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ABSTRACT

This paper proposes and discusses mechanisms whereby mean flows and jets are produced by differential
rotation and by topographic effects. It is shown that, in general, a mean gradient of potential vorticity not only
inhibits the cascade of energy to large scales but directly produces anisotropic structures. Scalings for this are
examined on the g8 plane using ideas from classical phenomenology. The scalings are naturally anisotropic and
predict the formation of zonal flows directly through a turbulent cascade. Numerical simulations and two-point
closure calculations qualitatively confirm the predictions. Also, simulations of barotropic flow on the 8 plane
can produce zonal jet structures of exceptional persistence over many eddy turnover times.

Unsteady flow over topography generally produces a mean flow with a correlation between streamfunction
and topography, with anticyclonic motion over humps. If the topography is shallow (or the flow sufficiently
energetic) the mean streamfunction will be of a scale similar to that of the topography. For sufficiently steep
topography, shelf (topographic Rossby) waves prevent the flow from achieving the scale of the topography, and
may lead to the formation of jets parallel to but with a narrower scale than the topographic slope, superimposed
on the topographically rectified mean flow. Such mechanisms can produce poleward undercurrents along oceanic
boundaries and equatorward undercurrents on western boundaries. Similar mechanisms can produce alternating
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jets, superimposed on a mean vortex, around isolated seamounts,

1. Introducticn

The production of anisotropic motion by differential
rotation is a well-documented phenomenon, from
theoretical, numerical, and observational standpoints
{Rhines 1975; Williams 1978; others). Indeed it may
be responsible for producing jets in planetary atmo-
spheres, although the precise mechanism is not clear.
A related effect, the generation of mean currents by
flow over topography, is likely responsible for the less
dramatic but equally interesting undercurrents in con-
tinental margins and around midocean topography; in
this paper we shall see how conservation of potential
vorticity leads in a simple fashion to such mean flow
production. Further, particularly over steep topography
such as ridges or continental slopes, the gradient of
potential vorticity due to the topography can cause the
mean flow produced to become jetlike. The mecha-
nisms of these two classes of phenomena-—namely,
flow in differentially rotating medium and flow over
topography—and their relationship to one another are
the subject of this paper.

Potential vorticity gradients are, of course, ubiqui-
tous and influential in ocean dynamics. Aside from the
fact that the planetary vorticity gradient 8 determines
the large-scale gyre structure, the “free” evolution of
mesoscale eddies can hardly fail to be ultimately influ-
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enced by 8 because the cascade of energy to large scales
will continue until the 8-Rossby number is O(1). Even
more pronounced will be the influence of topography
since on continental slopes and over midocean ridges
the potential vorticity variation produced by topo-
graphic effects can dominate the planetary contribution
and lead to mean flows that can potentially transport
water very large distances. The sign of the effect is such
that in eastern boundary layers equatorial water is
transported poleward, whereas in western boundary
layers deep water can be transported equatorward. The
bottom circulation can therefore be completely altered
by such topographic effects and can oppose the sense
of wind-driven upper-ocean circulation.

That turbulent flow on the 8 plane does lead to an-
isotropy and jet formation is well known. One candi-
date mechanism for the phenomena arises from a
weakly nonlinear analysis of interacting Rossby waves
(Rhines 1975). In this analysis, we note first the ex-
istence of a transition scale that may be taken to be
O(VU/B), where U is the rms velocity of the flow,
although this particular form is not crucial to the ar-
gument. It is supposed that for scales smaller than this,
turbulent effects will dominate; for larger scales, wave-
like phenomena dominate. Within the wave regime,
nonlinear transfer occurs through the interaction of a
triad of resonant Rossby waves. The twin requirements
of the production of low-frequency flow (by resonant
interaction theory) and low wavenumbers (through the
general tendency of geostrophic turbulence to seek the
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gravest mode) lead to the generation of zonal structures,
flows with a low value of the zonal wavenumber k,.
(The extension to the baroclinic case is straightforward:
Vallis 1983.) The extreme case of beta-plane turbulence
appears to be the production of intense and persistent
zonal jets (Williams 1978; see also Maltrud and Vallis
1991). The scale of these jets has generally been as-
sumed to be the transition scale, but with, as we shall
see, little a priori justification. There are two immediate
objections. First, Rossby waves provide no restriction
on the scale of zonal flows, because the frequency of
Rossby waves vanishes if k, = 0. Second, zonal flows
cannot in fact be produced by resonant interactions,
because then the interaction coefficient vanishes. In
this paper we describe another simpler mechanism for
the production of zonal flow.

Topographic mean flows arise because conservation

of potential vorticity leads to the production of a neg-
ative correlation (in the Northern Hemisphere) be-
tween vorticity and topography in a turbulent flow,
and hence a mean flow. This simple but powerful
mechanism may be the cause of various observed
oceanic mean flows, in particular the poleward un-
dercurrents ubiquitous in eastern boundary layers
(Neshyba et al. 1989) and equatorward undercurrents
in western boundary layers. The fact that the presence
of topography implies a gradient of potential vorticity
further suggests that a mechanism analogous to that
producing jets in differentially rotating flow should
concentrate the topographic mean flow into focused
currents, and there is some observational evidence for
this (Lynne and Simpson 1990).

The rest of this paper discusses the above issues in
more detail, and offers a simple consistent mechanism
for zonal flow production on the 8 plane (or indeed
in the presence of any mean potential vorticity gra-
dient). In section 2 we provide some simple scaling
arguments for the production of anisotropy. This is
followed in section 3 by some numerical simulations
of B-plane flow. We see that numerical simulations and
a two-point statistical closure are generally consistent
with the scalings, and that in the direct simulations the
zonal jets produced have exceedingly long lifetimes.
Indeed, they appear to be almost fixed in space, in spite
of a domain and a forcing that are completely homo-
geneous. Section 4 contains descriptions of analogous
simulations of flow over topography, and section 5
concludes.

