophic western boundary current. Integration of this boundary condition 
around the boundary shows that the net circulation at the boundary must vanish at each 
interior level. This illustrates that the boundary current can in principle exert an important 
controlling influence on the interior flow, as argued for a similar model by Winton (1996). 
It seems likely that a complete understanding of the meridional overturning circulation in 
the present model would require a thorough analysis of the boundary currents and their 
interaction with the inferior flow. 

9. Comparison with observations 

Although the forcing fields and basin geometry for the solutions discussed above are 
highly idealized representations, it is useful to briefly compare the qualitative features of 
the solutions with oceanographic observations. For the values given in Section 4, with 
AT, = 2ATi = 20K, the ratio Si/D, = 0.25 - 0.75 for K = 0.1 - 1 cm2 s-l. Thus, the 
scaling estimates suggest that the two thermocline regimes should be distinguishable in the 
ocean, with the internal thermocline forming a thick internal boundary layer at the base of 
the ventilated thermocline in the subtropical gyre. 

If the model results are compared to hydrographic observations of the North Atlantic, a 
striking difference is found between the model and observed abyssal stratification. Profiles 
of buoyancy frequency from the model and the North Atlantic have some general 
similarities in and above the main thermocline, but at greater depth the model buoyancy 
frequency is much smaller than the observed buoyancy frequency (Fig. 24). Some of the 
quantitative agreement in the main thermocline is due to the smaller total density difference 
between the surface and the abyss in the model than in the observations. A larger air 
temperature gradient in the model leads to a larger density difference across the internal 
thermocline, but no significant strengthening of the abyssal stratification. Larger diffusivi- 
ties lead to a broader, weaker and deeper internal peak in buoyancy frequency, but in 
general do not substantially improve qualitative agreement with the more uniform 
observed abyssal stratification, while degrading the agreement with the observed internal 
peak. A similar weak abyssal stratification has been found previously in primitive equation 
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Figure 24. Nondimensional observed (thin line) and model (thick line) buoyancy frequency versus 
depth at five locations in the subtropical gyre. The observed profiles are from the 36N section in 
Figure 25a, at 60W (left panel), 45W (center left), and 30W (center right), from a station at 45N, 
20W from the cruise described by Tsuchiya ef al. (1992), and from 25N, 52W from the section in 
Figure 25b. The model profiles are from the solution in Figure 11 with K, = 0.004, at x = (0.25,0.5, 
0.751, y  = 0.5, at (x, y) = (0.83,0.74), and at (x, y) = (0.38,0.38). Buoyancy frequency is scaled by 
0.075 cph and depth by 500 km. 

general circulation models (Cummins, 1991). Evidently, fundamental aspects of the 
physics of the deep circulation are missing from, or misrepresented in, the present model. 

In and above the internal thermocline, some resemblance of zonal and meridional 
cross-sections of T (-p) from the numerical solutions (Fig. 5) to corresponding cross- 
sections of cre from the North Atlantic (Fig. 25) may be noted. In the subtropical gyre, there 
is an internal maximum (the ‘main in the stratification near 750 m depth, and 
a secondary maximum near the surface (Fig. 25). The two maxima join toward the southern 
edge of the subtropical gyre, and there is a sharp pycnocline in the tropics, which weakens 
rapidly with depth, and the main thermocline rises toward the surface as the subpolar gyre 
is approached. A double-thermocline structure is most apparent in the western subtropical 
gyre, where the 1 g-degree water forms a thick thermostad above 500 m depth, but there is 
some indication of a shallow minimum in the stratification near 350 m that extends 
eastward across the basin even at 36N (Fig. 25b). The eastern minimum is more evident in 
the latitude band 40-50 N (McCartney and Talley, 1982, their Figure 11). 

