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Conceptual Models of El Nifio and the Southern Oscillation

G. K. VALLIS

Scripps Institution of Oceanography, La Jolla, California

We present a few simple models which are intended to encapsulate some of the basic mechanisms
of the El Nifio/Southern Oscillation phenomenon. We consider one- and two-dimensional, continu-
ous and low order models, with and without external stochastic forcing. In the low order models,
even in the absence of stochastic forcing, chaos and aperiodic ENSO events can occur. This behavior
is, however, rather sensitive to the choice of parameters and to the precise difference formulation
used. Some of the detailed behavior of very low order models can also be unrealistic. However,
the presence of multiple solutions is robust and insensitive to the differencing assumptions. One
notable result of these models is that El Nifio events partially phase-locked to the seasonal cycle
can be produced both by by variations in trade-wind intensity and by imposed annual cycles in
the temperature forcing. A continuous model which reduces to a chaotic low-order model in the
limit of very coarse finite differencing is presented. Multiple, analytically derivable solutions exist
which, however, are stable to infinitesimal perturbations. Larger perturbations or stochastic forcing
can cause irregular oscillations between the two stationary states and El Nifio like events, even in
the absence of equatorial waves. Adding gravity waves produces somewhat more oscillatory behav-
ior. Sustained oscillations leading to El Nifio-like events are easy to produce with the addition of a
seasonal cycle and some random noise. El Nifio events are then found as occasional amplifications
of the seasonal cycle. The difference between El Nifio “events” and irregular amplifications of the
seasonal cycle is then rather arbitrary. A common feature in all models is an oscillation between
two equilibria due to an instability, either linear or to finite size perturbations, of the coupled ocean
atmosphere system. The robustness of this suggests it may be a feature of the real system. The
timing within events is governed by the detailed dynamics allowed in the particular model, but
oscillatory behavior is readily obtained simply by allowing sufficiently strong, but not too strong,

coupling between model atmosphere and ocean, plus perhaps some noise.

1. INTRODUCTION

Interest in the El Nifio/Southern Oscillation (ENSO) phe-
nomenon has been high for some time. Indeed, much of
a recent edition of the Journal of Geophysical Research (vol-
ume 92, issue C13) was devoted to observations and conse-
quences of it. One obvious reason for this is the importance
of the events both for tropical oceanography itself and for
local fisheries, as well as for the possible influence of the
tropical sea surface temperature field on the global climate.
Another reason is that it appears that it is now becoming
possible to explain, at least in outline, the causes of the phe-
nomenon. The coupling between atmosphere and ocean in-
duces a positive feedback, which coupled with simple ideas
of equatorial oceanic dynamics (stemming from the use of
the shallow water equations) enables explanations to be of-
fered which have a striking simplicity. (Of course, such
explanations are not necessarily right.) Thus various mod-
els have been rather successful in explaining some of the
grosser features of the events [McWilliams and Gent, 1978;
Cane and Zebiak, 1985; McCreary and Anderson, 1984; Philan-
der et al.,, 1984; Lau, 1981; Vallis, 1986; Schopf and Suarez,
1987]. The simplest of all these models is perhaps that of
Vallis [1986], henceforth V86. Analytic stability arguments
are available, and the model can be studied in detail. How-
ever, the very simplicity of the model brings drawbacks.
The model is so simple that it clearly cannot be compared
directly with observations. Further, some of its behavior is

Copyright 1988 by the American Geophysical Union.

Paper number 88JC03029.
0148-0227 /88 /88]C-3029$05.00

unrealistic (see section 3 below). The question arises, is the
behavior of such a model completely artifactual, or do the
principal mechanisms exist in more complex models? It is
the purpose of this paper to try to use the simple ideas and
principal mechanisms thought important for the ENSO cy-
cle in models as simple as possible, but without producing
artifactual behavior.

Let us first briefly review the main features of the ENSO
phenomenon. We shall often refer to El Nifio “events”, (and
even El Nifos) but without prejudice. Thus such a terminol-
ogy will not preclude the possibility that these are merely
manifestations of a sustained oscillation.

1. El Nifio is the occurrence of an anomalously warm
pool of water in the eastern equatorial Pacific Ocean.
The event lasts for a few months.

2. Concurrent with the ocean warming, an atmospheric
event occurs, namely a notable weakening of the
trade winds. As one indicator, the sea level pressure
difference between Darwin and Tahiti is correlated
with the oceanic events.

3. The event occurs aperiodically, with intervals of be-
tween 2 and 11 years, but typically they are 2 to 5
years apart. There have been nine or so events since
1945, when reliable records began, with large events
in 1957, 1965, 1972, and 1982. There is evidence for
El Nifio events for over 400 years {Quinn et al., 1987].

4. The event is phase locked to the seasonal cycle,
normally reaching its maximum amplitude around
Christmas time. However, large variations can occur,
notably in 1982-1983.

5. Similar events, if they occur at all, are much weaker
in the Atlantic and Indian oceans.
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The large scale of the event is indicative that it can be
explained with “low-order” models, and this is the justifi-
cation for much of the modeling effort. One of the first sim-
ple models was that of McWilliams and Gent [1978]. They
did not find highly oscillatory behavior in realistic parame-
ter regions. As will be shown below, such results are quite
sensitive to the particular finite differencing used, and their
lack of nonlinear oscillations should not be taken as a sign
of their absence in the real system, any more than the re-
sults of V86 necessarily imply the contrary. More realistic
ocean dynamics were incorporated by McCreary and Ander-
son {1984]. Although their ocean models had rather more
physics (advection, gravity waves, etc.) it seems that their
results were dominated by a simple feedback mechanism
between model ocean and atmosphere. Still more realis-
tic models, especially for the atmospheric component, were
presented by Cane and Zebiak [1985] and by Schopf and Suarez
[1987]. Cane and Zebiak’s ocean is a single-layer, linear re-
duced gravity model, and their atmosphere a simple tropical
circulation model. Only deviations from the mean state of
either atmosphere or ocean are predicted. For a reasonable
range of parameters, nonlinear oscillations and aperiodic El
Nifios ensue. No explicit stochastic forcing is needed in
some parameter ranges to produce aperiodic behavior, al-
though in other regimes, regular oscillations ensue. Many
of the results are usefully explained by the mechanism de-
scribed by Philander et al. [1984] as unstable oscillations in
a coupled, interacting air-sea system.