2. Anisotropy on a 8 plane: Scaling

In this section we present a number of scalings for
a transition from turbulent behavior to wavelike be-
havior. First consider a scaling based on “classical”
two-dimensional turbulence, essentially along the same
lines as Kolmogorov’s derivation of a dissipation scale.
Let the flow be forced at a (high) wavenumber k;. En-
ergy tends to cascade to large scales and enstrophy to
small scales, as illustrated in Fig. 1. Let the energy cas-
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FG. 1. Idealized isotropic energy and enstrophy spectrum and
transfers in barotropic 8-plane turbulence: e is the rate of energy
input (= transfer rate = dissipation rate); n is the enstrophy input
(or transfer or dissipation ) rate. The solid curve is a schematic energy
spectrum. Classically, the spectrum is proportional to 7/*k™3 in the
enstrophy regime, ¢2*k~>/3 in the inverse energy cascade regime.
The spectrum may peak at the high wavenumber end of the Rossby
wave regime. Here energy transfer rates are inhibited, and Ekman
dissipation may start to play a role.

cade rate to large scales be € and the enstrophy cascade
rate to small scales be . Then in the inverse cascade
regime the eddy turnover time is given by (to within
a dimensionless constant)

Ti(k) = e K,

This is the only dimensionally correct scaling, assuming
7. to be a function only of wavenumber and e. The
inverse of 7, defines a strain rate, or “turbulence fre-
quency,” namely,

(2.1

wi(k) = '13K213, (2.2)

Now, the Rossby wave frequency is given by the well-
known formula

_ Bk
Kk
The crossing between wg and w, is fairly sharp, as seen
in Fig. 2. Thus we may be justified in supposing that
for low wavenumbers Rossby waves dominate whereas

for higher wavenumbers turbulence dominates, with a
transition wavenumber

3\1/5
)

obtained by equating (2.2) and (2.3), ignoring the an-
isotropy in (2.3). If instead of (2.2) we assume a tur-

wg(k) = (2.3)

(2.4)
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FIG. 2. Various estimates of inverse time scales. Curve (a) sketches
Rossby wave frequency 8/k and curves (b), (c), and (d) are the
estimates of inverse eddy turnover times, or “turbulent frequencies,”
given by €'/3k¥3, Uk, and §, respectively. The amplitude of each
curve is arbitrary. The transition between waves and turbulence is,
roughly, at the crossovers between (a) and (b), (c), or (d).

bulence dispersion relationship w, = Uk, we recover
the Rhines (1975) expression

k& = VB/U. (2.5)

Here, U may be interpreted as the root-mean-square
velocity of the fluid. A factor of 2 sometimes finds itself,
rather arbitrarily, in the denominator. If we use w;
= {, where { is the root-mean-square vorticity, we ob-
tain the expression of Holloway and Hendershott
(1977); namely,

ki =8/<.

The relationship between these expressions may be
clarified by consideration of the strain rate (e.g.,
Kraichnan 1971)

(2.6)

k 172

S(k) = [f sz(k’)a'k’] , (2.7)
ko

where k, is the lowest energy-containing wavenumber.

The eddy turnover time of (2.1) is the inverse of this.

If the energy spectrum is given by the classical expres-

sion

E(k) = Ce2/3k5/3, (2.8)

then substituting (2.8) in (2.7 ) leads to (2.1) and thence
(2.4). If on the other hand most of the energy is con-
tained at the largest scales, or suppose merely that the
energy spectrum for k > ko falls off faster than k73,
then the integrand is dominated by contributions from
small wavenumbers and has only a very weak wave-
number dependence. The strain rate is essentially con-
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stant and equal to the square root of the total enstrophy
of the flow, say Z. Equating this to the Rossby wave
frequency to obtain a transition scale leads to k; ~ 8/
Z /2, which is equivalent to (2.6 ). Finally, the expres-
sion (2.5) may be obtained if the local expression
[k3E(k)]'/? is used for the strain rate, and then let U
= [kE(k)]'/? and equate this to the Rossby wave fre-
quency. From a turbulence phenomenology point of
view, this procedure has little justification, and, fur-
thermore, the expression is not Galilean invariant.
However, the fact that (2.5) is more readily evaluated
than either (2.4) or (2.6) for typical oceanic flows, as
well as the appeal of the simple expression Uk for the
inverse turbulence time scale, makes (2.5) undoubtedly
useful.

As well as a scale separation between wavelike ac-
tivity and turbulent flow, the scalings in and of them-
selves predict the formation of anisotropy. Equating
(2.2) and (2.3), that is, setting

el/3)2/3 = ﬁk_kzx

but retaining the anisotropy leads to the following
expressions for the x and y components of the transition
wavenumber:

3\1/5
ky, = (—) cos®/°0
€

(2.9)

3\1/5
ky, = (—) sinf cos /9. (2.10)

€

The polar coordinate is parameterized by the angle 6
= tan"'(k,/k,). The expressions (2.5) and (2.6) have
similar anisotropic forms given by

ﬁ 1/2
k% = (U) cos3/?9

6 1/2
ki = (5) cos'/?f sin®, (2.11)
and
k% = g_coszﬁ
kit =B coso si 2.12
Yo = ?_cos sind, (2.12)
respectively.