The l&degree thermostad and the shallow eastern minimum in stratification are 
signatures of convectively formed subtropical mode waters (McCartney, 1982; McCartney 
and Talley, 1982; Tsuchiya et al., 1992). The shallow thermostad above the internal 
thermocline in the numerical solutions may be an idealized analog of these observed mode 
waters. However, there are significant differences between the spatial distributions of the 
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model and observed mode waters. The 18-degree subtropical mode water is concentrated 
in the northwestern part of the North Atlantic. A colder variety is found in the northeast part 
of the gyre, with only a mild weakening of the shallow pycnocline at intermediate 
longitudes. The structure of the model thermostad is more nearly uniform across the basin. 
Nonetheless, two distinct sets of dynamic and thermodynamic processes control the 
formation of the thermostad in the model, one at the western boundary current outflow and 
a second along the gyre boundary. If an identification of model and observed mode waters 
were to be made, the present results would suggest that the 18-degree mode water may 
form in part because of an effective absence of sources of fluid on recirculating trajectories 
on the denser isopycnal surfaces at the base of the thermostad, while the eastern 
subtropical-subpolar mode waters may form as a consequence of cross-gyre transport and 
thermodynamic balances, and the weakness of diapycnal motion in the subtropical main 
thermocline. Previous theories of 18-degree water formation (Dewar, 1986; Cushman- 
Roisin, 1987) have focused on the roles of diffusion and surface cooling in maintaining 
weakly-stratified recirculating fluid in quasi-geostrophic approximation. The present 
results suggest that the thickness of the mode water layers may also be related to the 
large-scale wind forcing. 

10. Summary 

We find that, in a simple closed-basin planetary-geostrophic model of the large-scale 
circulation, two distinct thermocline regimes occur simultaneously provided the diapycnal 
diffusion is sufficiently small (Fig. 1). On isopycnal surfaces that outcrop in the subtropical 
gyre, surface thermal forcing, Ekman downwelling, advective dynamics, and convective 
adjustment combine to produce a shallow thermocline regime whose essential dynamics 
are described by the ideal fluid ventilated thermocline theory of Luyten et al. (1983). The 
deepest ventilated fluid is a weakly stratified layer (‘mode that forms by different 
mechanisms at the subtropical-subpolar gyre boundary and along the western boundary 
current outflow. The depth of this layer at the gyre boundary may be estimated from a 
formula of Pedlosky (1987); this appears to close the ventilated thermocline theory of the 
wind-driven motion in the adiabatic limit, since it provides an eastern boundary condition 
for the deepest ventilated layer. At the base of the ventilated thermocline, near the 
zero-crossing of the vertical velocity, vertically convergent thermal advection from Ekman 
pumping above and thermally-driven abyssal upwelling below balance vertical thermal 
diffusion to produce an internal thermocline whose essential dynamics are described by the 
internal boundary layer theory of Stommel and Webster (1962). The numerical solutions 
compare quantitatively as well as qualitatively with the ventilated thermocline and internal 
boundary layer theories. The horizontal circulation in the abyssal thermostad is controlled 
by diffusively-driven upwelling at the base of the internal boundary layer, as in the abyssal 
circulation theory of Stommel and Arons (1960). 

The temperature difference across the ventilated thermocline is directly related to the 
meridional surface temperature difference across the subtropical gyre. The temperature of 
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Figure 25. (a) Zonal (36N) and (b) meridional (53W) cross-sections of oO from the North Atlantic. 
Note that gH is not an accurate measure of abyssal stability. (Courtesy of L. Talley.) 

the deepest ventilated fluid is roughly equal to the surface temperature at the northern edge 
of the subtropical gyre (the latitude where the Ekman downwelling vanishes), and since 
this is essentially the same as the surface temperature at the southern edge of the subpolar 
gyre, the temperature difference across the internal thermocline is directly related to the 
temperature difference across the subpolar gyre, and not to the basin-wide meridional 
temperature difference. Thus, in the limit of small diapycnal diffusion, the ventilated 
thermocline effectively insulates the unventilated interior from surface conditions in the 
subtropical gyre, and the strength of the meridional overturning circulation depends to first 
order only on the surface temperatures in the subpolar gyre. Warmer subtropical gyre 
surface temperatures reach the top of the internal thermocline toward the center of 
circulation of the subtropical gyre, where the western variety of subtropical mode water 
forms in the western boundary current outflow. 

The quantitative correspondence between the numerical solutions and the ventilated and 
internal boundary layer thermocline theories is sufficiently close, and the thermocline 
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Figure 25. (Continued) 

components described by the theories sufficiently simple and regular, that the interior 
structure of the closed-basin numerical solutions may be approximated to first order by the 
limited-domain theoretical models, using simple rules to relate the surface boundary 
conditions to appropriate boundary conditions for the theoretical models. In the 
small diffusion limit, the entire subtropical gyre above the internal thermocline is evidently 
ventilated by trajectories that enter the interior either from the surface Ekman layer or from 
a deep mixed layer that forms along the western boundary current outflow and the 
subtropical-subpolar gyre boundary, and the diffusively-driven abyssal circulation van- 
ishes as the internal thermocline collapses to a discontinuity at the base of the ventilated 
thermocline. In this limit, then, the deep recirculation regime of the 
Rhines-Young theory disappears, and the Sverdrup transport is distributed between the 
surface and the internal thermocline. 