A somewhat different type of model was presented by
Lau [1981], in which stochastic forcing is an inherent com-
ponent. It is worth commenting on the role of stochasticity.
In general if a high order or continuous fluid dynamical sys-
tem is truncated to low order, a number of courses of action
are possible with respect to the neglected modes. First, they
can be ignored (as in Vallis [1986], and elsewhere). Second,
an “eddy viscosity” of one form or another can be invoked.
This normally takes the form of an enhanced friction, repre-
senting the damping effects of the neglected modes. Third,
a stochastic forcing can be added, representing the appar-
ently random activity of the subgrid scale modes [e.g., Egger,
1981]. Finally, the most consistent approach of all is to use
both eddy damping and stochastic forcing in a consistent
way such that the appropriate invariants, such as energy,
are conserved in the inviscid limits. This is a formidable
task, which cannot be carried out except in the simplest of
fluid systems. The point is that it is not inconsistent to use
random forcing in a large-scale system if only the gravest
few modes are being simulated. The presence of random-
ness does not necessarily mean that the overall dynamics is
not dominated by large-scale interactions, nor does it mean
that such forcing is in any sense necessarily an intrinsic part
of the system, other than insofar as the effect of the subgrid
scale modes must be parameterized.

Before describing the models to be used here in more
detail, a further comment is in order pertaining to simple
models of ENSO in general. Some criticism has been laid
at the foot of such models for being overly simplistic. Such
criticism is fair if the models are demonstrably unphysi-
cal. Still, I believe that the models can be useful in laying
bare the essential physics, or shaving away the unessential.
They perhaps play the same role to ENSO theory as, in at-
mospheric science, do low-order models to blocking [e.g.,
Roads, 1980], or energy balance models to climate studies
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[Ghil, 1976]. Nobody suggests that these models are tq be
taken too literally, nor can their equations be derived SYs-
tematically without unjustified assumptions from the equa-
tions of motion. Yet the mechanisms they propose (for ex-
ample, resonance in blocking, ice-albedo feedback in climate
change) may yet have some validity in the real world, anq
in any case the physics can be made much clearer througy
the simple models. With regard to atmospheric variability,
other studies with more complicated models have modifieq
conclusions as necessary and added more or less impor.
tant mechanisms. For example, resonance of the stationary
Rossby waves with topographic forcing now seems less im.
portant than previously indicated using low-order models,
but the idea of topographic instability has become univer.
sal. The models presented here are still very much at the
same level as the energy balance models, or the low-order
blocking models. It is hoped that they nevertheless are of
some interest.

2. SIMPLE MODELS OF ENSO

2.1. A low order chaotic model

We shall first describe a very simple model of ENSQO, sim-
ilar to that of Vallis [1986], and compare and contrast it to
similar models. We imagine that all of the essential dynam-
ics are confined to a zonal plane at the equator. We further
suppose that two temperatures sulffice to describe the ther-
mal state of the upper ocean, namely, 73, and T,, the near-
surface temperatures in the wetern and eastern ocean. The
deep ocean is supposed to have a constant temperature T,
which is unaffected by motion on the time scales of concern
to us (namely, months to years). We further suppose that
the temperature is affected by a surface current u (see Fig-
ure 1). Now, if the motion in this plane is divergence-free
and incompressible, then the equation of continuity may be
written

Ou Jw

oz " Bz
Let the fields u and w be such that they are represented
by scalar values U/ and W atz =0, z = 1/2, and z = 0,

r = %1/2, respectively. A centered difference formulation
of this, given the above crude differencing, would be

0

— —— =0 1)

where we have assumed the scalar field u is zero at the
zonal boundary, and w is zero at the ocean surface. The use
of the continuity equation will make the system in Figure 1
topologically equivalent to a stretched ocean in which the
deep ocean is placed alongside the upper surface. Thus we
imagine another grid point a distance Az to the west of
Ty (equidistant with T;) at which the temperature is held
at T'. Indeed, one could physically imagine that the water
advected into the equatorial channel comes not from the
deep ocean but from higher latitudes. Now consider for 2
moment the continuous equation for temperature advection-
We write this as
' orT oT orT
ot "8 T8 70

From Figure 1, it is clear that a centered finite differencé
formulation to this is
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Fig. 1. Schematic diagram of two-point model [after Vallis, 1986].
dT,, U — where C~ is a frictional time scale for the upper ocean. In
—2 -~ (T-T) PP
= ( € this equation we have ignored the effects of any pressure
dt 2Az equat g y P
gradient in the ocean which may tend to absorb the body
force and counter the wind stress. This effect will be dis-
a7, U = . . - . :
e Z_A—(Tw -1 cussed in section 4, but for the time being we shall ignore it.
z

Forcing and damping terms are obviously important in the
equatorial ocean. Let T* be the temperature to which the
ocean would relax in the absence of motion, for simplicity
keeping this the same for the eastern and western ocean.
Then exchange of sensible and latent heat with the overly-
ing atmosphere may be crudely parameterized by a Newto-
nian damping with a time scale A~!. The above equations
become

dTy

U .
= —(T-T)- AT, —T) ()
dT; U = -

These equations are not closed until we have an equation
for U. Probably the simplest assumption to make about the
atmosphere is that the surface wind is forced by a quantity
proportional to the temperature difference across the ocean,
in addition to the constant easterly wind provided by the
trades. Thus we write

du,
dt

where 1, is the atmospheric surface wind, C’ is a damping
time scale and u* represents the mean effects of the trade
winds. Here u™ will be negative if the trades are easterlies.
If the time scales on which T, and T3, are changing are
of the order of a few months, and the damping time scale
C’~1 is much shorter than this, then (4) will always be in
approximate equilibrium. In that case we have

= B'(T. - Tw) = C'(ug — u") (4)

'

B .
ve= (T~ T) +u (5)

The surface wind in turn provides a stress on the upper
surface of the ocean, which we parameterize as a body force
thus:

dUu

E = Du,, - CU (6)