These expressions are sketched in Fig. 3; they are
qualitatively similar and all exhibit a characteristic
dumbbell shape. Within the dumbbell, characteristic
Rossby wave times are shorter than turbulent turnover
times. This inhibits the transfer of energy from the tur-
bulent regime because efficient forcing of a wavelike
mode will be achieved only when the forcing frequency
is comparable to its natural frequency. However, as
energy cascades to larger scales the presence of Rossby
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FiG. 3. The anisotropic wave-turbulence boundary (k) in wave
vector space calculated (a) using (2.10), (b) using (2.11), and (c)
using (2.12). Inside the dumbbells, Rossby waves dominate and en-
ergy transfer is inhibited.

waves provides no direct inhibition to the formation
of zonal flows—that is, flows with zero x wavenumber.
Indeed the tendency of the flow to seek the largest scale
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can best be achieved by the preferential excitation of
zonally elongated structures, the ultimate limit of which
are zonal jets extending the length of the domain. No
interaction between Rossby waves is needed.

The meridional scale of such structures is not given
by this simple theory. Certainly there is no a priori
reason for the jet scale to be the beta scale, but nor is
it realistic to expect the inverse cascade to continue to
smaller and smaller y wavenumber by an energy cas-
cade along the y-wavenumber axis. Such a cascade will
be quite ineflicient since triad interactions of wavevec-
tors in the turbulent regime will involve two almost
parallel modes, resulting in a small interaction coeffi-
cient. For this reason the scale of any zonal jets can be
expected to be of the order of the beta scale given by
(2.4)~(2.6), but the scaling arguments do not give a
precise quantitative estimate for the jet scale.

Finally, we wish to emphasize the qualitative simi-
larity of the shapes given by the expressions given by
(2.10)-(2.12). Even though there may be quantitative
differences in derivation and result, the anisotropy in
the beta term transcends the detailed differences in the
treatments of the nonlinear term, giving a consistent
overall picture of the mechanism of production of zonal
flow.

3. Simulations on a 8 plane

Are the scalings qualitatively or even quantitatively
correct? Are the anisotropic structures predicted by the
scaling actually produced in numerical simulations?
Do simulations of anisotropic closure give similar re-
sults? This section addresses these questions.

a. Closure and inviscid simulations

In this subsection we perform inviscid integrations
both by direct simulation and using a two-point spectral
closure. The closure description and simulations may
be skipped by those with little confidence in such mat-
ters, and the narrative picked up at the description of
the direct simulations beginning with (3.5). For the
closure model we use the eddy-damped, quasi-normal
Markovian (EDQNM ) scheme (Orszag 1974).

For two-dimensional inviscid turbulence, the closure
evolution equation is

ay,
> Oupatipa{ YoYa ~ Yo¥i}, (3.1)
d[ k+p+q=0
where
X 2
= 2(p Q) (pz _ q2)(k2 _ p2) (32)

a =
(k)
and Y = k*{|¥x|?). The parameter 6y, is a phenom-
enological time scale, roughly the inverse of an eddy
damping rate. It determines the nature of the turbu-

lence. In pure (i.e., no waves) turbulence then a self-
consistent choice is
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_ 1 = exp[~tuup]
(ﬂk+ﬂp+ﬂq) ’

where u, = g(k3E(k))!? is an inverse eddy turnover
time and py,, = e + g, + p,. The parameter g is an
order one constant; we use g = 1.

The advantages of spectral closures of this type over
perhaps more familiar real space closure are that the
closure respects the inviscid invariants of energy and
enstrophy and predicts the correct statistical equilib-
rium spectrum for unforced, inviscid flow (see also
Carnevale et al. 1981). The closure does not, however,
respect the conservation of vorticity on parcels and
hence does not preserve arbitrary functions of vorticity.

In the presence of Rossby waves, the structure of
the closure is unchanged, but the parameter 6y,, be-
comes

(3.3)

Bipq

1 — exp[—#(upq + iwkpq)]
Hxpq + iwkm

Oipg = R , (3.4)
where R means the real part is to be taken, wypq = wi
+ wp, + wq and wy is the (unshifted) Rossby wave fre-
quency (see Holloway and Hendershott 1977; Bartello
and Holloway 1991). In a steady state this becomes
Okpg = R (pupq + iwipq) ~'. The difference between this
and (3.4) is actually rather small, except for very small
times. Note that the time scales of the closure cannot
be expected to quantitatively compare to those of the
direct simulation because of the simplifications used
to obtain (3.3) and (3.4) and the uncertainty of the
parameter g.

The parameter fy,, remains a symmetric function
of all three members of a wavenumber triad, invariant
to a permutation of its indices. If waves dominate over
turbulence, the closure reduces to resonant interaction
theory. Although no single spectrally local criterion for
the dominance of waves over turbulence may be given,
nonlinear interactions are inhibited when a triad con-
tains members for which wy > uy, a criterion similar
to that producing (2.4). Because there will therefore
be a range of wavenumbers over which the flow un-
dergoes a transition from turbulence to waves, this im-
plies a rather less sharp boundary between waves and
turbulence than might be expected if the scalings of
section 2 were interpreted too literally.

Ironically, fully anisotropic simulations of a spectral
closure are more computationally intensive than are
direct simulations because no efficient (e.g., transform)
procedure exists for calculating the interaction coeffi-
cients. On the other hand, no ensemble of integrations
is needed. The number of computations per time step
increases as k2,, where k,, is the truncation wavenum-
ber. Still, we have performed integrations of (3.1) on
a Cartesian grid with maximum wavenumber up to
32. Our goal is to see if the closure integrations and
the direct simulations are able to produce transition
regions similar to those of the scaling and illustrated
in Fig. 3.
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The direction simulations integrate the familiar
barotropic vorticity equation

& o _

where { = V% is the vorticity and y is the stream-
function. The code is spectral and dealiased and there-
fore exactly conserves energy and enstrophy to the ac-
curacy of the time-stepping scheme, which is leapfrog.
A weak Robert filter is used as necessary to control the
computational mode. The initial conditions are isotro-
pic, with energy concentrated in a ring around wave-
number 12. (Total energy = 1, total enstropy = 290,
B = 400.) Figures 4 and 5 illustrate the subsequent
evolution of the energy spectrum. Almost instanta-
neously (in both closure and direct simulation) an-
isotropy can be detected, and the characteristic dumb-
bell signature of 8-plane turbulence immediately be-
comes manifest and grows stronger. Energy within the
wave regime remains small even as energy of the zonal
flow is building up, and examination of the energy
evolution of either closure or direct simulation indicates
that the formation of zonal structures primarily pro-
ceeds by the direct cascade of energy into zonal flow,
rather than a transfer to zonal modes from within the
wave regime.

