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SUMMARY

This paper is a study of the transport properties of large-scale quasi-geostrophic flow, when it is forced by
an unstabie shear of much greater horizontal scale than the scale of the resultant eddies. One of the purposes
is thereby to test certain phenomenological parametrization schemes which predict the transport of potential
vorticity or heat, or which predict the rime-mean state of the zonally averaged atmosphere. Models used are
highly nonlinear spectral quasi-geostrophic models, with sufficient resolution to resolve the energy-containing
scales and partially resolve an enstrophy inertial range. A scale separation is enforced between the mean and
eddy flow, this being a necessary condition for fransfer theories to work. An expression is derived for the rate
of change of the mean flow in such cases. As a quantitative predictor of the time-mean state of the zonal flow,
baroclinic adjustment s found to work only when nonlinear wave-wave interaction between eddies is small,
in such cases, the amplitude of the eddy flow is determined by the forcing on the zonal flow, which itself
equilibrates close to the critical value for binear instability. In fully nonlinear models if the zonal flow is strongly
forced the mean flow can be highly supercritical. The flux of potential vorticity is found to depend strongly
and moncotonically on the mean shear, although no obvious simple relationship is found relating it to potential
vorticity gradient. In part because potential vorticity is not a passive scalar, using phenomenological transfer
coefficients is by no means straightforward, Such transfer relationships are seen to be in some ways
unsatisfactory.

1. INTRODUCTION

Two related topics of some importance in atmospheric and oceanic dynamics are
the nonlinear equilibrium of baroclinic instability, and the transport properties of fully
developed geostrophic turbulence. Baroclinic instability is the principal ‘source’ of energy
for mesoscale oceanic flows and synoptic-scale flows in the atmosphere. By ‘source’ is
meant the mechanism whereby energy is transferred from the mean zonal flow (for the
atmosphere) or large-scale gyre flow (for the ocean) into time and spatially varying eddy
fields, recognizing that the process is adiabatic. The principles of such transfer are well
described by linear theory (beginning with Eady and Charney and described in numerous
textbooks). Linear theory by its nature can say nothing about the process of equi-
libration—this is a nonlinear problem of finite-amplitude baroclinic instability. Equi-
libration is the process whereby supercritical baroclinic waves nevertheless achieve some
steady (possibly only statistically steady) amplitude. At least three mechanisms have
been identified as possibilities:

(1) Wave-mean-flow equilibration

(1} Wave-wave equilibration, via nonlinear energy transfer to linearly stable
wavenumbers |

(iii) Stochastic equilibration,

(1) Wave—mean-flow equilibration: This mechanism essentially involves the mean flow
interacting with a single wave, the most unstable wave to small perturbations. This wave
produces a correction to the mean flow, possibly of higher meridional wavenumber, such
that the wave 1s in a marginally supercritical state. Some kind of limit cycle would
normally ensue. This kind of mechanism can be analytically described using weakly
nonlinear theory (e.g. Pedlosky 1970). Some numerical integrations illustrating this are
described in section 2.
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(i) Wave—wave equilibration: An unstable mode may, via nonlinear interactions, transfer
energy to modes of lower wavenumber (or lower pseudo-wavenumber k', k'% = k* + A%,
where k is the wavenumber and A is an inverse deformation radius for baroclinic modes).
By transferring energy, in a cascade, to modes which are barochnically stable, the
unstable modes may equilibrate even at high supercriticalities.

(iii) Stochastic equilibration: Baroclinic instability necessitates a correlation between
meridional velocity (v) and temperature (7). In a two-layer quasi-geostrophic model the
correlation is {(tW¥,)) where 7 is the baroclinic streamfunction (¥, — ¥,), and ¥ the
barotropic streamfunction (¥, + W¥,), and ¥, and ¥, are the upper- and lower-level
streamfunctions and the angle brackets imply a correlation, or normalized time integral.
For a linear inviscid problem and uniform zonal flow with 8 = 0, one finds {t'¥,) = 1,
meaning there is perfect correlation between r and W,. Both friction and the effects of
B reduce this correlation. It has been suggested (Salmon 1980} that turbulence may act
as a scrambling mechanism, reducing the correlation and enabling supercritical waves to
equilibrate, without the need for net energy transier.

The above mechanisms all come with many variations. For example, wave-mean-
flow equilibration may involve changes in the vertical structure of the mean flow. The
above mechanisms are described more fully in the papers by Pedlosky (1970), Hart
{1979a}, Salmon (1980), Loesch (1974}, and others.

The mechanism of equilibration, while very interesting per se, additionally has
obvious ramifications for the transport of heat or potential vorticity in geostrophic
turbulence. If wave~-mean-flow equilibration is important, then one might expect baro-
clinic adjustiment (Stone 1978) to apply. In this scenario, the zonal mean shear builds up
due to diabatic heating. As soon as it reaches supercriticality an unstable mode grows,
transferring sufficient heat poleward to reduce the instability of the mean flow to a
marginally supercritical state. Thus, Stone argues (and presents some empirical evidence
to support his case) the time-mean zonally averaged flow of the atmosphere should be
close to a marginally supercritical one. Although not couched in the language of nonlinear
baroclinic instability, the parametrization clearly depends on mechanism (i) above being
dominant. Both mechanisms (ii) and (iii} above allow supercritical equilibration.

It is the purpose of this paper to test experimentally (i.e. numerically) ideas of
equilibration, and the transport properties of fully developed geostrophic turbulence. To
test these ideas we use the simplest model containing the necessary dynamics—a two-
layer quasi-geostrophic model with a spatially (but not necessarily temporally) uniform
zonal shear, and examine the dynamics primarily as a function of zonal shear. The
advantages of using a model with a uniform zonal shear are the following: a scale
separation is enforced between mean and eddy flow, the most favourable condition for
transfer/diffusion-like theories to function; the eddy field is homogeneous, which enables
certain algebraic results about eddy transfer properties to be obtained straightforwardly;
there is no eddy momentum flux, and hence a direct relation between eddy heat and
potential vorticity flux. On the other hand, the lack of eddy momentum flux i1s an
unrealistic feature as far as the earth’s atmosphere is concerned and obviously no
inferences can be drawn about it. However, our main aim is to examine potential vorticity
and heat fluxes (since the theories about their transport are the most well founded) and

for this purpose the simplest model is preferable. No feature of the model prevents the
conclusions we draw about such fluxes being mvalid.