If we assume the atmosphere to be always in equilibrium
(i.e., we use (5) instead of (4)) then (6) may be replaced by

d

d_[t] = B(T, = Tw) - C(U - U%) )
Bis given by DB’/C and U* = Du*/C. The above equa-
tions, i.e., (2), (3), and either (4) and (6) or (7), form a closed
set for the variables Ty, T;, and U and, if needed, u,. The
equations (2), (3), and (7) are those derived by Vallis [1986].
Before looking at other, equally plausible (or implausible)
models, we shall examine the stability properties and ex-
plicit behavior of these in numerical simulations. Tractable
analytic stability results prove to be possible only in the spe-
cial case of Ux = 0 (since the resulting cubic factorizes in
this case). However, no generality is lost by setting 7 = 0,
since this merely defines the zero level of the temperature.
With these simplifications, we shall write the equations as

dU

— = B(T, - Ty) — 8

o7 (Ie — Tw) = CU (8)
ar, U .
i —EE—A(Tw—T ) (9)
T, U .
E_ETw_A(Te_T) (10)

The equations simplify with the following substitutions: { =
At,a=U/(2AAz), Ty = Top/T*, and T, = T,/ T*
This yields

di B . . Ny
E:;(Te—Tw)—CU
dT; P
i
T, - .
d—{ezuTw—(Te—l)
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where B = T"B/(AzA?), and C = C/A. Thus there
are just two governing parameters determining the system’s
behavior. The equations can now be put in a form very
reminiscent of the Lorenz equations by forming the sum
and difference of the two temperature equations. Defining
y= (T, — Ty)/? and z = (T, + T)/2, we obtain

di « -
— =By-C
ai ~ YT
—1{=uz——y (11)
4
and
c—{i=—uy—(z—1)

The Lorenz equations may be written (substituting u for
the usual z)

du

= ocu+oy

d

B%:ru—uz—y (12)
d

i—:uy-—bz

The only essential differences between these equations and
the set (11} are that in the Lorenz equations the perturba-
tion temperature y and the mean temperature z decay with
time scales differing by the factor b, which is an aspect ratio.
(Make the substitution z’ = z — 1 in (11) for clarity) The
structure of the two sets is the same. This correspondence
is broken, however, if the term U™ (the trade wind effect)
in the original set is kept. This gives an east-west asym-
metry to the set which cannot be removed. The similarity
between the sets is more than formal. The Lorenz equations
describe a single cell of Benard convection, heated from be-
low. Although the flow is normally thought of as driven
by a vertical temperature gradient, it is actually the hor-
izontal temperature difference between the ascending and
descending branches which produces a corresponding den-
sity difference, which in turn provides a buoyancy force to
drive the flow. In our set the vertical temperature gradient
is represented by T—T", which will normally be negative.
The system is similarly driven by a horizontal temperature
gradient, which (envisioning basically a large atmospheric
convection cell) produces a wind to drive the ocean. In
our ocean, large-scale overturning occurs with the surface
warmer than the deep ocean; this can occur because the
ocean is being mechanically driven by the wind stress. Only
the overlying atmosphere need be thermally driven. In the
Lorenz model the Prandtl number, ¢ (= v/, is the ratio of
viscous dissipation to thermal dissipation. The analogous
parameter here is C , the ratio of time scales of decay of
sea surface temperature anomalies to a frictional time scale.
The aspect ratio is unity in my model. The control parame-
ter governing the strength of the air-sea interaction and the
vertical temperature difference is B in my model and 7 in
Lorenz’s. Much analysis has of course been done on the
Lorenz equations, so we shall only briefly outline how the
stability properties of our set may be obtained.
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The steady solutions of the set are obtained by settip,
the left-hand sides to zero and solving the resulting Cubic,
This can readily be done. There is one trivial solution of p,
motion in which ¥ = y = z = 0, and a pair of solutions fo;
which

a2=§-(1—9.)
C B
C C
2
= —(1—-
y B( B)
o
Z = —=
B

We see that for C / BZ 1, only the trivial solution is real-
izable. Now B is a measure of the strength of the feed-
back between ocean temperature and surface wind. If this
is small or nonexistent, only the resting solution is possible.
This evidently makes physical sense. The system undergoes
a pitchfork bifurcation at C/ B= 1, as two new solutions
appear (and the existing one becomes unstable).

The stability properties of these solutions are found by
substituting the steady solutions back into the original equa-
tions and linearizing. Searching for solutions of the form

™, one obtains the following cubic equation:

2 +0*2+C)+0(C+B[C)+2(B-C)=0

A critical point occurs when the coefficient of o times the
coefficient of ¢ equals the constant term. We thus find in-
stability when the following inequality holds:

(4 + C)C?
C-2

For B less than this critical value (B,) the eigenvalues are
complex, but the real part is negative. Above B, the real
part is positive. Hence the system undergoes a Hopf bi-
furcation at this point. Given (perhaps a large assumption)
that the above model equations represent in some sense the
dynamics of large-scale equatorial air-sea interactions, what
are appropriate values for the parameters Az, T™, B, and
C? For the Pacific Ocean we choose Az = 7500 km. 1"
must be related to a typical temperature across the ther-
mocline, say, 10° to 15° [Levitus, 1982]. The parameters C
and A are harder to estimate, although only their ratio is
dynamically important. Note that the model will always
be stable if C/A < 2. However, one would certainly not
expect this kind of detailed prediction to hold in a more
complete model. Reasonable choices might be of the or
der of a few months for both. B is the parameter which
is the hardest to estimate. Experiments with more realistic
coupled atmosphere-ocean models are really the only pos-
sibility of coming up with quantitative estimates. Thus we
shall use it as our control parameter and see how varying
it changes the model behavior. If we choose a value for
BAz of 2m?s=2C™, a frictional decay time scale of 1/2
month™!, a temperature decay time scale of 1/6 month™
then C is 3 and B is 102, and we have instability. It 15
not my intention to defend these quantitative values vigor”
ously, other than to say none are obviously wrong by mor¢

than a few factors, except perhaps for B, whose value 8

B>
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pot known. With these parameter values, chaotic behavior
is obtained (Figure 2). Indeed the time series of u or y is
the same as that obtained in an appropriate regime for the
Lorenz attractor.