Ultimately, the inviscid simulations will revert to
isotropic flow because the maximum entropy state to-
ward which the simulations evolve is determined solely
by the isotropic invariants of energy and enstrophy
(proof exists for the closure, see Carnevale et al. 1981).
Because the statistically steady state does not therefore
manifest any wave/turbulence boundary, we turn to
forced-viscous simulations to see how the scales of an-
isotropy and transfer inhibition vary with §.

(3.5)

b. Forced-viscous simulations

Forced, viscous simulations are expected to maintain
an agnisotropic statistical mean state even though the
thermal equilibrium is isotropic. We have performed
various experiments to examine both the scaling pre-
dictions and the formation of strong, persistent zonal
jets. Explicitly the equation of motion is

a¢ W

Y + J, O+ Bax F—x¢{+D. (3.6)
The forcing F is a random stirring at a high wavenum-
ber, typically at about wavenumber 80 in a 2562 sim-
ulation (i.e., a simulation spectrally truncated at wave-
number 128 and therefore with approximately 256
equivalent grid points in either direction). Two fric-
tional terms are necessary. The first, ¢, is scale inde-
pendent and may physically be thought of as an Ekman
drag; it is necessary to remove energy from a system.
(If the effects of drag are artificially limited to a region
of spectral space of lower wavenumber than k; in an
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attempt to obtain an inviscid crossover between inertial
and wave effects, then typically energy simply piles up
at the 8 barrier and the simulation does not equilibrate,
at least in simulations of hundreds of turnover times.)
The second, D, is a hyperviscous enstrophy remover;
its amplitude is chosen for each simulation to be the
smallest necessary to prevent a buildup of enstrophy
at the truncation wavenumber [see Maltrud and Vallis
(1991) for details]. The initial condition for the fol-
lowing set of simulations is the end state of a steady 8
= 0 simulation.

The time-averaged energy spectra in the forced sim-
ulations also show clearly the characteristic figure

eight or dumbbell signature (Fig. 6), implying that
there is a cascade barrier at its boundary. Whether the
precise barrier shape is given by (2.10), (2.11), or
(2.12) is hard to determine, nor perhaps is it particu-
larly important. The main point is that all give a qual-
itatively similar shape, with an enhanced zonal flow
produced directly by the inverse turbulent cascade. If
we define kg (as in Holloway and Hendershott 1977)
as the lower boundary of a finite-width cascade barrier,
then we should find that wavenumbers below k; all
decrease in energy with respect to their initial state,
since dissipation is still acting but turbulent transfers
are slowed. For the purposes of comparison with the
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scalings given by (2.4), (2.5), and (2.6), we obtain
from the simulations an approximate value of ks where
it intersects the k, axis by averaging the 2D spectrum
over a small angle # on each side of the k, axis, and
following the time evolution (Fig. 7a). (The averaging
is done purely to reduce the noise in the results.) The
value of k; is then chosen to be the location where the
spectrum starts becoming steeper and steeper with time.
Results are plotted in Fig. 8.

It is also instructive to determine how the scale of
the zonal jets (k;,,) varies with 8. Given a scaling for
kg, can we predict the scale at which jets will form?
Since there is no direct impediment to the cascade on

FIG. 5. Similar to Fig. 4 but now calculated using a small ensemble
of direct simulations (six ) of the equations of motion.

the k, axis, it can be expected that k;,, will be smaller
than kg. The jet scale is seen as the maximum in the
2D energy spectrum (Fig. 6) and also dominates the
isotropic spectrum (Fig. 7b). We find that both &,z and
kje, clearly increase with 8, with k., being the smaller
of the two as expected (Fig. 8). It appears that all of
the analytical scalings tend to overpredict the values
of kg and k;,, for most of the values of § chosen. Com-
parison of the functional form of the simulation curves
with the scalings is not definitive, although it does secem
that in these simulations k; increases less than linearly
with 8. Because of the presence of dissipation in these
simulations, comparison with an inviscid criterion for
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FI1G. 6. The 2D energy spectrum from the steady-state portion of a forced-dissipative
simulation with kg = 10. The grid extends from (k,, k,) = (—23, —23) to (23, 23).
Dark shades indicate high values of the energy.

the value of kz may be quantitatively inaccurate, al-
though the direct affect of dissipation does appear rel-
atively small if one considers the time scales involved

(Fig. 9).
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Examination of the 2D energy spectra typically re-
veals a peak at k, = 0, implying strong zonal motions.
Figure 10a shows a plot of time versus latitude of the
zonally averaged zonal velocity from a simulation
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F1G. 7. (a) The truncated angular average of the 2D spectrum from the same simulation seen in Fig. 6, with the
average taken over an angle of # = w/6 on either side of the k, axis. The solid curve is the initial condition taken from
an identical simulation except that 8 = 0. The dashed curves are taken from two equally spaced subsequent times in
the evolution of the flow. The cascade barrier is seen to be at approximately k& = 13. (b) Angular average of the 2D
spectrum seen in Fig. 6 showing the location of k;,, to be approximately at k = 10.
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¢ is given by the initial enstrophy.
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forced at quite high wavenumber, typically close to 80.
The production of zonal jets was generally enhanced
by a scale separation between the forcing and the 8
scale. Forcing at lower wavenumbers of the same order
as kg appears to produce somewhat less persistent
structures due to direct phase scrambling from the
forcing, but the structures are still very long lived. The
latitude of the jets is remarkably persistent. In all such
simulations we have performed, the time-averaged flow
appears to be stable, using the criterion that § — U/
dy? remain one-signed (Kuo 1949), where U is the
zonally averaged zonal velocity (Fig. 10b).