The paper is organized along the following lines: Section 2 describes the model
formulation. In particular an expression for the rate of change of the mean flow is derived.
(Although the expression has been given before, its derivation has always been contrived.



STUDIES OF EDDY TRANSPORT PROPERTIES 185

Our derivation relies only on a scale separation between mean flow and eddies. Further,
it is valid for multi-layered baroclinic models as well as barotropic models.) Section 3
examines equilibration mechanisms and baroclinic adjustment. Following this, in
section 4, we examine the transport properties of fully developed geostrophic turbulence,
and particularly the performance of various parametrization schemes (in particular the
diffusion of potential vorticity). Although it may appear that the parameter range, from
small supercriticality to fully developed turbulence, is large (and hence beyond the
sensible scope of a single paper), remember that really only one parameter is to be
varied—the mean shear in the zonal wind. Others (e.g. Rossby deformation radius)
which would also affect the supercriticality, are fixed. By allowing only the shear to vary,
we can explore very different behaviours, governing a fairly full range from laminar to
turbulent flow, with a relatively modest set of experiments.

2. MODEL DESCRIPTION

The numerical and analytic tools we use are quasi-geostrophic 8 plane models in a
doubly-periodic domain. Continuous equations may be written:

3Q/ar+ J(¥, Q) + B a¥/ax = forcing—dissipation (2.1)
where

d A
= VY + o (12 z —)
¢ 4z (2) 4
Thus @ is the potential vorticity, W is the streamfunction and A(z) 1s an appropriate
inverse deformation radius. It is convenient to consider explicitly a mean zonal flow by
writing

W=y Uz (2.2)
and
a dit
—a-r (v
0=q-y5- (103
where
3 aip)
=V + — A — 2.3
1 vuj+az(ﬂ dz (2.3)
whence, for unforced mviscid flow,
g Iy 3 48 ( aU) 3y
= —_— — o — ]LZ
ot tIY.q) + 5 dx U&x a0z 8z / 9z

where for the moment temporal changes in the U field are ignored. If U 1s held fixed,
then the right-hand side provides a source of energy for the eddy field . We shall
mainly be concerned with layered models, and for the conventional two-layer model the
appropriate equations are:

dq fot+ Iy, q1) + Boy fax = U, aq,/ax + A*(U, — Uy) 8y, fox

(2.4)
3q2/3t+ J(P2,qs) + oy, fox = —U, 8q,/ox + A2 (U, — U,) 8, fox

where

g1 = Vi, + A (s — ¥y) g, = Vi, + 3% (Y, —~ @)
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(a) Evolution of the mean field

With doubly-periodic or channel boundary conditions there has been some discus-
sion, and perhaps some contusion, in the literature about time-varying zonally-averaged
mean flows (Salmon 1980; Vallis 1985; Carnevale and Frederiksen 1987). In channel
models it appears that a suitable choice of spectral expansion can be found to allow a
temporal variation in the mean flow. However, the method does not extend readily to
more general geometries, and is computationally rather inefficient (see also Vallis 1985).

Below a method for computing temporal variations in a large-scale zonal flow, based on
the zonal momentum equation, is presented.

The practical problem, then, is to compute the variation of a zonally-averaged flow
(such as U(z) in Eq. (2.2)) which varies spatially on a much larger scale than the eddy
flow (although the magnitudes of the velocities may be similar), and on a longer timescale.

(The latter is the justification for ignoring the temporal dependency of U in Eq. (2.3).)
Thus we choose to expand the streamfunction

= (1/e)p,(vo, ) + ¢ (x, 9, ¥,. 1) + O(e) (2.5)

where y, = gv is a large space scale over which the mean flow varies. With such an
expression the mean meridional velocity is zero and the corresponding expansion for the
geostrophic zonal velocity (u,) is

(X, 9,0 = Uo(Vo. 0} + 11 (x4, 51, ¥0,1) + O(e). (2.6)
We have used
u=(3/ay + £3/3y,)y.
Similarly,

ve(x,y,0) = vy(X, ¥1, ¥, 1) + O(g).

Thus the mean and eddy zonal velocity fields are similar in magnitude. Note that
Eqgs. (2.5) and (2.6) are consistent with (but do not necessarily imply) (2.2). One of
the aims ot the expansion, obviously, is to derive an expression for dU/dt in (2.2), or
du,/dt in (2.6). To do so we begin with the momentum equation in a Boussinesq model.
Thus (see Veronis 1981), for each layer { the w momentum equation is

du; /ot + 3(uu;)/ox + a(vu;)/oy — fo, = ap,/ax (2.7)
and the continuity equation is

8]‘13/‘33 +- {ﬂi y V}k, + hﬁ" | T 4§ (2.8)

where u; and h; are the zonal velocity and layer thickness in the ith layer, and p; is the
kinematic pressure. We shall subsequently drop the subscripts i
The velocity field u may be written

— r
ﬂ—ﬂg*i“ll

where u, is the geostrophic component, and u' the ageostrophic. The layer depth may
similarly be written & = H + A’ where H is a constant mean thickness. The prime on the
variable component of / will subsequently be dropped. Zonally averaging (2.7) gives

au” fat + a(wv /oy — fo'” = 0. (2.9)

An overbar denotes an average. Primed velocities (e.g. v’} are non-geostrophic. Other-
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wise, all velocities are taken geostrophic. Now, the geostrophic version of (2.8) is
dhjot+ (u-Vih + HV -u' =0

since the term V - u is small, only its contribution when multiplied by the mean layer
height H 1s non-negligible. The second and third terms in the above equation are assumed
comparable. The zonal average is

ok fot+ a(vh" Y ay + Havp" [ay = 0. (2.10)
Inserting (2.6) into (2.9) gives
du, [0t + dur far+ (3/dy + edfay,)D, )~ foi =0

and integrating over y (not y,)—i.e. averaging over the eddies—gives, at zeroth order,
aug Y fot — fo] =0 (2.11)

where we have assumed

;= 0,
Now, an expansion for the layer thickness A consistent with Eq. (2.5} is
h=(1/e)ho(yo,8) + hi(x, ¥, 5,0, 1) + O(e).