Of course, the time series in Figure 2 looks nothing like
that of El Nifo. This can be partially remedied by restor-
ing the asymmetry between east and west by introduc-
ing a nonzero U". Figure 3 shows a time series with
[/*= —0.45 ms™}, and a dimensional time scale. El Nifio-
like events are clearly seen, rather more clearly than in the
real world. The addition of a seasonal cycle does much
to make the time series more respectably noisy. There are
two parameters to potentially vary to give a seasonal cy-
cle, namely, U*and T™. Varying U™ will obviously lead to
the onset of the events being phase locked to the seasonal
cycle: although the model becomes hard to mathematically
analyze with nonzero U”, it is clear that a large negative
U* leads to the model preferentially orbiting around one
fixed point of the attractor. The larger the U”, the harder
it is to break away. With U* varying, the model events
preferentially occur when U™ is weak. However, evidence
for strongly varying surface trade winds is arguable [e.g.,
Gill, 1982, pp. 461-462]. It is equally likely that the effective
temperature forcing (in our model 7™ —T) varies seasonally.
Now the stability parameter B is actually B(T™ -T)/A% In-
creasing the temperature contrast implies a more unstable
system. Thus if 7" varies, the model will be more unsta-
ble (and more likely to produce an event) when 7™ is high.
Figure 4 shows that this is the case.

There are some unrealistic features of the model. Most
noticeable is that the temperatures themselves, or the sum
of the temperatures T; and Ty, frequently become negative
or, dimensionally, less than 7' (Figure 3). Since water is
being advected from the deep ocean which is at T', it seems
paradoxical that this should occur within the model. The
resolution to this lies in an examination of the difference
scheme. The advection part of the equation for Ty, is

dl, U

=

dt 24z
If U is positive, water is being brought up from the deep.
If T is less than Ty, then T will fall, irrespective of its
own value. Thus conceivably, T3, can fall below T. Also,
T, will only be cooled if T3, is less than T. One way to
crudely overcome this effect is to use a formally less accurate
upstream differencing scheme, as now described.

T-T.)

22.  An Upstream Model

The model equations (2) are based on a centered differenc-
ing scheme. An alternative, not necessarily better or worse,
is an upstream scheme. The advective part of the equation
for T, may obviously be written

dT, U

= —(T—-Ty) — -7 0 (13
=T Tw) — A(Ty —T*) U> (13a)
dT; U
v _ 2T —T))— —-T* 0 (136
pr A:L'(Tw Y- AT, —-T7) U< (136)
aTe _ E(Tw ~T)—-AT,—T*) U>0 (l4a)

dt Az
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dTe

dt
These equations no longer allow the possibility of temper-
atures less than 7. The equation for u remains (8). In a
similar manner to that used above, we can find the station-
ary solutions and then examine the stability properties of
these solutions. The equations also have an east-west sym-
metry: reversing the sign of u and substituting T, for T,
and T, for T, leads to an identical equation. Thus we need
only consider one sign of U. Forming the sum and differ-
ence temperatures y = (T, — Ty,)/2 and z = (T, + Tw)/2,
we write the equations for U > 0:

U Zal *
= S(-T-ATL-T) U<o (1)

_ C+ c
Y="% "\ 2
U=—144/2
2c

C+3 c
2= —
b 25

Note further that these solutions only exist for ¢ < 2b be-
cause we require u > 0. For ¢ > 2b the only solution is the
trivial one of no motion.

A stability analysis is possible for this system also. The
interesting result we find now is that both solutions are un-
conditionally stable. No nonlinear oscillations are now pos-
sible. Indeed numerical integrations confirm that the system
will settle down to one of the two solution branches. Thus
the chaotic nature of the solutions seems to be dependent
on the truncation scheme. However, the fact that the solu-
tions bifurcate into two branches, one branch with eastward
currents and winds and warm temperatures in the east (a
model El Nifio state) and one with westward winds, is ro-
bust.

2.3. Other Differencing Schemes

A number of differencing schemes are of course possible.
With a different oceanic aspect ratio, one could write

dTy = Tw+T
W _ (T — »T e
dt ( 2 )
and
dT, = Tu+T,
=TT 2e
dt vt 2 )

but this leads to the trivial result d/dt(T,, + T,) = 0. An
equally plausible scheme is the following, for I/ > 0:

Ty _ o Tt T

o Ve 7 )
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Fig. 2. Time series of two-point model in an unstable regime with
U* = 0. (a) Temperature difference T, — Ty,. (b) Temperature sum
T. + T..

and

d7;
dt

with obvious changes for /' < 0. This is the scheme used by
McWilliams and Gent [1978]. Using this scheme in our order
3 system leads only to steady solutions and no oscillations.
Although their system is different in other ways, notably in
having a pressure parameterization, this does point to one
reason why the behavior in their model is rather different
from that of V86: namely, no highly oscillatory solutions are
possible with their differencing scheme.

In summary, then, we can describe our experience with
low-order models as follows. Using a centered differencing
scheme and reasonably realistic parameters, a very simple
model will produce self-sustained oscillations and El Nifio-
like behavior, producing events every few years or so. The
behavior is governed by two parameters, a Prandtl number
and a control parameter B. B is physically dependent on
the strength of the ocean-atmosphere feedback and the ver-
tical temperature difference across the upper ocean. If this
parameter is too small, no oscillations are possible. Further,
varying either this parameter or U*, governing the strength
of the trades, produces events which are partially phase
locked to the seasonal cycle. However, using other, equally
plausible, differencing schemes shows that the chaotic be-
havior is not universal. However, the production of a bi-
furcation in the solutions is maintained. Thus the simple
presence of a feedback between ocean temperature and sur-
face wind and thence surface current enables all models to
exit in one of two states (or possibly three, counting the
trivial one at rest). One of the states is like an El Nifio state

=U(Ty - T¢)

Y
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and one is a “normal state.” If an imposed westward wing
blows, then the east-west symmetry is broken, and the f)
Nirfio state has a smaller attractor basin.

The possible artifactual nature of low-order models is wej)
recognized in turbulence theory. For example, Curry [197g)
shows how the behavior of the Lorenz model is serioug]
modified by the addition of extra modes. On the other hang,
in some circumstances the equations certainly do have (.
rect physical relevance, as in the Malkus-Howard-Welander
model [Malkus, 1972]. With these thoughts in mind, we sha]]
now describe a continuous model similar to the low-order
models described above. The model still contains no rota.
tional dynamics and can only be derived heuristically from
the equations of motion.