Also of interest in Fig. 10b is the clear difference in
the shape of the jets depending on their direction, with
the eastward jets becoming much sharper and narrower
(i.e., they have a larger magnitude of 3°U/dy?) than
the westward jets. This difference is consistent with the
Kuo stability criterion: westward jets must remain suf-
ficiently broad because d2U/dy? is bounded by 8. No
such bound exists for eastward currents, however, since
they will remain stable no matter how large the mag-
nitude of 3°U/dy? becomes. This difference may also
be explained in terms of a hydraulic theory of zonal
jets on the 8 plane (Armi 1989). The tendency for a
zonal current to either broaden or narrow depends on
the value of the Rossby-Froude number,
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u

Rog = ——
8 a16a2’

(3.7)

where u,, is the maximum speed in the jet, a is the
half-width of the jet, and ' is a constant that depends
surprisingly weakly on the jet profile. According to this
theory, westward jets will always tend to be broad, in-

dependent of the value of Rog. Eastward jets will also
be broad if Rog > 1, but will narrow if Rog < 1. In our
simulations, Rog is always less than unity. If we assume
that the scale of the jets is directly related to kg, that
is, kju = kg, where v is an order one (or smailler)
constant, then the width of a typical jet is simply half
a wavelength, w/vks. Thus we get

Ay kU,
a/ ,8 7!'2
Now, if we assume that k; is given by the scaling (2.5)
and that U = V;um and o = 0.24 (the latter two come
from assuming a sinusoidal velocity profile), we find
that Rogz does not depend directly on g or the energy

of the flow, but is simply a constant that is less than
unity for y < 1,

Rog = (3.8)

_ 8.3y

ROg-w, (3.9)

thus implying that eastward jets will tend to be rela-
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FIG. 9. Plot of the frequencies involved in the simulated flow.
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which &, = 0. Here § = 4000 and K = 34.
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tively narrow. The assumption that ks scales as VE
{which seems to agree fairly well with simulations) is
necessary to derive this particular result; in general we
may expect (3.9) to have a weak beta dependence. The
assumption about the velocity profile simply changes
the value of the constant by a small amount.

4. Mean flow generation by topographic interaction

In this section we discuss the interaction of eddy
motion with topography, typically of a larger scale than
the energy-containing eddies, while restricting ourselves
to flow on the fplane. There are two rather distinct
effects we wish to describe. The first simply pertains to
the initial generation and control of mean flows by
topography through vortex stretching, or the conser-
vation of potential vorticity. This is the subject of the
next subsection. The second effect (subsection 4b) per-
tains to the formation of jets over topography, arising
because of the presence of a gradient of potential vor-
ticity.

F1G. 10. (a) Map of zonally averaged zonal velocity as a function
of time and latitude showing the persistence of zonal jets produced
in a simulation forced around wavenumber 80 and with k§ ~ 10.
Dark shades denote westward flow; light shades denote eastward flow.
(b) Values of 32U/dy? as a function of latitude where U is zonally
averaged velocity from (a) averaged over time. 8 = 1000, so 8
— 32U/3y* > 0 everywhere.

a. Elementary theoretical considerations and flow
over shallow topography

The quasigeostrophic equation

Dg _
Dt

where g = VX + fh'/ H, or the more primitive shallow
water version

0, (4.1)

Di+s_
Dt hn

both express the conservation of a form of potential
vorticity. Here, 7 is the total height of the water column,
H its mean height, and /' the height of the topography.
If a column of water is passively moved over topog-
raphy, then all other things being equal, the relative
vorticity must compensate for the change in height of
the water column, leading to anticyclonic motion over
humps or cyclonic flow over valleys. (In the rest of the
paper our notation will parochially apply only to

0 (4.2)
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Northern Hemisphere parity, in which anticyclonic
motion corresponds to negative relative vorticity). The
mechanism whereby this occurs is (relative) vortex
stretching by the planetary vorticity. Thus, we may
expect a negative correlation between relative vorticity
and topography. The production of this correlation de-
pends on the “passive” nature of the flow over topog-
raphy. That is, we imagine a fluid column being moved
up or down a topographic slope more-or-less randomly
by the action of the velocity field produced by other
eddies. On the other hand, if a single, isolated vortex
interacts with a topographic feature, then a positive
vortex will in fact “climb” a hill in a spiraling motion
through the propensity of a positive vortex to self-ad-
vect in a pseudonorthwesterly direction (Carnevale et
al. 1988). Even though the vortex weakens as it boot-
straps its way up the hill, this effect leads to a positive
correlation between vorticity and topography. This
mechanism will tend to dominate if the vortex is iso-
lated from other eddies. In a vigorous eddy field we
should expect the former mechanism to dominate and
a negative correlation to arise between vorticity and
topography.

There exist two theories that quantify the correlation
in special circumstances—“‘maximum entropy” and
“minimum enstrophy.” Neither of these build in the
material conservation of ¢ on parcels, only being aware
of the inviscid conservation of quadratic invariants.
Thus, both theories can be expected to fail if higher-
order invariants are indeed important. However, the
conservation of the quadratic invariants alone is at least
able to lead to vorticity-topography correlations. The
maximum entropy theory (Salmon et al. 1976) strictly
applies only to an unforced inviscid fluid. If we pop-
ulate a topographic domain with a field of eddies, then
the time-averaged flow can be predicted by statistical
mechanical arguments to be

_hk

W= T

(4.3)
where a and b are parameters determined by the initial
values of energy and enstrophy.