Inserting this into (2.10) and integrating over the domain y gives

_.Ify

19,7 ah, £0
- + +
£ 4t dt ¥,

— N

(U1h1x5y + HU;

) = 0, (2.12)

We may certainly assume, or require, that ah, /ot = 0, i.e. that there is no mean change
in the eddy layer thickness field. Now integrating (2.12) over y, gives

=0 (2.13)

v+ Hoy
where a zero value for the constant assumes no boundary or far field forcing. Substituting
(2.13) in (2.11) finally gives the equation for the mean flow

au,fat — (f/Hoh™" = 0, (2.14)

This is the final, and unsurprising, result. It means that the mean flow in each layer is
affected by the effective form drag, either through topography or variations in dynamic
height. The result could almost have been written down from Egs. (2.10) and (2.11).
'The main assumption in the derivation is a scale separation between the mean fiow and

the eddy field and hence that eddy momentum flux divergence is zero. Given this, the
dervation merely assures that (2.14) is consistent, Note that (2.14) allows both the

barotropic and baroclinic components of the mean field to vary, since the result holds
for every model layer separately. No meridional walls are necessarily required. The result
may also be derived by considering the integrated pressure, or form, drag of an obstacle
h in a zonal stream, although then the momentum flux divergence would have to be
ignored more arbitrarily. :

In a quast-geostrophic model the expansion (c.f. (2.2))

W, = —Uy + 2 9, e** (2.15)

satisfies the scale separation assumption. Effectively, we have relegated all the very large
scale {(wavenumber <(1) changes in the streamfunction field to changes in Uy. For a two-
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layer model one finds

dU, jdt = ~A*[(1 ~ ¥2)¥ 1]

| R (2.16)
dU, [dt = =12 [(Yr = Y1), + [h"ﬂ’z;clﬂ '

where a square bracket denotes an integration over the domain, & is the static surface
topography and v, = dy/ox. Note that with i = 0,

consistent with Galilean invariance. Equations (2.16) imply energetic consistency, in the
sense that a measure of the total energy is conserved. Explicitly, for a two-level model
in the absence of topography

~«£~;?+E-F[U2 + (Vy)? + (Vo)? + A%1r?] =0

and

U=(U, - U)f2, 7=y, —y2)/2, =9 +1y,)/2

This generalizes to multi-layers with topography.

For the rest of this paper we use exclusively a two-layer model with no bottom
topography. Thus we integrate (2.4) and (sometimes) (2,16) on a doubly-periodic domain.
The code is a de-aliased spectral code. Friction is included by adding to the right-hand
sides of (2.4) the terms —~rV%y —~ »V%y, for i =1 and 2. In dimensional units » has an
approximate value 1/10 day™!. The parameter v is made proportional to the square root
of the total enstrophy (so inversely proportional to the eddy turnover time at the smallest
scales) to remove enstrophy appropriately. Note that friction is included symmetrically
in upper and lower levels. This is unrealistic as far as the earth’s atmosphere goes, but
simptlifies the model and does not corrupt the essential, inviscid, dynamics.

3. EQUILIBRATION MECHANISMS

In this section we examine equilibration of supercritical baroclinic waves. We perform
sets of experiments (see Table 1) at relatively modest resolution (k... = 16, giving an
equivalent 32 grid points in each horizontal direction). The important mechanisms of
equilibration occur close to the Rossby deformation radius (wavenumber §) so maximum

wavenumber 16 is certainly adequate. Test cases were performed at double and quadruple
the resolution, with minor quantitative differences.

TABLE 1. LIST OF EXPERIMENTS AND CERTAIN PARAMETERS

Experiment Zonai flow kg U Asymmetric modes
Vi Variable 59 2-8 All
V2 Variable 8-1 148 (6,0)
V2b Vartable 81 1-48 (6,0)
V3 Variable 70 20 (6,0),(3,31,{9,3)
V4 Variable 6-2 2.5 (6,all},{¢,all)
F1 Fixed 4-5 4.8 All
F2 Fixed 5-0 3-9 All
F9 Fixed 80 152 All

The U and kg values are the time-averaged values for the experiments with zonal flow variable.
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(a) Baroclinic adjustment
To test baroclinic adjustment we performed experiments allowing U to vary according

to

du/dt = ATy, +r(U* = U) (3.1)
where U™ 1s the forcing shear, r is the damping timescale, and U = U, = —U,. Baroclinic
adjustment would imply that the time average of U is close to the critical level for linear
instability.

The first set of experiments uses a fully nonlinear model, with both wave-wave and
wave-mean-flow interaction, Figure 1 shows a time series of U, for U* = 6U,. Clearly
the value i1s above the critical level, i.e. there is supercritical equilibration. If baroclinic
adjustment were to occur, the flux (V) would have to be very small below supercriticality,
increasing rapidly above 1t. This 1s looked at further in section 4. To test the effects of
the forcing term, U”* was reduced to be about 2U,. The time-averaged zonal flow (not
shown) then turns out to be 1.5 U —still supercritical but less so.
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Figure 1. (a) Time series of the zonal velocity in experiment V1. The eddy field is fully nonlinear and

nteractive. U, is the critical value for linear baroclinic instability. The final equilibrium is supercritical, {b) Time
series of amplitude of (6, 0} mode.
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Figure 2. {a) Evolution of U in experiment V2. Only one eddy mode is allowed, (6,0). (b} Evolution of
amplitude of the eddy mode. {¢) Evolution of sine component of the eddy mode. The final state is a limit cycle
of constant amplitude.

Integrations were carried out to examine the effects of nonlinearity. If only one
asymmetric mode is allowed to be non-zero, the only possible equilibration mechanism
is wave—mean-flow interaction. Indeed, numerical integration does show the mean flow
equilibrating at a level close to criticality (Figs. 2 and 3). If the initial value of the
zonal flow is small it will grow until linearly unstable. The magnitude of the ‘eddy’—
wavenumber (k,,k,) = (6,0)—may then grow. This particular wavenumber 1s chosen
because linear analysis shows the mean zonal flow to be the most unstable to small
perturbations at this wavenumber. Energy is transferred to the asymmetric flow, which
subsequently grows in an oscillatory way. After many oscillations the zonal flow finally
equilibrates precisely at the critical level for instability—it is not determined by the zonal
forcing. The zonal flow is in fact undergoing very small oscillations about the critical
value; the amplitude of the oscillations will be determined by the forcing on it. The total
magnitude of the eddy flow is virtually constant, although its sine and cosine components
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Figure 3. (a) Evolution of U in V2b, The forcing I/* is smaller than in V2, but the final equilibrium value is
the same, namely the critical value. (b} As Fig. 2(b) but for V2b. Note the magnitude is much smaller than in
2(b). The units, although arbitrary, arc the same as in Fig. 2 (although the scale of the ordinate differs).