3. A SMpPLE CONTINUOUS MODEL

Most of the above low-order schemes can be considered ag
abbreviations of the following partial differential equations:

oT oT .
% = B[T(l) - T(0)] + C(u" — v) (15b)

The equation is first order in . Hence only one bound-
ary condition is needed. Since information is propagated
downstream only, we supply

T(0)=T u>0

TH=T u<0

We nondimensionalize by the following substitutions: 4 =
uf/LA, & = afl,{ =t*JA, T = T/T* and set T to zero
with no loss of generality. We then find

oT . oT
ot Tie =T
and
di - o
E:B[T(I)—T(O)]+C(u - 4)

where B = BT*/142,C = C/A. The similarity to the finite
difference models is obvious. Physically, we can imagine in-
compressible flow along a narrow tube of length /. Since the
flow is incompressible, its velocity is uniform. The temper-
ature of the fluid is determined by advection and exchange
of heat through the walls of the tube, which we have pa-
rameterized as a Newtonian term on the right-hand side of
(13). Since there is no diffusion, the only boundary con
dition needed is the upstream one, the temperature of the
entering fluid. The velocity along the tube, we shall sup-
pose is governed by the temperature difference across the
flow, mimicking in a sense the ocean-atmosphere feedback.

The systematic derivation of (15) from the primitive equa:
tions governing equatorial dynamics cannot be defend'
vigorously. However, they have some similarity to the it
earized one-dimensional shallow water equations used by
McCreary and Anderson [1984] and others. These equation
may be written

Ju

dh
5 Byv + 9%, = forcing
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Fig. 3. Time series of various quantities for two-point model, with U* = —0.4 ms~". (a) Temperature difference

T, — Ty. (b) Temperature sum T, + T.. (¢} Temperature difference T, — Ty with a seasonal cycle imposed by varying

the parameter T*. (d) As for Figure 3c but for u.

ov

5 + Byv + gg—z = forcing

Oh . Ohu N Ohv

gt Oz by
within a closed domain 0 < 2 < L and — Ly < y < Ly, say.
Confining motion further to a zonal plane at the equator and
assuming that the meridional velocity is much smaller than
the zonal, then

Ou Oh .
s + ga—z = forcing (17a)
6h 6h

This is a consistent and a closed set, provided that at the
boundaries, we specify the inflow height. The continuity
equation is satisfied in (17b). McCreary and Anderson as-
sociated the height field with the surface temperature (since
a deep thermocline leads to warm surface), and in turn pa-
rameterized the surface wind as a simple function (in fact
a step function) of the h field. If we associate A with T'
then (17) is the same as (15), except for the varying pres-
sure term in (17) and provided we choose the forcing term
proportional to the difference in dynamic height across the
domain.

We shall now present the analytic solutions of (15). Then
we shall show that different finite difference formulations
of (15) do lead to the simple models discussed in section
2. Then we will solve the partial differential equation nu-

merically. In the next section the equations will be solved
numerically with some additional stochastic forcing.

3.1. Analytic Solutions

For a given u we can straightforwardly write down the
solution to (15). It is

T=1-—ezp(—z/u) u>0

T =1-exp[(1—2)/u u<0

For u > 0, say, this states that the temperature (zero at
z = 0) rises as z increases (due to heat exchange with
the surroundings) asymptotically approaching its limiting
value of unity. (If 7 is negative, the dimensional temper-
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Fig. 4. Histogram of model event onset times (defined here by
U becoming positive). Here a seasonal cycle was introduced by
varying the parameter T*, as for Figure 3.
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ature falls to 7" as z increases.) For u < 0, the flow and
temperature gradient are simply reversed.
The value of the flow u is given by solving the equation

u—u" = B/C[T(1)-T(0)] = B/Cl1—exp(~1/u)] u >0

or

~B/C[T(1)~T(0)] = B/C[1—exp(1/u)] u<0

This may easily be done graphically. An exact analytic ex-
pression is not available, but the solution may also be ob-
tained iteratively. Note that two solutions again occur and
that the solution of no motion no longer exists, even when
u” is zero. If u” is zero, then the two solutions are symmet-
ric. However, this is lost for nonzero u*.

The stability of these solutions may also be obtained. The
algebra is long and not immediately informative. The re-
sults are that there are no amplifying perturbations around
the stationary solutions. That is, the solutions are stable

fixed points.

*
Uu—u

3.2. Differencing the Continuous Equations

If the index representing the z coordinate is j, and consid-
ering only the advective part of (15) then a centered scheme
is

dT'(j ) .

_Ei—) =u[T(j~1)-T@G +1)]
Suppose there are only two active gridpoints, labeled 1 and
2. The boundary grid points are labeled 0 and J. Then at
gridpoint 1 we have

dT(1
di ) _ u[T(0) — T(2)]
and at 2
dT
diz) = u[T(1) - T(J)]

This is actually inconsistent with the continuous equations,
since two boundary values must be specified (this holds
for any centered scheme at any resolution). It has occurred
because the differencing scheme has introduced some nu-
merical diffusion, a second-order effect which requires two
boundary conditions. If T'(J) and T'(0) are both specified as
zero, the temperature equations become (9) and (10). Fur-
ther, if in the equation for u the temperature difference
across the domain is approximated by 7(2) — T'(1), then
the u equation is identical also to (8).

An upstream differencing may be preferable in that it does
not require an extra unphysical boundary condition. We
write

‘E@=u[T(j—1)—T(j)] u>0
dt
i%j—)zu[T(j)—T(j-f-l)] u<o0

With two grid points, these lead to the upstream scheme
discussed in section 2.