Minimum enstrophy, on the other hand, assumes
that in real geostrophic turbulence enstrophy decays
much faster than energy owing to the cascade of
enstrophy to small scales (where it may be dissipated )
and the trapping of energy at large scales. The time-
averaged state should then be approximately given by
a minimum enstrophy state for a given energy. A vari-
ational calculation then yields a time-averaged flow of
form similar to (4.3). One might seek to justify min-
imum enstrophy by the following argument: The non-
linear interactions always act to try to maximize en-
tropy, and so the sense of nonlinear transfer of enstro-
phy will be the same in viscous flows as in inviscid
flows. Hence, there will be a cascade of enstrophy to
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small scales, where it may be dissipated, producing a
tendency toward a minimum enstrophy state.

Both of these mechanisms seek to quantify the time
mean state produced by the interaction of an eddy field
with topography. (The underlying mechanism pro-
ducing the flow-topography correlation is of course
the conservation of potential vorticity as a parcel is
passively advected over topography.) In forced dissi-
pative situations, neither theory can be expected to
quantitatively predict the correct time mean flow.
However, this superficial failing should not of itself
concern us, and in any case a closure theory of flow
over topography, which contains these tendencies and
is valid in more general circumstances, can be con-
structed (e.g., Herring 1977). But in the next subsection
we show how another mechanism arises for flow over
steep topography, which qualitatively affects the scale
of the mean flow and its correlation with topography.

For “shallow” topography, in a sense to be subse-
quently quantified, the sense and scale of the mean
flow in both forced-dissipative and freely decaying flow
can be predicted following these ideas. We have per-
formed a number of numerical integrations of both
decaying and forced-dissipative flow over fairly ideal-
ized topography, considering first the simple case of
barotropic eddy activity over a single ridge. The decay
experiments involve the numerical integration of the
barotropic quasigeostrophic equations from random
initial conditions, with a viscous term that acts pri-
marily on the higher wavenumbers. In the forced-dis-
sipative cases, forcing is typically white noise, concen-
trated between wavenumbers 10 and 14, and a linear,
scale-independent Ekman drag is introduced to remove
energy at the largest scales. The scale separation be-
tween forcing and topography mimics the scale sepa-
ration between deformation radius and large topo-
graphic features in the ocean. Results for both forced-
dissipative and decay experiments demonstrate the
same qualitative mechanism, and we will only present
the results from the forced simulations.

For small to moderate values of the topographic
slopes the mean streamfunction is closely correlated
with the topography. With a meridional ridge, a pre-
dominantly northward flow is produced on the western
slope (Fig. 11a) and southward flow on the eastern
slope. (The orientation of a ridge is irrelevant on an f
plane, so more generally the flow on either slope is
pseudowestward; that is, facing downstream, higher
values of mean potential vorticity are on the right.)
There is no mean cross-slope flow, so that in this sit-
uation the imposition of a wall with free-slip boundary
conditions along the ridge would make little essential
difference, except possibly in how the global momen-
tum invariants are maintained. It is well documented
that in eastern. boundary currents of ocean gyres pole-
ward flowing undercurrents (Neshyba et al. 1989) fre-
quently occur. These regions are also generally quite
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F1G. 11. Maps of the time-averaged N-S velocity along a simple
meridional ridge on the fplane for various heights of topography in
a barotropic forced-dissipative simulation, forced near wavenumber
12. The topography is proportional to —cosx, where x is the E-W
coordinate, so it is peaked at the center line, with no y variation.
Dark shades indicate positive velocities with black being highest pos-
itive values and white the highest negative values. Each map has an
accompanying plot of the alongtopography () average velocity as a
function of cross-topography coordinate x. (a) The amplitude of the
topography is 2 = 20. Note the flow has approximately the same
scale as the topography. (b) & = 200. Now, jets appear at k = 3
superimposed on the broad background flow seen in (a). The jet
peak at x/(27) = 0.65 is strong enough to reverse the background
flow. (¢) & = 1000. Jets appear at k = 12 superimposed on the back-
ground flow.
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baroclinically unstable, suggesting that a possible
mechanism for the poleward flow is the production
of a mean flow by the above eddy-topographic inter-
action. Note that no smaller-scale or “rough” topog-
raphy is actually necessary to produce a mean flow in
the first instance, although its importance cannot be
ruled out (Holloway 1987; Brink 1986; Haidvogel and
Brink 1986).

Is such an effect large enough to produce noticeable
currents in the ocean? Consider the California Current,
with a slope of a few hundred kilometers extent. Then
moving a zero vorticity parcel halfway up the slope
produces a relative vorticity of approximately ¢ ~ fh;/
H ~ 0.5f. The magnitude of the poleward velocity
produced by this is approximately V' ~ L0.5f ~ 5
m s~ !, for L ~ 100 km where L is the cross-slope scale
of the motion. This conservative and very rough esti-
mate is obviously far greater than is either observed or
can be produced on energetic considerations, and the
consequent restoring force is responsible for topo-
graphic Rossby waves. Nevertheless, it indicates the
potential of the mechanism and that the magnitude of
the mean flow is likely to be a stronger function of the
eddy intensity than the topography itself.

b. Flow over steeper topography

If the amplitude of the topography is too large for a
parcel to traverse it with the energy available to it, we
may expect the mean flow to still be oriented parallel
to topographic contours, but to become organized into
bands. Suppose for simplicity that the topography is a
simple sinusoid. Then both the maximum entropy and
minimum enstrophy theories predict a resulting flow
of similar scale. However, any flow in which the
streamlines are parallel to the topography contours is
a (inviscid) solution. Indeed as the topography gets
larger, the mean flow does not maintain the same scale
as the topography, but rather multiple jetlike structures
form, superimposed on the broad background flow
(Fig. 11b).