The numerical calculations crudely resemble the observed stratification of the North 
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Atlantic in and above the main thermocline, that is, to a depth of 1500 m. Below the main 
thermocline, however, the predicted stratification is much weaker than observed, as the 
abyssal fluid is effectively uniform. The abyssal homogenization occurs because in the 
absence of diffusion there is no mechanism to force heat downward from the base of the 
ventilated thermocline into the abyss, and consequently the abyss fills with the coldest fluid 
in the basin, pushing any extant warmer fluid upward. Although the present calculations 
were performed in a square single-hemisphere basin, there is little reason to believe that the 
abyss would not homogenize in a similar manner in more complex simply-connected 
geometries with spatially complex (but steady) forcing fields (e.g., Samelson and Vallis, 
1996, their Figure 3). In the steady state, the rate of deep sinking of cold water is fixed to 
the weak diffusive heating of upwelling water, and it does not seem proper to conceive of 
the abyssal circulation as being driven solely or independently by cold sinking, nor to 
anticipate the presence of multiple sources of cold sinking fluid layering the abyss at 
different temperatures, since in the limit of small diapycnal diffusion only the very coldest 
fluid can survive beneath the ventilated thermocline. 

The discrepancy between the dynamical homogenization of the abyss for small diapyc- 

nal diffusion and the observed abyssal stratification has numerous possible causes. The 
equator-ward flow of dense water in the abyssal ocean is likely restrained by interactions 
with topographic constrictions (Price and Baringer, 1994) and by the zonally-contiguous 
geostrophic pressure gradient of the Antarctic Circumpolar Current (Gill and Bryan, 1971; 
Cox, 1989; Warren, 1990; Toggweiler and Samuels, 1995). Diapycnal mixing in the 
abyssal ocean may occur primarily in boundary layers, perhaps in specific geographic 
locations (Munk, 1966; Armi, 1978; Garrett, 1991; Mudge and Lueck, 1995; Toole et al., 
1997); such mixing is effectively neglected in the present calculations by the use of a small 
uniform diffusivity. Horizontal eddy fluxes may limit the penetration of deep convection 
(Visbeck et al., 1996), interior abyssal diffusivities may be larger than assumed here 
(Cummins et al., 1990; Cummins, 1991) and the assumption of steady-state abyssal 
circulation may be inappropriate. The recent observational synthesis by Schmitz (1995) 
illustrates the complexity of intergyre flow in and beneath the thermocline in the global 
ocean. 

The steady numerical solutions presented here have a complex spatial structure with a 
variety of flow regimes, including both horizontal and vertical boundary layers. We have 
focused our analysis on a central element of the solutions, the subtropical thermocline. The 
results appear to be consistent with some aspects of the observed structure of the ocean. 
However, we have not achieved a complete understanding of these solutions, let alone 
understood the behavior of the model for more general forcing and geometry. For example, 
the meridional overturning circulation in the present solutions, which appears to be 
strongly dependent on processes in the Ekman upwelling regions external to the subtropi- 
cal gyre, remains poorly understood. Important technical issues, such as the effect of the 
still relatively coarse horizontal and vertical resolution of the numerical grid, and the 
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interplay between the convective adjustment scheme and the time-stepping solution of the 
partial differential equation (2.17), also remain unresolved. 
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APPENDIX 

Numerical implementation 

Planetary geostrophic model. Finite differencing of the planetary geostrophic model is 
relatively straightforward. Advection is effected using centered differencing in flux form, 
except at the upper boundary where an upwind scheme is implemented. Time-stepping 
uses a second order Runge-Kutta type algorithm. 

Let the domain be covered by a three-dimensional grid, (i, j, k] denoting increments in the 
x-, y-, and z-directions respectively, and let temperature, Z density, p, and pressure, p, be 
defined on that grid. Let Ax, Ay and AZ be the respective grid increments. If i,,, and j,,, are 
the number of grid points in the x and y directions, the lateral boundaries are considered to 
lie at (i = 1 + l/2, i,,, - l/2] and [j = 1 + 1/2,j,, - l/2], namely one half a grid interval 
in from the edge. 