It is not surprising that we can recover the simple models
discussed above. An advantage of the continuous model is
that we can find analytic solutions and see if the numerics
is relevant.
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3.3. Numerical Solutions

We obtain numerical solutions to (15) and (16) by time
stepping the equations with either a centered or an upstrear,
scheme in the z direction, and no numerical diffusion. The
upstream successfully reproduces the analytic solution ang
its stability properties. This is not the case for the cen.
tered scheme. With no explicit numerical diffusion (i,
none other than that implicit in the differencing scheme):
the model can apparently produce chaotic behavior. Thjg
is very similar to that produced by the centered mode] of
section 2. Inspection of the numerical output reveals the
presence of two-grid point oscillations. An explicit diffusiy-
ity can damp this, but if it is sufficiently large, then steady
solutions prevail. The centered scheme is actually solving
the continuous equations, plus a large nonlinear diffusion
term which appears to be reproducing the chaotic behavigr,

3.4. An Explicit Atmosphere

We can explicitly add an atmosphere as described in sec-
tion 2. Thus (16) is replaced by the two equations:

& =BT -TOI+C'(w; ~w) (1)
d;:‘) = Du, — Cu, (19)

In the two-point centered model, the solution remains
chaotic. Although the number of degrees of freedom has
been increased from 3 to 4, the qualitative behavior of the
system is little altered when (realistically) C' < C’. In the
language of dynamical systems, the dimensionality of the
attractor has not increased by much, and is probably still
less than 3. Varying the parameter B again leads to stabil-
ity or instability. In the continuous model it can be shown,
after much algebra, that steady solutions exist and, as be-
fore, the solutions remain stable.

3.5. Stochastic Forcing

Stochastic forcing is a device for simulating the effects
of the unresolved scales of motion and neglected dynam-
ics on the resolved dynamics. For certain simple situations
(generally homogeneous turbulence) the presence of such a
term can more or less be derived from first principles. In
those cases a renormalized viscosity should appear also. In
geophysically interesting cases no recipe is available for de-
termining its form or its magnitude, and one must proceed,
if at all, on less secure physical intuition.

In the equatorial ocean dynamics, the following dynam-
ics has been neglected in the models used above: rotational
dynamics, including the effects of equatorial and Rossby
waves; variations in pressure field giving equatorial Kelvin
waves; smaller-scale interactions in the atmosphere, includ-
ing cyclone activity and CISK-like phenomena; interactive
effects with the rest of the atmospheric general circulation
(e.g., Hadley cell variability). It seems likely that one could
conceive a model incorporating Hadley cell interaction in a
more or less ad hoc fashion, but we do not attempt this here-
The rotational effects are crudely included by confining th'e
motion to a zonal plane at the equator. The pressure field i
necessary if the velocity field is allowed to spatially vary- It
is responsible for maintaining a divergence-free, or incom-



ressible, flow. By keeping u spatially fixed, we remove the
need for that effect. That is to say, in the model above, sup-
se the velocity field is changed (say downwelling is pre-
vented) on the western edge of the basin. Then the velocity
field in the east must immediately change also (upwelling
must halt). In a real fluid the changes are communicated
through changes in the pressure gradient, which propagate
as gravity waves.

The smaller-scale phenomena is impossible to model
without a high-resolution coupled general circulation
model. We shall use an ad hoc stochastic forcing, as did Eg-
ger [1981] and Moritz and Sutera [1981] (who added stochas-
tic terms to the Lorenz model, among other things, broad-
ening the range of irregular behavior). Thus (15) and (16)
are replaced by

aT 8T .
57 Tug, = AT -T)+ fi(z,1) (20)
-‘% = B[T(L)~T(0)] + C(u* —u) + fu(t)  (21)

where fu(t) and ft(x,t) are random processes, not nec-
essarily white. Since the solutions without stochasticity
cannot analytically be written down, solving the Fokker
Planck equation for the above set seems less straightforward
than proceeding explicitly. Physically, we do not expect the
subgrid-scale processes to be white, since many (e.g., trop-
ical cyclones, variations in the trades) have time scales of
weeks to months. A decorrelation time scale 7' may be in-
troduced into a discrete time stepping scheme by writing

fui=Afui1+(Q - /\Z)O:STI‘A

where i is the time step, r; is a random number uniformly
distributed between -1 and +1, A determines the amplitude
and A the decorrelation time scale. If fu(?) is to be white,
then A = 0.

For simplicity we shall set ft(x,t) = 0 and study stochas-
ticity only in the velocity equation. All the effects we wish
to demonstrate are reproduced in this way. We choose a
decorrelation time scale of the order of 1 month, and an
amplitude of the order of several meters per second. (Note
that the amplitude and decorrelation time scale are related
in their effects. If the decorrelation time scale is increased,
the forcing has a much larger effect.) We also choose pa-
rameters within the unstable regime for the model of Vallis
[1986] but ones stable (as are all parameters) for the continu-
ous model. Figure 5 shows time series of u and of T, =T,
where T, is the integrated temperature in the eastern half
of the domain, and similarly for T,. For sufficiently strong,
and not unrealistically so, stochastic forcing, the model is
able to oscillate between normal and “El Nifio” states. With
a nonzero U*, the model preferentially remains in the nor-
mal state, occasionally flipping to orbits surrounding the “El
Nifio” state. The velocity amplitude is rather large; this is
due to the neglect of a dynamic height field, which will be
remedied in the coming section.

The addition of stochastic temperature forcing adds only
quantitative differences.

4. INCORPORATION OF DYNAMIC HEIGHT FIELD

In this section we explore the effects of gravity wave prop-
agation in our system. We do this because gravity and
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Rossby wave propagation are considered by many to be a
integral part of the oceanic part of the Southern Oscillation
cycle. Additionally, the slope in the thermocline provides a
pressure gradient limiting the advection. There will be two
respects in which our model will remain unrealistic, both
stemming from its one-dimensionality. First there can still
be no Rossby wave dynamics. Second, gravity wave dy-
namics in the presence of a rotating planet leads to gravity
waves propagating in one direction only (eastward at the
equator), this condition stemming from the imposition of
boundary conditions at infinity [e.g., Gill, 1982]. The dy-
namics we shall integrate is described by

Oh  O(hu) .