oscillate. The magnitude of the eddy flow is determined by the forcing on the mean flow,
which it feels through the small deviations of the zonal flow from criticality. If the forcing
on the zonal flow is reduced, the equilibrium value of the zonal flow is more or less
unaltered, but the eddy amplitude 1s reduced (Fig. 3). (This is similar to the situation in
simple models of flow over topography wherein the value of the zonal flow can be locked
close to resonance, almost irrespective of the forcing on it, whereas the magnitude of the
eddy, or zonally asymmetric, flow is determined largely by the zonal forcing.) The
mechanism occurring here is precisely baroclinic adjustment. An experiment was per-
formed m which all wavenumbers were allowed to exist, but the nonlinearity limited to
wave-mean-flow interaction and wave—wave interaction is suppressed. With an initial
zonal state supercritical to a range of wavenumbers, then all of those wavenumbers
initially grow, extracting energy from the mean flow. The most unstable wave grows
fastest, and as the mean shear falls some wave vectors become stable again. Ultimately,
the shear falls to such an extent that only one wave vector is unstable, and all others decay
to zero. This takes a considerable time (dimensionally several months) but ultimately the
behaviour is as if only one asymmetric mode were allowed. Thus it is the effects of wave—
wave interaction which appear to obviate the need for baroclinic adjustment, rather than
the presence per se of many asymmetric modes. We examine this further below.

(b) Nonlinear equilibration

The artificiality of the wave-mean-fliow problem lies in the inhibition of a secondary
instability. As the forcing on the zonal flow increases from zero the first instability is the
usual baroclinic instability of the zonal shear. Only one asymmetric mode initially
becomes unstable, we shall refer to this as the primary wave. As the forcing further
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increases, the amplitude of the primary wave (the most unstable mode of the asymmetric
flow) increases also, but the zonal shear is held fixed at the critical shear, since no other
equilibration mechanism (other than wave-mean-flow interaction, or indeed *barochinic
adjustment’) exists. At some critical value the primary wave will become unstable to
further wave—wave interactions. Since the amplitude of the zonal flow is more or less
fixed, this will happen before the zonal flow becomes unstable to other asymmetric
modes. In general the primary wave will become unstable to a triad interaction involving
two other wave modes, one of larger scale and one of smaller scale. The most unstable
wave will then be able to transfer energy and enstrophy to these secondary modes.
Beyond this secondary instability, there is no reason to expect baroclinic instability to
hold. Indeed we might {extremely crudely) parametrize the effects of the secondary waves
on the primary wave as a damping effect, or a friction, since they are withdrawing energy
from it. Any friction added to the primary wave will (unless it is very small, in which
case it can destabilize the system) increase the shear of the zonal flow required for
instability, allowing the zonal flow to equilibrate at a level supercritical to the oid linear
stability threshold. Thus we see that nonlinearity can immediately allow supercritical
equilibration, if the supercritical level is defined using a linear criterion.

There are two simple systems which allow for nonlinear effects. One is a single triad
of interacting waves, plus the zonal flow. The second allows only those modes with a
given x wavenumber (say wavenumber 6 in our system, since this is normally the most
linearly unstable) but allows all the meridional modes at that zonal scaie. Both of these
are to some extent ad hoc choices, although both have been used in weakly nonlinear
theories of wave—mean-flow interaction (see Loesch {1974) ~ although Loesch’s triads
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Figure 4. {a) Evolution of U/ in triad experiment V3. This experiment keeps wavelengths {6,0), (3,3) and

(9.3). The forcing is the same as that for V2 (Fig. 2}, The final state is supercritical. (b) Evolution of the eddy

mode {6, 0}--the same as the eddy mode in V2 (Fig. 2(b)). Note that the average amplitude is lower than that
in V2.
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were resonantly interacting, a condition we do not impose here) and both illustrate the
primary nonlinear interactions occurring. For the first class we choose wavenumbers
(ky, ky) = (6,0), (3,3) and (9, 3). This choice is governed by the desire to have modes
with wavenumbers both above and below the most linearly unstable wave. Figure 4
illustrates the time evolution of the zonal flow. Even with this limited nonlinearity, the
flow does not settle down to a completely steady state, but oscillates. The time-averaged
state Is seen to be superctitical. For the second problem Fig. 5 shows the corresponding
time series. The zonal flow is supercritical and oscillates chaotically. Even though the
wavenumber (6, 0} is nominally the smallest, its pseudo-wavenumber k' for its baroclinic
mode is higher than the barotropic wavenumbers of higher meridional modes. Thus
energy transfer can still take place to larger scales. For both integrations the magnitude
of the primary asymmetric mode, (6,0), is smaller than that for the wave-mean-flow
problem.

4. TRANSPORT IN FULLY NONLINEAR GEOSTROPHIC FLOW

This section examines the transport properties of geostrophic turbulence at high
supercriticalities, in a fixed spatially uniform shear. Primarily, our interest is in the
meridional transport of potential vorticity and, by default, heat. Secondarily, we shall
also be interested in the properties of highly truncated but still nonlinear models.

(@) Austauch coefficients in a two-layer model

Austauch coefficients are often used to model transport, one main assumption
necessary being a scale separation between mean and eddy fields. Green (1970) made
the pertinent observation that it is only valid (if it is ever valid) to treat closely conserved
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Figure 5. As Fig. 4 except for V4. This experiment keeps all eddies with x wavenumbers 6 or 0,
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guantities—such as potential vorticity, g—in this manner. See also Rhines and Young
(1982). Let us assume we may write