More formally, the mechanism is just that which
causes jets on the 8 plane: the addition of topography
to the barotropic quasigeostrophic equation is identical
to the addition of a beta effect (possibly spatially de-
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pendent) and if the horizontal variation of the topog-
raphy is fairly uniform the effects are identical. We
therefore expect alternating jets to form along the to-
pography, with a scale approximately given by the
wavenumber

By
i_ b
where 4 = fh/H, or any of the analogous forms given
in section 2, with the topographic variation playing the
role of the planetary gradient of potential vorticity.
Figure 11 indicates how the banded structure becomes
enhanced as either the topography gets bigger or the
eddy field weaker. If the scale given by the inverse of
(4.4) is smaller than the scale of the topography, the
qualitative form of neither the maximum entropy nor
the minimum enstrophy state can be achieved. (Since
the flow is viscous, this does not demonstrate “noner-
godicity” in the sense of Shepherd (1987), although it
may be loosely analogous to it.)

As expected with the analogy to the $-plane case,
the scale of the jets becomes smaller as the height of
the topography is increased (Fig. 11¢). Due to the fairly
low resolution of this simulation (642), the strength
of the jets in Fig. [1c is being limited by friction. As
we increase the resolution (Fig. 12), the jets form at a
scale that is largely unaffected by the direct action of
viscous diffusion. The jet persistence is also enhanced
somewhat (as in the case of the 8 plane) if the scale of
the forcing is much smaller than the scale of the jets.
One aspect of the topographic flows seen to a greater
extent here than in the B-plane flows is some degree of
latitudinal migration of the jets. This is especially the
case in the vicinity of the peaks and valleys where the
topographic height varies the slowest, that is, where the
topographic S effect is small, and where the jets may
lose their coherence and disappear. On the § plane, of
course, the flow is degenerate in the sense that there
can be no correlation between latitude (i.e., value of
ambient potential vorticity) and the local value of rel-
ative vorticity, by homogeneity, unless the initial con-
ditions are remembered. This symmetry is lost in the
topographic case, which accounts for the preferential
broad (i.e., cross-topographic scale) pseudo westward

ki = (4.4)

time

FIG. 12. Map of the averaged meridional velocity as a function of time and longitude from a simulation
forced around k = 40. The superimposed jets are now clearly strong enough to reverse the background flow.

Topography same as that in Fig. 11b.
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flow on either side of the ridge. However, once formed,
the jets on the 8 plane are, in fact, rather persistent.

¢. Flow around seamounts and other irregular
topography

A similar mechanism can produce alternating flow
around more complicated topography, such as sea-
mounts or ridges that are not straight. Again both
forced and decaying experiments have been performed
for these cases. For smaller values of the topography
the mean flow is able to achieve the grave scale of the
topography. For larger values the flow again shows a
banded structure. In the case of flow around a circular
hump, a map of the magnitude of the time-averaged
velocity (Fig. 13) shows that circular bands of alter-
nating direction are superimposed on the large-scale
flow, which may result in reversals of the flow direction.
In a similar manner, flow along an S-shaped ridge will
either broadly follow the topography or form bands
parallel to the topographic contours (Fig. 14a). Figure
14b shows the velocity vector field and clearly indicates
that the superimposed jets may become strong enough
to cause flow reversals.

d. Internally generated instability and deep
countercurrents in baroclinic flows

Here we show that in a slightly more realistic situ-
ation the interaction of an internally generated insta-

FiG. 13. Map of the magnitude of the time-averaged velocity around
a circular seamount that is Gaussian in cross section. Black indicates
highest speed. Variations in shade reflect the presence of alternating
circular jets superimposed on the background flow, either slowing it
down (lighter shade) or speeding it up (darker shade).
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FIG 14. (a) Map of the time-averaged meridional velocity along
an S-shaped ridge that is sinusoidal in cross section. Black indicates
highest positive speed; white indicates highest negative speed. The
jets are superimposed on the large-scale background flow and follow
the topographic contours. (b) Velocity vectors of the flow seen in
(a). One of the jets is strong enough to create a clear reversal in the
background flow.

bility and topography can produce counterflowing un-
dercurrents. Consider, for example, the flow in an east-
ern boundary current, such as the California Current.
The near-surface flow is generally southward, more or
less parallel to the continental slope. Its magnitude is
determined by a variety of factors, including the local
wind-stress curl and boundary conditions imposed by
the large-scale circulation of the Pacific subtropical
gyre. The deeper flow is generally weaker, apart possibly



1360

from a northward flowing countercurrent along the
slope. The resulting mean shear, which is primarily
due to the southward upper-level flow over more or
less quiescent deeper layers, is baroclinically unstable,
resulting in a sea of eddies that interact with each other,
the topography, and the mean flow. The collection of
mechanisms maintaining the upper-level flow, and
hence the mean shear, is not immediately relevant to
the interaction of the eddies with the topography, and
so a simple model of such a situation is to consider the
interaction of a uniform shear over a meridional ridge.
In the absence of a full ocean model (and the host of
other phenomena obscuring the central issue which
that would entail) there is no fully self-consistent way
to determine the upper-level flow, so this is best im-
posed. Similar arguments apply to flow over the Mid-
Atlantic Ridge or western boundary currents. The shear
is chosen to be baroclinically unstable, thereby gen-
erating eddies that may interact with the topography.
Our goal is to see if this may produce a countercurrent
in the lower layer.