Define the following variables: 

fi-k/z,j,k = %(T,j,k + Cl:-1,j.k) 

fi, j- 1&k = %(Ti,j,k + Ti,j-1.k) 

II, j,k- X2 = %(1J:,j,k + T.,j,k-1) 

64.1) 

(A.21 

G4.3) 

and similarity for p and p. 
Define also the difference operators: 

‘?&i, j.k = (d?i+ N?, j,k - $i- K?, j,k)lbt 64.4) 
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sy+i,j,k = (+i, j+ 112,k - h,j- ID,~YAY~ 64.5) 

where $i,j,k is an arbitrary field. 
Then the horizontal velocities are defined on a staggered grid, obtained from pressure on 

as follows: 

and 

ui- 112, j,k = -yj(E( Pi,j,k - Pi-l,j,k)lh + fj( pi-1/2,j+l,k - Pi-ln,j-l,kWY) G4.6) 

Vi,j-l12.k = ~j-1/2~fj-1/2,k~P”i+l,j-l~2,k - P”i-l,j-1/2,k)/2h - E(Pi,j,k - Pi,j-l,dAY) (A.71 

where rj = + l 2, withA the Coriolis parameter. 
The vertical velocity is staggered between the horizontal velocity levels. It is obtained by 

integrating the mass conservation equation, 

twi, j,k+ II2 - Wi,j,k-1/2YAZ = sx”i,j,k + syvi,j,kv G4.8) 

with the vertical velocity set equal to zero at the lower boundary. The vertical grid need not 
be uniform, and a stretched grid is in fact normally used to give enhanced resolution in the 
thermocline. The vertical grid interval AZ is then in general a function of the index k. 

The finite difference form of the barotropic elliptic equation (2.23) is obtained by 
substituting (A-6) and (A-7) into the mass conservation equation, and summing over 
vertical levels. The form of resulting difference equation is not particularly informative. 
The boundary conditions on this elliptic equation are no-normal flow, to be applied on the 
boundary columns and rows where u and v are respectively defined, namely i = 1 + l/2 
and i = i,, - l/2, andj = 1 + l/2 andj = j,, - l/2. The difference form of (2.29) leads 
to a cyclic tridiagonal problem for the boundary values of p, with the interior values of the 
pressure appearing as terms on the right hand side, which can be rapidly solved. 
The elliptic problem is solved by successive over relaxation (SOR); multigrid methods 
would also be appropriate if speed were a consideration. The correct boundary values are 
obtained by recalculating them after each internal SOR iteration until the solution 
converges. 

The (nondimensional) hydrostatic equation is differenced as follows: 

(Pi,j,k+l - Pi,j,kIlAz = Pi, j,k+112 (A-9) 

The advection of temperature or salinity uses centered differences in flux form, ensuring 
conservation of the L, norm of the advected quantity. The finite difference form of the 
advection term is: 

c”i+ 112, j,k?i,+ l/2, j,k - ui- l/2, j,k?i- 112, j,k)lh 

+ tvi, j+ 112,kTi, j+ 1/2,k - Vi,j- ,/2,kf.,j- 1/2.kYAY 
- 

+ Cwi, j,k+ 112 Ti, j,k+ 112 - Wi,j,k~1,2Ti,j,k~,/2)/AZ 

(A.lO) 

(A.ll) 

(A.12) 
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The harmonic horizontal diffusion terms are obtained using a standard five-point 
Laplacian stencil, and the biharmonic terms are obtained by iterating this once. The 
boundary conditions of no-normal flow and no-normal diffusive flux at the boundary 
determine the boundary values, the former requiring the application of the cyclic tridiago- 
nal solver. Vertical diffusion is also implemented in a standard way. Normally a no-heat- 
flux condition is applied at the bottom of the domain, whereas the temperature at the top is 
determined from the Ekman layer dynamics, (2.19). 

The overall time-stepping procedure is as follows. Given a wind field, the barotropic 
pressure field is obtained by solving the difference form of (2.23). Given also an initial 
temperature field (and salinity field if appropriate) the density field is diagnosed from an 
equation of state, and the complete pressure field is then obtained by vertically integrating 
the hydrostatic equation (A.9). The horizontal and vertical velocities are then obtained 
from near-geostrophic balance, (A.6, A.7) and mass conservation (A.8). These velocities 
are used to advance the temperature (and salinity) fields one timestep, and the process is 
repeated. 

Similarity equations. The similarity equations (6.1) and (6.2) were solved by 
method (e.g. Press et al., 1992) applied in physical space, using a code initially developed 
by M. Mundt. The equations were differenced on a uniform grid in a standard way and the 
solutions were obtained to the resulting difference equations, typically using 500-1000 
grid points to cover the domain. 
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