HEI}'P = _K{f a'é/alj (41)

where K is a second rank tensor. Dynamically, we often only require eddy flow
divergence (with ramifications discussed by Marshall and Shutts (1981)). In that case,
only the rotational part of u’q’ is dynamically active, and a uniform gradient of g (e.g.
B) is also dynamically inactive, provided Kj; is uniform. For our problem, Eq. (2.14)
shows that it is just the meridional flux of potential vorticity, the form drag, that affects
the zonal flow. Since our problem is homogeneous, being doubly-periodic geostrophic
turbulence with a uniform zonal shear, K must, if it exists, be uniform. Furthermore,
there can only be a meridional, and no zonal, transport. Hence we suppose

v'q’ = — K 6g/ay

where K is a spatially uniform scalar which will be called a transfer coefficient and the
overbar denotes either a time mean or a zonal mean (they are equivalent, with any sort
of ergodic hypothesis, because of the homogeneity of the problem). Because of this
homogeneity, there can be no meridional momentum flux. To see this, note that

o' =a(u'v' )/ 3y

where ¢ = V24 is the local vorticity. Integrating this with respect to y with periodic
boundary conditions immediately gives v’ ™" = 0. (This result is true in a channel also.)
But, by homogeneity, v’¢  is the same everywhere. Hence o' = (0 and there is no
momentum flux convergence on average, anywhere. This constraint has important

ramifications. Consider, for example, a one-layer model of uniform flow over topography.
Then,

sUjotoc v'q =o'k

where # is the topography, which we suppose to have no mean component. Using the
parametrization ___
v'g' = — Kag/ay = —Kf (4.2)

would clearly not generally be valid. If the topography is random, with no mean gradient,
then the potential vorticity flux is parametrized as Kf, which is obviously zero for
B = 0. This is acceptable if the flow is inviscid (by the Charney-Drazin theorem. Also,
the form drag of the steady asymmetric response to uniform flow over topography
vanishes as viscosity vanishes). However, if the viscosity is non-zero, there will be a form
drag, as in the Hart problem (Hart 1979b), and contrary to (4.2). Thus, Austauch
coefficients are inappropriate in the simplest of all cases—one-layer flow. In a two-layer
model a meridional heat flux is maintained by the mean shear. First, let us establish a
few identities about the mean flow:

g1 =By + WU, — Uy) =By + A*Uy
q, =By — ‘%ﬁy(Uz — U,) = By — le}’

I

then
8q,/dy = U(k;‘; - A%

dq, /oy = Ulk + A%)
where kg =V ([5?(]}. Now consider the eddy fluxes. We have
olql =v/Ll +0]8]  i=1,2

{(4.3)
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where
Ci=Vy, and 6, =3y, — ;) (J=3-1i).

But v;{] =0, for all i, and v{ 8] = ¢, y, = —0v}8)}. Hence

E N
vigy + v3g; =1

and

v1qr = 0301 = — 035 = — 03 6], (4.4)

Note that € is proportional to the quantity £ in (2.14), Thus the meridional fluxes of
heat and potential vorticity are equivalent. These identities impose constraints on any
Austauch coefficients for heat or potential vorticity transfer. Let

v q] =~ K, 8q;/dy

Then

vig; = — K, Ulkg + A?)
viq; = — K, U(kj — A7)

whence, by (4.4)
Ky/Ky = (42 = k3)/(32 + k). (4.5)

(These are similar to, but even simpler than, relationships in Marshall (1981).) Note that
if both Ky and X, are to be positive, A* > k3, which is also the condition for linear
instability. Defining K, = (K, + K;)/2 one finds

vig; =v]0] =~ K UR* — k})/A% (4.6)

Interestingly enough this implies, even with constant K, a rapid increase of heat flux
with supercriticality.

It seems, therefore, that with a suitable choice of Austauch coefficients in the various
layers the required momentum constraints can be satisfied. This procedure was followed
by White and Green (1982, 1984) and Marshall (1981). It is obviously necessary to obey
the constraints (although some other workers have not done so) since they are identities
and momentum conservation is otherwise violated. Indeed, the constraints may be
thought of as advantageous, in giving otherwise unknown information about the transfer
coefficients. However, it is equally possible to argue that it is a rather arbitrary procedure.
In the model above, the potential gradient differs in the two layers, vet we know the
magnitude of the potential vorticity flux to be the same. Although this may give useful
information about any putative transfer coefficients, it indicates a difficulty in basing
transfer on the gradient of potential vorticity. In particular, note that where the vertically
integrated potential vorticity flux vanishes, the vertically integrated potential vorticity
gradient does not, being given by the § term in the equations of motion. There is no a
priori reason why the transport theory should not be used for the vertically averaged
problem, but clearly it would be inappropriate to do so, for imposing the necessary
constraints would give a zero value for the Austauch coefficient. The problem has arisen
because potential vorticity is not a passive scalar. Because there can be no momentum
flux, potential vorticity is related to the heat flux which takes place at the layer interface.

Thas forces the transfer coefficients to be different in the two layers. If the 8 term were
ignored in the parametrization, then the problem would disappear, although then the
potential vorticity would no longer necessarily be transported downgradient.
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Consider the case of a multi-layered model, with a constant uniform shear. Again
the vertically integrated potential vorticity flux must be zero. This imposes a single
constraint on the transfer coefficients, which one could use to give the overall vertical
structure. One may also suppose that the average value is given to be the same as that
for the two-level model (although we have seen that this value is actually inappropriate
for a one-level model, as the value there must be zero). Nevertheless, the detailed vertical
structure must now be given by other arguments, whereas for the two-layer model no
other information is necessary. This is not necessarily inconsistent, but it seems somewhat
unsatisfactory.

The above examples have illustrated that diffusion of potential vorticity using
Austauch coefficients is not an entirely seif-contained parametrization in the sense that
the coefficients themselves must be set according to the vertical resolution of the model
used, even though potential vorticity is only being horizontally diffused. The continuous
form to which the coefficients in the layered models presumably converge in the limit of
infinite vertical resolution is not given, and the limiting case for the most coarse resolution
(namely just one layer in the vertical} is quite different from the average value when two
layers are used. Of course, this is not to say that potential vorticity is not transferred
downgradient. Indeed, this is probably the sense of most such eddy transfer in both
atmosphere and ocean. Nor do the above arguments necessarily imply that using transfer
coefficients in low-order, highly parametrized models is inappropriate. In many ways,
they have proved to be quite successful, as in White and Green (1982), and indeed the
vertical structure implied by Eq. (4.5) is similar to that implied by the linear arguments
of Green (1970). See also Held (1975). The important, and still unanswered, question,
is when is it appropriate for such transfer to be so parametrized, or, presumably, when
does potential vorticity behave as a passive scalar? Obviously considerations of potential
vorticity dynamics (Green 1970; Marshall 1981; Rhines and Young 1982; and others)
have been very important in elucidating the structure of the time-mean flow of both
atmosphere and ocean. The fact that Green and others are able to obtain variations of
the zonal flow qualitatively and even quantitatively similar to that observed is strong
evidence indeed that the parametrizations contain much that is correct. It may be that
in inhomogeneous flows the sense of the potential vorticity flux is all that is required and
this transcends the difficulties mentioned above.