We use a two-layer model. Let the mean upper-layer
flow be U and the lower-layer flow be zero. Then the
quasigeostrophic potential vorticity equations for two
layers (of equal thickness) may be written

I a3
St @)+ UV + AZU"‘” - D,
6 ox
(4.5a)
0
%% 4 J(¥n, @) - NUE =D, (45b)

ot ox
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where g; = Vi + A?/2(d2 — ¥), @2 = Vi + NP/
2(y, — ¥») + h are the potential vorticities in each

layer of the relative flow. (On the fplane the x and y
coordinates are interchangeable.) Here, A is an inverse
deformation radius and 4 the bottom topography. The
terms D, and D, represent frictional effects; we use a
biharmonic and an Ekman friction in the lower layer
to absorb enstrophy and energy, respectively. Explicitly
D, = —vV*{and D, = —vV*{ — «{. Typical midlatitude
values for the first deformation radius are typically of
order 30-50 km, and the cross-slope scale of the to-
pography is typically an order of magnitude larger. We
choose the value of the inverse deformation radius to
be wavenumber 30 to reflect such a scale separation,
and the topography to be a simple ridge oriented par-
allel to the mean flow. With this orientation of slope,
the mean flow does not directly interact with the to-
pography.

In the absence of beta, topography, or friction, any
imposed shear is linearly unstable, although the to-
pography acts, like beta, to stabilize the shear. We im-
pose a linearly unstable shear, and integrate the model
sufficiently long to obtain a statistically steady state
with stable means. Figure 15 shows typical instanta-
neous and time-averaged streamfunctions, and in Fig.
16 we plot the mean upper- and lower-level alongslope
velocity profiles for a selection of topographies and im-
posed shears. Along both sides of the ridge rectified
mean current is produced. The sense of this flow is
pseudowestward, just as in the barotropic experiments.
This translates to poleward flow along western con-
tinental slopes or the western sides of meridional ridges,

EMISTSIiN|

FIG. 15. Typical instantaneous and time-averaged streamfunctions in an unstable two-layer simulation of flow along a ridge. The topography
is a single sinusoid in the zonal (x) direction, with no meridional variation.
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F1G6. 16. Upper- and lower-layer time and alongtopography averaged velocity fields, showing the production of
countercurrents in the deep flow. Abscissa is distance across a single topographic ridge, peaked at the center. Imposed
mean velocity in upper layer = +0.05, and is zero in lower layer. (a) A = 0.2. (b) & = 3. The upper (lower) curve of
each panel is the upper (lower) layer velocity, including the imposed mean flow. In (b) the jet production is so strong
as to almost drown out the sense of the overall mean flow induced by the topography.

and equatorward flow along eastern continental slopes.
The rectified current is largely barotropic, because it is
of a much larger scale than the baroclinic instability
scale and energy transfer to large scales tends to be
barotropic.

For large topographic slopes the countercurrents be-
come organized into a banded structure, just as in (8-
plane turbulence and may dominate the sense of the
mean flow. Rough estimates may be obtained for the
width of such jets using the scalings of section 2. If U
~ 10 cm s™! and the topographic slope is ~ 10 m km™!
then the expected width of the countercurrent will be
of order 1-10 km. This is a rather rough estimate, but
it indicates that the topographic slope is sufficiently
large that we do not expect a countercurrent generated
by eddy-topographic interactions to be as large as the
scale of the slope itself. The presence of multiple
alongslope currents is the extreme limit of this, for
which there is some observational evidence (see various
articles in Neshyba et al. 1989). More observations,
either in continental slope or midocean ridge regions,
would obviously be useful.

5. Discussion

Scaling relationships and certain theoretical argu-
ments indicate that the inverse energy cascade of geo-
strophic turbulence will be inhibited by a mean gradient
of potential vorticity. Irrespective of the details of any
particular scaling theory, the transition wavenumber
between “waves” and “turbulence” is quite anisotropic:
a characteristic dumbbell shape (in spectral space) is
predicted (Fig. 3) into which energy transfer is inhib-
ited, and this feature is robustly produced both by direct
numerical simulation and two-point closure. There is
no inhibition on the formation of zonal scales, essen-
tially because Rossby waves have zero frequency for
such structures. Indeed, since energy can penetrate only

slowly into the wave regime, zonal and near-zonal flow
will be preferentially excited as energy cascades to the
gravest scales. The production of zonal jets can there-
fore result as a direct consequence of an anisotropic
turbulent inverse energy cascade.

If the forcing scale is spectrally removed from (i.e.,
at a smaller scale than) the 8 scale, rather intense and
very persistent zonal jets can be produced. These last
many eddy turnover times, and once formed appear
to be almost fixed in space, barely drifting in the me-
ridional direction. The scale and strength of these jets
appears to be such as to keep the sign of g, = 8 — 8°u/
dy? positive, and hence the jets are, by this criterion,
stable. Eastward jets are noticeably sharper than west-
ward jets, consistent with the stability criterion and
with a hydraulic theory of S-plane jets.

The quasi-passive advection of vorticity over topog-
raphy will lead to a negative correlation between vor-
ticity and topography. Over ridges or continental slopes
this results in a pseudo westward mean flow; that is,
poleward (equatorward) mean flows on the western
(eastern ) sides of meridional ridges. One may conjec-
ture that this is the cause of the almost ubiquitous
poleward undercurrents in eastern boundary currents.
If the topography is sufficiently steep, then a second
effect becomes noticeable, namely, the concentration
of the mean flow into narrow currents. This occurs
through the topographic 8 effect—just as the more fa-
miliar § effect due to differential rotation produces
zonal jets. Possible locations for such phenomena are
on continental slopes and midocean ridges, and it
would be interesting to look for the presence of mean,
and possibly multiple, currents flowing more or less
parallel to the topography in regions of eddy activity.

Regarding the direct application of these ideas to
oceanic flows, let us make the following points. First,
the use of quasigeostrophy is formally valid only for
shallow topography, clearly not satisfied on continental
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slopes. A tractable theoretical framework including or-
der-one topography may be difficult to construct, but
numerical simulations with a primitive equation or in-
termediate model are possible. Second, oceanic
boundaries are somewhat different from ridges because
of the strict condition of no normal flow at the bound-
ary. Finally, attempts should be made to determine
how this type of theory of mean flow over slopes can
be observationally distinguished from the qualitatively
different type of model described by McCreary (1981).
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