F + iz AR h) (22a)
Ju Oh = = .
57 T95; = BTe—Tu)+ Cu™ — u) (22b)

Here, T, and Ty, are average temperatures in the eastern
and western halves of the model ocean, and we shall sup-
pose that this is direcly proportional to the average dynamic
height difference. The one bow to linearity lies in the neglect
of the velocity advection term; this is is any case small and
may lead to undesirable shocks. Equation (20a) is a conti-
nuity equation for an upper layer thickness. To it we have
added a diabatic term on the right-hand side, as in Ander-
son and McCreary [1985]. We do this in part because we are
parameterizing temperature through the height field, noting
the strong positive correlation between temperature and up-
per layer thickness [e.g., Graham and White, 1988)]. Thus the.
term represents the exchange of heat with the atmosphere,
and we suppose that when the temperature rises, the layer
thickness increases. Note the similarity of this equation with
(15). Equation (22b) likewise is similar to (15b), except for
the addition of the pressure term gdh/8z. If this term is
removed, and if u* is not a function of z, then du/8z = 0.
The equations are then isomorphic with (15). For boundary
conditions we set & = const (100 m) at either end. The feed-
back term (the first term on the right-hand side of (22})) we
use a simple linear function so that the feedback is propor-
tional to the average difference between the height field in
the eastern and western halves of the model ocean.
Numerical integrations of (22) in the absence of any exter-
nal forcing lead to steady solutions, as for (15). The presence
of a pressure parameterization leads to a smaller amplitude
for the velocity field than in the previous model, because
an eastward velocity produces a deeper thermocline in the
east and an opposing pressure gradient. An external source
of noise is again necessary to produce sustained oscillations
and El Nifio “events”. The addition of a seasonal cycle is
insufficient, leading only to regular oscillations with a pe-
riod of exactly 1 year. Again, however, the addition of some
random noise is sufficient to drive the system between two
states. Figure 6 displays a typical time series of % and the
average height difference between the east and west halves
of the ocean. There is one significant point to be made here.
The dominant period in these time series is the seasonal cy-
cle; the height field rises and falls in symphony with this.
Every few years, the random forcing is sufficient to greatly
amplify the warming in the east and produce what might
be called El Nifio events. However, they are in many ways
just amplifications of the natural seasonal cycle. Occasion-



13,988 VaLLis: CONCEPTUAL MODELS OF EL NINO SOUTHERN OSCILLATION
10 10
5] 5]
o] ol
-5] - 51
10 ——t —— + 10 —— —+ |
o o 5 10 15 20 0 5 10 15 20
10 10
T
51 5't
of ol
- 5] -sf
-10 — ; : -10 \ . .
0 5 10 15 20 0 5 10 15 " 20
Time (yrs)

Fig. 5. Various time series of u for continuous model (15), showing effects of variations in strength of stochastic
forcing. (a) No temperature feedback, B = 0, and random forcing governed by A = 0.99 (approximately a 2-week
decorrelation time scale, given a time step of 0.33 days) and A = 30. No El Nifio like events occur. (b) As for Figure 5a
but with temperature feedback (B # 0). (c) As for Figure 5b but with a shorter decorrelation time scale. The random
forcing is now no longer strong enough to produce flips to the other solution state. (d) Same as Figure 5c but with
stronger random forcing (A = 40). In Figures 5b, 5¢, and 5d the random forcing was turned on after 2 years.

ally cold events in the east seem to be produced, although
there is a marked asymmetry between warm and cold. This
asymmetry is simply due to fact that the average wind is
to the west (i.e, u™ is negative). Given this, the system re-
sides preferentially in a “cold east/warm west” state, and
the flips to a warm east state are more pronounced than am-
plifications of its normal state. The temperature-advection
feedback is the crucial parameterization governing the cy-
cle. If this is too weak, the velocity and height fields simply
oscillate with the seasonal cycle, modified some by the noise
(Figure 7). On the other hand, if the feedback is too strong,
the system becomes locked in one state, and a much stronger
perturbation would be necessary to cause it to produce os-
cillations large enough to be called El Nifios.

El Nifio events (or equivalently, amplifications of the sea-
sonal cycle) are often preceded by cooling in the east. A time
series of model dynamic height anomaly shows that the
maximum dynamic height, centered normally in the mid-
western ocean, moves west first before propagating east for
the main event (Figure 7). This is not inconsistent with the
observational studies of Graham and White [1988], although
in the absence of model Rossby waves the westward prop-
agation is simply due to gravity wave dynamics. The role
of Rossby waves in this loop was recognized by McCreary
and Anderson [1984].

5. DiscusSION AND CONCLUSIONS

In this paper we have looked at a particular model,
and variations around it, which contain a minimal set of

“physics” pertaining to equatorial ocean-atmosphere dy-
namics and the El Nifio/Southern Oscillation. The only
physics they contain is a simple feedback between near-
surface ocean temperatures and the atmospheric surface
zonal wind, which subsequently provides a stress to the
ocean and hence a current which advects the temperature
field. It is possibly the barest set of physics which is of rel-
evance and is obviously too simple to describe the richness
of behavior possible in the equatorial system. Our purpose
is not to do that, but to construct a canonical model of the
system, showing that events like El Nifio are virtually the
natural consequences of that feedback and a mean westward
forcing due to the trade winds. Certainly other processes,
in particular, wave dynamics, will be important and may be
crucial to do justice to the dynamics. Nevertheless, it has
been demonstrated that this simple feedback is sufficient
to produce noticeable events. The asymmetry between east
and west is due only to the presence of mean easterly trade
winds (a consequence of course, of rotational dynamics in
the atmosphere), but other than this there is no dynamic
asymmetry.

The simplest possible model containing a temperature-
current loop was presented in V86. We have shown here
that some of its behavior is unrealistic. One such feature
is the production of surface temperatures lower than the
deepwater temperatures, even though there is no possible
physical source for such production. The artifactual naturé
of this is due to the use of a very coarse, centered in space
finite difference scheme. If an upstream scheme (which 15
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Fig. 6. Time series of z averaged zonal velocity (%) and mean height difference between east and west ocean (h, — hy)
for (20), with seasonal cycle in U* and stochastic forcing, illustrating effects of changing feedback parameter B: (a) T
for B = 0, (b) as for Figure 62 but B = 6, (c) as for Figure 6b but A, — Ay, and (d) @ for B = 12. The random number

sequence is the same for all experiments.

not necessarily any more accurate) is used to remove this,
the chaotic behavior also disappears. In other words, the
bifurcation sequence leading to chaos is sensitive to the dif-
ferencing scheme. (This is likely the cause of the rather dif-
ferent behavior found in V86 and by McWilliams and Gent
[1978]. The two parameters governing the behavior of these
models are the Prandt] number and a control parameter B.
The first is the ratio of a frictional decay time scale to a tem-
perature anonaly decay time scale. If this is too large, then
the model is always stable. The second parameter governs
the strength of the temperature-current feedback, as well as
the vertical temperature contrast (between a below thermo-
cline temperature and a relaxation temperature, represen-
tative of a near-surface air temperature). If this parameter
is too small (and some would argue that it should be zero,
that the ocean really does not affect the atmospheric winds),
then the feedback is cut off and the instability dies.