Pressing on regardless, we shall explore further the parametrization schemes.
Because of the simple geometry of our problem, Eq. (4.5) may be regarded as the
definition of an Austauch coefficient, K,. The sole problem is to determine its magnitude.
Since we have seen that supercritical equilibration does occur, we cannot use a measure
based on the total energy available in the mean flow, since we have seen that not all this
is used or converted to eddy energy. Indeed, we have seen that in low-order systems the
eddy magnitude is determined more by the magnitude of the forcing than by the amplitude
of the zonal flow. {This is not strictly accurate, since the eddy motions do not directly
feel the forcing on the zonal flow; rather, the eddy flow in that case is in reality extremely
sensitive to the magnitude of the zonal shear.) We shall now present some numerical
simulations,

(b)Y Transport properties
For each simulation the time-averaged meridional potential vorticity (heat) transport
was calculated. Figure 6 shows the transport for various measures of the supercriticality.
We see that transport increases very rapidly indeed. Even using the formulation of
Eq. (5.5), using a constant value for the transport coefficient would clearly be an error.
Figure 7 shows how the transport coefficient does vary across the experiments. Clearly



STUDIES OF EDDY TRANSPORT PROPERTIES 197

103 .

T Ty

102

107 k

Hux
&
i

o F
1.3‘2 i Errrndhod 2 2 2k 1 boded b barl

U-Uc

flux

1 ) I T )

10210°2  1p°} 1Y 10 10% 109

KU - kg%

flux

.“-3-2 s aasnl R R TR TS NN W R 11] SO U0 N 1 0 1] B S Wy W RN
102 197" 10 10 10° 1993

baroclinic energy

Figure 6. Amplitude of the total potential vorticity flux for various measures of the supercriticality in

experiments F1 through F6. The abscissae are: (a) supercriticality U — U; (b) (U — U)% (¢) K, U(A* — k),

with K, constant. This is the right-hand side of Eq. (4.6). (d) K, U(A* — k}), with K, = (U — U~ The latter

is meant to give to the transfer coefficient a measure of the APE available in the mean flow. (e) The average

total eddy barochinic energy. The critical shear for linear instability has a value of 1-48 in these units,

corresponding to a value of kg of 8-1. (The respective inviscid values are 1-5 and 80. Friction is actually acting
to reduce the critical shear here, because it is small.)



198 G. K. VALLIS

102 ¢

o
e o
102
b
101 |
o
b
10V k
1[],.1 uf o4 &g eaeal s 5 55 aaml Lt EELEM (TR RS
02 107! 1oY 10’ 102 10°

baraochknic energy

Figure 7. Empirical value of K, as a function of: (a} (U ~ U.)%; (b) average total baroclinic eddy energy. K,
is defined as the flux divided by U(A" — &3).

some kind of energy weighting is appropriate, but the precise form is by no means clear
(as in Harrison 1978). An interesting diagnostic is the correlation of temperature with
northward velocity. This is the means whereby heat and potential vorticity are transported
polewards. The heat flux as a function of wavenumber 1s shown in Fig. 8. Not surprisingly,
the flux occurs mainly in the energy-containing eddies although they are not necessarily
baroclinically unstable to the mean flow. For the linear problem, a correlation occurs
only at the wavenumbers which are linearly stable, and for these wavenumbers the
correlation is fairly high. For the nonlinear integration, the correlation is generated for
a much larger band of wavenumbers, by nonlinear interactions, but it is reduced at the
linearly unstable modes from the linear values. This is an explicit example of turbulent
scrambling. A value of the correlation less than unity reduces the efficiency at which
APE is withdrawn from the mean shear.

(¢) Subgrid-scale paramerrizations for medium resolution models

The transport theories discussed above (namely baroclinic adjustment and potential
vorticity transport) are meant to apply to the modification of a mean flow by eddies of
a much smaller scale. The difficulties associated with the transport schemes may be
summarized as:
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energetic wavenumbers perform most of the transport, although they are not necessarily linearly unstable.

{b} Correlation between temperature and meridional velocity, {z1,), from the nonlinear integration and from

the corresponding linear problem. In the linear problem the correlation is set to zero for those modes which
are linearly stable,

(1) ad hoc nature of the parametrizations—the derivations are at best
phenomenological;

(if} evaluation of the magnitude of the transport coefficients—energetic arguments
are rather arbitrary, especially in the light of the results of section 3, where the eddy
amphitude is determined mainly by the forcing on the zonal flow, and in the presence of
turbulent scrambling;

(iii) maintenance of momentum flux constraints—rather awkward manipulations
and requirements on the transport coefficients are needed to maintain zero net momentum
flux;

(iv) energetic consistency: a downgradient diffusion of potential vorticity will
normally lead to energy nonconservation.

Regarding baroclinic adjustment, the argument in its disfavour is that nonlinear
transter obviates the need for it. Perhaps a more modest, although not qualitatively
dissimilar, goal for a parametrization scheme is that of simulating subgrid-scale effects
in a medium resolution (or large-eddy simulation) model. The advantages of scale
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separation disappear but the form of the parametrization may be less crucial. In two-
dimensional and geostrophic turbulence the most sophisticated subgrid-scale schemes
involve using a closure theory linked to an explicit simulation. In practice, especially for
non-homogeneous flows, this will be too difficult to implement. In two-dimensiconal
turbulence at medium to high resolution the term —~pV%yp has been found an adequate
enstrophy remover. An alternative—the anticipated potential vorticity method of
Sadourny and Basdevant (1985)—replaces this term with 8/{y, V*J(y, g)}. This maintains
strict energy conservation while ensuring enstrophy dissipation. See also Vallis and Hua
(1987). Here we shall examine the use of a simple downgradient flux of potential vorticity
as an eddy parametrization for low and medium resolution models. Rather than try to
derive constraints between the values in the model layers we use constant values for
each. Our reason for this is that using a constant value for the transfer coefficients is
simple, tractable, physically based (somewhat) and has been used, and probably will
continue to be used, by many other workers. Thus, we parametrize the effects of subgrid-
scale eddies by the term KV?%g in each layer, where K is a constant. Figure 9 displays
typical barotropic energy spectra so found. The value of the coefficient is tuned so that
the energy in the energy-containing scales is similar to that found in a higher resolution
model. The significant effect of using such a scheme is that the energy spectra are too
shallow. A conventional parametrization (V*{) is quantitatively better at this resolution,
although it produces a dissipation range at higher wavenumbers. The parametrization is
unable to remove enstrophy at the smaller scales efficiently enough. If the value for the
eddy diffusion coefficient is increased to try to compensate for this, then the simulation
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Figure 9. Energy spectra using potential vorticity diffusion as a subgrid-scale parametrizer (dotted line}. The

solid line is for a higher resolution model (for which the form of the subgrid-scale parametrization is much less

important), The dashed line uses a »V*{ scheme. This produces a dissipative range, but is quantitatively closer
to the high resolution run than the potential vorticity diffusion.
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becomes too viscous and too lacking in energy at all scales. The spectral slope is actually
rather sensitive to the value used, and can then become too steep. In summary, the
parametrization 1S not scale selective enough to be used in low to medium resolution
models. Making the parametrization more scale selective by increasing the power of the
diffusion operator would of course help (the parametrization then becomes like a
conventional enstrophy remover) but potential vorticity is no longer diffused, and we have
resigned ourselves to an ad hoc scheme. Making the transport coefficient proportional to
the local time-averaged instability will do no good in this regard since for a homogeneous
model this is the same everywhere, and there is no reason why a scheme should work
for an inhomogeneous model and not for a homogeneous one. Making the coefficient
proportional to the local, instantaneous energy of the resolved flow may work, but seems
rather contrived since we do not know how much mean energy is converted to eddy
energy. It, as here, the cut-off scale is in the enstrophy inertial range (or, strictly, in the
inertial range of the higher resolution model we seek to mimic) then no energy flows
into the unresolved scales and any dissipative parametrization is unrealistic. However,
for very low resolution models, such as in White and Green (1982) where the effects of
all the transtent baroclinic fluxes are parametrized, the scheme qualitatively correctly
reproduces the dissipative effects of the transient eddies on the asymmetric and zonal
mean flow. This may be in part because the eddies being parametrized are energy
containing and do act to dissipate energy in the mean flow, unlike eddies in the inertial
range.

5. DISCUSSION AND CONCLUSIONS

In this paper we have looked at some transport properties associated with large-
scale, nonlinear, geostrophic flow. Such flow is a characteristic of flow regimes found in
mid-latitude tropospheric flow and gyre-scale flow in the ocean. Although our parameters
and boundary conditions are perhaps somewhat more appropriate for atmospheric flow,
some of our general results must hold for the ocean. Before discussing the results, a
comment about doubly-periodic flow is in order.

In modelling atmospheric flow, channel models are a common enough substitute for
spherical geometry. We have chosen an even greater simplification, namely doubly-
periodic flow, for a number of reasons. The first is just computational efficiency—a
doubly periodic domain allows a simple basis set of eigenfunctions and hence allows
higher resolution to be reached. Secondly, it allows for homogeneous statistics, properties
we have used in deriving relations between the transfer coefficients and the fluxes in
section 4. Thirdly, it allows an explicit scale separation between the mean flow and the
eddies, the most favourable condition for transport theories. A disadvantage may be
seen in that the boundary conditions are unrealistic, first in not allowing an obvious
formulation for the mean flow variation, and second in being unphysical (for try to
consider the conservation of potential vorticity on a particle as it leaves the domain at
the top (y = 1, say) and reenters at the bottom (y = (), apparently feeling immediately
a lower value of the planetary vorticity). The first objection is overcome by using the
formulation for rate of change of the mean flow given in section 2 (and elsewhere).
Similarly the second point is really not so bad, and certainly does not corrupt the
dynamics: Note that the dynamics only recognizes the planetary vorticity gradient, B,
which 1s constant everywhere. Also, a physical way to think of the flow is that of a very
large field of eddies, existing on an infinite 8 plane possibly with an imposed large-scale
shear. If we only allow eddies much smaller than the scale of the mean shear, we can,
purely for computational convenience, choose to represent the eddy field as periodic
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flow. Provided the width of our box 1s larger than the energy-containing scales of the
eddies, the statistics of the dynamics within the box will be the same as if we were truly
on an infinite # plane. In particular the flux of quantities across the box is not affected
by the periodicity.

The simplicity of the geometry and, more importantly, the scale separation between
eddy and mean flow, allowed a physical derivation to be given for the rate of change ot
the mean flow under the action of the eddies. The derivation is not based on purely
energetic considerations, nor is it valid only for barotropic flow {although in the absence
of topography it maintains Galilean invariance). Under the influence of this mean flow,
the eddy flow is unstable, and fluxes of heat and potential vorticity are mmduced. We
looked at the equilibration properties of the flow, both for the fully nonlinear model and
arbitrarily truncated models. We found that if the eddy field is highly truncated, so that
only one wavenumber mode is allowed, baroclinic adjustment indeed does occur. It also
occurs if all eddy modes are present, but only wave-mean-flow, and not wave-wave,
interactions are allowed. In that case, although many eddy modes may initially be excited,
ultimately all but one die down and the mean flow equilibrates at the lowest shear which
will give baroclinic instability, and only one wavenumber 15 excited,