A continuous model for which analytic solutions are
available (and probably stable) was presented. In common
with the low-order models, two nontrivial solutions exist,
one with higher temperatures to the west and a westward
current, and conversely. The addition of stochastic forc-
ing provides finite amplitude perturbations which drive the
model between its two states. If the mean effects of the
trades (i.e., a mean westward wind forcing) are incorpo-
Tated, the attractor basin of the warm-west state is larger
than the warm-east state. The addition of stochastic forcing
Is now necessary to provide finite amplitude perturbations
which drive the model between its two states. Most of the
time the model lies near its “non El Nifio” state, occasion-
ally transiting to produce a warming event in the east. The
transit time to the event is short compared with its resi-
dence in either state. It is governed by an advection time

scale. Although a stochastic forcing is now necessary to
produce the oscillations, the mechanism of the transition is
just the feedback alluded to above. The point is that in the
presence of finite size perturbations, neither the “normal”
nor El Nifio states need be unstable in order that the sys-
tem may oscillate between the two states. The governing
dynamics, even in the stochastic case, is still a large-scale
air-sea interaction. Contrariwise, if the large-scale states are
themselves unstable to infinitesimal perturbations, then no-
smaller scale phenomena are needed, as in V86 and Cane
and Zebiak [1985].

|

Fig. 7. Plots of successive values of the height anomaly, at quarter
year intervals, through a model El Nifio beginning at year 3 of
Figure 6b or 6c.
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An important point is that wave dynamics are not in-
cluded this model, yet the time scales produced by the
model are reasonably realistic. More specifically, the time
interval between events is determined by the strength of
the stochastic forcing and/or by the instability due to the
temperature-current feedback. Reasonable parameter val-
ues can give intervals of the order of a few years. The
transition between states is rapid compared with this; it is
governed by advective and decay time scales (which are in
turn governed also by the stability parameters). A parcel
moving at 75 cms™! takes about 150 days to cross a 10,000-
km basin, a reasonable, if rather slow, onset time scale. It
is likely, however, that the parameters governing the tran-
sition time scale are seriously modified by wave dynamics,
as found by Schopf and Suarez [1987], even if the numerical
value is similar.

The addition of gravity wave dynamics and a seasonal
cycle produces a model with rather oscillatory dynamics.
In this model, El Nifio events are seen as amplifications of a
basic seasonal cycle. These amplifications may be triggered
by any random noise, and the positive feedback between
temperature (height) field and the velocity causes the model
to produce large “events.” Whether one chooses to call these
phenomena events or oscillations seems rather irrelevant.

In none of the models presented here is there any explicit
cutoff mechanism; that is to say, there is no new physi-
cal phenomenon (for example, off-equatorial Rossby waves)
which is triggerred at the end of the “cycle” and which
causes the event the subside. There is no need for one. In
the chaotic models the El Nifio state is unstable, and the
system quickly returns to its usual state. In the stochas-
tic models, external perturbations quickly knock the model
from its perch. In both cases the maximum amplitude of the
El Nifio state is determined by the fact that the eastern ocean
sea surface temperature cannot reach a higher temperature
than exchange of heat with the atmosphere allows.

Determining if the real large-scale system is or is not lin-
early unstable to infinitesimal perturbations can probably
only be decided by very complex models. It seems un-
likely that it is very unstable, with growth of the order of
a few months, because of the rarity of El Nifio events and
the apparent absence of other large oscillations in the sys-
tem. Thus whereas in the mid-latitude atmosphere it is a
meaningless question to ask what is the particular pertur-
bation which brought about a particular cyclone since the
theoretical steady state never exists, it may be sensible to
look for appropriate perturbations for the equatorial sys-
tem. If multiple equilibrium does exist, then oscillations
between the two or more steady solutions can be excited
by any number of perturbations. Indeed, it is not inconsis-
tent that mid-latitude influences, transmitted for example,
through variations in the intensity of the Hadley circulation,
could “trigger” El Nifio events. If the large-scale system is
unstable, then self-sustained chaotic oscillations are a possi-
bility. However, in the presence of an undeniably stochastic
atmosphere (a consequence of course, of chaos in the large-
scale atmosphere) chaos due simply to large scale equatorial
ocean-atmosphere dynamics is not necessary, and the point
may be moot.

We note that the chaotic nature of the system cannot be
ruled out (or confirmed) merely by noting its apparent pre-
dictability on time scales of the order of a year or so. Chaotic
systems in general, whereas certainly not displaying long-
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term predictability, certainly do not necessarily lack shory.
term predictability. Indeed, the short-term predictability of
the system is likely to be higher if the system is governed iy,
the main by large-scale dynamics rather than by stochastjc
forcing of much smaller space and time scales.

The precise importance of small-scale stochasticity cap,
conceivably be answered by trying to determine the cqr.
relation dimension [Grassberger and Proccaccia, 1983] of the
system, and there is some indication it may be small [Heng,
1986]. Given a very long time series, it is possible to deter_’
mine the effective number of degrees of freedom of the sys.
tem. If this is few, then small-scale processes are presumably
not important. The time series of reliable data may not be
long enough to determine this accurately. Further, it is alsg
the case that one would need to filter any real data, spatially
and temporally, to obtain meaningful answers since other-
wise one would have a great deal of essentially stochastic
noise (“essentially” because it would seem stochastic to the
analyzer, although of course, it too is the result of a deter-
ministic system). The stochasticity (the motion of cumulus
clouds, for example) would fill out the dimension of the at-
tractor almost to that of the entire phase space. It is not clear
what effect filtering would have. Very long integrations of
a realistic numerical model seem a possible alternative,

Further understanding of the equatorial ocean-atmo-
sphere system will obviously also come from more realistic
models. However, it will also be necessary to continue us-
ing simple sets of equations, derived where possible from
the full set, on which analytic or very simple numeric work
is possible. Simple models suggest important mechanisms
and physical processes. Comparison of such models with
the results from elaborate coupled ocean-atmosphere mod-
els, which themselves can be compared with data, will lead
to more comprehension of the relevant dynamics.
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