If more than one wavenumber is allowed to represent the asymmetric field, baroclinic
adjustment does not generally occur, if the forcing is sufficiently strong. For then multiple
asymmetric modes will be excited and baroclinic adjustment need not operate. Indeed,
if only one triad of eddy modes is allowed, the mean flow is able to equilibrate at a
supercritical level. Similarly, if all the meridional modes are afllowed at a given zonal
wavenumber, supercritical equilibration can occur. Baroclinic adjustment will normally
not occur if other asymmetric modes in the eddy field (i.e. in addition to the single most
unstable mode) are present. This is because equilibration is then a nonlinear process,
and the energy-containing eddies transfer their energy in an energy cascade to larger
scales. Whereas the backtransfer of energy to larger scales in our models, and in the
atmosphere and ocean, is hardly inertial (surface drag, for example, is important) the
gross characteristics of the transfer will approximate transfer in an energy inertial range
in the sense that the energy transfer will be spectrally fairly local, because the energy
transfer is associated with the straining of the velocity field by its own shear (Kraichnan
1967). (This is somewhat different from the situation at higher wavenumbers where the
energy spectra fall steeply and transfer in the enstrophy inertial range s relatively
nonlocal, and each octave contributes equally to the mean straining.) Thus, the eddies
need not equilibrate by further interaction with the mean flow, unless no other option is
open to them. Energy will cascade back to the zonal flow. A question not addressed in
this paper is the strength of the forcing in the real atmosphere and ocean. The many
simplifying assumptions make direct parameter comparison impossible, although the
essential dynamics is faithfully mirrored in so far as the mid-latitude atmosphere 1s quasi-
geostrophic and mainly driven by a meridional temperature gradient. (The magnitudes of
the various parameters chosen (friction, domain size, etc. ) certainly affect the quantitative
results. However, they do not affect the nature of the conclusions expressed here.) In
the real atmosphere and ocean it is probably an open question as to how strong the
forcing is. If it is sufficiently weak, then baroclinic adjustment could still hold. However,
the observed presence of several energetic asymmetric modes would argue against this.

The transfer, or flux, of potential vorticity is frequently assumed to be downgradient,
and parametrized using Austauch coefficients. In our models the former assumption
holds. The latter, namely the Austauch parametrization, is seen to be somewhat unsatis-
factory. First, the magnitude of the coefficients cannot quantitatively be given by a
measure of the instability of the mean flow, because the flow can equilibrate at highly
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supercritical values, and so much of the available potential energy of the mean flow is
not used. 'This objection could be met if a known fraction of the mean APE were used
to drive the eddies, but the author 15 not aware of such knowledge. Second, the
parametrization does not conserve energy, which makes it unsuitable if the maximum
wavenumber of the parametrized model s in the inertial range, although not necessarily
unsuitable if the maximum wavenumber is in the energy-containing range. Third, because
potential vorticity is not passive, prior specification of the transfer coefficients requires,
in order that momentum be conserved, a rather arbitrary specification of their vertical
structure. (On the other hand, this argument could be reversed and said to give otherwise
unknown information about the coefficients. See, for example, White and Green (1982).)
Fourth, using it as a subgrid-scale parametrization in medium resolution models is not
recommended because the eddy viscosity is then constant at high wavenumbers, whereas
closure calculations and explicit calculation show that it should increase rapidly to a
cusp at the truncation wavenumber (Kraichnan 1976). This could be overcome if the
coefficients are not local in space (but instead have some local energy weighting, say).
However, this procedure would be undeniably ad hoc, especially in the light of the first
point above. Of course, if the real atmosphere or ocean is only slightly supercritical then
setting the transport coefficient proportional to the supercriticality or to the available
potential energy in the mean flow will be an acceptable approximation. This question
cannot be answered with the model used here, again because the model 1s too unrealistic
for direct parameter checks. Finally, none of the above arguments in any way implies
that potential vorticity 1s not transported downgradient. Indeed there are arguments
based on examination of the enstrophy budget in the presence of dissipation that show
that in many cases it must be.

ACKNOWLEDGMENTS

This work has been funded by the National Science Foundation under grant ATM84-

12044 and by DARPA/ONR under the University Initiative Program No. N0014-86-K-
(0738.

REFERENCES
Carnevaie, G, F, and 1987 Nonlinear stability and statistical mechanics of flow over top-
Frederiksen, §. S, ography. J. Fluid Mech., 175, 157181
Green, J. S. A. 1970 ‘Transfer properties of the large-scale eddies and the general
circulation of the atmosphere. Q. J. R. Meteorol. Soc.,
96, 137-185
Harrison, D. E. 1978  On the diffusion parameterization of mesoscale eddy effects
from a numerical ocean experiment. J. Phys. Oceanogr.,
8, 913-918
Hart, J. E. 1979a  Finite amplitude baroclinic instability. Ann. Rev. Fluid Mech.
11, 147-172

1979b  Barotropic guasi-geostrophic flow over anisotropic mountains.
J. Atrmeos. Sci., 36, 1736-1746

Heid, I. M. 1975 Momentum transport by quasi-geostrophic eddies, ibid., 32,
1494-1497
Kraichnan, R. H. 1967  Inertial ranges in two-dimensional turbulence. Phys. Fluid.,

19, 1417-1423

1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci.,
33, 15211536

foesch, A Z. 1974  Resonant interactions between unstable and neutral baroclinic
waves, Parts | and I1. ibid., 31, 11771217
Marshall, J. C. 1981  On the parameterization of geostrophic eddies in the ocean.

J. Phys. Oceanogr., 11, 257-271



204

Marshall, J. C. and Shutts, G.

Pedlosky, J.
Rhines, P, and Young, W. R,

Sadourny, R. and Basdevant, C.

Salmon, R, §.

stone, P, H.
Vallis, G, K.

Vallis, G, K. and Hua, B-L..

Veronis, .

White, A. A. and Green, J. 8, A,

1981

197G
1982

1985

1980

1973
1985

1987

1981

1982

1984

G. K. VALLIS

A note on rotational and divergent eddy fluxes. ibid. , 11, 1677-
1680

Finite amplitude baroclinic waves. J. Atmos. Sci., 27, 15-30

Homogenization of potential vorticity in planetary gyres. J.
Huid Mech., 123, 347-367

Parameterization of subgrid scale barotropic and baroclinic
eddies in quasi-geostrophic models: Anticipated vorticity
method. J. Atmos. Sci., 42, 13531363

Barochinic instability and geostrophic turbulence. Geophys.
and Astrophys. Fluid Dynam., 15, 167-211

Barochnic adjustment. J. Atmos. Sci., 38, 561-571

On the spectral integration of the quasi-geostrophic equations
for doubly-periodic and channel flow. ibid., 42, 95-99

Eddy diffusivity of the anticipated potential vorticity method,
J. Atmos. Sci. (in press)

Dynamics of large-scale ocean circulation. In Evelution of
physical oceanagraphy. Eds. B. A. Warren and
C. Wunsch. MIT Press

A nonlinear atmospheric long wave model incorporating para-
metrizations of transient baroclinic eddies, Q. J. R.
Meteorol, Soc., 108, 55-85

Transter coefficient eddy flux parametrizations in a simple

model of the zonally averaged circulation. ibid., 110,
10351052



